WO2024000886A1 - 一种废旧电池中石墨材料的回收利用方法 - Google Patents

一种废旧电池中石墨材料的回收利用方法 Download PDF

Info

Publication number
WO2024000886A1
WO2024000886A1 PCT/CN2022/122271 CN2022122271W WO2024000886A1 WO 2024000886 A1 WO2024000886 A1 WO 2024000886A1 CN 2022122271 W CN2022122271 W CN 2022122271W WO 2024000886 A1 WO2024000886 A1 WO 2024000886A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite material
acid
concentration
coated graphite
layer
Prior art date
Application number
PCT/CN2022/122271
Other languages
English (en)
French (fr)
Inventor
徐加雷
余海军
谢英豪
陈江东
杨秋颖
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024000886A1 publication Critical patent/WO2024000886A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to the technical field of battery recycling, and in particular to a method for recycling graphite materials in used batteries.
  • fire recycling is the main method in foreign countries.
  • the raw materials in power batteries are mainly recycled metal materials.
  • the remaining electrolytes, separators and graphite are used as energy sources to provide heat for fire recycling, and fire recycling Legal recycling is prone to secondary pollution, requires the prevention and control of harmful substances, and has high processing costs.
  • Wet recycling technology mainly recovers metal materials in battery materials, and graphite is treated as solid waste, causing a waste of resources.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a method for recycling graphite materials in used batteries.
  • the method has a simple process and the recycled product can be directly used in the production of batteries.
  • a method for recycling graphite materials in used batteries includes the following steps:
  • step (3) Immerse the graphite material dried in step (2) into an alkali solution, take it out and dry it, to obtain a metal hydroxide-coated graphite material;
  • step (4) Sintering the material obtained in step (4) in a protective atmosphere to form a double-layer coated graphite material B;
  • the metal element in the graphite material is first removed by acid leaching, and then soaked in a metal salt solution and an alkali solution respectively to form a metal hydroxide coating layer on the surface of the graphite material, and then hydrothermal reaction is carried out with an organic carbon source to obtain double
  • the layer-coated graphite material A is then sintered to obtain a double-layer coated graphite material B, which is then cleaned with strong acid to obtain a porous C-coated graphite material with a core-shell structure.
  • the above method uses less processing materials and has a simple process.
  • the C/graphite material produced can be directly used to prepare batteries, which provides a new idea for the recycling of graphite materials in used batteries.
  • step (1) at least one of hydrochloric acid, sulfuric acid, and nitric acid is used for acid leaching, the acid leaching time is 1 to 6 hours, and the acid concentration is 0.2 to 2 mol/L.
  • the acid leaching conditions meet the above requirements, the metal elements that enter the graphite material during the electrochemical reaction can be completely removed.
  • the metal salt is at least one of iron sulfate, zinc sulfate, and zinc chloride, and the concentration of the metal salt in the metal salt solution is 0.5 to 2 mol/L;
  • the step (2) In 3) the alkali solution is at least one of sodium hydroxide, potassium hydroxide, and lithium hydroxide solution, and the concentration of the alkali in the alkali solution is 0.1 to 1 mol/L.
  • Ferric sulfate, ferric chloride, zinc sulfate, and zinc chloride can react with alkali to form metal hydroxide precipitates that adhere to the surface of graphite materials.
  • concentration of the metal salt is that if the concentration of the metal salt is too high, the thickness of the prepared coating layer will be too large, and the pore structure in the finally formed porous C-coated graphite material will also increase. , will have an adverse effect on the performance of batteries prepared with the C-coated graphite material; if the concentration of the metal salt is too low, the subsequent coating effect will not be ideal, and the coating on the surface of the graphite material will be uneven, which will also affect the C Comprehensive properties of coated graphite materials.
  • concentration of the base in the alkaline solution will have the same effect.
  • the organic carbon source is at least one of glucose, sucrose, and polydopamine; the concentration of the organic carbon source in the organic carbon source solution is 0.2 to 1 mol/L.
