WO2023116462A1 - 一种六氟磷酸盐的合成方法 - Google Patents

一种六氟磷酸盐的合成方法 Download PDF

Info

Publication number
WO2023116462A1
WO2023116462A1 PCT/CN2022/137757 CN2022137757W WO2023116462A1 WO 2023116462 A1 WO2023116462 A1 WO 2023116462A1 CN 2022137757 W CN2022137757 W CN 2022137757W WO 2023116462 A1 WO2023116462 A1 WO 2023116462A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexafluorophosphate
hydrogen fluoride
alkali metal
fluoride
phosphorus
Prior art date
Application number
PCT/CN2022/137757
Other languages
English (en)
French (fr)
Inventor
袁其亮
陈建
陈海峰
徐鹏飞
竺坚飞
蒋栋栋
陈寅镐
王超
Original Assignee
浙江中欣氟材股份有限公司
福建中欣氟材高宝科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中欣氟材股份有限公司, 福建中欣氟材高宝科技有限公司 filed Critical 浙江中欣氟材股份有限公司
Priority to US18/316,354 priority Critical patent/US20230278862A1/en
Publication of WO2023116462A1 publication Critical patent/WO2023116462A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of chemical synthesis, and in particular relates to a synthesis method of hexafluorophosphate.
  • Hexafluorophosphate is currently the most commonly used electrolyte in secondary batteries, among which lithium hexafluorophosphate is widely used in the manufacture of lithium-ion batteries, sodium hexafluorophosphate is used in the manufacture of sodium-ion batteries, and potassium hexafluorophosphate is used in research and manufacture of potassium-ion batteries. , Also used in the preparation of lithium hexafluorophosphate and sodium hexafluorophosphate.
  • hexafluorophosphate The synthesis method of hexafluorophosphate is divided into hexafluorophosphate ion exchange method, fluorophosphoric acid method and phosphorus pentafluoride method according to the raw materials used and key intermediates.
  • the hexafluorophosphate ion exchange method does not use phosphorus pentafluoride gas nor hydrogen fluoride as raw materials in the synthesis process, so it is more safe and convenient in production and operation.
  • the raw material itself is expensive, so it is difficult to be competitive in terms of synthesis cost.
  • the fluorophosphoric acid method avoids the use of phosphorus pentafluoride gas, which reduces the difficulty of synthesis to a certain extent, but the water generated in the reaction process adversely affects the quality of hexafluorophosphate products, and it is difficult to obtain high-purity hexafluorophosphate phosphate.
  • the phosphorus pentafluoride method although phosphorus pentafluoride gas is used, has the advantages of simple operation, low synthesis cost, high reaction yield, and good product quality. It is the most commonly used method for industrial synthesis of hexafluorophosphate.
  • phosphorus pentafluoride method according to the different phosphorus sources, it can be divided into: elemental phosphorus method, phosphoric acid method, polyphosphoric acid method, phosphorus trichloride method, phosphorus pentachloride method, etc.
  • the elemental phosphorus method is to place elemental phosphorus (red phosphorus, yellow phosphorus, white phosphorus, etc.) in a special reactor, introduce fluorine gas, and obtain phosphorus pentafluoride through gas-solid phase reaction.
  • the purity of phosphorus is high, and high-purity phosphorus pentafluoride can be obtained without complicated purification operations.
  • the disadvantage is that fluorine gas needs to be prepared through an additional electrolytic fluorine production process, and the reaction process is a gas-solid phase reaction.
  • the reactor structure It has high requirements on materials and harsh reaction conditions, so it is difficult to apply in large-scale industrialization.
  • the phosphoric acid method is similar to the polyphosphoric acid method.
  • Phosphoric acid or its polymers are used as raw materials to react with hydrogen fluoride to obtain aqueous hexafluorophosphoric acid, and then dehydrated by fuming sulfuric acid or sulfur trioxide to obtain phosphorus pentafluoride.
  • This method synthesizes The cost is low, but using a large amount of oleum or sulfur trioxide as a dehydrating agent is not friendly to the environment, and there are many impurities in oleum and sulfur trioxide, so it is difficult to produce high-purity phosphorus pentafluoride.
  • the phosphorus trichloride method is also similar to the phosphorus pentachloride method, wherein the phosphorus trichloride method first reacts phosphorus trichloride with chlorine to synthesize phosphorus pentachloride, and then reacts with hydrogen fluoride to obtain phosphorus pentafluoride, pentachloride Phosphate method uses phosphorus pentachloride directly as raw material, and reacts with hydrogen fluoride to obtain phosphorus pentafluoride. Compared with phosphorus trichloride method, phosphorus pentachloride method reduces one-step chlorination reaction, so it is more expensive in terms of synthesis cost and product quality. , Environmental friendliness and other aspects are more competitive, thus becoming the most common method for industrial preparation of phosphorus pentafluoride.
  • Phosphorus pentachloride solid one of the raw materials for the reaction, has a melting point as high as 180°C and is very easy to sublime, and cannot be converted into a liquid by heating, so solid feeding is usually used.
  • the other raw material, hydrogen fluoride has a boiling point of only 19.5°C, and It is highly volatile, and a small amount of local heat release or gas release during the reaction can cause a large amount of hydrogen fluoride to volatilize.
  • the reaction between phosphorus pentachloride and hydrogen fluoride is extremely violent. The two raw materials are in a solid-liquid phase reaction at the moment of contact.
  • Phosphorus pentafluoride obtained by the reaction of phosphorus pentachloride and hydrogen fluoride is a gas with a low boiling point of only -84.6°C. It is difficult to liquefy, making it difficult to purify, store, transport and use phosphorus pentafluoride, resulting in synthesis Costs go up and productivity goes down.
  • phosphorus pentafluoride has high activity and is prone to decomposition during storage, transportation and use, resulting in a decrease in reaction yield and product purity. Therefore, how to solve the problems of storage, transportation and use of phosphorus pentafluoride, so that it can be produced and used at any time as much as possible, or even synthesized in situ and used in situ, is an important problem that needs to be solved.
  • the present invention provides a safe and reliable synthesis method of hexafluorophosphate suitable for industrial application, which has the advantages of simple operation, good safety, high reaction yield, excellent product quality, The advantages of continuous production can be realized.
  • a kind of synthetic method of hexafluorophosphate is characterized in that, comprises the following steps:
  • step (3) the mixture (III) obtained in step (3), is subjected to gas-liquid separation to separate hydrogen halide gas to obtain a mixture (IV) composed of hexafluorophosphate, hydrogen fluoride and an inert solvent;
  • step (5) The mixture (V) obtained in step (5) is subjected to solid-liquid separation and drying to obtain hexafluorophosphate.
  • step (1)
  • the phosphorus pentahalide is selected from one or both of the following: phosphorus pentachloride and phosphorus pentabromide.
  • the choice of the type of phosphorus pentahalide has no direct relationship with the synthesis of hexafluorophosphate, that is, whether it is phosphorus pentachloride or phosphorus pentabromide, or a mixture of the two, it can be used to synthesize lithium hexafluorophosphate, hexafluorophosphate Any hexafluorophosphate among sodium phosphate and potassium hexafluorophosphate.
  • Phosphorus pentahalide is preferably any one of phosphorus pentachloride and phosphorus pentabromide.
  • the hydrogen halide gas generated in the subsequent reaction process is a single hydrogen halide, hydrogen chloride or hydrogen bromide, avoiding the occurrence of
  • the mixture of hydrogen chloride and hydrogen bromide can co-produce hydrogen chloride or hydrogen bromide solution after being absorbed by water, which has higher recycling value.
  • the inert solvent not only requires good solubility to phosphorus pentahalide, but also requires no side reaction with raw materials, intermediates and products during the reaction process.
  • the inert solvent can be alkane solvent, halogenated alkane solvent, aromatic hydrocarbon solvent, halogenated aromatic hydrocarbon solvent, etc., and can be a single solvent or a mixed solvent composed of two or more solvents.
  • Alkane solvents are C4-C10 linear, branched or cyclic alkanes. Representative alkane solvents include n-pentane, n-hexane, cyclohexane, n-heptane, methylcyclohexane, etc.
  • Halogenated alkane solvents can be represented by the following general formula:
  • halogenated alkanes can be linear, branched or cyclic
  • representative halogenated alkanes solvents include dichloromethane, tris Chloromethane, carbon tetrachloride, dichloroethane, bromoethane, dibromoethane, etc.
  • Aromatic solvents can be represented by the following general formula:
  • Representative aromatic hydrocarbon solvents include benzene, toluene, xylene, trimethylbenzene, ethylbenzene, methylethylbenzene, etc.
  • Halogenated aromatic hydrocarbon solvents can be represented by the following general formula:
  • Representative halogenated aromatic solvents include fluorobenzene, chlorobenzene, bromobenzene, di Fluorobenzene, dichlorobenzene, p-chlorofluorobenzene, p-fluorotoluene, etc.
  • the dosage of the inert solvent is 1 to 20 times the mass of the phosphorus pentahalide.
  • solvents containing atoms such as nitrogen and oxygen such as nitrile solvents such as acetonitrile, ester solvents such as dimethyl carbonate, ether solvents such as ethylene glycol dimethyl ether, ketone solvents such as acetone, etc.
  • nitrile solvents such as acetonitrile
  • ester solvents such as dimethyl carbonate
  • ether solvents such as ethylene glycol dimethyl ether
  • ketone solvents such as acetone, etc.
  • side reactions such as decomposition and complexation with hydrogen fluoride, phosphorus pentafluoride, hexafluorophosphate, etc., resulting in darker color of the reaction solution and poor appearance of the product.
  • the purity deteriorates, the reaction yield decreases, the solvent recovery rate decreases, and the solvent recovery and utilization are difficult, etc., so it is not suitable for use as a reaction solvent.
  • the heating method can be used to increase the dissolution rate of phosphorus pentahalide in inert solvent. After the phosphorus pentahalide is dissolved, the temperature is lowered to The required temperature is then input into the reactor for reaction. Considering that the introduction of moisture will have an adverse effect on the quality of the final product, during the process of adding and dissolving phosphorus pentahalide, airtight and dry inert gas protection should be adopted to isolate the ambient water vapor.
  • Phosphorus pentahalide is first dissolved in an inert solvent, and then the subsequent reaction is carried out after obtaining the phosphorus pentahalide inert solvent solution.
  • This operation scheme is of great significance to the smooth implementation of the process.
  • Phosphorus pentahalide whether it is phosphorus pentachloride or phosphorus pentabromide, is a sublimable solid, of which the solid melting point of phosphorus pentachloride is as high as 180°C, and the solid phosphorus pentabromide has no clear melting point.
  • step (2)
  • Described alkali metal halide salt is represented by the following general formula:
  • the alkali metal halide salt is selected from one or more of the following: lithium fluoride, lithium chloride, lithium bromide; when the synthetic target product is sodium hexafluorophosphate, the alkali metal halide salt is selected from the following one One or several kinds: sodium fluoride, sodium chloride, sodium bromide; when the synthetic target product is potassium hexafluorophosphate, the alkali metal halide salt is selected from one or more of the following: potassium fluoride, potassium chloride, bromine Potassium chloride.
  • the alkali metal halide salt is an alkali metal fluoride salt
  • the process of dissolving the alkali metal fluoride salt in anhydrous hydrogen fluoride is a pure dissolution process, the dissolution heat is not obvious and no gas is generated, and the dissolution process is relatively mild
  • the process of dissolving the alkali metal halide salt in anhydrous hydrogen fluoride is not only a dissolution process, but also a halogen exchange reaction process.
  • the reaction equation is as follows:
  • alkali metal fluoride salt and alkali metal bromide salt are dissolved in anhydrous hydrogen fluoride, alkali metal fluoride salt is generated, and a molecule of hydrogen halide gas is generated at the same time.
  • the hydrogen halide gas produced is hydrogen chloride.
  • the hydrogen halide gas produced is hydrogen bromide.
  • the alkali metal halide salt is preferably a single halogen element compound, especially when the alkali metal halide salt is a chloride salt and a bromide salt, so that the hydrogen halide gas generated in the dissolution process is a single hydrogen halide, hydrogen chloride or hydrogen bromide, avoiding the occurrence of
  • the mixture of hydrogen chloride and hydrogen bromide can co-produce hydrogen chloride or hydrogen bromide solution after being absorbed by water, which has higher recycling value.
  • the process of dissolving alkali metal chloride salts and alkali metal bromide salts in anhydrous hydrogen fluoride involves a halogen exchange reaction and generates a molecule of hydrogen halide, but the reaction process is relatively mild with less heat release and can be controlled by adjusting the feeding speed. Therefore, the security is higher.
  • the alkali metal halide salt used in step (2) is alkali metal chloride or alkali metal bromide
  • the phosphorus pentahalide used in step (1) should correspond to pentachloro Phosphate or phosphorus pentabromide, that is, when step (2) uses alkali metal chloride salt, step (1) uses phosphorus pentachloride, and when step (2) uses alkali metal bromide, step (1) uses pentachloride Phosphorus bromide, in this way, can realize step (2) and step (4) to share the hydrogen halide treatment system, which can not only avoid repeated construction of production equipment, reduce equipment operation costs, but also effectively avoid the occurrence of mixed hydrogen halide, and improve the co-production of halide Economic value of hydrogen solution.
  • the alkali metal halide salt is the preferred source of alkali metal, because the alkali metal halide salt only produces hydrogen halide gas during the process of dissolving in anhydrous hydrogen fluoride and the subsequent reaction process, and no moisture is introduced, while other Alkali metal sources, such as alkali metal carbonates, alkali metal bicarbonates, alkali metal hydroxides, etc., when dissolved in anhydrous hydrogen fluoride, all have water generated, and these waters introduced into the reaction system will lead to the product hexafluoro Phosphate decomposes to generate oxyfluoride phosphate, which adversely affects the quality of the final product, so it cannot be used as the source of alkali metal in the present invention.
  • Alkali metal sources such as alkali metal carbonates, alkali metal bicarbonates, alkali metal hydroxides, etc.
