WO2023112734A1 - 選鉱方法 - Google Patents

選鉱方法 Download PDF

Info

Publication number
WO2023112734A1
WO2023112734A1 PCT/JP2022/044657 JP2022044657W WO2023112734A1 WO 2023112734 A1 WO2023112734 A1 WO 2023112734A1 JP 2022044657 W JP2022044657 W JP 2022044657W WO 2023112734 A1 WO2023112734 A1 WO 2023112734A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
mineral
ore
copper
sulfide
Prior art date
Application number
PCT/JP2022/044657
Other languages
English (en)
French (fr)
Inventor
剛 平島
一 三木
グディ パンディ ウイスヌ スーヤンタラ
圭子 笹木
善之 田中
絵理 滝田
Original Assignee
国立大学法人九州大学
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 住友金属鉱山株式会社 filed Critical 国立大学法人九州大学
Publication of WO2023112734A1 publication Critical patent/WO2023112734A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/11Removing sulfur, phosphorus or arsenic other than by roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a beneficiation method. More particularly, the present invention relates to a beneficiation process for obtaining a low arsenic grade concentrate from a high arsenic grade feedstock.
  • the copper concentrate obtained in the ore dressing process is melted using a furnace such as a flash smelting furnace.
  • a furnace such as a flash smelting furnace.
  • the blister copper is cast into an anode that is used in the subsequent electrolysis step.
  • the arsenic contained in the copper concentrate is distributed among slag, dust and blister copper.
  • Electrolysis step In the electrolysis step, the anode is inserted into an electrolytic cell filled with an acidic solution of sulfuric acid (electrolyte), and an electric current is passed between it and the cathode to perform electrorefining. Electrolytic refining dissolves the copper in the anode and deposits it on the cathode as electrolytic copper with a purity of 99.99%.
  • electrolytic refining dissolves the copper in the anode and deposits it on the cathode as electrolytic copper with a purity of 99.99%.
  • the anode slime produced by electrolytic refining contains precious metals, arsenic, etc. eluted from the anode.
  • the anode slime is treated in a precious metal recovery process to recover precious metals.
  • Arsenic is contained in the residue discharged from the precious metal recovery process.
  • Arsenic is fixed in a stable form in the slag discharged from the pyrometallurgical process.
  • the slag is crushed and used as landfill material.
  • arsenic contained in the dust discharged from the pyrometallurgical process and the residue discharged from the precious metal recovery process is in an unstable form. Dust and residue are not preferable to be discharged out of the system as they are, so they are repeatedly charged into the furnace. Thus, most of the arsenic contained in the copper concentrate is finally distributed in the slag and immobilized in a stable form.
  • Patent Document 1 discloses that arsenic minerals are separated from high-arsenic-grade copper-bearing materials by flotation using a chelating agent as an inhibitor to obtain a low-arsenic-grade copper concentrate. Further, in Patent Document 2, an alkali metal salt of xanthate is added to a mineral slurry to perform ore flotation, and arsenic-free sulfide minerals are recovered as precipitates, and arsenic-containing sulfide minerals are recovered as floating ore. disclosed.
  • an object of the present invention is to provide an ore beneficiation method capable of obtaining a concentrate with a low arsenic grade from raw materials with a high arsenic grade.
  • the ore beneficiation method of the first aspect is a repulp to obtain a mineral slurry by adding water to a raw material containing an arsenic-free sulfide mineral, which is a sulfide mineral containing no arsenic, and an arsenic-containing sulfide mineral, which is a copper sulfide mineral containing arsenic.
  • a pH adjusting step of adjusting the pH of the liquid phase of the mineral slurry to 10 or higher; a conditioning step of adding an oxidizing agent and an alkali metal xanthate to the mineral slurry; and ore flotation using the mineral slurry.
  • the raw material is characterized by containing 4.4 to 5.8 parts by weight of arsenic with respect to 100 parts by weight of copper.
  • the ore beneficiation method of the second aspect is characterized in that, in the first aspect, the oxidizing agent is hydrogen peroxide.
  • a third aspect of the mineral beneficiation method is characterized in that, in the first or second aspect, the alkali metal xanthate is potassium amyl xanthate.
  • a fourth aspect of the ore beneficiation method is characterized by comprising a pretreatment step of washing and/or grinding the raw material in any one of the first to third aspects.