  • the above limit on the concentration of the organic carbon source is to control the thickness of the C layer. If the concentration is too high, the thickness of the carbon layer will be large, and it will be difficult to remove the middle metal oxide layer during the subsequent acid etching process, which will affect the electrical properties of the C-coated graphite material. Performance will have a greater impact. If the concentration is too low, the carbon layer coating will be uneven and full coverage cannot be completed. Moreover, after the metal oxide is subsequently etched away by acid, its stability will be poor.
  • the temperature of the hydrothermal reaction is 150-200°C and the time is 2-12 hours.
  • the organic carbon source can fully react with the metal hydroxide/graphite material to form a double-layer coated graphite material A.
  • the sintering temperature is 400-1000°C, the time is 1-6 hours, and the protective atmosphere is at least one of nitrogen and rare gases. Further preferably, in step (5), the sintering temperature is 700-900°C.
  • the battery prepared from the C-coated graphite material has poor charge and discharge performance and a relatively short service life; when the temperature is higher than 900°C, the C The mechanical properties of the coated graphite material are poor, which will also affect the overall performance of the battery.
  • the acid is at least one of hydrochloric acid, sulfuric acid, and nitric acid; the concentration of the acid is 0.5 to 2 mol/L.
  • the present invention relies on the adsorption of graphite material to form metal hydroxide precipitation on the surface of the graphite material, and then carries out carbon coating and sintering, and then uses acid to remove the metal oxide and increase the pore structure between the graphite and carbon coating layers.
  • the present invention relies on the adsorption of graphite material to form metal hydroxide precipitation on the surface of the graphite material, and then carries out carbon coating and sintering, and then uses acid to remove the metal oxide and increase the pore structure between the graphite and carbon coating layers.
  • An embodiment of the method for recycling graphite materials in waste batteries according to the present invention includes the following steps:
  • An embodiment of the method for recycling graphite materials in waste batteries according to the present invention includes the following steps:
  • An embodiment of the method for recycling graphite materials in waste batteries according to the present invention includes the following steps:
  • step (2) the ferric chloride in the ferric chloride aqueous solution
  • concentration of NH 3 ⁇ H 2 O is 0.3 mol/L.
  • step (3) the graphite material is immersed in ammonia water with a concentration of NH 3 ⁇ H 2 O of 0.3 mol/L.
  • step (2) the ferric chloride in the ferric chloride aqueous solution
  • concentration of sodium hydroxide is 3 mol/L.
  • step (3) the graphite material is immersed in ammonia water with a sodium hydroxide concentration of 3 mol/L.
  • a method for recycling graphite materials in used batteries includes the following steps:
  • step (3) Calculate the product of step (2) in argon at 700°C for 2 hours, wash it with hydrochloric acid with an HCl concentration of 1 mol/L, and dry it to obtain the recovered product.
  • a method for recycling graphite materials in used batteries includes the following steps:
  • step (3) Add the processed product of step (2) to a glucose aqueous solution with a glucose concentration of 1 mol/L, perform a hydrothermal reaction at 180°C for 3 hours, and then take it out and dry it;
  • step (3) Calculate the dried product in step (3) in argon at 700°C for 2 hours, then wash it with hydrochloric acid with an HCl concentration of 1 mol/L, and dry it to obtain the recovered product.
  • the porous C-coated graphite material of the recycled product obtained in Examples 1 to 7 and Comparative Examples 1 to 2 was mixed with acetylene black and the binder PVDF in a mass ratio of 8:1:1 to make a button half-battery positive electrode. Lithium sheets were used as negative electrodes to make button-type half cells, and electrochemical performance tests were performed. The test results are shown in Table 1.
  • Example 1 Comparing the test results of Example 1 with Examples 4 and 5, it can be found that the sintering temperature has a great influence on the performance of the recycled product.
  • the sintering temperature is 700-900°C, the performance of the battery prepared from the recycled product is obvious. better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processing Of Solid Wastes (AREA)
  • Primary Cells (AREA)

