WO2023116018A1 - 退役锂离子电池电极材料回收方法及其应用 - Google Patents

退役锂离子电池电极材料回收方法及其应用 Download PDF

Info

Publication number
WO2023116018A1
WO2023116018A1 PCT/CN2022/115294 CN2022115294W WO2023116018A1 WO 2023116018 A1 WO2023116018 A1 WO 2023116018A1 CN 2022115294 W CN2022115294 W CN 2022115294W WO 2023116018 A1 WO2023116018 A1 WO 2023116018A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
acid
negative electrode
ion battery
decommissioned
Prior art date
Application number
PCT/CN2022/115294
Other languages
English (en)
French (fr)
Inventor
余海军
徐加雷
谢英豪
吴奔奔
陈江东
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023116018A1 publication Critical patent/WO2023116018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium ion battery recycling, and in particular relates to a method for recycling electrode materials of decommissioned lithium ion batteries and an application thereof.
  • the positive electrode materials of power batteries mainly include nickel-cobalt lithium manganese oxide and lithium iron phosphate, while the negative electrode materials It is graphite that occupies most of the market, and there are some problems in the recycling process of batteries.
  • fire recovery and wet recovery are mainly used. Fire recovery consumes a lot of energy.
  • the recovery of positive electrodes by wet recovery involves battery dismantling, crushing, sorting, and acid leaching.
  • acid leaching 8-10% of the aluminum foil cannot be sorted out and is still mixed in the electrode material.
  • the residual aluminum reacts with the acid to generate hydrogen, while H 2 O 2 generates oxygen in the 60-80°C solution. , so there is a risk of explosion, and the amount of acid used is large, the temperature of the solution needs to be maintained during the leaching process, the energy consumption is high, and the environment is high temperature.
  • the research cases of negative electrode recycling are mainly to purify graphite through pyrolysis, crushing, sorting, pickling and other processes of negative electrode materials, and then carbon-coat the graphite for reuse.
  • SEI film with a thickness of 100nm, including Li 2 CO 3 , Li 2 O, LiOH, LiF and organic lithium salts R-Li, R'-Li, and every 100g negative electrode sheet contains more than 10g of SEI film, and the lithium in the SEI film
  • the resource can account for 3-5% of the negative electrode sheet, which is much higher than the quality of lithium ore, so the lithium resource in the SEI film has recovery value.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of decommissioned lithium-ion battery electrode material recovery method and its application.
  • a kind of decommissioned lithium-ion battery electrode material recycling method comprising the following steps:
  • the lithium-containing solution is subjected to precipitation treatment to obtain lithium carbonate; the delithiated negative electrode sheet is first calcined at a low temperature in a vacuum or an inert atmosphere to melt the binder, and then calcined at a high temperature to carbonize the binder to obtain Carbon coated graphite material.
  • step S1 the positive electrode sheet is also separated after the disassembly, and the positive electrode sheet is used as the cathode, and phosphoric acid or oxalic acid is used as the electrolyte for electrolysis to obtain solution A and precipitate, and the obtained The precipitate is acidified, and solid-liquid separation is carried out to obtain solution B containing transition metal ions and filter residue.
  • the positive electrode material of the positive electrode sheet falls off, the aluminum foil of the current collector is dried and sold.
  • the solution A mainly contains H + and PO 4 -
  • the precipitate mainly contains lithium phosphate, nickel phosphate, cobalt phosphate, and manganese phosphate
  • the solution B contains lithium ions, nickel ions, cobalt ions, and manganese ions.
  • the filter residue is mainly insoluble matter such as binder (PVDF); when the electrolyte is oxalic acid, solution A mainly contains H + , C 2 O 4 2- , Li + , solution A can prepare lithium carbonate, and the precipitate mainly contains Nickel oxalate, cobalt oxalate, manganese oxalate, solution B contains nickel ions, cobalt ions, manganese ions, and the filter residue is mainly insoluble matter such as binder (PVDF).
  • PVDF binder
  • the solution B is extracted by adding an extractant to obtain a nickel-cobalt-manganese salt, and the nickel-cobalt-manganese salt is further alkalized to obtain a nickel-cobalt-manganese hydroxide, and the extracted solution can prepare lithium carbonate.
  • the electrolysis of the positive electrode sheet as the cathode can separate the positive metal oxide material from the current collector, and the positive electrode material is recovered by electrolysis, which avoids the reaction of residual aluminum and acid to generate hydrogen in the traditional wet recovery process, and releases oxygen from hydrogen peroxide in a water bath at 60-80 °C.