  • the anhydrous hydrogen fluoride is liquid hydrogen fluoride, in view of the boiling point of hydrogen fluoride is 19.5 ° C, in order to ensure that hydrogen fluoride into a liquid state, the temperature of the system must be lower than 19.5 ° C during the dissolution process and the storage process of the alkali metal fluoride salt hydrogen fluoride solution, the preferred solution and Storage temperature: -40 ⁇ 19°C.
  • the amount of anhydrous hydrogen fluoride is 1 to 20 times the mass of the alkali metal halide salt.
  • step (3)
  • phosphorus pentahalide inert solvent solution (I) and alkali metal fluoride salt hydrogen fluoride solution (II) enter the reactor in proportion, phosphorus pentahalide first reacts with hydrogen fluoride to generate phosphorus pentafluoride, and the generated phosphorus pentafluoride is in situ React with alkali metal fluoride to generate hexafluorophosphate.
  • the in-situ generation and reaction of phosphorus pentafluoride avoids the separation, purification, storage, transportation and other operations of phosphorus pentafluoride, effectively simplifies the production process, improves the utilization rate of phosphorus pentafluoride, improves production efficiency, and reduces synthesis costs.
  • the reactor can be a batch tank reactor, a tubular reactor and a microreactor, the preferred reactor is a tubular reactor and a microreactor, and the more preferred reactor is a microreactor.
  • the use of microreactors can effectively improve the reaction yield and product purity, simplify the reaction operation, and improve the safety of the reaction. The reasons are as follows: (1) The reaction of phosphorus pentahalide and hydrogen fluoride to synthesize phosphorus pentafluoride is very violent and releases a lot of heat.
  • the solution feed is used to avoid a more violent solid-liquid reaction process, and at the same time by controlling the feed rate, the severity of the reaction is further controlled, so that the reaction can be carried out in batch tank reactors and Tubular reactors can also be carried out, but microreactors have better mixing effects and higher heat exchange areas than batch reactors and tubular reactors, which are more conducive to controlling the reaction under milder conditions conduct.
  • the hydrogen fluoride gas and volatilized hydrogen fluoride gas are entrained out of the reaction system and lost, and the loss of hydrogen fluoride may also damage the stability of the reaction system. The more serious consequence is that the hydrogen fluoride remaining is insufficient and the reaction is normally carried out.
  • the hydrogen fluoride remaining is insufficient and the reaction is normally carried out.
  • it will also lead to the inclusion of phosphorus pentafluoride gas in the hydrogen halide gas and to a certain extent, the gas-liquid phase separation, resulting in the loss of phosphorus pentafluoride that cannot fully react with the alkali metal fluoride salt in the hydrogen fluoride solution .
  • microreactors can effectively avoid the above problems, and the excellent mixing effect ensures that the reaction intermediate product phosphorus pentafluoride is fully in contact with the alkali metal fluoride salt in hydrogen fluoride.
  • the phosphorus pentafluoride has completely reacted.
  • the reaction has ended.
  • the reaction has ended at this time, even if some hydrogen fluoride is entrained and lost by hydrogen halide when the reaction liquid is separated from gas and liquid to remove hydrogen halide gas, the reaction has ended at this time, and the lost hydrogen fluoride will not cause any adverse effects on the reaction.
  • the reactor When the reactor is a microreactor, it can be a single microreactor or a microreactor group formed by a plurality of microreactors closely combined, and the specific structure is determined by the process conditions.
  • the reaction temperature distribution in the microreactor can be a uniform temperature, or different temperature distributions can be formed inside the microreactor as required. If adopt uniform reaction temperature, this reaction temperature should not be higher than the boiling point of anhydrous hydrogen fluoride, guarantee that the hydrogen fluoride in the reaction mixture (III) that microreactor outlet flows out is in liquid state. If the interior of the microreactor is a different temperature distribution, then in the microreactor, the temperature higher than the boiling point of anhydrous hydrogen fluoride can be tolerated.
  • the reaction mixture (III) flows to the microreactor outlet, the mixture (III) flows out of the microreactor through cooling.
  • the temperature of the reactor is lower than the boiling point of anhydrous hydrogen fluoride.
  • the reaction temperature of the microreactor is -40 to 100°C.
  • the intermediate product phosphorus pentafluoride is a gas
  • the hydrogen halide is also a gas. The generation of gas will inevitably lead to an increase in the internal pressure of the microreactor.
  • the reaction temperature of the microreactor is higher than the boiling point of anhydrous hydrogen fluoride, Gasification of hydrogen fluoride will also generate pressure.
  • the material of the contact material part of the microreactor is preferably: the non-metallic material is silicon carbide, and the metal material is high-nickel alloy material, such as Monel alloy, Hastelloy, etc. maximum pressure.
  • the feed ratio of phosphorus pentahalide inert solvent solution (I) and alkali metal fluoride hydrogen fluoride solution (II) refers to the amount of the substance containing phosphorus in the phosphorus pentahalide inert solvent solution entering microreactor in the unit time, and , the ratio of the amount of alkali metal contained in the alkali metal fluoride hydrogen fluoride solution entering the microreactor per unit time.
  • the ratio of the amount of phosphorus that enters the microreactor per unit time to the amount of alkali metal is: (0.8 ⁇ 1.2): 1, more preferably the amount of phosphorus that enters the microreactor per unit time and the alkali metal
  • the ratio of the amount of metal to substance is: (0.9 ⁇ 1.1):1.
  • step (4)
  • the mixture (III) flowing out from the reactor is composed of hexafluorophosphate, hydrogen fluoride, inert solvent and hydrogen halide.
  • gas-liquid separation the volatile hydrogen halide gas is separated from the mixed liquid to obtain hexafluorophosphate, hydrogen fluoride Mixtures (IV) with inert solvents.
  • the gas-liquid separation process can be carried out in a special gas-liquid separator, and the separated mixture (IV) enters the collector, or the gas-liquid separation operation can be performed in the collector. If the gas-liquid separation is carried out in the collector, the collector must have enough space for storing the mixture (IV) and performing gas-liquid separation operations, and it should also have functions such as temperature adjustment, condensation, and defoaming.
  • the collector In order to keep the material in the collector uniform, the collector preferably has a stirring function.
  • the material of the gas-liquid separator and the collector contacting the material needs to be resistant to corrosion such as hydrogen fluoride and hydrogen halide. It can be non-metallic materials such as silicon carbide, high-nickel alloy materials such as Monel alloy and Hastelloy alloy, and can also be lined with PTFE, Corrosion-resistant polymer materials such as PFA.
  • the separated hydrogen halide gas adopts a multi-stage deep condensation method to condense and recover the hydrogen fluoride entrained in the hydrogen halide gas, and a small amount of residual hydrogen fluoride is removed by multi-stage adsorption defluorination to obtain high-purity hydrogen halide gas, which is obtained after water absorption.
  • Hydrogen halide solution for commercial use to improve economic efficiency.
  • the hydrogen halide gas can also be purified and utilized in other suitable ways, which are determined according to actual needs.
  • the operating temperature is required not to be higher than the boiling point of anhydrous hydrogen fluoride, to avoid volatilization of liquid hydrogen fluoride, to increase the operating load and difficulty of defluorination and purification of hydrogen halide gas, and to optimize gas-liquid separation Operating temperature: -40 ⁇ 19°C.
  • step (5)
  • the mixture (IV) is composed of hexafluorophosphate, hydrogen fluoride and an inert solvent. After a certain amount of the mixture (IV) is collected, hydrogen fluoride is removed to obtain a mixture (V) composed of hexafluorophosphate and the inert solvent.
  • the hydrogen fluoride removal operation can be carried out in a collector or in a special desolventizer. If the hydrogen fluoride removal operation is carried out in the desolventization kettle, the desolventization kettle needs to have the functions of stirring, temperature adjustment, condensation, and foam removal. Materials, high-nickel alloy materials such as Monel alloy and Hastelloy alloy, can also be lined with corrosion-resistant polymer materials such as PTFE and PFA.
  • the operation of removing hydrogen fluoride mainly utilizes the low boiling point and high volatility of hydrogen fluoride, and the hydrogen fluoride is boiled and evaporated by heating and heating to realize the removal of hydrogen fluoride from the mixed material.
  • the hydrogen fluoride vapor is condensed first, and the entrained inert solvent is condensed and returned to the mixture, and the hydrogen fluoride vapor enters the hydrogen fluoride recovery system.
  • dry nitrogen, helium, argon and other inert gases can be used to bubble and purge the mixture , to ensure sufficient removal of hydrogen fluoride to obtain a mixture (V) without residual hydrogen fluoride.
  • the hydrogen fluoride gas entering the hydrogen fluoride recovery system undergoes multi-stage deep condensation to condense and recover hydrogen fluoride, and the tail gas after deep condensation is defluorinated by multi-stage water and alkali spray or multi-stage adsorption defluorinated before being discharged up to the standard.
  • the operating temperature is required to be higher than the boiling point of hydrogen fluoride, but lower than the boiling point of the inert solvent, so as to ensure the smooth removal of hydrogen fluoride and avoid entrainment of the inert solvent into the hydrogen fluoride recovery system.
  • the preferred operating temperature for removing hydrogen fluoride is 20-100°C.
  • step (6)
  • the mixture (V) is composed of hexafluorophosphate and an inert solvent, and the finished product of hexafluorophosphate is obtained after solid-liquid separation and drying.
  • Commonly used solid-liquid separation operations such as centrifugation, pressure filtration, suction filtration, etc., are applicable to the solid-liquid separation of the mixture (V).
  • the solid is separated from the liquid to obtain the solid, and the finished hexafluorophosphate is obtained by drying, with a purity of over 99.8% and a yield of over 99.0%.
  • the obtained hexafluorophosphate can be recrystallized and purified to obtain ultra-high-purity hexafluorophosphate with a purity of over 99.99% and a yield of over 98%.
  • the product hexafluorophosphate is obtained through solid-liquid separation from a mixture of hexafluorophosphate and an inert solvent, avoiding the prior art product hexafluorophosphate from hydrogen fluoride solution through solid-liquid separation, greatly improving the
  • the solid-liquid separation process and the subsequent purification and drying process are safe and operable, and the residual hydrogen fluoride in the separated hexafluorophosphate is less, and the product quality is better.
  • Fig. 1 is a schematic flow chart of the continuous synthesis process of hexafluorophosphate of the present invention "continuous in tank - continuous flow - continuous in tank”.
  • the present invention synthesizes lithium hexafluorophosphate by using a continuous reaction process of "continuous kettle-reactor flow-continuous gas-liquid separation-continuous kettle".
  • the specific process flow is as follows:
  • the preparation of the phosphorus pentahalide inert solvent solution adopts the AB two-line system, and the two lines of AB are crossed.
  • the B line is used for the phosphorus pentahalide solution.
  • line A is used for feeding the phosphorus pentahalide solution, so that continuous feeding of the phosphorus pentahalide inert solvent solution can be realized.
  • the preparation of the alkali metal fluoride salt hydrogen fluoride solution adopts the AB two-line system, and the AB two lines are crossed.
  • the B line is used for feeding the alkali metal fluoride salt solution.
  • line A is used to feed alkali metal fluoride salt solution, so that continuous feeding of alkali metal fluoride salt hydrogen fluoride solution can be realized;
  • alkali metal fluoride salt uses alkali metal chloride salt or alkali metal
  • bromine salt is produced, the hydrogen halide gas produced enters the hydrogen halide treatment system.
  • the mixture (IV) is collected and removed to obtain the mixture (V), and the mixture (V) is separated from the solid and liquid to obtain hexafluorophosphate.
  • the above operation adopts the AB two-line system, and the AB two lines are crossed.
  • line A is collecting mixture (IV)
  • line B is carrying out mixture (IV) removal of hydrogen fluoride to obtain mixture (V), and solid-liquid separation of mixture (V) to obtain hexafluorophosphate operation.
  • a line is used to remove hydrogen fluoride from the mixture (IV) to obtain the mixture (V), and the solid-liquid separation of the mixture (V) to obtain hexafluorophosphate operation.
  • the continuous gas-liquid separator can be seamlessly connected, and the continuous gas-liquid separator can be realized.
  • the hydrogen fluoride removal and solid-liquid separation operations ensure the continuous and stable operation of the synthesis process; the released hydrogen fluoride enters the hydrogen fluoride recovery system, and the inert solvent obtained from solid-liquid separation returns to the phosphorus pentahalide inert solvent solution preparation process.
  • Hexafluorophosphate drying to obtain hexafluorophosphate finished products, as well as the packaging process of hexafluorophosphate finished products, are carried out in a single line, and the continuous drying and continuous packaging equipment are reasonably matched according to the actual production capacity, so as to realize the continuous drying of hexafluorophosphate , Continuous packaging operations.
  • phosphorus pentachloride toluene solution is continuously input microreactor with the speed of 500g/min through metering pump
  • lithium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 77.85g/min through metering pump
  • two kinds of materials are in
  • the inlet of the micro-reactor is fully mixed and then enters the micro-reactor for reaction.
  • the micro-reactor adopts step temperature control, the highest temperature in the middle is controlled at 60-65°C, the outlet temperature is controlled at -15--10°C, and the materials are in the micro-reactor.
  • the dwell time is about 80 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator.
  • the temperature of the gas-liquid separator is controlled at -15 ⁇ -10°C.