Abstract

一种废旧电池中石墨材料的回收利用方法,涉及电池回收利用技术领域。所述回收利用方法包括如下步骤:(1)将废旧电池中的石墨材料进行酸浸,然后洗涤、干燥;(2)浸入金属盐溶液中,干燥;(3)浸入碱溶液中,过滤、干燥;(4)置于有机碳源溶液中进行水热反应,形成双层包覆的石墨材料A;(5)对上述材料进行烧结,形成双层包覆的石墨材料B;(6)酸洗双层包覆的石墨材料B,得到多孔C包覆的石墨材料。通过上述方法对电池中的石墨材料进行回收利用,所述方法工艺简单,得到的回收产物可直接应用于电池的生产。

Description

一种废旧电池中石墨材料的回收利用方法 技术领域
本发明涉及电池回收技术领域,尤其涉及一种废旧电池中石墨材料的回收利用方法。
背景技术
近年来,新能源汽车发展速度不断加快,随之而来的就是动力电池的退役,如何高效利用退役动力电池是目前研究的热点。
对于退役动力电池的再生利用,国外以火法回收为主,动力电池中的原材料主要以回收金属材料为主,其余电解液、隔膜以及石墨均被作为能源用以为火法回收提供热量,并且火法回收容易产生二次污染,需要对有害物质进行防治,处理成本较高。而湿法回收技术主要回收电池材料中的金属材料,石墨作为固体废弃物处理,造成资源的浪费。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种废旧电池中石墨材料的回收利用方法,该方法工艺简单,回收的产物可直接用于电池的生产。
为实现上述目的,本发明所采取的技术方案为:
一种废旧电池中石墨材料的回收利用方法,所述方法包括如下步骤:
(1)对废旧电池中的石墨材料进行酸浸,然后洗涤、干燥;
(2)将干燥后的石墨材料浸入金属盐溶液中,然后取出干燥;
(3)将步骤(2)中干燥后的石墨材料浸入碱溶液中,取出干燥,得到金属氢氧化物包覆的石墨材料;
(4)将金属氢氧化物包覆的石墨材料加入有机碳源溶液中进行水热反应,形成双层包覆的石墨材料A;
(5)将步骤(4)中得到的材料在保护气氛中进行烧结,形成双层包覆的石墨材料B;
(6)酸洗双层包覆的石墨材料B,得到C包覆的石墨材料。
本发明首先以酸浸去除石墨材料中的金属单质,然后分别以金属盐溶液、碱溶液浸泡, 在石墨材料表面形成金属氢氧化物包覆层,再与有机碳源进行水热反应,得到双层包覆的石墨材料A,随后进行烧结,得到双层包覆的石墨材料B,再以强酸进行清洗,得到核壳结构的多孔C包覆的石墨材料。上述方法使用的处理物料较少,工艺简单,制得的C/石墨材料可以直接用于制备电池,为废旧电池中石墨材料的回收利用提供了新的思路。
优选地,所述步骤(1)中,使用盐酸、硫酸、硝酸中的至少一种进行酸浸,酸浸时间为1~6h,酸的浓度为0.2~2mol/L。当酸浸条件符合上述要求时,可以将电化学反应过程中进入石墨材料内的金属单质去除干净。
优选地,所述步骤(2)中,金属盐为硫酸铁、硫酸锌、氯化锌中的至少一种,所述金属盐溶液中金属盐的浓度为0.5~2mol/L;所述步骤(3)中,碱溶液为氢氧化钠、氢氧化钾、氢氧化锂溶液中的至少一种,所述碱溶液中碱的浓度为0.1~1mol/L。
硫酸铁、氯化铁、硫酸锌、氯化锌可与碱反应生成金属氢氧化物沉淀附着在石墨材料表面。对金属盐的浓度进行上述选择的原因在于,若金属盐的浓度过高,会使制备的包覆层的厚度过大,最后形成的多孔C包覆的石墨材料中的孔隙结构也会增大,对以所述C包覆的石墨材料制备的电池的性能会产生不利影响;若金属盐的浓度过低,后续包覆效果不理想,在石墨材料表面的包覆不均匀,也会影响C包覆的石墨材料的综合性能。碱溶液中碱的浓度也会产生同样的作用。