  • the electrolysis voltage is 0.5-1.5V.
  • the acidification treatment uses at least one of hydrochloric acid, nitric acid or sulfuric acid.
  • the decommissioned lithium-ion battery is one of nickel-cobalt lithium manganese oxide, lithium cobalt oxide or lithium manganese oxide battery.
  • the acid in step S2, is a weak acid or a medium-strong acid, such as acetic acid or oxalic acid, and the concentration of the acid is 0.1-0.5 mol/L.
  • the precipitation treatment is to pass carbon dioxide into the lithium-containing solution to generate LiHCO 3 , filter, and heat the filtrate to obtain Li 2 CO 3 precipitate. Further, before introducing carbon dioxide, it also includes the step of concentrating the lithium-containing solution to a concentration of lithium ions in the lithium-containing solution ⁇ 0.1 mol/L.
  • step S3 the temperature of the low-temperature calcination is 180-200°C.
  • the heating rate of the low-temperature calcination is 1-3°C/min, and the low-temperature calcination time is 1-2h.
  • step S3 the temperature of the high-temperature calcination is 500-800°C.
  • the heating rate of the high-temperature calcination is 1-3°C/min, and the high-temperature calcination time is 1-3h.
  • step S3 after the carbonization, it also includes the steps of sequentially pickling and washing the carbon-coated graphite material; the pickling uses hydrochloric acid, sulfuric acid, nitric acid or hydrofluoric acid acid.
  • the purpose of pickling and water washing is to remove the impurities present in the graphite material.
  • step S3 the gas generated by the low-temperature calcination and high-temperature calcination is cleaned with calcium hydroxide to remove hydrogen fluoride gas in the gas, and then oxidized carbon monoxide to carbon dioxide through a secondary incineration tower and then discharged .
  • the present invention also provides the application of the carbon-coated graphite material prepared by the method for recovering the electrode material of decommissioned lithium-ion batteries in preparing lithium-ion batteries.
  • the present invention recycles the lithium resources in the SEI film of the graphite negative electrode. By washing or immersing the SEI film in the negative electrode sheet, lithium ions enter the solution, and then lithium carbonate is prepared through subsequent processing, realizing lithium resources. This method avoids the loss of lithium resources in the previous laboratory recycling graphite process, and this recycling method has simple process, less environmental pollution and obvious economic benefits.
  • the negative electrode sheet is calcined step by step, so that the binder PVDF is first melted and coated on the graphite surface, and then the PVDF is pyrolyzed and carbonized at a high temperature to form an in-situ carbon-coated recycled graphite material, and during the calcination process Copper foil retains its original structure and does not oxidize.
  • the original binder PVDF of the negative plate as a carbon source to coat and modify the graphite material not only reduces the process of recycling graphite and energy consumption, but also uses PVDF as a carbon source to realize reuse and reduce The gas emission of PVDF traditional treatment method is eliminated.
  • the modified graphite can still be reused as an electrode material.
  • Fig. 1 is the process flow chart of the embodiment of the present invention 1;
  • Fig. 2 is a cycle performance graph of the carbon-coated graphite material obtained in Example 6 of the present invention.
  • the quality of the negative electrode sheet in the present embodiment is 1000.00g, and the lithium content in the negative electrode sheet is measured to be 3.4%, and the Li2CO3 quality recovered in step (2) is 169.11g, and the recovery rate of lithium is calculated to be 94.1%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 274.72g
  • the calculated recovery rate of lithium reaches 94.5%.
  • the recovery rate was 98.4%
  • the cobalt recovery rate was 97.8%
  • the manganese recovery rate was 95.4%.
  • a method for recycling electrode materials of decommissioned lithium ion batteries, the specific process is:
  • the quality of the negative electrode sheet is 1000.00g, and the measured lithium content in the negative electrode sheet is 3.4%, and the Li2CO3 quality recovered in step (2) is 168.75g, and the recovery rate of lithium is calculated to be 93.9%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 270.17g
  • the calculated recovery rate of lithium reaches 92.9%
  • the positive electrode material nickel The recovery rate was 98.4%
  • the cobalt recovery rate was 97.8%
  • the manganese recovery rate was 95.4%.
  • a method for recycling electrode materials of decommissioned lithium ion batteries, the specific process is:
  • the quality of the negative electrode sheet in the present embodiment is 1000.00g, and the lithium content in the negative electrode sheet is measured to be 3.4%, and the Li2CO3 quality recovered in step (2) is 168.92g, and the recovery rate of lithium is calculated to be 94.0%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 273.47g
  • the calculated recovery rate of lithium reaches 94.5%.