  • 1 is a graph showing the relationship between pH and Newtonian efficiency
  • An ore beneficiation method is a method of obtaining an arsenic-grade concentrate by removing arsenic from raw materials by flotation using raw materials containing arsenic.
  • Raw materials include multiple types of minerals. Minerals contained in the raw materials include chalcopyrite (CuFeS 2 ), bornite (Cu 5 FeS 4 ), chalcocite (Cu 2 S), pyrite (FeS 2 ), and arsenite (enargite). Cu 3 AsS 4 ), arsenic tetrahedron (tennantite: (Cu, Fe, Zn) 12 (Sb, As) 4 S 13 ), and the like.
  • arsenic-free sulfide minerals are referred to as "arsenic-free sulfide minerals”.
  • copper sulfide minerals containing arsenic are referred to as "arsenic-containing sulfide minerals”.
  • the raw material includes at least an arsenic-free sulfide mineral and an arsenic-containing sulfide mineral.
  • Arsenic-free sulfide minerals include arsenic-free copper sulfide minerals and arsenic-free iron sulfide minerals.
  • the raw material may contain one or both of an arsenic-free copper sulfide mineral and an arsenic-free iron sulfide mineral.
  • Arsenic-free copper sulfide minerals include chalcopyrite, bornite and chalcocite.
  • Arsenic-free iron sulfide minerals include chalcopyrite, bornite and pyrite.
  • Chalcopyrite and bornite are both copper sulfide minerals and iron sulfide minerals.
  • the raw material may contain one or more of chalcopyrite, bornite, chalcocite and pyrite.
  • Arsenic-containing sulfide minerals include arsenic copper ore and arsenic tetrahedral copper ore.
  • the raw material may contain one or both of arsenopyrite and arsenic tetrahedral copperite.
  • the raw material contains 4.4 to 5.8 parts by weight of arsenic per 100 parts by weight of copper.
  • the weight ratio of arsenic to copper contained in the raw material is expressed as As/Cu. Therefore, the As/Cu ratio of the raw material is 4.4-5.8%.
  • the grade of the raw material is, for example, 28.0 to 30.2% by weight of copper and 1.3 to 1.7% by weight of arsenic.
  • Pretreatment step The raw material is pre-pulverized and is in a state in which mineral particles that have been singly separated are mixed.
  • the particle size of the mineral particles is adjusted according to the size of the mineral contained in the ore so that a single mineral can be obtained. For example, in the case of chalcopyrite, it is common to adjust the undersize to about 100 ⁇ m. In actual operations using ores containing various minerals as raw materials, it is common to adjust the particle size of the ores to the optimum conditions in consideration of the results of flotation after pulverizing the ores to about 100 ⁇ m under sieving.
  • the surface condition of the mineral may change.
  • oxides, sulfate compounds, hydroxides, sulfur, and the like are generated on the surface of mineral particles, and these may cover the surface of mineral particles.
  • Methods for removing deposits include washing with water, grinding, and the like.
  • Water washing is performed by repeating the operation of adding water to the raw material, stirring it, and separating the solid from the liquid.
  • the degree of water washing can be indexed by pH. For example, assume that the pH of the liquid phase of the mineral slurry at the initial stage of water washing is about 3. In this case, the water washing operation may be repeated until the pH of the liquid phase of the mineral slurry rises to about 4-4.5.
  • dehydration is preferably performed to remove water adhering to the mineral particles.
  • Friction grinding is an operation of polishing the surface of mineral particles with a strength that does not break the mineral particles.
  • a specific method of friction pulverization of mineral particles adjusted to have a sieving size of about 100 ⁇ m there is a method of rod mill pulverization for a short time of about 10 minutes, for example.
  • water washing and grinding may be performed.
  • both washing and grinding are performed, the order is not particularly limited. Also, if there are no deposits on the surface of the mineral particles, the washing and grinding may not be performed.
  • a mineral slurry is obtained by adding water to a raw material composed of mineral particles.
  • the presence of calcium or magnesium ions in the liquid phase of mineral slurries is known to adversely affect ore flotation. Therefore, it is preferable that the water added to the mineral particles is pure water containing no impurity ions.
  • Industrially, ion-exchanged water or industrial water may be used.
  • pH adjustment step Next, the pH of the liquid phase of the mineral slurry is adjusted to 10 or more. pH adjustment is accomplished by adding a pH adjuster to the mineral slurry.