优选地,所述步骤(4)中,有机碳源为葡萄糖、蔗糖、聚多巴胺中的至少一种;所述有机碳源溶液中有机碳源的浓度为0.2~1mol/L。
对有机碳源的浓度作上述限定是为了控制C层的厚度,浓度过高,碳层的厚度大,后续酸蚀过程中难以去除中间的金属氧化物层,对C包覆的石墨材料的电学性能会产生较大的影响,浓度过低,碳层包覆不均匀,无法完成全面包覆,并且后续酸蚀掉金属氧化物后,其稳定性较差。
优选地,所述步骤(4)中,水热反应的温度为150~200℃,时间为2~12h。在上述条件下,有机碳源可与金属氢氧化物/石墨材料充分反应,形成双层包覆的石墨材料A。
优选地,所述步骤(5)中,烧结的温度为400~1000℃,时间为1~6h,所述保护气氛为氮气、稀有气体中的至少一种。进一步优选地,所述步骤(5)中,烧结的温度为700~900℃。
当温度低于700℃时形成的为无定型碳包覆层,由所述C包覆的石墨材料制备的电池充 放电性能较差,使用寿命相对较短;当温度高于900℃时,C包覆的石墨材料的力学性能较差,同样也会影响电池的综合性能。
优选地,所述步骤(6)中,酸为盐酸、硫酸、硝酸中的至少一种;所述酸的浓度为0.5~2mol/L。采用上述酸进行酸蚀可以充分去除双层包覆的石墨材料B中的金属氧化物,形成C包覆的石墨材料。
相比于现有技术,本发明的有益效果为:
本发明借助石墨材料的吸附性,在石墨材料的表面形成金属氢氧化物沉淀,然后再进行碳包覆,烧结,随后利用酸去除金属氧化物,增加石墨与碳包覆层间的孔隙结构,给石墨更加充分的膨胀空间,在石墨的充放电过程中起到缓冲作用,延长石墨材料的使用寿命。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法包括如下步骤:
(1)将废旧电池中的石墨材料浸泡在HCl浓度为1mol/L的盐酸中,去除金属杂质,将除杂后的石墨材料洗涤至呈中性、干燥;
(2)将干燥后的石墨材料浸入氯化铁浓度为0.5mol/L的氯化铁水溶液中,浸泡5h后干燥;
(3)将干燥后的石墨材料浸入NH 3·H 2O浓度为0.5mol/L的氨水中,浸泡10min后取出干燥,形成表面包覆Fe(OH) 3的石墨材料;
(4)将表面包覆Fe(OH) 3的石墨材料加入葡萄糖浓度为1mol/L的葡萄糖水溶液中,在180℃下水热反应3h,取出干燥,得到双层包覆的石墨材料A;
(5)将双层包覆的石墨材料A在氩气中以700℃煅烧2h,得到双层包覆的石墨材料B;
(6)以HCl浓度为1mol/L的盐酸对双层包覆的石墨材料B进行清洗,除去Fe 2O 3,得到多孔C包覆的石墨材料。
实施例2
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法包括如下步骤:
(1)将废旧电池中石墨材料浸泡在HCl浓度为1mol/L的盐酸中,去除金属杂质,将除杂后的石墨材料洗涤至呈中性、干燥;
(2)将干燥后的石墨材料浸入氯化铁浓度为2mol/L的氯化铁水溶液中,浸泡1h后干燥;
(3)将干燥后的石墨材料浸入氢氧化钠浓度为2mol/L的氢氧化钠水溶液中,浸泡10min后取出干燥,形成表面包覆Fe(OH) 3的石墨材料;
(4)将表面包覆Fe(OH) 3的石墨材料加入聚多巴胺浓度为1mol/L的聚多巴胺水溶液中,在180℃下水热反应3h,取出干燥,得到双层包覆的石墨材料A;
(5)将双层包覆的石墨材料A在氩气中以900℃煅烧2h,得到双层包覆的石墨材料B;
(6)以HCl浓度为1mol/L的盐酸对双层包覆的石墨材料B进行清洗,除去Fe 2O 3,得到多孔C包覆的石墨材料。