  • the recovery rate was 98.4%
  • the cobalt recovery rate was 97.8%
  • the manganese recovery rate was 95.4%.
  • a method for recycling electrode materials of decommissioned lithium ion batteries, the specific process is:
  • the quality of the negative electrode sheet in the present embodiment is 1000.00g, and the lithium content in the negative electrode sheet is measured to be 3.4%, and the Li2CO3 quality recovered in step (2) is 169.28g, and the recovery rate of lithium is calculated to be 94.2%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 274.7g
  • the calculated recovery rate of lithium reaches 94.5%.
  • the recovery rate was 98.4%
  • the cobalt recovery rate was 97.6%
  • the manganese recovery rate was 95.3%.
  • a method for recycling electrode materials of decommissioned lithium ion batteries, the specific process is:
  • the quality of the negative electrode sheet is 1000.00g, and the measured lithium content in the negative electrode sheet is 3.4%, and the Li2CO3 quality recovered in step (2) is 169.10g, and the calculated recovery rate of lithium is 94.1%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 274.13g
  • the calculated recovery rate of lithium reaches 94.3%
  • the positive electrode material nickel The recovery rate was 98.1%
  • the cobalt recovery rate was 97.6%
  • the manganese recovery rate was 95.2%.
  • a method for recycling electrode materials of decommissioned lithium ion batteries, the specific process is:
  • the quality of the negative electrode sheet is 1000.00g, and the measured lithium content in the negative electrode sheet is 3.4%, and the Li2CO3 quality recovered in step (2) is 169.10g, and the calculated recovery rate of lithium is 94.1%.
  • the quality of the positive electrode sheet is 1000.00g
  • the lithium content in the positive electrode material measured is 5.5%
  • the quality of lithium carbonate reclaimed in step (1) is 275.10g
  • the calculated recovery rate of lithium reaches 94.6%.
  • the recovery rate was 98.1%
  • the cobalt recovery rate was 97.6%
  • the manganese recovery rate was 95.2%.
  • This comparative example prepared a carbon-coated graphite material, the specific process is:
  • the natural graphite and PVDF were ball milled and mixed according to the mass ratio of 8:1, and then heated to 800°C at a heating rate of 3°C/min, and kept for 3h to obtain a carbon-coated graphite material.
  • the carbon-coated graphite material prepared in the above-mentioned examples and comparative examples is configured into a slurry, adhered to the surface of copper foil to form a pole piece, with lithium foil as the counter electrode, Celgard2400 as the diaphragm, and LiPF 6 as the electrolyte. Assemble in a glove box filled with high-purity argon to obtain a CR2032 button-type experimental battery.