  • the pH adjuster is not particularly limited, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ), calcium carbonate (CaCO 3 ), etc. can be used as alkalis. Sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), etc. can be used as the acid.
  • concentration is not particularly limited as long as it does not make it difficult to adjust the mineral slurry to the desired pH.
  • an oxidizing agent is added to the mineral slurry, and the mineral slurry is stirred for a predetermined time.
  • the addition of an oxidizing agent oxidizes the surface of the mineral particles.
  • Hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO), etc. can be used as the oxidizing agent.
  • the amount of hydrogen peroxide added is preferably 34.5 to 52.3 kg/t based on the weight of raw materials contained in the mineral slurry.
  • an alkali metal xanthate is added to the mineral slurry, and the mineral slurry is stirred for a predetermined time.
  • the number of carbon atoms in the alkyl group of the alkali metal xanthate is not particularly limited.
  • the alkali metal may be sodium or potassium.
  • An example of an alkali metal xanthate is potassium amyl xanthate.
  • Potassium amyl xanthate is also called PAX (Potassium amyl xanthate) and has a chemical formula of C6H11KOS2 . Potassium amyl xanthate is hereinafter referred to as "PAX”.
  • PAX is known as a flotation agent and is known to have no unintended adverse effects on ore flotation.
  • the alkali metal xanthate is represented by the chemical formula R.O.CS.SM.
  • R represents an alkyl group and M represents an alkali metal.
  • M represents an alkali metal.
  • the alkyl group R in the formula is hydrophobic.
  • CS ⁇ SM in the formula releases an alkali metal M in a liquid, it becomes CS ⁇ S ⁇ and exhibits hydrophilicity.
  • Cu in the mineral releases an electron, it combines with CS ⁇ S ⁇ . This causes the alkyl group R to appear on the surface of the mineral particles. This makes the mineral particles hydrophobic.
  • the amount of PAX added is preferably 19.5 to 61.9 g/t based on the weight of raw materials contained in the mineral slurry.
  • a flotation agent composed of a collector, an inhibitor, a foaming agent, and the like may be added to the mineral slurry.
  • the pH adjuster is added again to adjust the pH of the liquid phase of the mineral slurry to 10 or more.
  • ore flotation is performed using the mineral slurry.
  • the device and system used for flotation are not particularly limited, and a general multi-stage flotation device may be used.
  • arsenic-free sulfide minerals can be separated as floating ores, and arsenic-containing sulfide minerals can be separated as precipitates. More precisely, the raw material can be separated into floating ore, which has a higher grade of arsenic-free sulfide mineral than the raw material, and precipitated ore, which has a higher grade of arsenic-containing sulfide mineral than the raw material.
  • the arsenic grade of floating ore can be further reduced by repeating the above flotation. Therefore, even if the raw material has a high arsenic grade, a concentrate with a sufficiently low arsenic grade can be obtained.
  • arsenic-containing sulfide minerals By removing arsenic-containing sulfide minerals from raw materials with high arsenic grade, it is possible to obtain concentrates with low arsenic grade. For example, in copper smelting, even if copper ore with a high arsenic grade is used, the arsenic grade of the copper concentrate can be reduced in advance. Therefore, the process of fixing arsenic to the slag can be performed without any problem.
  • arsenic-free sulfide mineral As described above, in flotation using a raw material containing an arsenic-free sulfide mineral and an arsenic-containing sulfide mineral, when an oxidizing agent and an alkali metal xanthate are added to the mineral slurry, the arsenic-free sulfide mineral is converted into floating ore. , arsenic-bearing sulfide minerals can be separated as sediments.
  • PAX functions as a collector for collecting sulfide as floating ore. Therefore, the addition of PAX to mineral slurries is expected to recover both arsenic-free and arsenic-containing sulfide minerals as floating ore.
  • chalcopyrite which is an arsenic-free sulfide mineral
  • arsenic copper ore which are arsenic-containing sulfide minerals
  • arsenic tetrahedral copper ore respectively
  • PAX when PAX is added to the mineral slurry, most of the arsenic-containing sulfide minerals are recovered as precipitates, while most of the arsenic-free sulfide minerals are recovered as floating ores. Therefore, it is considered that PAX suppresses its function as a collector for arsenic-containing sulfide minerals, while maintaining its function as a collector for arsenic-free sulfide minerals.