实施例3
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法包括如下步骤:
(1)将废旧电池中的石墨材料浸泡在HCl浓度为1mol/L的盐酸中,去除金属杂质,将除杂后的石墨材料洗涤至呈中性、干燥;
(2)将干燥后的石墨材料浸入硫酸锌浓度为1mol/L的硫酸锌水溶液中,浸泡5h后干燥;
(3)将干燥后的石墨材料浸入NH 3·H 2O浓度为1mol/L的氨水中,浸泡10min后取出干燥,形成表面包覆Zn(OH) 2的石墨材料;
(4)将表面包覆Zn(OH) 2的石墨材料加入蔗糖浓度为1mol/L的蔗糖水溶液中,在180℃下水热反应3h,取出干燥,得到双层包覆的石墨材料A;
(5)将双层包覆的石墨材料A在氩气中以800℃煅烧2h,得到双层包覆的石墨材料B;
(6)以HCl浓度为1mol/L的盐酸对双层包覆的石墨材料B进行清洗,除去ZnO,得到多孔C包覆的石墨材料。
实施例4
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法与实施例1的区别仅在于,所述步骤(5)中,烧结温度为600℃。
实施例5
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法与实施例1的区别仅在于,所述步骤(5)中,烧结温度为1000℃。
实施例6
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法与实施例1的区别仅在于,所述步骤(2)中,氯化铁水溶液中氯化铁的浓度为0.3mol/L,所述步骤(3)中,将石墨材料浸入NH 3·H 2O浓度为0.3mol/L的氨水中。
实施例7
本发明所述废旧电池中石墨材料的回收利用方法的一种实施例,本实施例所述方法与实施例2的区别仅在于,所述步骤(2)中,氯化铁水溶液中氯化铁的浓度为3mol/L,所述步骤(3)中,将石墨材料浸入氢氧化钠浓度为3mol/L的氨水中。
对比例1
一种废旧电池中石墨材料的回收利用方法,所述方法包括如下步骤:
(1)将废旧电池中的石墨材料浸泡在HCl浓度为1mol/L的盐酸中,去除金属杂质,将除杂后的石墨材料洗涤至呈中性、干燥;
(2)将干燥后的石墨材料加入葡萄糖浓度为1mol/L的葡萄糖水溶液中,在180℃下水热反应3h,取出干燥;
(3)将步骤(2)的产物在氩气中以700℃煅烧2h,以HCl浓度为1mol/L的盐酸对其进行清洗,干燥,得到回收产物。
对比例2
一种废旧电池中石墨材料的回收利用方法,所述方法包括如下步骤:
(1)将废旧电池中的石墨材料浸泡在HCl浓度为1mol/L的盐酸中,去除金属杂质,将除杂后的石墨材料洗涤至呈中性、干燥;
(2)将干燥后的石墨材料浸入NH 3·H 2O浓度为1mol/L的氨水中,浸泡10min后取出干燥;
(3)将步骤(2)的处理产物加入葡萄糖浓度为1mol/L的葡萄糖水溶液中,在180℃下水热反应3h,取出干燥;
(4)将步骤(3)干燥后的产物在氩气中以700℃煅烧2h,再以HCl浓度为1mol/L的盐酸对其进行清洗,干燥,得到回收产物。
性能测试
分别将实施例1~7及对比例1~2得到的回收产物多孔C包覆的石墨材料与乙炔黑、粘结剂PVDF按质量比为8:1:1混合做成纽扣半电池正极,金属锂片作为负极,制成扣式半电池,进行电化学性能测试,测试结果如表1所示。
表1
Figure PCTCN2022122271-appb-000001