  • the gas separated from the gas-liquid separator enters the hydrogen chloride treatment system, and the separated liquid phase Enter the collection kettle, and control the temperature of the collection kettle at 0-5°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • the temperature of the collection kettle is slowly raised to 40-45°C, the hydrogen fluoride is removed by evaporation, and the hydrogen fluoride vapor enters the hydrogen fluoride recovery system. Purge the material at ⁇ 45°C for 2 hours. After the purge is completed, the temperature of the collecting tank is cooled to 5-10°C, and the material is discharged and centrifuged to obtain the wet solid product of lithium hexafluorophosphate. The centrifuged mother liquor is used as the recovered toluene, which is returned to the toluene in the preparation process of phosphorus pentachloride toluene solution groove.
  • Lithium hexafluorophosphate wet solids enter the single-cone ribbon dryer through the solid material conveying system, and dry under reduced pressure. After passing the test, the packaging is completed by the automatic packaging system.
  • Hydrogen chloride treatment system The hydrogen chloride treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers. Three-stage series condensers pass through -35 ⁇ -30°C refrigerated liquid to condense and recover hydrogen fluoride entrained in hydrogen chloride; two-stage defluorination packed towers are equipped with hydrogen fluoride adsorption packing to remove a small amount of hydrogen fluoride remaining in hydrogen chloride after condensation and defluorination The high-purity hydrogen chloride obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen chloride solution with a concentration of 35-36%.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of lithium hexafluorophosphate in this example took 10 hours from the start of feeding to the debugging and stabilization. Start timing after commissioning, and run stably for 300 hours.
  • the results are summarized as follows: a total of 2,250 kg of phosphorus pentachloride and 458 kg of lithium chloride were consumed, and 1,630 kg of finished lithium hexafluorophosphate was obtained, with a yield of 99.3% and a purity of 99.85%.
  • phosphorus pentachloride chlorobenzene solution is continuously input microreactor with the speed of 550g/min through metering pump, sodium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 73.94g/min through metering pump, two kinds of materials After fully mixing at the entrance of the microreactor, it enters the microreactor for reaction.
  • the microreactor adopts step temperature control. The dwell time is about 70 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator.
  • the temperature of the gas-liquid separator is controlled at -5-0°C.
  • the gas separated from the gas-liquid separator enters the hydrogen chloride treatment system, and the separated liquid phase enters the Collect the kettle, and control the temperature of the collection kettle at -5 to 5°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • the temperature of the collection kettle is slowly raised to 50-55°C, the hydrogen fluoride is removed by evaporation, and the hydrogen fluoride vapor enters the hydrogen fluoride recovery system. Purge the material at ⁇ 55°C for 2 hours. After the purge is completed, the temperature of the collecting tank is cooled to 20-25°C, and the material is discharged and centrifuged to obtain the wet solid of sodium hexafluorophosphate. The centrifuged mother liquor is used as the recovery of chlorobenzene and returned to phosphorus chlorobenzene pentachloride. Chlorobenzene tank in the solution preparation process.
  • Hydrogen chloride treatment system The hydrogen chloride treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers. Three-stage series condensers pass through -35 ⁇ -30°C refrigerated liquid to condense and recover hydrogen fluoride entrained in hydrogen chloride; two-stage defluorination packed towers are equipped with hydrogen fluoride adsorption packing to remove a small amount of hydrogen fluoride remaining in hydrogen chloride after condensation and defluorination The high-purity hydrogen chloride obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen chloride solution with a concentration of 35-36%.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of sodium hexafluorophosphate in this example took 10 hours from the start of feeding to the stabilization of debugging. Start timing after commissioning, and run stably for 300 hours.
  • the results are summarized as follows: a total of 1,980 kg of phosphorus pentachloride and 399 kg of sodium fluoride were consumed, and 1,589 kg of finished sodium hexafluorophosphate was obtained, with a yield of 99.5% and a purity of 99.83%.
  • phosphorus pentachloride chloroform solution is continuously input microreactor with the speed of 450g/min through metering pump
  • potassium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 107.62g/min through metering pump
  • two kinds of materials are in
  • the inlet of the micro-reactor is fully mixed and then enters the micro-reactor for reaction.
  • the micro-reactor adopts step temperature control, the highest temperature in the middle is controlled at 40-45°C, the outlet temperature is controlled at -15--10°C, and the materials are in the micro-reactor.
  • the dwell time is about 90 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator.
  • the temperature of the gas-liquid separator is controlled at -10 ⁇ -5°C.
  • the gas separated from the gas-liquid separator enters the hydrogen chloride treatment system, and the separated liquid phase Enter the collection kettle, and control the temperature of the collection kettle at 0-5°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • Hydrogen chloride treatment system The hydrogen chloride treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers. Three-stage series condensers pass through -35 ⁇ -30°C refrigerated liquid to condense and recover hydrogen fluoride entrained in hydrogen chloride; two-stage defluorination packed towers are equipped with hydrogen fluoride adsorption packing to remove a small amount of hydrogen fluoride remaining in hydrogen chloride after condensation and defluorination The high-purity hydrogen chloride obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen chloride solution with a concentration of 35-36%.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of potassium hexafluorophosphate in this example took 10 hours from the start of feeding to the stabilization of debugging. Start timing after commissioning, and run stably for 300 hours.
  • the results are summarized as follows: a total of 2,430 kg of phosphorus pentachloride and 870 kg of potassium chloride were consumed, and 2,131 kg of finished potassium hexafluorophosphate was obtained, with a yield of 99.2% and a purity of 99.88%.
  • phosphorus pentachloride, sodium chloride, and hydrogen fluoride are used as raw materials, and m-dichlorobenzene is used as an inert organic solvent to synthesize sodium hexafluorophosphate.
  • m-dichlorobenzene is used as an inert organic solvent to synthesize sodium hexafluorophosphate.
  • phosphorus pentachloride m-dichlorobenzene solution is continuously input microreactor with the speed of 450g/min through metering pump
  • sodium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 108.89g/min through metering pump
  • the materials are fully mixed at the entrance of the micro-reactor and then enter the micro-reactor to react.
  • the micro-reactor adopts step temperature control.
  • the residence time in the device is about 90 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator.
  • the temperature of the gas-liquid separator is controlled at -5-0°C.
  • the gas separated from the gas-liquid separator enters the hydrogen chloride treatment system, and the separated liquid phase enters the Collect the kettle, and control the temperature of the collection kettle at -5 to 0°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • the temperature of the collection kettle is slowly raised to 60-65°C, hydrogen fluoride is removed by evaporation, and the hydrogen fluoride vapor enters the hydrogen fluoride recovery system. Purge the material at ⁇ 65°C for 1 hour. After the purge is completed, the temperature of the collecting tank is cooled to 15-20°C, and the material is discharged and centrifuged to obtain the wet solid of sodium hexafluorophosphate. The centrifuged mother liquor is used to recover m-dichlorobenzene and return to phosphorus pentachloride. The m-dichlorobenzene tank in the m-dichlorobenzene solution preparation process.
  • the hydrogen chloride treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers.
  • the three-stage series condenser is fed with -35 ⁇ -30°C refrigerant to condense and recover the hydrogen fluoride entrained in the hydrogen chloride;
  • the two-stage defluorination packed tower is equipped with hydrogen fluoride adsorption packing to remove a small amount of hydrogen fluoride remaining in the condensed and defluorinated hydrogen chloride
  • the high-purity hydrogen chloride obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen chloride solution with a concentration of 35-36%.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of sodium hexafluorophosphate in this example took 10 hours from the start of feeding to the stabilization of debugging. Start timing after commissioning, and run stably for 300 hours.
  • the results are summarized as follows: a total of 2,430 kg of phosphorus pentachloride and 682 kg of sodium chloride were consumed, and 1,942 kg of finished product of sodium lithium hexafluoride was obtained, with a yield of 99.1% and a purity of 99.90%.
  • phosphorus pentachloride dichloroethane solution is continuously input microreactor with the speed of 500g/min through metering pump
  • lithium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 62.28g/min through metering pump
  • the materials are fully mixed at the inlet of the microreactor and then enter the microreactor to react.
  • the microreactor adopts step temperature control, the highest temperature in the middle is controlled at 50-55°C, and the outlet temperature is controlled at 0-5°C.
  • the dwell time is about 80 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator, and the temperature of the gas-liquid separator is controlled at -20 ⁇ -15°C.
  • the gas separated from the gas-liquid separator enters the hydrogen chloride treatment system, and the separated liquid phase Enter the collection kettle, and the temperature of the collection kettle is controlled at -5 ⁇ 5°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • Lithium hexafluorophosphate wet solids enter the single-cone ribbon dryer through the solid material conveying system, and dry under reduced pressure. After passing the test, the packaging is completed by the automatic packaging system.
  • Hydrogen chloride treatment system The hydrogen chloride treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers. Three-stage series condensers pass through -35 ⁇ -30°C refrigerated liquid to condense and recover hydrogen fluoride entrained in hydrogen chloride; two-stage defluorination packed towers are equipped with hydrogen fluoride adsorption packing to remove a small amount of hydrogen fluoride remaining in hydrogen chloride after condensation and defluorination The high-purity hydrogen chloride obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen chloride solution with a concentration of 35-36%.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of lithium hexafluorophosphate in this example took 10 hours from the start of feeding to the debugging and stabilization. The timing was started after the commissioning was completed, and the stable operation lasted for 300 hours. The results are summarized as follows: a total of 2,250 kg of phosphorus pentachloride and 280 kg of lithium fluoride were consumed, and 1,631 kg of finished lithium hexafluorophosphate was obtained, with a yield of 99.4% and a purity of 99.86%.
  • phosphorus pentabromide, potassium bromide, and hydrogen fluoride are used as raw materials, and methylcyclohexane is used as an inert organic solvent to synthesize potassium hexafluorophosphate.
  • methylcyclohexane is used as an inert organic solvent to synthesize potassium hexafluorophosphate.
  • phosphorus pentabromide methylcyclohexane solution is continuously input microreactor with the speed of 600g/min through metering pump
  • potassium fluoride hydrogen fluoride solution is input microreactor continuously with the speed of 30.37g/min through metering pump
  • the two materials are fully mixed at the entrance of the micro-reactor and then enter the micro-reactor to react.
  • the micro-reactor adopts step temperature control.
  • the residence time in the microreactor is about 60 seconds;
  • reaction liquid flows out of the microreactor, it enters the continuous gas-liquid separator, and the temperature of the gas-liquid separator is controlled at -10 ⁇ -5°C.
  • the gas separated from the gas-liquid separator enters the hydrogen bromide treatment system, and the separated gas
  • the liquid phase enters the collection kettle, and the temperature of the collection kettle is controlled at -5 to 5°C.
  • the collection kettle is divided into AB kettle, and the two kettles are used alternately.
  • Hydrogen bromide treatment system The hydrogen bromide treatment system consists of three-stage series condensers, two-stage defluorination packed towers, three-stage falling film absorbers and two-stage alkali spray towers.
  • the -35 ⁇ -30°C refrigerating liquid is passed through the three-stage series condenser to condense and recover the hydrogen fluoride entrained in the hydrogen bromide;
  • the two-stage defluorination packed tower is equipped with hydrogen fluoride adsorption packing, and the hydrogen bromide after condensation and defluorination is collected A small amount of residual hydrogen fluoride is removed;
  • the high-purity hydrogen bromide obtained after defluorination treatment is absorbed by water in a three-stage falling film absorber to obtain a hydrogen bromide solution with a concentration of 46-48%; the tail gas is sprayed with a secondary alkali to remove acid After that, discharge up to the standard.
  • Hydrogen fluoride recovery system The hydrogen fluoride recovery system consists of three-stage series condensers, three-stage falling film absorbers and two-stage alkali spray towers. Refrigerating liquid at -35 ⁇ -30°C is passed through the three-stage series condenser to condense and recover most of the hydrogen fluoride; the remaining hydrogen fluoride in the tail gas is absorbed by water in the three-stage falling film absorber to produce hydrofluoric acid with a concentration of 49 ⁇ 0.2% solution; the tail gas is discharged up to the standard after being sprayed with secondary alkali to remove acid.
  • the synthesis of potassium hexafluorophosphate in this example took 10 hours from the start of feeding to the stabilization of debugging. Start timing after the commissioning is completed, and run stably for 300 hours.
  • the results are summarized as follows: a total of 1,620 kg of phosphorus pentabromide and 448 kg of potassium bromide were consumed, and 688 kg of finished potassium hexafluorophosphate was obtained, with a yield of 99.3% and a purity of 99.84%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种六氟磷酸盐的合成方法,属于化学合成技术领域,其特征在于,包括以下步骤:五卤化磷溶解于惰性溶剂得到的五卤化磷惰性溶剂溶液,与碱金属卤盐溶解于无水氟化氢得到的碱金属氟盐氟化氢溶液,按比例输入反应器中反应,得到六氟磷酸盐、氟化氢、惰性溶剂与卤化氢组成的混合物,先经气液分离脱除卤化氢气体,再经加热蒸发回收氟化氢,最后经固液分离回收惰性溶剂,固体经干燥得到六氟磷酸盐;本发明的合成方法具有操作简单、安全性好、反应收率高、产品质量优、可实现连续化生产等优点。