  • the voltage test window is 0.01-2.5V. After the battery is activated twice at 0.1C, the subsequent test is carried out. The test results are shown in Table 1.
  • the electrochemical performance of the embodiment is equivalent to that of the comparative example, showing that the carbon-coated graphite material prepared by the present invention can be reused as an electrode material completely, and its performance is the same as that of a freshly prepared carbon-coated graphite material Not much difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种退役锂离子电池电极材料回收方法及其应用,包括将退役锂离子电池进行拆解,分离出负极片,将负极片用水或酸进行冲洗或浸泡,得到含锂溶液和脱锂负极片,含锂溶液经沉淀处理得到碳酸锂;将脱锂负极片在真空或惰性气氛下先进行低温煅烧使粘结剂融化,再进行高温煅烧使粘结剂碳化,得到碳包覆石墨材料。本发明对石墨负极的SEI膜中的锂资源进行回收,通过对负极片中的SEI膜进行冲洗或浸泡,使锂离子进入溶液中,实现了锂资源的回收,将负极片进行分步煅烧,使粘结剂PVDF先融化包覆于石墨表面,再在高温下使PVDF热解碳化,形成原位碳包覆的回收石墨材料,经过修饰的石墨仍然可以作为电极材料实现重复利用。

Description

退役锂离子电池电极材料回收方法及其应用 技术领域
本发明属于锂离子电池回收技术领域,具体涉及一种退役锂离子电池电极材料回收方法及其应用。
背景技术
在新能源汽车快速发展的今天,动力电池的应用量是巨大的,但是动力电池的使用寿命在3-8年,动力电池的正极材料主要有镍钴锰酸锂和磷酸铁锂,而负极材料是石墨占据绝大部分市场,在电池的回收过程中存在一些问题。
在目前的正极材料回收过程中主要使用火法回收与湿法回收,火法回收能耗高,湿法回收对正极片的回收为电池拆解、破碎、分选、酸浸过程,在分选的过程中会有8-10%的铝箔未能分选出依旧混在电极材料之中,在酸浸过程残留的铝和酸反应生成氢气,而H 2O 2在60-80℃溶液中产生氧气,因此存在爆炸的风险,并且用酸量大,在浸出过程中还需要保持溶液的温度,能耗较高,造成环境高温。目前负极回收的研究案例中主要是对负极材料进行热解、破碎、分选、酸洗等过程提纯石墨,再将石墨进行碳包覆进行重复利用,但是这样的回收方式忽略了石墨负极有大于100nm厚度的SEI膜,其中包括Li 2CO 3、Li 2O、LiOH、LiF以及有机锂盐R-Li、R’-Li,且每100g负极片中含有SEI膜10g以上,SEI膜中的锂资源可以占到负极片中的3-5%,远高于锂矿的品质,因此SEI膜中的锂资源具有回收价值。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种退役锂离子电池电极材料回收方法及其应用。
根据本发明的一个方面,提出了一种退役锂离子电池电极材料回收方法,包括以下步骤:
S1:将退役锂离子电池进行拆解,分离出负极片;
S2:将所述负极片用水或酸进行冲洗或浸泡,得到含锂溶液和脱锂负极片;其中锂盐来自电池循环过程中在石墨负极表面产生的Li 2CO 3、Li 2O、LiOH、LiF、电解液中的六氟磷酸锂以及有机锂盐R-Li、R’-Li。
S3:所述含锂溶液经沉淀处理得到碳酸锂;将所述脱锂负极片在真空或惰性气氛下先进行低温煅烧使粘结剂融化,再进行高温煅烧使所述粘结剂碳化,得到碳包覆石墨材料。
在本发明的一些实施方式中,步骤S1中,所述拆解后还分离出正极片,将所述正极片作为阴极,以磷酸或草酸作为电解液进行电解,得到溶液A和沉淀,将所述沉淀进行酸化处理, 固液分离得到含过渡金属离子的溶液B和滤渣。正极片的正极材料脱落后,将集流体铝箔甩干后进行售卖。当电解液为磷酸时,溶液A中主要含有H +、PO 4 -,沉淀中主要有磷酸锂、磷酸镍、磷酸钴、磷酸锰,溶液B含有锂离子、镍离子、钴离子、锰离子,滤渣主要为不可溶物如粘结剂(PVDF);当电解液为草酸时,溶液A中主要含有H +、C 2O 4 2-、Li +,溶液A可制备碳酸锂,沉淀中主要有草酸镍、草酸钴、草酸锰,溶液B含有镍离子、钴离子、锰离子,滤渣主要为不可溶物如粘结剂(PVDF)。优选的,溶液B加入萃取剂进行萃取,得到镍钴锰盐,镍钴锰盐进一步碱化得到镍钴锰氢氧化物,萃取后的溶液可制备碳酸锂。正极片作为阴极进行电解可将正极金属氧化物材料脱离集流体,采用电解回收正极材料,避免了传统湿法回收过程中残留铝与酸反应生成氢气,60-80℃水浴中双氧水释放出氧气,存在爆炸的安全隐患的状况,而且避免了对溶液的加热,且上述中使用的磷酸、草酸可以循环使用,而且能够解决电解过程中金属在阴极表面的覆盖阻止进一步反应的问题。
在本发明的一些实施方式中,所述电解的电压为0.5-1.5V。
在本发明的一些实施方式中,所述酸化处理采用盐酸、硝酸或硫酸中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述退役锂离子电池为镍钴锰酸锂、钴酸锂或锰酸锂的电池中的一种。
在本发明的一些实施方式中,步骤S2中,所述酸为弱酸或中强酸,如醋酸或草酸,所述酸的浓度为0.1-0.5mol/L。
在本发明的一些实施方式中,步骤S3中,所述沉淀处理为向所述含锂溶液通入二氧化碳,生成LiHCO 3,过滤,将滤液进行加热,得到Li 2CO 3沉淀。进一步地,在通入二氧化碳之前,还包括将所述含锂溶液进行浓缩的工序,浓缩至所述含锂溶液中锂离子的浓度≥0.1mol/L。
在本发明的一些实施方式中,步骤S3中,所述低温煅烧的温度为180-200℃。所述低温煅烧的升温速率为1-3℃/min,低温煅烧的时间为1-2h。