  • Patent Document 2 discloses that an oxidizing agent and PAX are added to a mineral slurry to perform ore flotation to recover arsenic-free sulfide minerals as precipitates and to recover arsenic-containing sulfide minerals as floating ores. It is Under the conditions of the present embodiment, arsenic is concentrated in sediment ore, whereas under the conditions of Patent Document 2, arsenic is concentrated in floating ore. This difference is considered to be mainly due to the difference in the weight ratio of arsenic to copper (As/Cu) contained in the raw materials.
  • As/Cu 4.4 to 5.8%.
  • As/Cu 6.1 to 35.6%.
  • As/Cu is believed to affect the degree of oxidation caused by the potential difference (galvanic potential difference) between arsenic-free and arsenic-containing sulfide minerals. Due to the difference in As/Cu, in this embodiment, it is presumed that the arsenic-containing sulfide mineral becomes more hydrophilic, or the arsenic-free sulfide mineral becomes more hydrophobic. Therefore, arsenic-containing sulfide minerals are recovered as floating ore.
  • the copper concentrate is particulate, and its particle size is 100 ⁇ m under the sieve.
  • XRF X-ray fluorescence spectrometer, Rigaku, ZSX Primus II, hereinafter the same
  • copper was 28.0 to 30.2% by weight
  • arsenic was 1.3 to 1.7% by weight
  • the weight ratio of arsenic to copper was 4.4-5.8%.
  • the weight was measured and the elemental composition and mineral composition were analyzed.
  • XRF was used for elemental composition analysis.
  • the MLA analysis method was used for analysis of mineral composition.
  • Newtonian efficiency which indicates the efficiency of separating arsenic-free copper sulfide minerals and arsenic-containing copper sulfide minerals by flotation, was determined. Newtonian efficiency is obtained by the following procedure.
  • the floating rate R and the settling rate L are determined by the formulas (1) and (2).
  • R Wr/(Wr+Wl) (1)
  • L Wl/(Wr+Wl) (2) where Wr is the weight of floating ore and Wl is the weight of sediment.
  • the floating ore ratio R means the weight percentage of floating ore among the minerals recovered as floating ore and settling.
  • the sedimentation rate L means the weight percentage of sediments in the minerals recovered as floating ore and sediments.
  • the float rate R N-As of the arsenic-free copper sulfide mineral is determined by the formula (3).
  • R N-As R ⁇ Gr(Cu N-As )/(R ⁇ Gr(Cu N-As )+L ⁇ Gl(Cu N-As )) (3)
  • Gr(Cu N-As ) is the grade of copper contained in the arsenic-free copper sulfide ore of floating ore
  • Gl(Cu N-As ) is the grade of copper contained in the arsenic-free copper sulfide ore of precipitated ore. is.
  • Gr(Cu N-As ) and Gl(Cu N-As ) are determined from copper grades and mineral compositions of floating ores and precipitates.
  • Floating fraction of arsenic-free copper sulfide mineral RN-As means the weight percentage of floating ore in the arsenic-containing copper sulfide mineral recovered as floating ore and precipitate.
  • the buoyancy ratio R As of the arsenic-containing copper sulfide mineral is determined by the formula (4).
  • R As R ⁇ Gr( CuAs )/(R ⁇ Gr( CuAs )+L ⁇ Gl( CuAs )) (4)
  • Gr (Cu As ) is the grade of copper contained in the arsenic-containing copper sulfide mineral of floating ore
  • Gl (Cu As ) is the grade of copper contained in the arsenic-containing copper sulfide ore of precipitated ore.
  • Gr(Cu As ) and Gl(Cu As ) are determined from the copper grade and mineral composition of floating ore and precipitated ore.
  • the floating ore ratio R As of the arsenic-containing copper sulfide mineral means the weight percentage of floating ore in the arsenic-containing copper sulfide mineral recovered as floating ore and precipitates.
  • the Newtonian efficiency ⁇ N is obtained by the formula (5) using the float rate R N-As of the arsenic-free copper sulfide mineral and the float rate R As of the arsenic-containing copper sulfide mineral.
  • a positive value for the Newtonian efficiency ⁇ N means that the arsenic-bearing copper sulfide mineral was concentrated in the precipitate.
  • ⁇ N R N-As -R As (5)
  • Table 1 shows the grade of copper concentrate, amount of additives, pH and Newtonian efficiency used in each test. Also, the relationship between pH and Newtonian efficiency is shown in FIG. In addition, pH is a value after additive addition.