Description

一种六氟磷酸盐的合成方法 技术领域
本发明属于化学合成技术领域,具体地说,涉及一种六氟磷酸盐的合成方法。
背景技术
全球变暖是21世纪人类面临的重大问题,不仅关系人类的发展,甚至影响人类的生存。解决全球变暖问题,首要之事是以太阳能、风能等新型清洁能源替代传统高污染、高排放的石化能源,减少二氧化碳等温室气体产生,因此,发展绿色、环保的二次电池成为解决问题的关键。经过半个多世纪的研究与产业化发展,目前锂离子电池已形成规模化生产,在储能、动力等方面获得广泛应用,钠离子电池步入发展快车道,逐渐进入应用阶段,同时钾离子电池的研究日益受到关注。
六氟磷酸盐是目前二次电池中最常用电解质,其中六氟磷酸锂广泛应用于制造锂离子电池,六氟磷酸钠用于制造钠离子电池,六氟磷酸钾,除应用于研究和制造钾离子电池外,也用于制备六氟磷酸锂和六氟磷酸钠。
六氟磷酸盐的合成方法,根据所用原料与关键中间体不同,分为六氟磷酸盐离子交换法、氟磷酸法和五氟化磷法。
(1)六氟磷酸盐离子交换法
M'PF 6+MX→MPF 6
X=F,Cl
M=Li,Na,K
Figure PCTCN2022137757-appb-000001
(2)氟磷酸法:
Figure PCTCN2022137757-appb-000002
M=Li,Na,K
(3)五氟化磷法:
PF 5+MF→MPF 6
PF 5+MCl+HF→MPF 6
M=Li,Na,K
上述六氟磷酸盐的合成方法中,六氟磷酸盐离子交换法,合成过程既不使用五氟化磷气体也不使用氟化氢作为原料,因而在生产操作上更具安全性与便利性,但是,以一种六氟磷酸盐 制备另一种六氟磷酸盐,原料本身价格昂贵,因此很难在合成成本上具有竞争力。氟磷酸法,避免了五氟化磷气体的使用,在一定程度上降低了合成难度,但是反应过程中生成的水,对六氟磷酸盐产品质量造成不利影响,很难制得高纯六氟磷酸盐。五氟化磷法,虽然使用五氟化磷气体,但该方法具有操作简单、合成成本低、反应收率高、产品质量好等优点,是工业化合成六氟磷酸盐最常用方法。
在五氟化磷法中,根据磷源的不同,又可分为:单质磷法、磷酸法、聚磷酸法、三氯化磷法、五氯化磷法等。
(i)单质磷法:
P+F 2→PF 5
(ii)磷酸法:
Figure PCTCN2022137757-appb-000003
(iii)聚磷酸法:
Figure PCTCN2022137757-appb-000004
(iv)三氯化磷法:
PCl 3+Cl 2+HF→PF 5
(v)五氯化磷法:
PCl 5+HF→PF 5
单质磷法,是将单质磷(红磷、黄磷、白磷等)置于特制反应器中,通入氟气,经气固相反应得到五氟化磷,其优点是制得的五氟化磷纯度高,无需复杂的纯化操作,即可得到高纯五氟化磷,不足之处在于,需要通过额外的电解制氟工序先制备氟气,且反应过程为气固相反应,反应器结构与材质要求较高,反应条件较苛刻,因此较难大规模工业化应用。磷酸法与聚磷酸法比较类似,以磷酸或其聚合物为原料,先与氟化氢反应得到含水六氟磷酸,再经发烟硫酸或三氧化硫脱水,制得五氟化磷,该法虽然合成成本较低,但使用大量发烟硫酸或三氧化硫作为脱水剂,对环境不友好,且发烟硫酸和三氧化硫中杂质较多,因此较难制得高纯五氟化磷。三氯化磷法与五氯化磷法也较类似,其中三氯化磷法,先将三氯化磷与氯气反应合成五氯化磷,再与氟化氢反应制得五氟化磷,五氯化磷法则直接以五氯化磷为原料,与氟化氢反应制得五氟化磷,五氯化磷法相较于三氯化磷法,因减少了一步氯化反应,因此在合成成本、产品质量、环境友好性等方面更具竞争力,因而成为工业制备五氟化磷的最常用方法。
以五氯化磷为原料,先与氟化氢反应制备五氟化磷,再与氟盐反应合成六氟磷酸盐,是目前最具工业应用价值的六氟磷酸盐合成方法,但该法也存在较多不足:
(1)、作为反应原料之一的五氯化磷固体,熔点高达180℃且极易升华,无法通过加热方式转变成液体,通常采用固体投料,另一原料氟化氢,沸点仅为19.5℃,且挥发性很强,反应过程中少量局部放热或气体释放都可导致氟化氢大量挥发,而五氯化磷与氟化氢反应异常剧烈,两种原料接触瞬间为固液相反应,局部放热显著且释放大量氯化氢气体,导致氟化氢大量挥发,不仅造成氟化氢无谓损耗,破坏反应体系稳定性,同时潜藏严重安全隐患,极易发生安全生产事故。因此,如何解决五氯化磷投料难题,以及如何缓和五氯化磷与氟化氢的反应过程,是需要解决的首要问题。
(2)、五氯化磷与氟化氢反应得到的五氟化磷为气体,沸点较低,仅为-84.6℃,液化难度大,使得五氟化磷纯化、贮存、运输与使用困难,导致合成成本上升,生产效率下降。此外,五氟化磷活性较高,在贮存、运输、使用过程中易发生分解,导致反应收率与产品纯度下降。因此,如何解决五氟化磷的贮存、运输和使用问题,尽可能做到随时生产随时使用,甚至做到原位合成原位使用,是需要解决的重要问题。
(3)、合成六氟磷酸盐所用原料毒性较大,危险性较高,反应过程也存在重大安全风险,而目前普遍采用间隙釜式反应合成六氟磷酸盐,生产安全隐患严重。因此,如何对现有六氟磷酸盐合成工艺进行连续化改造,降低生产安全风险,是需要解决的紧迫问题。
因此,针对六氟磷酸盐合成工艺存在的不足,仍有大量优化工作需要进行思考与研究。
发明内容
针对六氟磷酸盐现有合成工艺存在的不足,本发明提供了一种安全可靠、适合工业化应用的六氟磷酸盐合成方法,具有操作简单、安全性好、反应收率高、产品质量优、可实现连续化生产等优点。
本发明采用的技术方案如下:
一种六氟磷酸盐的合成方法,其特征在于,包括以下步骤:
(1)、将五卤化磷溶解于惰性溶剂中,得到五卤化磷惰性溶剂溶液(I);
(2)、将碱金属卤盐溶解于无水氟化氢中,得到碱金属氟盐氟化氢溶液(II);
(3)、将五卤化磷惰性溶剂溶液(I)与碱金属氟盐氟化氢溶液(II),按比例输入反应器中反应,得到六氟磷酸盐、氟化氢、惰性溶剂与卤化氢组成的混合物(III);
(4)、步骤(3)得到的混合物(III),经气液分离,分出卤化氢气体,得到六氟磷酸盐、氟化氢与惰性溶剂组成的混合物(IV);
(5)、步骤(4)得到的混合物(IV),脱除氟化氢,得到六氟磷酸盐与惰性溶剂组成的混合物(V);
(6)、步骤(5)得到的混合物(V),经固液分离、干燥,得到六氟磷酸盐。
本发明采用的合成路线可用如下反应式表示:
Figure PCTCN2022137757-appb-000005
本发明的进一步设置如下:
步骤(1)中:
所述的五卤化磷,选自以下一种或两种:五氯化磷、五溴化磷。五卤化磷种类的选择,与合成何种六氟磷酸盐无直接关系,即无论是选用五氯化磷还是五溴化磷,亦或是两者的混合物,都可以用于合成六氟磷酸锂、六氟磷酸钠、六氟磷酸钾中的任一种六氟磷酸盐。五卤化磷优选为五氯化磷、五溴化磷中的任一种,不建议使用混合物,如此,在后续反应过程中生成的卤化氢气体为单一卤化氢,氯化氢或溴化氢,避免出现氯化氢与溴化氢的混合物,在经水吸收后可联产氯化氢或溴化氢溶液,具有更高的回收利用价值。
所述的惰性溶剂,不仅要求对五卤化磷具有较好的溶解度,还要求在反应过程中,不与原料、中间体和产物等发生任何副反应。惰性溶剂可以为烷烃类溶剂、卤代烷烃类溶剂、芳烃类溶剂、卤代芳烃类溶剂等,可以是单一溶剂,也可以是两种或两种以上溶剂组成的混合溶剂。烷烃类溶剂,为C4~C10的直链、支链或环状烷烃,代表性烷烃类溶剂有正戊烷、正己烷、环己烷、正庚烷、甲基环己烷等。卤代烷烃类溶剂,可用如下通式表示:
C nH (2n+2-m)X m
其中:X=F、Cl、Br,n=1~10,m=1~4,卤代烷烃的碳链可以是直链、支链或环状,代表性卤代烷烃类溶剂有二氯甲烷、三氯甲烷、四氯化碳、二氯乙烷、溴乙烷、二溴乙烷等。芳烃类溶剂,可用如下通式表示:
Figure PCTCN2022137757-appb-000006
其中:取代基R为H、C1~C6的直链、支链或环状烷基取代基,n=0~6,当苯环上有多个烷基取代基时,烷基取代基可以相同,也可以不同,代表性芳烃类溶剂有苯、甲苯、二甲苯、三甲苯、乙苯、甲乙苯等。卤代芳烃类溶剂,可用如下通式表示:
Figure PCTCN2022137757-appb-000007
其中:取代基R为H、C1~C6的直链、支链或环状烷基取代基,n=0~6,取代基X=F、Cl、Br,m=0~6,且n+m≤6,当苯环上有多个烷基和卤原子取代时,取代烷基和卤原子可以相同,也可以不同,代表性卤代芳烃类溶剂有氟苯、氯苯、溴苯、二氟苯、二氯苯、对氯氟苯、对氟甲苯等。惰性溶剂用量为五卤化磷质量的1~20倍。
需要注意的是,含有氮、氧等原子的溶剂,如腈基类溶剂如乙腈、酯类溶剂如碳酸二甲酯、醚类溶剂如乙二醇二甲醚、酮类溶剂如丙酮等,虽然对五卤化磷具有较好的溶解度,但在反应过程中,易与氟化氢、五氟化磷、六氟磷酸盐等发生诸如分解、络合等副反应,导致反应液颜色变深、产品外观与纯度变劣,反应收率下降、溶剂回收率降低和溶剂回收利用困难等,因此并不适合作为反应溶剂使用。
为缩短五卤化磷与惰性溶剂的溶解过程,可采用加热方式,提升五卤化磷在惰性溶剂中的溶解速度,待五卤化磷溶清后,在确保五卤化磷固体不析出前提下,降温至所需温度,再输入反应器中进行反应。考虑到水分引入对最终产品质量将造成不利影响,因此,在五卤化磷加料、溶解等过程,应采用密闭、干燥惰性气体保护等方式,对环境水汽进行隔绝。
将五卤化磷先溶解于惰性溶剂,得到五卤化磷惰性溶剂溶液后再进行后续反应,这个操作方案,对工艺能否顺利实施具有重要意义。五卤化磷,无论是五氯化磷还是五溴化磷,均为升华性固体,其中五氯化磷固体熔点高达180℃,五溴化磷固体无明确熔点,当温度高于100℃后,即发生分解,因此五氯化磷和五溴化磷的稳定物理状态为固态,很难将五氯化磷和五溴化磷稳定地保持在液态和气态形式。如果五卤化磷采用固体投料,虽然适用于间歇釜式反应器,但无法精确控制进料速度,此外,五卤化磷固体与氟化氢接触瞬间为固液相反应,局部放热显著且释放大量卤化氢气体,不仅导致物料大量挥发与气体夹带损失,而且潜藏严重安全隐患,极易发生安全生产事故。退而言之,五卤化磷尝试气态进料,由于五卤化磷特殊理化性质,五卤化磷气体易凝华成固体,堵塞进料管路,影响反应过程顺畅性,同时气态物料很难精准计量和按要求精确进料,计量不精确对于间歇釜式反应尚能接受,但对于连续流反应而言,要求瞬时进料控制精确度极高,因此无法满足连续流反应工艺的要求,加之连续流反应器通常为带压反应器,气态物料只有具备高于反应器内压的压力下才能顺利进入反应器,因此五卤化磷气态进料不仅无法满足工艺要求,而且在工业上很难实现。
步骤(2)中:
所述的碱金属卤盐,用如下通式表示:
MX
M=Li,Na,K
X=F,Cl,Br,
当合成目标产物为六氟磷酸锂时,碱金属卤盐选自以下一种或几种:氟化锂、氯化锂、溴化锂;当合成目标产物为六氟磷酸钠时,碱金属卤盐选自以下一种或几种:氟化钠、氯化钠、溴化钠;当合成目标产物为六氟磷酸钾时,碱金属卤盐选自以下一种或几种:氟化钾、氯化钾、溴化钾。