由表1可知,实施例1~7的回收产物具有良好的电学性能,首次放电比容量均高于335mAh/g,首次充放电效率均高于92%,并且1C循环寿命均在2200次以上,具有良好的使用性能。
对比实施例1与实施例4、5的测试结果可以发现,烧结温度对回收产物的性能具有极大的影响,当烧结温度为700~900℃时,由所述回收产物制备的电池的性能明显更优。
对比实施例1与实施例6的测试结果可以发现,当氯化铁的浓度过低时,形成的多孔C包覆的石墨材料中,孔隙较小,电池的1C循环寿命大幅缩减。
对比实施例2与实施例7的测试结果可以发现,当氯化铁的浓度过高时,形成的C/石墨材料的孔隙过大,电池的电学性能相对较差。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,但并不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种废旧电池中石墨材料的回收利用方法,其特征在于,包括如下步骤:
    (1)对废旧电池中的石墨材料进行酸浸,然后洗涤、干燥;
    (2)将干燥后的石墨材料浸入金属盐溶液中,然后取出干燥;
    (3)将步骤(2)中干燥后的石墨材料浸入碱溶液中,取出干燥,得到金属氢氧化物包覆的石墨材料;
    (4)将金属氢氧化物包覆的石墨材料加入有机碳源溶液中进行水热反应,形成双层包覆的石墨材料A;
    (5)将步骤(4)中得到的双层包覆的石墨材料A在保护气氛中进行烧结,形成双层包覆的石墨材料B;
    (6)酸洗双层包覆的石墨材料B,得到C包覆的石墨材料。
  2. 如权利要求1所述的方法,其特征在于,所述步骤(1)中,使用盐酸、硫酸、硝酸中的至少一种进行酸浸,酸浸时间为1~6h,酸的浓度为0.2~2mol/L。
  3. 如权利要求1所述的方法,其特征在于,所述步骤(2)中,金属盐为硫酸铁、氯化铁、硫酸锌、氯化锌中的至少一种,所述金属盐溶液中金属盐的浓度为0.5~2mol/L。
  4. 如权利要求1所述的方法,其特征在于,所述步骤(3)中,碱溶液为氢氧化钠、氢氧化钾、氢氧化锂溶液中的至少一种,所述碱溶液中碱的浓度为0.1~1mol/L。
  5. 如权利要求1所述的方法,其特征在于,所述步骤(4)中,有机碳源为葡萄糖、蔗糖、聚多巴胺中的至少一种;所述有机碳源溶液中有机碳源的浓度为0.2~1mol/L。
  6. 如权利要求1所述的方法,其特征在于,所述步骤(4)中,水热反应的温度为150~200℃,时间为2~12h。
  7. 如权利要求1所述的方法,其特征在于,所述步骤(5)中,烧结的温度为400~1000℃,时间为1~6h。
  8. 如权利要求7所述的方法,其特征在于,所述步骤(5)中,烧结的温度为700~900℃。
  9. 如权利要求1所述的方法,其特征在于,所述步骤(5)中,保护气氛为氮气、稀有气体中的至少一种。
  10. 如权利要求1所述的方法,其特征在于,所述步骤(6)中,酸为盐酸、硫酸、硝酸中的至少一种;所述酸的浓度为0.5~2mol/L。
PCT/CN2022/122271 2022-06-27 2022-09-28 一种废旧电池中石墨材料的回收利用方法 WO2024000886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210738986.7 2022-06-27
CN202210738986.7A CN114890414B (zh) 2022-06-27 2022-06-27 一种废旧电池中石墨材料的回收利用方法