在本发明的一些实施方式中,步骤S3中,所述高温煅烧的温度为500-800℃。所述高温煅烧的升温速率为1-3℃/min,高温煅烧的时间为1-3h。
在本发明的一些实施方式中,步骤S3中,所述碳化后,还包括将所述碳包覆石墨材料依次进行酸洗和水洗的工序;所述酸洗采用盐酸、硫酸、硝酸或氢氟酸。酸洗和水洗的目的是去除石墨材料中存在的杂质。
在本发明的一些实施方式中,步骤S3中,所述低温煅烧和高温煅烧产生的气体经过氢氧化钙进行清洗,除去气体中的氟化氢气体,再经过二次焚烧塔将一氧化碳氧化为二氧化碳再排放。
本发明还提供所述的退役锂离子电池电极材料回收方法所制得的碳包覆石墨材料在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明对石墨负极的SEI膜中的锂资源进行回收,通过对负极片中的SEI膜进行冲洗或浸泡,使锂离子进入溶液中,再经后续处理制备出碳酸锂,实现了锂资源的回收,这种方式避免了以往实验室回收石墨过程的锂资源损失,且这种回收方式工艺简单,环境污染少,经济效益明显。
2、本发明将负极片进行分步煅烧,使粘结剂PVDF先融化包覆于石墨表面,再在高温下使PVDF热解碳化,形成原位碳包覆的回收石墨材料,并且煅烧过程中铜箔保持原有结构并且不会发生氧化。使用负极片原有的粘结剂PVDF作为碳源对石墨材料进行包覆修饰石墨材料,不仅减少了石墨回收再利用的流程,减少了能源的消耗,而且将PVDF作为碳源实现再利用,减少了PVDF传统处理方式的气体排放。经过修饰的石墨仍然可以作为电极材料实现重复利用。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图;
图2为本发明实施例6所得碳包覆石墨材料循环性能图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种退役锂离子电池电极材料回收方法,参照图1,具体过程为:
(1)将深度放电后的动力电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,将0.5mol/L的草酸作为电解液,在1.2V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,向溶液A中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用大量的水对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入过量CO 2,生成LiHCO 3,进行过滤后,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3、最后过滤即可得到回收的Li 2CO 3
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到180℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到500℃,并保温1h,实现PVDF的碳化,得到碳包覆石墨材料;其中两次煅烧产生的气体经过氢氧化钙进行清洗,除去气体中的氟化氢气体,再经过二次焚烧塔将一氧化碳氧化为二氧化碳再排放。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为169.11g,计算得到锂的回收率为94.1%,步骤(3)得到的碳包覆石墨材料有520.61g,铜箔241.03g,石墨的回收率为98.7%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为274.72g,计算得到锂的回收率达到94.5%,正极材料镍回收率为98.4%,钴回收率为97.8%,锰的回收率为95.4%。
实施例2
一种退役锂离子电池电极材料回收方法,具体过程为:
(1)将深度放电后的电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,0.1mol/L草酸为电解液,在1.2V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,向溶液A中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用大量的水对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入过量CO 2,生成LiHCO 3,进行过滤后,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3,生成的碳酸锂可以进一步和氢氟酸反应生成LiF可作为电解液的原材料;
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到180℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到600℃,并保温1h,实现PVDF的碳化,得到碳包覆石墨材料,并用盐酸进行清洗除杂,再用蒸馏水清洗至pH=7,干燥。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为168.75g,计算得到锂的回收率为93.9%,步骤(3)得到的碳包覆石墨材料有520.42g,铜箔240.86g,石墨的回收率为98.6%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为270.17g,计算得到锂的回收率达到92.9%,正极材料镍回收率为98.4%,钴回收率为97.8%,锰的回收率为95.4%。
实施例3
一种退役锂离子电池电极材料回收方法,具体过程为:
(1)将深度放电后的电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,0.2mol/L磷酸为电解液,在1.5V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,过滤后得到滤液C,向过滤后的滤液中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用大量的水对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入过量CO 2,生成LiHCO 3,进行过滤后,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3,得到的Li 2CO 3可与Ca(OH) 2进行反应制备LiOH;