当碱金属卤盐为碱金属氟盐时,碱金属氟盐溶解于无水氟化氢的过程,是一个纯溶解过程, 溶解放热不明显且无气体产生,溶解过程比较温和;当碱金属卤盐为碱金属氯盐和碱金属溴盐时,碱金属卤盐溶解于无水氟化氢的过程,不仅是一个溶解过程,也是一个卤素交换的反应过程,反应方程式如下所示:
MX+HF→MF+HX
X=Cl,Br,
碱金属氯盐和碱金属溴盐溶解于无水氟化氢后,生成碱金属氟盐,同时产生一分子卤化氢气体,当使用碱金属氯盐时,产生的卤化氢气体为氯化氢,当使用碱金属溴盐时,产生的卤化氢气体为溴化氢。碱金属卤盐优选为单一卤元素化合物,特别是当碱金属卤盐为氯化盐和溴化盐时,如此,溶解过程生成的卤化氢气体为单一卤化氢,氯化氢或溴化氢,避免出现氯化氢与溴化氢的混合物,在经水吸收后可联产氯化氢或溴化氢溶液,具有更高的回收利用价值。碱金属氯盐和碱金属溴盐溶解于无水氟化氢的过程,虽然涉及到卤素交换反应,有一分子卤化氢生成,但反应过程比较温和,放热较少,且可通过调整投料速度加以控制,因此安全性较高。
为了进一步提升六氟磷酸盐合成效率与经济效益,当步骤(2)所用的碱金属卤盐为碱金属氯盐或碱金属溴盐时,步骤(1)所用的五卤化磷应对应为五氯化磷或五溴化磷,即,当步骤(2)用碱金属氯盐时,步骤(1)用五氯化磷,当步骤(2)用碱金属溴盐时,步骤(1)用五溴化磷,如此,可实现步骤(2)与步骤(4)共用卤化氢处理系统,不仅可避免生产装置重复建设,降低设备运行费用,还可有效避免混合卤化氢的出现,提升联产卤化氢溶液的经济价值。
需要特别指出的是,碱金属卤盐是优选的碱金属来源,因为碱金属卤盐在溶解于无水氟化氢过程及后续反应过程,仅产生卤化氢气体,而不会有水分引入,而其它的碱金属源,如碱金属碳酸盐、碱金属碳酸氢盐、碱金属氢氧化物等,在溶解于无水氟化氢时,均有水生成,这些引入反应体系中的水,将导致产物六氟磷酸盐分解生成氟氧磷酸盐,对最终产品质量造成不利影响,因而不能作为本发明的碱金属来源使用。
所述的无水氟化氢为液态氟化氢,鉴于氟化氢的沸点为19.5℃,为确保氟化氢成液态,在溶解过程及碱金属氟盐氟化氢溶液保存过程中,体系温度必须低于19.5℃,优选的溶解和保存温度为:-40~19℃。无水氟化氢用量为碱金属卤盐质量的1~20倍。
考虑到水分引入对最终产品质量将造成不利影响,因此,在碱金属卤盐加料、溶解等过程,应采用密闭、干燥惰性气体保护等方式,对环境水汽进行隔绝。
步骤(3)中:
五卤化磷惰性溶剂溶液(I)与碱金属氟盐氟化氢溶液(II),按比例进入反应器后,五卤化磷首先与氟化氢反应,生成五氟化磷,生成的五氟化磷在原位与碱金属氟盐反应生成六氟磷酸盐。五氟化磷的原位生成与反应,避免了五氟化磷的分离、纯化、储存、运输等操作,有效简化生 产过程,提升五氟化磷利用率,提高生产效率,降低合成成本。
所述反应器,可以是间歇釜式反应器、管式反应器和微反应器,优选的反应器为管式反应器和微反应器,更优选的反应器是微反应器。使用微反应器,可有效提升反应收率与产品纯度,简化反应操作,提高反应安全性,原因有以下几点:(1)五卤化磷与氟化氢反应合成五氟化磷非常剧烈,释放大量热量,虽然将五卤化磷溶解于情性溶剂中,采用溶液态进料,避免更加剧烈的固液态反应过程,同时通过控制进料速度,进一步控制反应剧烈程度,使得反应在间歇釜式反应器和管式反应器也能够进行,但是,微反应器相对于间歇釜式反应器和管式反应器具有更优的混合效果和更高的换热面积,因而更有利于控制反应在更温和条件下进行。(2)五卤化磷与氟化氢反应合成五氟化磷过程中,生成五分子卤化氢气体,同时溶解五卤化磷用的惰性溶剂与氟化氢亦不相溶,因此,在反应过程中,实际存在气、液、液三相非均相反应,更优的混合效果必然带来更好的反应效果,对于混合效果,微反应器相较于间歇釜式反应器和管式反应器具有得天独厚的优势。(3)鉴于反应的特殊性,五卤化磷与氟化氢接触瞬间局部放热量大,且反应过程有五分子卤化氢气体生成,加之中间产物五氟化磷为气体,以及氟化氢沸点低挥发性大等因素,如果采用间歇釜式反应器,在反应过程中,随着反应体系局部放热和卤化氢气体释放,必然造成部分中间产物五氟化磷,在尚未与碱金属氟化盐反应时,就被卤化氢气体和挥发的氟化氢气体夹带出反应体系而损耗,而氟化氢的损耗,还可能破坏反应体系稳定性,更严重的后果是导致氟化氢余量不足而影响反应正常进行,对于管式反应器,由于混合效果存在欠缺,亦会导致五氟化磷气体夹杂于卤化氢气体中并在一定程度上气液相分离,导致五氟化磷无法与氟化氢溶液中的碱金属氟盐充分反应而损失。使用微反应器则可有效避免上述问题,优异的混合效果,确保反应中间产物五氟化磷与氟化氢中碱金属氟盐充分接触,在到达微反应器出口时,五氟化磷已完全反应,反应已经结束,此时,即使反应液在气液分离脱除卤化氢气体时,有部分氟化氢被卤化氢夹带损失,但此时反应已经结束,损失的氟化氢也不会对反应造成任何不利影响。(4)合成六氟磷酸盐的原料氟化氢、中间产物五氟化磷和反应得到的混合产物(III),毒性较大,反应过程也存在较大安全风险,因此降低反应过程持液量可有效降低和规避安全风险,工业级微反应器的持液量在数升级别,相较于间歇釜式反应器和管式反应器持液量,其安全风险几乎忽略不计。
当反应器选用微反应器时,可以是单个微反应器,也可以是多个微反应器紧密组合形成的微反应器组,具体结构由工艺条件决定。微反应器内反应温度分布,可以是均一温度,也可以根据需要,使微反应器内部形成不同的温度分布。如果采用均一反应温度,该反应温度应不高于无水氟化氢的沸点,确保微反应器出口流出的反应混合物(III)中氟化氢处于液态。如果微反应器内部为不同温度分布,则在微反应器内部,可容许高于无水氟化氢沸点的温度,当反应混合物(III)流向微反应器出口时,经冷却使混合物(III)流出微反应器时的温度低于无水氟化氢 的沸点。优选微反应器的反应温度为:-40~100℃。在反应过程中,生成的中间产物五氟化磷是气体,生成的卤化氢也是气体,气体的生成必然导致微反应器内部压力上升,此外,若微反应器反应温度高于无水氟化氢沸点,氟化氢气化也会产生压力,因此,在微反应器选型时,不仅要考虑材质是否满足耐腐蚀要求,而且还要考虑微反应器的耐压能力,确保反应过程安全。微反应器接触物料部位材质优选为:非金属材质为碳化硅,金属材质为高镍合金材料,如蒙乃尔合金、哈氏合金等,微反应器的耐压能力须高于反应过程可能出现的最高压力。
五卤化磷惰性溶剂溶液(I)与碱金属氟盐氟化氢溶液(II)的进料比例,是指单位时间内进入微反应器的五卤化磷惰性溶剂溶液中所含磷的物质的量,与,单位时间内进入微反应器的碱金属氟盐氟化氢溶液中所含碱金属的物质的量的比例。优选单位时间内进入微反应器的磷的物质的量与碱金属的物质的量之比为:(0.8~1.2):1,更优选单位时间内进入微反应器的磷的物质的量与碱金属的物质的量之比为:(0.9~1.1):1。
五卤化磷惰性溶剂溶液(I)与碱金属氟盐氟化氢溶液(II)的进料速度,与五卤化磷惰性溶剂溶液浓度与温度、碱金属氟盐氟化氢溶液浓度与温度、微反应器容积与结构、冷却系统温度与冷却液流量等息息相关,需要在实际运行过程,根据相关参数进行调试确认,确保微反应器内温度控制在工艺所需温度。无论五卤化磷惰性溶剂溶液(I)与碱金属氟盐氟化氢溶液(II)进料速度如何变化,经过折算,五卤化磷惰性溶剂溶液(I)中所含磷的物质的量与碱金属氟盐氟化氢溶液(II)中所含碱金属的物质的量的进料比例需精确控制在最优工艺比例,确保反应液在到达微反应器出口时,五卤化磷和碱金属氟盐均能充分反应生成六氟磷酸盐,不仅可以提高物料利用率,而且有利于提升产物纯度和反应收率。
步骤(4)中:
从反应器中流出的混合物(III)由六氟磷酸盐、氟化氢、惰性溶剂与卤化氢组成,通过气液分离,将挥发性卤化氢气体从混合液中分出,得到六氟磷酸盐、氟化氢与惰性溶剂组成的混合物(IV)。气液分离过程可以在专用气液分离器中进行,分离得到的混合物(IV)进入收集器,也可以在收集器中进行气液分离操作。如果在收集器中进行气液分离,收集器必须具有足够空间,用于贮存混合物(IV)和进行气液分离操作,同时还应具备调温、冷凝、除沫等功能。为了使收集器中物料保持均匀,收集器优选带有搅拌功能。气液分离器与收集器接触物料部位材质,需要能耐受氟化氢、卤化氢等腐蚀,可以是碳化硅等非金属材料,蒙乃尔合金、哈氏合金等高镍合金材料,也可以衬PTFE、PFA等耐腐高分子材料。
分离出的卤化氢气体,采用多级深度冷凝方式,将卤化氢气体中夹带的氟化氢冷凝回收,少量残留氟化氢通过多级吸附脱氟方式除去,得到高纯卤化氢气体,经水吸收后制得卤化氢溶液,用于商业用途,提升经济效率。当然,卤化氢气体也可以采有其它适合方式进行纯化与资源化利用,具体根据实际需要来确定。
混合物(III)经气液分离得到混合物(IV)的过程,操作温度要求不高于无水氟化氢的沸点,避免液态氟化氢挥发,增加卤化氢气体脱氟纯化操作负荷与难度,优选的气液分离操作温度为:-40~19℃。
步骤(5)中:
混合物(IV)由六氟磷酸盐、氟化氢与惰性溶剂组成,待混合物(IV)收集到一定数量后,进行脱除氟化氢操作,得到六氟磷酸盐与惰性溶剂组成的混合物(V)。氟化氢脱除操作,可以在收集器中进行,也可以在专用脱溶釜中进行。如果在脱溶釜进行氟化氢脱除操作,脱溶釜需具备搅拌、调温、冷凝、除沫等功能,脱溶釜接触物料部位材质,需要能耐受氟化氢腐蚀,可以是碳化硅等非金属材料,蒙乃尔合金、哈氏合金等高镍合金材料,也可以衬PTFE、PFA等耐腐高分子材料。
脱除氟化氢的操作,主要利用氟化氢低沸点与高挥发的性质,通过加热升温方式,使氟化氢沸腾蒸发,实现氟化氢从混合物料中脱除。氟化氢蒸气先经冷凝,将夹带的惰性溶剂冷凝返回混合物,氟化氢蒸气则进入氟化氢回收系统。为提升混合物(IV)氟化氢脱除速率和脱除效果,在氟化氢脱除过程中,特别是氟化氢脱除操作结束前,可采用干燥氮气、氦气、氩气等惰性气体鼓泡和吹扫混合物,确保氟化氢充分脱除,得到无氟化氢残留的混合物(V)。进入氟化氢回收系统的氟化氢气体,经多级深度冷凝,将氟化氢冷凝回收,深度冷凝后的尾气再经多级水、碱喷淋脱氟或多级吸附脱氟后,达标排放。
氟化氢脱除过程,操作温度要求高于氟化氢沸点,但低于惰性溶剂沸点,确保氟化氢顺利脱除的同时,避免惰性溶剂夹带进入氟化氢回收系统。优选的脱除氟化氢的操作温度为:20~100℃。氟化氢脱除结束后,得到六氟磷酸盐与惰性溶剂组成的混合物(V),虽然六氟磷酸盐在惰性溶剂中的溶解度很小,且物料温度对六氟磷酸盐溶解度影响亦较小,但为了方便后续固液分离操作,提升固液分离操作安全性,宜将混合物(V)温度降至室温或以下。
步骤(6)中:
混合物(V)由六氟磷酸盐与惰性溶剂组成,经固液分离、干燥后得到六氟磷酸盐成品。常用的固液分离操作,如离心、压滤、抽滤等,均适用于混合物(V)的固液分离。固液分离得到固体,经干燥得到六氟磷酸盐成品,纯度99.8%以上,收率99.0%以上。
为了进一步提高六氟磷酸盐品质,满足更高端用途需求,可对得到六氟磷酸盐进行重结晶纯化操作,制得超高纯六氟磷酸盐,纯度99.99%以上,收率98%以上。
本发明与现有技术相比,其有益的效果体现在:
(1)、采用将五卤化磷先溶解于惰性溶剂中制备成五卤化磷惰性溶剂溶液后再进行进料的方法,避免现有技术使用五卤化磷固体或气体进料方式,不仅实现了五卤化磷进料速度与进料精度的精确控制,而且有效解决了五卤化磷与氟化氢反应过于剧烈问题,从根本上提升了合成工 艺的安全性与可操作性。
(2)、以烷烃类溶剂、卤代烷烃类溶剂、芳烃类溶剂、卤代芳烃类溶剂等相对于反应体系呈惰性的溶剂,替代现有技术中腈类、酯类、醚类、酮类等含氮、氧原子的溶剂,确保溶剂在反应过程中完全惰性,避免溶剂参与的分解、络合等副反应,提升反应收率与产品纯度,简化溶剂回收操作,提高溶剂回收率。
(3)、采用五氟化磷原位生成、原位与碱金属氟盐反应的方法,避免了五氟化磷的分离、纯化、储存、运输等操作,革除五氟化磷气态进料方式,有效提升五氟化磷利用率,简化操作过程,提高生产效率,降低合成成本。
(4)、采用分阶段逐步分离不同成分物料的方法,将反应生成的卤化氢、反应富余原料氟化氢、反应惰性溶剂和产品六氟磷酸盐依次进行分离,将分离次序合理化、分离过程最简化、分离效果最优化,最大限度避免混合物料产生,实现各种物料资源化利用,将三废量降至最低,其中回收卤化氢可用于制备高纯卤化氢水溶液,用于商业用途,回收氟化氢和惰性溶剂,可套用于反应,最大限度提升经济效益。
(5)、产品六氟磷酸盐从六氟磷酸盐与惰性溶剂的混合物中经固液分离得到,避免了现有技术产品六氟磷酸盐从氟化氢溶液中经固液分离得到,极大提升了固液分离过程及后续纯化、干燥过程的安全性和可操作性,而且分离得到的六氟磷酸盐中残留氟化氢更少,产品质量更优。
(6)、本发明的六氟磷酸盐合成方法,除原料五卤化磷与碱金属卤盐在配制溶液时涉及固体投料,以及最终产品经固液分离、干燥得到成品时涉及固体出料,其余过程均可实现连续流和自动化生产,可方便地实现“釜式连续-连续流-釜式连续”的连续反应模式,避免了现有技术全釜式间歇反应模式,大幅提升生产过程的安全性,提高生产效率。
以下结合附图和具体实施方式对本发明作进一步说明。在此需要说明的是,下列实施方式,仅用于帮助理解本发明,并不构成对本发明的限定。具体实施方式不可能权尽本发明所有技术特征,只要说明书中所涉及的技术特征,彼此不构成冲突,相互间均可组合,组成新的实施方式。
附图说明
图1为本发明六氟磷酸盐“釜式连续-连续流-釜式连续”连续合成工艺流程示意图。
具体实施方式
结合附图1所示,本发明采用“釜式连续-反应器连续流-连续气液分离-釜式连续”的连续反应工艺合成六氟磷酸锂,具体工艺流程如下:
(1)、五卤化磷惰性溶剂溶液配制采用AB两线制,AB两线间交叉运行,当A线进行五卤化磷溶液配制时,B线进行五卤化磷溶液进料,反之,当B线进行五卤化磷溶液配制时,A线进行五卤化磷溶液进料,如此,可实现五卤化磷惰性溶剂溶液的连续进料。
(2)、碱金属氟盐氟化氢溶液配制采用AB两线制,AB两线间交叉运行,当A线进行碱金属氟盐溶液配制时,B线进行碱金属氟盐溶液进料,反之,当B线进行碱金属氟盐溶液配制时,A线进行碱金属氟盐溶液进料,如此,可实现碱金属氟盐氟化氢溶液的连续进料;当碱金属氟盐使用碱金属氯盐或碱金属溴盐时,产生的卤化氢气体进入卤化氢处理系统。
(3)、五卤化磷惰性溶剂溶液和碱金属氟盐氟化氢溶液,通过计量泵,按比例输入连续流反应器进行反应,进料比例、进料速度、反应温度、停留时间等根据工艺要求进行参数设置和调整,反应连续进行,连续进料连续出料。
(4)、连续流反应器出口混合物(III)经连续气液分离脱除卤化氢得到混合物(IV),脱出的卤化氢气体进入卤化氢处理系统。
(5)、混合物(IV)经收集、脱除氟化氢得到混合物(V),混合物(V)经固液分离得到六氟磷酸盐,上述操作采用AB两线制,AB两线间交叉运行,当A线进行混合物(IV)收集时,B线进行混合物(IV)脱除氟化氢得到混合物(V)、混合物(V)固液分离得到六氟磷酸盐操作,当B线进行混合物(IV)收集时,A线进行混合物(IV)脱除氟化氢得到混合物(V)、混合物(V)固液分离得到六氟磷酸盐操作,如此,一则可无缝衔接连续气液分离器,再则可实现连续脱除氟化氢和固液分离操作,确保合成工艺连续、稳定运行;脱出的氟化氢进入氟化氢回收系统,固液分离得到的惰性溶剂返回五卤化磷惰性溶剂溶液配制工序。
(6)六氟磷酸盐干燥得到六氟磷酸盐成品,以及六氟磷酸盐成品包装过程,采有单线进行,根据实际产能合理匹配连续烘干、连续包装设备,实现六氟磷酸盐连续烘干、连续包装操作。
实施例1
以微反应器作为连续反应器,以五氯化磷、氯化锂、氟化氢为原料,以甲苯为惰性有机溶剂,合成六氟磷酸锂,结合工艺流程图1,合成过程如下:
(1)、将定量甲苯加入到五氯化磷甲苯溶液配制釜中,在氮气保护下,加入定量五氯化磷固体,搅拌升温至60~65℃,待固体全部溶解后,降温至20~25℃,得到质量浓度为25%的五氯化磷甲苯溶液,氮气保护下保存待用。五氯化磷甲苯溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化锂氟化氢溶液配制釜中,氮气保护,控温-10~-5℃,分批慢慢加入定量氯化锂固体,搅拌溶解后,得到质量浓度为20%的氟化锂氟化氢溶液,于-10~-5℃氮气保护下保存待用;配制过程生成的氯化氢气体进入氯化氢处理系统。氟化锂氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五氯化磷甲苯溶液经计量泵以500g/min的速度连续输入微反应器,氟化锂氟化氢溶液经计量泵以77.85g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在60~65℃、出口温度控 制在-15~-10℃,物料在微反应器内停留时间约80秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-15~-10℃,气液分离器分出的气体进入氯化氢处理系统,分出的液相进入收集釜,收集釜控温0~5℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至40~45℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢大部分脱除后,通入干燥氮气,于40~45℃吹扫物料2小时,吹扫结束后,收集釜降温至5~10℃,放料离心,得到六氟磷酸锂湿品固体,离心母液作为回收甲苯,返回五氯化磷甲苯溶液配制工序的甲苯槽。
(6)、六氟磷酸锂湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
氯化氢处理系统:氯化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将氯化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的氯化氢中残留少量氟化氢除去;经脱氟处理后得到的高纯氯化氢,经三级降膜吸收器用水吸收,制得浓度为35~36%氯化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸锂的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五氯化磷2250公斤、氯化锂458公斤,得到六氟磷酸锂成品1630公斤,收率99.3%,纯度99.85%。
实施例2
以微反应器作为连续反应器,以五氯化磷、氟化钠、氟化氢为原料,以氯苯为惰性有机溶剂,合成六氟磷酸钠,结合工艺流程图1,合成过程如下:
(1)、将定量氯苯加入到五氯化磷氯苯溶液配制釜中,在氮气保护下,加入定量五氯化磷固体,搅拌升温至50~55℃,待固体全部溶解后,降温至10~15℃,得到质量浓度为20%的五氯化磷氯苯溶液,氮气保护下保存待用。五氯化磷氯苯溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化钠氟化氢溶液配制釜中,氮气保护,控温10~15℃,分批慢慢加入定量氟化钠固体,搅拌溶解后,得到质量浓度为30%的氟化钠氟化氢溶液,于10~15℃氮气保护下保存待用。氟化钠氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五氯化磷氯苯溶液经计量泵以550g/min的速度连续输入微反应器,氟化钠氟化氢溶液经计量泵以73.94g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在70~75℃、出口温度控制在-10~-5℃,物料在微反应器内停留时间约70秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-5~0℃,气液分离器分出的气体进入氯化氢处理系统,分出的液相进入收集釜,收集釜控温-5~5℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至50~55℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢基本脱除后,通入干燥氩气,于50~55℃吹扫物料2小时,吹扫结束后,收集釜降温至20~25℃,放料离心,得到六氟磷酸钠湿品固体,离心母液作为回收氯苯,返回五氯化磷氯苯溶液配制工序的氯苯槽。
(6)、六氟磷酸钠湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
氯化氢处理系统:氯化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将氯化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的氯化氢中残留少量氟化氢除去;经脱氟处理后得到的高纯氯化氢,经三级降膜吸收器用水吸收,制得浓度为35~36%氯化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸钠的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五氯化磷1980公斤、氟化钠399公斤,得到六氟磷酸钠成品1589公斤,收率99.5%,纯度99.83%。
实施例3
以微反应器作为连续反应器,以五氯化磷、氯化钾、氟化氢为原料,以氯仿为惰性有机溶剂,合成六氟磷酸钾,结合工艺流程图1,合成过程如下:
(1)、将定量氯仿加入到五氯化磷氯仿溶液配制釜中,在氮气保护下,加入定量五氯化磷固体,搅拌升温至40~45℃,待固体全部溶解后,降温至20~25℃,得到质量浓度为30%的五氯化磷氯仿溶液,氮气保护下保存待用。五氯化磷氯仿溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化钾氟化氢溶液配制釜中,氮气保护,控温-15~-10℃,分批慢慢加入定量氯化钾固体,搅拌溶解后,得到质量浓度为35%的氟化钾氟化氢溶液,于-15~-10℃氮气保护下保存待用;配制过程生成的氯化氢气体进入氯化氢处理系统。氟化钾氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五氯化磷氯仿溶液经计量泵以450g/min的速度连续输入微反应器,氟化钾氟化氢溶液经计量泵以107.62g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在40~45℃、出口温度控制在-15~-10℃,物料在微反应器内停留时间约90秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-10~-5℃,气液分离器分出的气体进入氯化氢处理系统,分出的液相进入收集釜,收集釜控温0~5℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至50~55℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢脱除完毕后,收集釜降温至0~5℃,放料压滤,得到六氟磷酸钾湿品固体,压滤母液作为回收氯仿,返回五氯化磷氯仿溶液配制工序的氯仿槽。
(6)、六氟磷酸钾湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
氯化氢处理系统:氯化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将氯化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的氯化氢中残留少量氟化氢除去;经脱氟处理后得到的高纯氯化氢,经三级降膜吸收器用水吸收,制得浓度为35~36%氯化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸钾的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五氯化磷2430公斤、氯化钾870公斤,得到六氟磷酸钾成品2131公斤,收率99.2%,纯度99.88%。
实施例4
以微反应器作为连续反应器,以五氯化磷、氯化钠、氟化氢为原料,以间二氯苯为惰性有机溶剂,合成六氟磷酸钠,结合工艺流程图1,合成过程如下:
(1)、将定量间二氯苯加入到五氯化磷间二氯苯溶液配制釜中,在氮气保护下,加入定量五氯化磷固体,搅拌升温至70~75℃,待固体全部溶解后,降温至25~30℃,得到质量浓度为30%的五氯化磷间二氯苯溶液,氮气保护下保存待用。五氯化磷间二氯苯溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化钠氟化氢溶液配制釜中,氮气保护,控温0~5℃,分批慢慢加入定量氯化钠固体,搅拌溶解后,得到质量浓度为25%的氟化钠氟化氢溶液,于0~5℃氮气保护下保存待用;配制过程生成的氯化氢气体进入氯化氢处理系统。氟化钠氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五氯化磷间二氯苯溶液经计量泵以450g/min的速度连续输入微反应器,氟化钠氟化氢溶液经计量泵以108.89g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在30~35℃、出口温度控制在-5~0℃,物料在微反应器内停留时间约90秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-5~0℃,气液分离器分出的气体进入氯化氢处理系统,分出的液相进入收集釜,收集釜控温-5~0℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至60~65℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢大部分脱除后,通入干燥氮气,于60~65℃吹扫物料1小时,吹扫结束后,收集釜降温至15~20℃,放料离心,得到六氟磷酸钠湿品固体,离心母液作为回收间二氯苯,返回五氯化磷间二氯苯溶液配制工序的间二氯苯槽。
(6)、六氟磷酸钠湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
氯化氢处理系统:氯化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将氯化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的氯化氢中残留少量氟化氢除去;经脱氟处理后得到的高纯氯化氢,经三级降膜吸收器用水吸收,制得浓度为35~36%氯化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸钠的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五氯化磷2430公斤、氯化钠682公斤,得到六 氟磷钠锂成品1942公斤,收率99.1%,纯度99.90%。
实施例5
以微反应器作为连续反应器,以五氯化磷、氟化锂、氟化氢为原料,以二氯乙烷为惰性有机溶剂,合成六氟磷酸锂,结合工艺流程图1,合成过程如下:
(1)、将定量二氯乙烷加入到五氯化磷二氯乙烷溶液配制釜中,在氮气保护下,加入定量五氯化磷固体,搅拌升温至60~65℃,待固体全部溶解后,降温至20~25℃,得到质量浓度为25%的五氯化磷二氯乙烷溶液,氮气保护下保存待用。五氯化磷二氯乙烷溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化锂氟化氢溶液配制釜中,氮气保护,控温5~10℃,分批慢慢加入定量氟化锂固体,搅拌溶解后,得到质量浓度为25%的氟化锂氟化氢溶液,于5~10℃氮气保护下保存待用。氟化锂氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五氯化磷二氯乙烷溶液经计量泵以500g/min的速度连续输入微反应器,氟化锂氟化氢溶液经计量泵以62.28g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在50~55℃、出口温度控制在0~5℃,物料在微反应器内停留时间约80秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-20~-15℃,气液分离器分出的气体进入氯化氢处理系统,分出的液相进入收集釜,收集釜控温-5~5℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至60~65℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢脱除完毕后,收集釜降温至10~15℃,放料离心,得到六氟磷酸锂湿品固体,离心母液作为回收二氯乙烷,返回五氯化磷二氯乙烷溶液配制工序的二氯乙烷槽。
(6)、六氟磷酸锂湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
氯化氢处理系统:氯化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将氯化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的氯化氢中残留少量氟化氢除去;经脱氟处理后得到的高纯氯化氢,经三级降膜吸收器用水吸收,制得浓度为35~36%氯化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化 氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸锂的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五氯化磷2250公斤、氟化锂280公斤,得到六氟磷酸锂成品1631公斤,收率99.4%,纯度99.86%。
实施例6
以微反应器作为连续反应器,以五溴化磷、溴化钾、氟化氢为原料,以甲基环己烷为惰性有机溶剂,合成六氟磷酸钾,结合工艺流程图1,合成过程如下:
(1)、将定量甲基环己烷加入到五溴化磷甲基环己烷溶液配制釜中,在氮气保护下,加入定量五溴化磷固体,于30~35℃搅拌,待固体全部溶解后,得到质量浓度为15%的五溴化磷甲基环己烷溶液,氮气保护下保存待用。五溴化磷甲基环己烷溶液配制釜分为AB釜,两釜交叉使用。
(2)、将定量无水氟化氢液体加入到氟化钾氟化氢溶液配制釜中,氮气保护,控温-5~0℃,分批慢慢加入定量溴化钾固体,搅拌溶解后,得到质量浓度为40%的氟化钾氟化氢溶液,于-5~0℃氮气保护下保存待用;配制过程生成的溴化氢气体进入溴化氢处理系统。氟化钾氟化氢溶液配制釜分为AB釜,两釜交叉使用。
(3)、五溴化磷甲基环己烷溶液经计量泵以600g/min的速度连续输入微反应器,氟化钾氟化氢溶液经计量泵以30.37g/min的速度连续输入微反应器,两种物料在微反应器入口处充分混合后进入微反应器内反应,微反应器采用阶梯温度控制,中部最高温度控制在80~85℃、出口温度控制在-10~-5℃,物料在微反应器内停留时间约60秒钟;
(4)、反应液流出微反应器后,进入连续气液分离器,气液分离器控温-10~-5℃,气液分离器分出的气体进入溴化氢处理系统,分出的液相进入收集釜,收集釜控温-5~5℃。收集釜分为AB釜,两釜交叉使用。
(5)、待收集釜物料收集到位后,收集釜慢慢升温至70~75℃,蒸发脱除氟化氢,氟化氢蒸气进入氟化氢回收系统,待氟化氢脱除完毕后,收集釜降温至20~25℃,放料压滤,得到六氟磷酸钾湿品固体,压滤母液作为回收甲基环己烷,返回五溴化磷甲基环己烷溶液配制工序的甲基环己烷槽。
(6)、六氟磷酸钾湿品固体,经固料输送系统进入单锥螺带干燥机,减压干燥,检测合格后,经自动包装系统完成包装。
溴化氢处理系统:溴化氢处理系统由三级串联冷凝器、两级脱氟填料塔、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将溴化氢中夹带的氟化氢冷凝回收;两级脱氟填料塔,内装氟化氢吸附填料,将经冷凝脱氟后的溴化氢中残留少量氟化氢除 去;经脱氟处理后得到的高纯溴化氢,经三级降膜吸收器用水吸收,制得浓度为46~48%溴化氢溶液;尾气经二级碱喷淋除酸后,达标排放。
氟化氢回收系统:氟化氢回收系统由三级串联冷凝器、三级降膜吸收器和两级碱喷淋塔组成。三级串联冷凝器中通-35~-30℃冷冻液,将绝大部分氟化氢冷凝回收;尾气中剩余的氟化氢经三级降膜吸收器用水吸收,制得浓度为49±0.2%氢氟酸溶液;尾气经二级碱喷淋除酸后,达标排放。
本实施例六氟磷酸钾的合成,从开始进料至调试稳定,耗时10小时。从调试完成后开始计时,稳定运行300小时,结果汇总如下:共消耗五溴化磷1620公斤、溴化钾448公斤,得到六氟磷酸钾成品688公斤,收率99.3%,纯度99.84%。