  • the Newtonian efficiency is negative in the low pH range (9 or less). This means that the arsenic-containing copper sulfide mineral was concentrated in the floating ore, while the Newtonian efficiency was positive in the pH range of 10 or higher. This means that the arsenic-bearing copper sulfide mineral was concentrated in the precipitate. Moreover, the absolute value of the Newtonian efficiency is large in the region where the pH is 10 or higher. This means that arsenic-containing copper sulfide minerals and arsenic-free copper sulfide minerals can be efficiently separated. From this, it was confirmed that the arsenic-containing copper sulfide mineral can be efficiently removed by setting the pH to 10 or more. Although the upper limit of the pH is unknown, it can be said that a similar tendency can be seen at a pH of 12 or less, or at least a pH of 11 or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

砒素品位の高い原料から砒素品位の低い精鉱を得ることができる選鉱方法を提供する。 選鉱方法は、砒素を含まない硫化鉱物である砒素非含有硫化鉱物と、砒素を含む硫化銅鉱物である砒素含有硫化鉱物とを含む原料に水を添加して鉱物スラリーを得るレパルプ工程と、鉱物スラリーの液相のpHを10以上に調整するpH調整工程と、鉱物スラリーに酸化剤およびキサントゲン酸アルカリ金属塩を添加する条件付け工程と、鉱物スラリーを用いて浮遊選鉱を行ない、原料を原料よりも砒素非含有硫化鉱物の品位が高い浮鉱と原料よりも砒素含有硫化鉱物の品位が高い沈鉱とに分離する浮遊選鉱工程とを有する。原料は銅100重量部に対して砒素を4.4~5.8重量部含む。

Description

選鉱方法
 本発明は、選鉱方法に関する。さらに詳しくは、本発明は、砒素品位の高い原料から砒素品位の低い精鉱を得るための選鉱方法に関する。
 銅製錬の分野では、銅を含有する銅鉱石、銅精鉱などの原料から銅を回収する様々な方法が提案されている。例えば、銅鉱石から銅を回収するには以下の処理が行なわれる。
(1)選鉱工程
 選鉱工程では、鉱山で採掘された銅鉱石を粉砕した後、水を加えてスラリーとし、浮遊選鉱を行なう。浮遊選鉱では、スラリーに捕収剤、抑制剤、起泡剤などで構成される浮選剤を添加し、空気を吹き込んで銅鉱物を浮遊させつつ、脈石を沈降させて分離を行なう。これにより銅品位30%前後の銅精鉱が得られる。
(2)乾式製錬工程
 乾式製錬工程では、選鉱工程で得られた銅精鉱を自溶炉などの炉を用いて熔解し、転炉および精製炉を経て銅品位99%程度の粗銅にまで精製する。粗銅は次工程の電解工程で用いられるアノードに鋳造される。ここで、銅精鉱に含まれる砒素は、スラグ、ダストおよび粗銅に分配される。
(3)電解工程
 電解工程では、硫酸酸性溶液(電解液)で満たされた電解槽に前記アノードを挿入し、カソードとの間に通電して電解精製を行なう。電解精製によって、アノードの銅は溶解し、カソード上に純度99.99%の電気銅として析出する。