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到180℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到800℃,并保温1h,实现PVDF的碳化,得到碳包覆石墨材料,并用盐酸进行清洗除杂,再用蒸馏水清洗至pH=7,干燥。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为168.92g,计算得到锂的回收率为94.0%,步骤(3)得到的碳包覆石墨材料有517.43g,铜箔240.63g,石墨的回收率为98.7%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为273.47g,计算得到锂的回收率达到94.5%,正极材料镍回收率为98.4%,钴回收率为97.8%,锰的回收率为95.4%。
实施例4
一种退役锂离子电池电极材料回收方法,具体过程为:
(1)将深度放电后的电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,0.1mol/L草酸为电解液,在1.2V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,向溶液A中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用0.1mol/L的醋酸溶液对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入过量CO 2,生成LiHCO 3,进行过滤后,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到200℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到600℃,并保温1h,实现PVDF的碳化,得到碳包覆石墨材料,并用盐酸进行清洗除杂,再用蒸馏水清洗至pH=7,干燥。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为169.28g,计算得到锂的回收率为94.2%,步骤(3)得到的碳包覆石墨材料有520.61g,铜箔246.63g,石墨的回收率为98.7%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为274.7g,计算得到锂的回收率达到94.5%,正极材料镍回收率为98.4%,钴回收率为97.6%,锰的回收率为95.3%。
实施例5
一种退役锂离子电池电极材料回收方法,具体过程为:
(1)将深度放电后的电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,0.1mol/L磷酸为电解液,在1.2V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,过滤得到滤液C,向得到滤液C中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用大量的水对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入Ca(OH) 2,除去溶液中的氟离子,再向溶液中加入过量CO 2,生成CaCO 3沉淀将沉淀过滤,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到200℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到600℃,并保温3h,实现PVDF的碳化,得到碳包覆石墨材料,并用盐酸进行清洗除杂,再用蒸馏水清洗至pH=7,干燥。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为169.10g,计算得到锂的回收率为94.1%,步骤(3)得到的碳包覆石墨材料有520.61g,铜箔245.63g,石墨的回收率为98.7%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为274.13g,计算得到锂的回收率达到94.3%,正极材料镍回收率为98.1%,钴回收率为97.6%,锰的回收率为95.2%。
实施例6
一种退役锂离子电池电极材料回收方法,具体过程为:
(1)将深度放电后的电池单体(镍钴锰三元电池)进行拆解,将正、负极片分拣出来,将正极片和金属Pt电极分别作为阴极和阳极,以0.2mol/L草酸为电解液,在1.2V电压下进行电解,将生成的沉淀过滤得到溶液A和滤渣A,再将滤渣A用盐酸酸洗,再次过滤,得到溶液B和滤渣B,再使用萃取剂P204对溶液B进行萃取提纯,再经过碱化形成镍钴锰盐混合氢氧化物,向溶液A中加入碳酸钠制备碳酸锂沉淀获得锂盐;
(2)用大量的水对负极片进行冲洗,将冲洗负极片的溶液进行加热浓缩至锂离子浓度大于0.1mol/L,再进行过滤除去不溶性杂质,再向溶液中加入Ca(OH) 2,除去溶液中的氟离子,再向溶液中加入过量CO 2,生成CaCO 3沉淀将沉淀过滤,再将溶液加热到90℃并保温30min使生成的LiHCO 3分解成不溶物Li 2CO 3
(3)将冲洗后的负极片进行干燥,将干燥后的负极片放入充满惰性气体的反应炉中进行热处理,以3℃/min的升温速率加热到200℃并保温1h,完成PVDF的液化附着于石墨材料的表面,再以3℃/min的升温速率加热到800℃,并保温3h,实现PVDF的碳化,得到碳包覆石墨材料,并用盐酸进行清洗除杂,再用蒸馏水清洗至pH=7,干燥。
本实施例中负极片的质量为1000.00g,测得负极片中含锂量为3.4%,步骤(2)回收的Li 2CO 3质量为169.10g,计算得到锂的回收率为94.1%,步骤(3)得到的碳包覆石墨材料有519.54g,铜箔245.63g,石墨的回收率为98.5%。