Claims (14)

  1. 一种六氟磷酸盐的合成方法,其特征在于,包括以下步骤:
    (1)、将五卤化磷溶解于惰性溶剂中,得到五卤化磷惰性溶剂溶液;
    (2)、将碱金属卤盐溶解于无水氟化氢中,得到碱金属氟盐氟化氢溶液;
    (3)、将五卤化磷惰性溶剂溶液与碱金属氟盐氟化氢溶液,按比例输入反应器中反应,得到六氟磷酸盐、氟化氢、惰性溶剂与卤化氢组成的混合物;
    (4)、步骤(3)得到的六氟磷酸盐、氟化氢、惰性溶剂与卤化氢组成的混合物,经气液分离,分出卤化氢气体,得到六氟磷酸盐、氟化氢与惰性溶剂组成的混合物;
    (5)、步骤(4)得到的六氟磷酸盐、氟化氢与惰性溶剂组成的混合物,脱除氟化氢,得到六氟磷酸盐与惰性溶剂组成的混合物;
    (6)、步骤(5)得到的六氟磷酸盐与惰性溶剂组成的混合物,经固液分离、干燥,得到六氟磷酸盐。
  2. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:所述的六氟磷酸盐,为六氟磷酸锂、六氟磷酸钠、六氟磷酸钾中的任一种。
  3. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(1)中,所述的五卤化磷,选自以下一种或两种:五氯化磷、五溴化磷。
  4. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(1)中,所述的惰性溶剂,选自以下一种或几种:
    烷烃类溶剂,选自C4~C10的直链、支链或环状烷烃;
    卤代烷烃类溶剂,如下通式表示:
    C nH (2n+2-m)X m
    其中:X=F、Cl、Br,n=1~10,m=1~4,卤代烷烃的碳链可以是直链、支链或环状;
    芳烃类溶剂,如下通式表示:
    Figure PCTCN2022137757-appb-100001
    其中:取代基R为H、C1~C6的直链、支链或环状烷基取代基,n=0~6,当苯环上有多个烷基取代基时,烷基取代基可以相同,也可以不同;
    卤代芳烃类溶剂,如下通式表示:
    Figure PCTCN2022137757-appb-100002
    其中:取代基R为H、C1~C6的直链、支链或环状烷基取代基,n=0~6,取代基X=F、Cl、Br,m=0~6,且n+m≤6,当苯环上有多个烷基和卤原子取代时,取代烷基和卤原子可以相同,也可以不同。
  5. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(1)中,惰性溶剂用量为五卤化磷质量的1~20倍。
  6. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(2)中,所述的碱金属卤盐,如下通式表示:
    MX
    M=Li,Na,K
    X=F,Cl,Br。
  7. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(2)中,氟化氢用量为碱金属卤盐质量的1~20倍。
  8. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(2)中,碱金属卤盐溶解于无水氟化氢得到碱金属氟盐氟化氢溶液的操作温度和碱金属氟盐氟化氢溶液的保存温度为:-40~19℃。
  9. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:当合成产物为六氟磷酸锂时,碱金属卤盐选自以下一种或几种:氟化锂、氯化锂、溴化锂;当合成产物为六氟磷酸钠时,碱金属卤盐选自以下一种或几种:氟化钠、氯化钠、溴化钠;当合成产物为六氟磷酸钾时,碱金属卤盐选自以下一种或几种:氟化钾、氯化钾、溴化钾。
  10. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(3)中,所述反应器为微反应器。
  11. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(3)中,五卤化磷惰性溶剂溶液与碱金属氟盐氟化氢溶液输入反应器的进料比例为:单位时间内进入反应器的五卤化磷惰性溶剂溶液中所含磷的物质的量与碱金属氟盐氟化氢溶液中所含碱金属的物质的量之比为:0.8~1.2:1。
  12. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(3)中,反应温度为:-40~100℃。
  13. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(4)中,气液分离操作温度为:-40~19℃。
  14. 根据权利要求1所述的一种六氟磷酸盐的合成方法,其特征在于:步骤(5)中,脱除氟化氢的操作温度为:20~100℃。
PCT/CN2022/137757 2021-12-24 2022-12-09 一种六氟磷酸盐的合成方法 WO2023116462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/316,354 US20230278862A1 (en) 2021-12-24 2023-05-12 Synthesis method of hexafluorophosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111600015.8 2021-12-24
CN202111600015.8A CN114132912B (zh) 2021-12-24 2021-12-24 一种六氟磷酸盐的合成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/316,354 Continuation US20230278862A1 (en) 2021-12-24 2023-05-12 Synthesis method of hexafluorophosphate

Publications (1)

Publication Number Publication Date
WO2023116462A1 true WO2023116462A1 (zh) 2023-06-29

Family

ID=80383266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137757 WO2023116462A1 (zh) 2021-12-24 2022-12-09 一种六氟磷酸盐的合成方法

Country Status (3)

Country Link
US (1) US20230278862A1 (zh)
CN (1) CN114132912B (zh)
WO (1) WO2023116462A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132912B (zh) * 2021-12-24 2023-04-07 浙江中欣氟材股份有限公司 一种六氟磷酸盐的合成方法
CN114014283B (zh) * 2022-01-06 2022-04-08 深圳市研一新材料有限责任公司 一种六氟磷酸盐、五氟化磷及其制备方法与应用
CN114751431B (zh) * 2022-04-25 2023-03-14 山东大学 一种钠电池用钠盐的制备方法
CN114873577A (zh) * 2022-05-24 2022-08-09 江苏新泰材料科技有限公司 一种六氟磷酸钠的制备方法
CN115285965B (zh) * 2022-08-22 2024-01-02 衢州市九洲化工有限公司 一种六氟磷酸钠的合成方法
CN115385365B (zh) * 2022-10-26 2023-01-20 如鲲(江苏)新材料科技有限公司 一种六氟磷酸盐溶液的制备方法及其产物和应用
CN115959687B (zh) * 2022-12-30 2024-04-12 四川大学 低成本生产六氟磷酸盐的工艺
CN117923527A (zh) * 2024-03-25 2024-04-26 新乡意盛科技有限公司 一种碱金属六氟磷酸盐的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155129A (ja) * 2007-12-25 2009-07-16 Stella Chemifa Corp 六フッ化リン酸塩の製造方法
CN101778793A (zh) * 2007-08-16 2010-07-14 斯泰拉化工公司 五氟化磷和六氟磷酸盐的制造方法
CN102009972A (zh) * 2010-11-19 2011-04-13 森田化工(张家港)有限公司 一种六氟磷酸锂的制备方法
CN102180457A (zh) * 2011-05-06 2011-09-14 潘春跃 六氟磷酸锂有机溶剂法制备工艺
CN102910612A (zh) * 2012-11-05 2013-02-06 中国海洋石油总公司 一种六氟磷酸锂的制备方法
JP2013166680A (ja) * 2012-02-17 2013-08-29 Central Glass Co Ltd ヘキサフルオロリン酸リチウム濃縮液の製造方法
CN106745096A (zh) * 2017-02-16 2017-05-31 九江天赐高新材料有限公司 六氟磷酸碱金属盐的制备方法
CN114132912A (zh) * 2021-12-24 2022-03-04 浙江中欣氟材股份有限公司 一种六氟磷酸盐的合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778793A (zh) * 2007-08-16 2010-07-14 斯泰拉化工公司 五氟化磷和六氟磷酸盐的制造方法
JP2009155129A (ja) * 2007-12-25 2009-07-16 Stella Chemifa Corp 六フッ化リン酸塩の製造方法
CN102009972A (zh) * 2010-11-19 2011-04-13 森田化工(张家港)有限公司 一种六氟磷酸锂的制备方法
CN102180457A (zh) * 2011-05-06 2011-09-14 潘春跃 六氟磷酸锂有机溶剂法制备工艺
JP2013166680A (ja) * 2012-02-17 2013-08-29 Central Glass Co Ltd ヘキサフルオロリン酸リチウム濃縮液の製造方法
CN102910612A (zh) * 2012-11-05 2013-02-06 中国海洋石油总公司 一种六氟磷酸锂的制备方法
CN106745096A (zh) * 2017-02-16 2017-05-31 九江天赐高新材料有限公司 六氟磷酸碱金属盐的制备方法
CN114132912A (zh) * 2021-12-24 2022-03-04 浙江中欣氟材股份有限公司 一种六氟磷酸盐的合成方法

Also Published As

Publication number Publication date
US20230278862A1 (en) 2023-09-07
CN114132912B (zh) 2023-04-07
CN114132912A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023116462A1 (zh) 一种六氟磷酸盐的合成方法
CA2677304C (en) Method of manufacturing phosphorous pentafluoride and hexafluorophosphate
CN106044728B (zh) 一种双氟磺酰亚胺锂盐的制备方法
CN104261369B (zh) 一种高纯度五氟化磷的制备方法
CN113511639B (zh) 一种双氟磺酰亚胺锂及其制备方法和应用
KR20190136060A (ko) 고순도 플루오로 에틸렌 카보네이트의 제조방법
CN104495767A (zh) 一种双氟磺酰亚胺锂盐的制备方法
SG177287A1 (en) Method for producing tetrafluoroborate
CN115196654B (zh) 一种液态六氟磷酸锂的合成装置及其应用
CN217149037U (zh) 一种碳酸亚乙烯酯生产系统
CN102757027B (zh) 一种制备高纯五氟化磷的系统及方法
CN114014280B (zh) 一种双氟磺酰亚胺锂的制备方法
CN111171061A (zh) 一种二氟草酸硼酸锂的制备方法
CN112724047A (zh) 一种制备三氟甲磺酰氟的装置及方法
CN113979454A (zh) 一种氟磺酸碱金属盐的制备方法
KR20150036412A (ko) 설폰이미드 화합물 및 그 염의 제조 방법
CN114057170A (zh) 一种固相法合成五氟化磷及制备六氟磷酸锂的方法
CN113353910A (zh) 一种二氟磷酸锂的制备方法
CN104211029A (zh) 一种六氟磷酸锂的制备方法
CN214654573U (zh) 一种制备三氟甲磺酰氟的装置
CN111646916A (zh) 六氟环氧丙烷副产物联产三氟乙酰胺及氟化氢铵的方法
CN115285965B (zh) 一种六氟磷酸钠的合成方法
CN115417820B (zh) 一种抗厌氧菌药特硝唑的化学合成方法
CN111943969B (zh) 一种二氟草酸硼酸锂的制备方法
CN113562746B (zh) 一种氟磺酸钾的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909777

Country of ref document: EP

Kind code of ref document: A1