 電解精製により生じるアノードスライムには、アノードから溶出した貴金属、砒素などが含まれている。アノードスライムは貴金属回収工程で処理されて貴金属が回収される。貴金属回収工程から排出される残渣には砒素が含まれている。
 乾式製錬工程から排出されるスラグには、砒素が安定した形態で固定されている。スラグは水砕して埋立て材などに利用される。一方、乾式製錬工程から排出されるダストおよび貴金属回収工程から排出される残渣に含まれる砒素は不安定な形態である。ダストおよび残渣は、そのままの状態で系外に払い出すことは好ましくないため、炉に繰り返し装入される。こうして、銅精鉱に含まれる大部分の砒素は最終的にスラグに分配され、安定した形態で固定化される。
 ところで、近年では原料事情が変化している。砒素品位の低い銅鉱石を産出する銅鉱山は枯渇の一途を辿っており、得られる銅鉱石の砒素品位が年々増加している。これに伴い、銅精鉱の砒素品位も徐々に高くなっている。そのため、銅精鉱の処理量が以前と同じであっても、砒素の処理量が多くなっており、砒素をスラグに固定化する処理が追いつかない場合がある。そこで、砒素品位の高い銅鉱石から砒素品位の低い銅精鉱を得ることが求められている。
 特許文献1には、抑制剤としてキレート剤を用いた浮遊選鉱により、高砒素品位の含銅物から砒素鉱物を分離し、低砒素品位の銅精鉱が得られることが開示されている。また、特許文献2には、鉱物スラリーにキサントゲン酸アルカリ金属塩を添加して浮遊選鉱を行ない、砒素非含有硫化鉱物を沈鉱として回収するとともに、砒素含有硫化鉱物を浮鉱として回収することが開示されている。
特開2011-156521号公報 特開2020-104095号公報
 本発明は上記事情に鑑み、砒素品位の高い原料から砒素品位の低い精鉱を得ることができる選鉱方法を提供することを目的とする。
 第1態様の選鉱方法は、砒素を含まない硫化鉱物である砒素非含有硫化鉱物と、砒素を含む硫化銅鉱物である砒素含有硫化鉱物とを含む原料に水を添加して鉱物スラリーを得るレパルプ工程と、前記鉱物スラリーの液相のpHを10以上に調整するpH調整工程と、前記鉱物スラリーに酸化剤およびキサントゲン酸アルカリ金属塩を添加する条件付け工程と、前記鉱物スラリーを用いて浮遊選鉱を行ない、前記原料を前記原料よりも前記砒素非含有硫化鉱物の品位が高い浮鉱と前記原料よりも前記砒素含有硫化鉱物の品位が高い沈鉱とに分離する浮遊選鉱工程と、を備え、前記原料は銅100重量部に対して砒素を4.4~5.8重量部含むことを特徴とする。
 第2態様の選鉱方法は、第1態様において、前記酸化剤は過酸化水素であることを特徴とする。
 第3態様の選鉱方法は、第1または第2態様において、前記キサントゲン酸アルカリ金属塩はアミルキサントゲン酸カリウムであることを特徴とする。
 第4態様の選鉱方法は、第1~第3態様のいずれかにおいて、前記原料を水洗および/または磨鉱する前処理工程を備えることを特徴とする。
 本発明によれば、砒素品位の高い原料から砒素含有硫化鉱物を除去することで、砒素品位の低い精鉱を得ることができる。
pHとニュートン効率との関係を示すグラフである。
 つぎに、本発明の実施形態を図面に基づき説明する。
 本発明の一実施形態に係る選鉱方法は、砒素を含む原料を用いた浮遊選鉱により、原料から砒素を除去して、砒素品位の低い精鉱を得る方法である。
 原料として、鉱山から採掘された鉱石のほか、他の選鉱方法により鉱石から脈石を除去して得た精鉱などが用いられる。原料には複数種類の鉱物が含まれる。原料に含まれる鉱物として、黄銅鉱(chalcopyrite:CuFeS2)、斑銅鉱(bornite:Cu5FeS4)、輝銅鉱(chalcocite:Cu2S)、黄鉄鉱(pyrite:FeS2)、硫砒銅鉱(enargite:Cu3AsS4)、砒四面銅鉱(tennantite:(Cu,Fe,Zn)12(Sb,As)413)などが挙げられる。
 本明細書では、砒素を含まない硫化鉱物を「砒素非含有硫化鉱物」と称する。また、砒素を含む硫化銅鉱物を「砒素含有硫化鉱物」と称する。原料には少なくとも砒素非含有硫化鉱物と砒素含有硫化鉱物とが含まれる。
 砒素非含有硫化鉱物として、砒素を含まない硫化銅鉱物および砒素を含まない硫化鉄鉱物が挙げられる。原料には、砒素を含まない硫化銅鉱物および砒素を含まない硫化鉄鉱物の一方が含まれてもよいし両方が含まれてもよい。