本实施例中正极片的质量为1000.00g,测的正极材料中含锂量为5.5%,步骤(1)回收的碳酸锂质量为275.10g,计算得到锂的回收率达到94.6%,正极材料镍回收率为98.1%,钴回收率为97.6%,锰的回收率为95.2%。
对比例1
本对比例制备了一种碳包覆石墨材料,具体过程为:
将天然石墨与PVDF按照质量比8:1进行球磨混合,再以3℃/min的升温速率加热到800℃,并保温3h,得到碳包覆石墨材料。
试验例
将上述各实施例和对比例中制备的碳包覆石墨材料配置成浆料,粘附与铜箔表面形成极片,以锂箔为对电极,以Celgard2400作为隔膜,以LiPF 6作为电解液,在充满高纯氩气的手套箱中组装,得到CR2032型钮扣式实验电池。电压测试窗口为0.01-2.5V,电池先经过2次0.1C活化后,再进行后续的测试。测试结果如表1所示。
表1实施例与对比例电化学性能对比
Figure PCTCN2022115294-appb-000001
Figure PCTCN2022115294-appb-000002
由表1可见,实施例的电化学性能与对比例的电化学性能相当,表明本发明制得的碳包覆石墨材料完全可以作为电极材料重复利用,其性能与新鲜制备的碳包覆石墨材料无太大差别。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种退役锂离子电池电极材料回收方法,其特征在于,包括以下步骤:
    S1:将退役锂离子电池进行拆解,分离出负极片;
    S2:将所述负极片用水或酸进行冲洗或浸泡,得到含锂溶液和脱锂负极片;
    S3:所述含锂溶液经沉淀处理得到碳酸锂;将所述脱锂负极片在真空或惰性气氛下先进行低温煅烧使粘结剂融化,再进行高温煅烧使所述粘结剂碳化,得到碳包覆石墨材料。
  2. 根据权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S1中,所述拆解后还分离出正极片,将所述正极片作为阴极,以磷酸或草酸作为电解液进行电解,得到溶液A和沉淀,将所述沉淀进行酸化处理,固液分离得到含过渡金属离子的溶液B和滤渣。
  3. 根据权利要求2所述的退役锂离子电池电极材料回收方法,其特征在于,所述酸化处理采用盐酸、硝酸或硫酸中的至少一种。
  4. 根据权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S1中,所述退役锂离子电池为镍钴锰酸锂、钴酸锂或锰酸锂的电池中的一种。
  5. 据权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S2中,所述酸为弱酸或中强酸,所述酸的浓度为0.1-0.5mol/L。
  6. 权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S3中,所述沉淀处理为向所述含锂溶液通入二氧化碳,生成LiHCO 3,过滤,将滤液进行加热,得到Li 2CO 3沉淀。
  7. 权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S3中,所述低温煅烧的温度为180-200℃。
  8. 权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S3中,所述高温煅烧的温度为500-800℃。
  9. 权利要求1所述的退役锂离子电池电极材料回收方法,其特征在于,步骤S3中,所述碳化后,还包括将所述碳包覆石墨材料依次进行酸洗和水洗的工序;所述酸洗采用盐酸、硫酸、硝酸或氢氟酸。
  10. 权利要求1-9任一项所述的退役锂离子电池电极材料回收方法所制得的碳包覆石墨材料在制备锂离子电池中的应用。
PCT/CN2022/115294 2021-12-23 2022-08-26 退役锂离子电池电极材料回收方法及其应用 WO2023116018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111588932.9A CN114388922B (zh) 2021-12-23 2021-12-23 退役锂离子电池电极材料回收方法及其应用
CN202111588932.9 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023116018A1 true WO2023116018A1 (zh) 2023-06-29

Family

ID=81197405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115294 WO2023116018A1 (zh) 2021-12-23 2022-08-26 退役锂离子电池电极材料回收方法及其应用

Country Status (2)

Country Link
CN (1) CN114388922B (zh)
WO (1) WO2023116018A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565448A (zh) * 2023-07-04 2023-08-08 西北工业大学 一种pp基补锂隔膜的制备方法及无负极锂离子电池
CN117305604A (zh) * 2023-11-29 2023-12-29 湖南五创循环科技股份有限公司 一种还原气化与连续膜分离技术协同回收钴酸锂电池中有价金属的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388922B (zh) * 2021-12-23 2024-05-31 广东邦普循环科技有限公司 退役锂离子电池电极材料回收方法及其应用
CN114665182B (zh) * 2022-04-25 2024-04-30 中国科学院青海盐湖研究所 废旧锂离子电池负极中集流体与负极材料的分离回收方法
CN115020854A (zh) * 2022-06-16 2022-09-06 华中科技大学 一种加速电池电极材料和集流体分离的方法
CN117638279A (zh) * 2022-08-15 2024-03-01 广东邦普循环科技有限公司 一种钠离子电池普鲁士类钠正极材料回收方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026088A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp リチウム電池の処理方法およびリサイクル方法