Publications (1)

Publication Number Publication Date
WO2024000886A1 true WO2024000886A1 (zh) 2024-01-04

Family

ID=82729223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122271 WO2024000886A1 (zh) 2022-06-27 2022-09-28 一种废旧电池中石墨材料的回收利用方法

Country Status (2)

Country Link
CN (1) CN114890414B (zh)
WO (1) WO2024000886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890414B (zh) * 2022-06-27 2024-03-08 广东邦普循环科技有限公司 一种废旧电池中石墨材料的回收利用方法
CN116375022A (zh) * 2023-04-06 2023-07-04 骆驼集团资源循环襄阳有限公司 一种从废旧锂电池中回收石墨粉的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697215A (zh) * 2005-05-27 2005-11-16 深圳市贝特瑞电子材料有限公司 锂离子电池复合碳负极材料及其制备方法
CN105810919A (zh) * 2016-06-03 2016-07-27 田东 一种锂离子电池改性石墨负极材料的制备方法
KR20170032656A (ko) * 2015-09-15 2017-03-23 일진다이아몬드(주) 공정흑연을 이용한 그래핀 제조방법
CN110627034A (zh) * 2019-07-31 2019-12-31 宁波中车新能源科技有限公司 一种双功能储能多孔炭包覆石墨复合材料的制备方法
CN111439748A (zh) * 2020-03-12 2020-07-24 深圳市德方纳米科技股份有限公司 再生石墨材料及其制备方法
CN113594420A (zh) * 2021-09-30 2021-11-02 中南大学 一种锂离子电池石墨负极的再生方法及其再生石墨负极
CN114890414A (zh) * 2022-06-27 2022-08-12 广东邦普循环科技有限公司 一种废旧电池中石墨材料的回收利用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134063B (zh) * 2017-12-21 2019-11-22 哈尔滨工业大学深圳研究生院 一种硅碳复合材料的制备方法及其应用
CN108511719B (zh) * 2018-03-29 2021-01-19 贝特瑞新材料集团股份有限公司 一种双壳层结构复合材料、其制备方法及包含该复合材料的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697215A (zh) * 2005-05-27 2005-11-16 深圳市贝特瑞电子材料有限公司 锂离子电池复合碳负极材料及其制备方法
KR20170032656A (ko) * 2015-09-15 2017-03-23 일진다이아몬드(주) 공정흑연을 이용한 그래핀 제조방법
CN105810919A (zh) * 2016-06-03 2016-07-27 田东 一种锂离子电池改性石墨负极材料的制备方法
CN110627034A (zh) * 2019-07-31 2019-12-31 宁波中车新能源科技有限公司 一种双功能储能多孔炭包覆石墨复合材料的制备方法
CN111439748A (zh) * 2020-03-12 2020-07-24 深圳市德方纳米科技股份有限公司 再生石墨材料及其制备方法
CN113594420A (zh) * 2021-09-30 2021-11-02 中南大学 一种锂离子电池石墨负极的再生方法及其再生石墨负极
CN114890414A (zh) * 2022-06-27 2022-08-12 广东邦普循环科技有限公司 一种废旧电池中石墨材料的回收利用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 21 July 2019, DALIAN UNIVERSITY OF TECHNOLOGY, CN, article ZHANG, MENGDI: "Design and Synthesis of Dopamine-derived Carbon-Based Nanocomposites for Lithium-sulfur Battery Cathodes", pages: 1 - 119, XP009551641, DOI: 10.26991/d.cnki.gdllu.2019.003709 *

Also Published As

Publication number Publication date
CN114890414A (zh) 2022-08-12
CN114890414B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2024000886A1 (zh) 一种废旧电池中石墨材料的回收利用方法
WO2023116018A1 (zh) 退役锂离子电池电极材料回收方法及其应用
CN108808150B (zh) 一种综合回收再利用废旧三元电极材料的方法
WO2012163300A1 (zh) 电池
CN112271349A (zh) 一种锂离子正极再利用的方法和再利用锂离子正极材料
CN110098441B (zh) 废旧电池中钴酸锂正极材料的修复再生方法
WO2020259436A1 (zh) 一种提高三元正极材料稳定性和加工性的方法
CN108767233B (zh) 一种大容量长寿命双袋式氢镍电池
CN112186287A (zh) 一种废旧锂离子电池正极材料球磨喷雾再生方法
CN111584866A (zh) 一种高倍率人造石墨负极材料的制备方法
CN111584840A (zh) 碳布负载的碳包覆二硫化镍纳米片复合材料及其制备方法和应用
CN115064805A (zh) 一种废旧三元锂离子电池正极材料的回收再生方法
CN113421990A (zh) 一种锂硫电池铁基生物质碳中间层、制备方法及锂硫电池
CN114122552A (zh) 一种回收退役锂离子电池制备LiAlO2包覆单晶正极材料的方法
CN101783416A (zh) 一种锂离子电池的制造方法
CN111146007A (zh) 锌离子混合超级电容器及其制备方法
CN110563046B (zh) 一种回收废旧锂离子电池正极材料的方法
CN116864850A (zh) 从废旧三元锂离子电池浸出液中再生三元正极材料的方法
CN110277602B (zh) 废旧电池中磷酸铁锂正极材料的修复再生方法
CN108448069B (zh) 一种高镍锂离子电池正极材料改性方法
CN115215335A (zh) 改性石墨及其制备方法和应用
CN115172639A (zh) 一种自支撑式钾离子预嵌入锰基正极及其制备方法与应用
CN103427119A (zh) 电池
CN113086961A (zh) 一种基于电化学的废旧磷酸铁锂修复回收方法
CN113636605A (zh) 完全失效三元正极材料低成本空气条件下的物理修复方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948974

Country of ref document: EP

Kind code of ref document: A1