 砒素を含まない硫化銅鉱物として黄銅鉱、斑銅鉱および輝銅鉱などが挙げられる。また、砒素を含まない硫化鉄鉱物として黄銅鉱、斑銅鉱および黄鉄鉱などが挙げられる。なお、黄銅鉱および斑銅鉱は硫化銅鉱物であるとともに硫化鉄鉱物でもある。原料には、黄銅鉱、斑銅鉱、輝銅鉱および黄鉄鉱のいずれか一種が含まれてもよいし二種以上が含まれてもよい。
 砒素含有硫化鉱物として硫砒銅鉱および砒四面銅鉱などが挙げられる。原料には、硫砒銅鉱および砒四面銅鉱の一方が含まれてもよいし両方が含まれてもよい。
 原料は銅100重量部に対して砒素を4.4~5.8重量部含む。なお、本明細書では、原料に含まれる銅に対する砒素の重量割合をAs/Cuと表記する。したがって、原料のAs/Cuは4.4~5.8%である。原料の品位は、例えば、銅が28.0~30.2重量%、砒素が1.3~1.7重量%である。
(1)前処理工程
 原料は予め粉砕され、単体分離された鉱物粒子が混合された状態となっている。鉱物粒子の粒度は、鉱石に含まれる鉱物の大きさに合わせて、単独鉱物が得られるように調整される。例えば、黄銅鉱の場合篩下100μm程度に調整することが一般的である。種々の鉱物を含む鉱石を原料とする実操業では、篩下100μm程度に粉砕した後で、浮選成績などを勘案して鉱石の粒度を最適な条件に合わせることが一般的である。
 粉砕後、鉱物粒子を長時間保管すると、鉱物の表面状態が変化する場合がある。例えば、鉱物粒子の表面に酸化物、硫酸化合物、水酸化物、硫黄などが生成し、これらが鉱物粒子の表面を覆うことがある。この場合、鉱物粒子を次工程に装入する前に、鉱物表面の付着物を除去することが好ましい。付着物の除去方法として、水洗、磨鉱などが挙げられる。
 水洗は、原料に水を添加して撹拌し、固液分離する操作を繰り返すことで行なわれる。水洗の程度はpHを指標とすることができる。例えば、水洗初期の鉱物スラリーの液相のpHが3程度であるとする。この場合、鉱物スラリーの液相のpHが4~4.5程度に上昇するまで、水洗操作を繰り返せば良い。水洗後は、脱水し、鉱物粒子に付着する水を除去することが好ましい。
 磨鉱の方法として、シェアアジテーション、摩擦粉砕(アトリッション)、ボールミル粉砕、ロッドミル粉砕などが挙げられる。これらの中でも、摩擦粉砕(アトリッション)が好ましい。摩擦粉砕とは、鉱物粒子が破断しない程度の強度で、鉱物粒子の表面を磨き上げる操作をいう。篩下100μm程度に調整した鉱物粒子に対する摩擦粉砕の具体的な方法として、例えば10分間程度の短時間でロッドミル粉砕をする方法がある。
 なお、水洗および磨鉱の一方を行なってもよいし両方を行なってもよい。水洗および磨鉱の両方を行なう場合、その順番は特に限定されない。また、鉱物粒子の表面に付着物がないなどの場合には、水洗および磨鉱を行なわなくてもよい。
(2)レパルプ工程
 鉱物粒子からなる原料に水を添加して鉱物スラリーを得る。鉱物スラリーの液相にカルシウムイオンまたはマグネシウムイオンが含まれていると浮遊選鉱に悪影響を与えることが知られている。そこで、鉱物粒子に添加する水は不純物イオンを含まない純水であることが好ましい。工業的にはイオン交換水または工業用水を用いてもよい。
(3)pH調整工程
 つぎに、鉱物スラリーの液相のpHを10以上に調整する。pH調整は鉱物スラリーにpH調整剤を添加することにより行なわれる。pH調整剤は特に限定されないが、アルカリとして水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、炭酸カルシウム(CaCO3)などを用いることができる。酸として硫酸(H2SO4)、塩酸(HCl)などを用いることができる。pH調整剤を水溶液の形態で用いる場合には、その濃度は特に限定されず、鉱物スラリーを目的のpHに調整することが困難とならない濃度であればよい。
(4)条件付け工程
 つぎに、鉱物スラリーに酸化剤を添加して、鉱物スラリーを所定時間撹拌する。酸化剤の添加により鉱物粒子の表面を酸化する。酸化剤として、過酸化水素(H22)、次亜塩素酸ナトリウム(NaClO)などを用いることができる。酸化剤として過酸化水素を用いる場合、過酸化水素の添加量は鉱物スラリーに含まれる原料の重量を基準として34.5~52.3kg/tが好ましい。