CN106099234A (zh) * 2016-08-11 2016-11-09 合肥国轩高科动力能源有限公司 一种电解分离废旧锂离子电池中正极材料与铝集流体的方法
CN106207302A (zh) * 2016-08-12 2016-12-07 合肥国轩高科动力能源有限公司 一种废旧锂离子电池阳极材料的回收方法
CN109742475A (zh) * 2019-01-09 2019-05-10 东北师范大学 一种废旧锂离子电池负极材料的回收利用方法
CN110176647A (zh) * 2019-06-19 2019-08-27 中南大学 一种废旧锂离子电池负极材料梯级利用方法
CN114388922A (zh) * 2021-12-23 2022-04-22 广东邦普循环科技有限公司 退役锂离子电池电极材料回收方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075502A (ko) * 2019-12-13 2021-06-23 주식회사 포스코 폐 리튬이온전지의 양극재로부터 유가금속 회수방법
CN111924836B (zh) * 2020-08-17 2023-02-17 湖南省正源储能材料与器件研究所 一种退役锂离子电池负极石墨的回收再生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026088A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp リチウム電池の処理方法およびリサイクル方法
CN106099234A (zh) * 2016-08-11 2016-11-09 合肥国轩高科动力能源有限公司 一种电解分离废旧锂离子电池中正极材料与铝集流体的方法
CN106207302A (zh) * 2016-08-12 2016-12-07 合肥国轩高科动力能源有限公司 一种废旧锂离子电池阳极材料的回收方法
CN109742475A (zh) * 2019-01-09 2019-05-10 东北师范大学 一种废旧锂离子电池负极材料的回收利用方法
CN110176647A (zh) * 2019-06-19 2019-08-27 中南大学 一种废旧锂离子电池负极材料梯级利用方法
CN114388922A (zh) * 2021-12-23 2022-04-22 广东邦普循环科技有限公司 退役锂离子电池电极材料回收方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565448A (zh) * 2023-07-04 2023-08-08 西北工业大学 一种pp基补锂隔膜的制备方法及无负极锂离子电池
CN116565448B (zh) * 2023-07-04 2023-10-20 西北工业大学 一种pp基补锂隔膜的制备方法及无负极锂离子电池
CN117305604A (zh) * 2023-11-29 2023-12-29 湖南五创循环科技股份有限公司 一种还原气化与连续膜分离技术协同回收钴酸锂电池中有价金属的方法
CN117305604B (zh) * 2023-11-29 2024-02-23 湖南五创循环科技股份有限公司 一种还原气化与连续膜分离技术协同回收钴酸锂电池中有价金属的方法

Also Published As

Publication number Publication date
CN114388922B (zh) 2024-05-31
CN114388922A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023116018A1 (zh) 退役锂离子电池电极材料回收方法及其应用
CN109935922B (zh) 一种从废旧锂离子电池材料中回收有价金属的方法
JP7220360B2 (ja) 正極材料の回収方法、得られた正極材料およびその用途
CN112142029B (zh) 废旧磷酸铁锂电池正极材料的修复再生方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN108110358A (zh) 废旧锂离子电池粘结剂的回收方法
CN106591584A (zh) 一种从失效钴酸锂电池正极材料中回收钴和锂的方法
CN115347265A (zh) 一种自废旧磷酸铁锂电池制备铜铝共掺杂改性磷酸铁锂正极材料的方法
CN110098441B (zh) 废旧电池中钴酸锂正极材料的修复再生方法
CN114094219A (zh) 一种废旧锂电池正极材料热处理修复再生方法
CN114085997A (zh) 一种废旧锂离子电池回收方法
CN111321297A (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN114204151A (zh) 一种废弃锂离子电池正极活性材料修复改性方法
CN109524735B (zh) 一种废旧磷酸铁锂-钛酸锂电池的回收方法
CN112645362A (zh) 一种氯化物型含锂盐水电化学提锂制备碳酸锂的方法
CN116315229A (zh) 一种自废旧锂离子电池回收锂协同修复磷酸铁锂材料的方法
CN113793915B (zh) 一种废旧锂离子电池正极材料的修复方法
WO2024000886A1 (zh) 一种废旧电池中石墨材料的回收利用方法
CN115472948A (zh) 一种利用废旧锰酸锂再生钠电正极材料的方法
CN115621597A (zh) 一种热解回收锂离子电池正极材料中稀贵金属的方法
CN114566728A (zh) 一种无钴正极材料的回收方法
CN110277602B (zh) 废旧电池中磷酸铁锂正极材料的修复再生方法
CN113086961A (zh) 一种基于电化学的废旧磷酸铁锂修复回收方法
CN117712544B (zh) 一种废旧磷酸铁锂电池的资源化利用方法
CN114583196B (zh) 一种废旧锂-二氧化锰电池回收利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909343

Country of ref document: EP

Kind code of ref document: A1