 また、鉱物スラリーにキサントゲン酸アルカリ金属塩を添加して、鉱物スラリーを所定時間撹拌する。キサントゲン酸アルカリ金属塩のアルキル基の炭素数は特に限定されない。また、アルカリ金属はナトリウムでもカリウムでもよい。キサントゲン酸アルカリ金属塩の一例として、アミルキサントゲン酸カリウムがある。アミルキサントゲン酸カリウムはPAX(Potassium amyl xanthate)とも称され、化学式はC611KOS2である。アミルキサントゲン酸カリウムを、以下「PAX」と表記する。PAXは浮選剤として知られており、浮遊選鉱に対する目的外の悪影響がないことが知られている。
 キサントゲン酸アルカリ金属塩は化学式R・O・CS・SMで表される。ここで、Rはアルキル基、Mはアルカリ金属を示す。式中のアルキル基Rは疎水性である。また、式中のCS・SMが液中でアルカリ金属Mを放出すると、CS・S-となって親水性を示す。浮遊選鉱中に、鉱物中のCuが電子を放出すると、CS・S-と結びつく。これにより、鉱物粒子の表面にアルキル基Rが現れる。そのため、鉱物粒子が疎水性となる。
 PAXの添加量は鉱物スラリーに含まれる原料の重量を基準として19.5~61.9g/tが好ましい。
 なお、鉱物スラリーには、さらに、捕収剤、抑制剤、起泡剤などで構成される浮選剤を添加してもよい。また、酸化剤およびキサントゲン酸アルカリ金属塩の添加により鉱物スラリーの液相のpHが変化した場合には、再度pH調整剤を添加して、鉱物スラリーの液相のpHを10以上に調整する。
(5)浮遊選鉱工程
 つぎに、鉱物スラリーを用いて浮遊選鉱を行なう。浮遊選鉱に用いる装置および方式は特に限定されない、一般的な多段式浮遊選鉱装置を用いればよい。
 浮遊選鉱により、砒素非含有硫化鉱物を浮鉱として、砒素含有硫化鉱物を沈鉱として分離できる。より正確にいうなれば、原料を、原料よりも砒素非含有硫化鉱物の品位が高い浮鉱と、原料よりも砒素含有硫化鉱物の品位が高い沈鉱とに分離できる。
 なお、上記の浮遊選鉱を繰り返し行なうことにより、浮鉱の砒素品位をより低減できる。そのため、砒素品位が高い原料であっても、砒素品位が十分に低い精鉱を得ることができる。
 砒素品位の高い原料から砒素含有硫化鉱物を除去することで、砒素品位の低い精鉱を得ることができる。例えば、銅製錬において、砒素品位の高い銅鉱石を用いた場合であっても、予め銅精鉱の砒素品位を低減できる。そのため、砒素をスラグに固定化する処理を問題なく行なうことができる。
 以上のように、砒素非含有硫化鉱物と砒素含有硫化鉱物とを含む原料を用いた浮遊選鉱において、鉱物スラリーに酸化剤およびキサントゲン酸アルカリ金属塩を添加すると、砒素非含有硫化鉱物を浮鉱として、砒素含有硫化鉱物を沈降として分離できる。
 一般に、PAXは硫化物を浮鉱として回収するための捕収剤として機能する。したがって、鉱物スラリーにPAXを添加すると、砒素非含有硫化鉱物も砒素含有硫化鉱物も浮鉱として回収されることが予想される。実際に、砒素非含有硫化鉱物である黄銅鉱、砒素含有硫化鉱物である硫砒銅鉱、砒四面銅鉱を、それぞれ単独で用いた浮遊選鉱において、鉱物スラリーにPAXを添加すると、いずれの鉱物もその大部分が浮鉱として回収されることが確認されている。
 しかし、本実施形態の条件下では、鉱物スラリーにPAXを添加すると、砒素含有硫化鉱物の大部分は沈鉱として回収される一方、砒素非含有硫化鉱物の大部分は浮鉱として回収される。したがって、PAXは砒素含有硫化鉱物に対しては捕収剤としての機能が抑制される一方、砒素非含有硫化鉱物に対しては捕収剤としての機能を維持すると考えられる。
 ところで、特許文献2には、鉱物スラリーに酸化剤およびPAXを添加して浮遊選鉱を行ない、砒素非含有硫化鉱物を沈鉱として回収するとともに、砒素含有硫化鉱物を浮鉱として回収することが開示されている。本実施形態の条件では砒素が沈鉱に濃縮されるのに対して、特許文献2の条件では砒素が浮鉱に濃縮される。この相違は、主に原料に含まれる銅に対する砒素の重量割合(As/Cu)の違いに起因すると考えられる。
 すなわち、本実施形態ではAs/Cu=4.4~5.8%である。これに対し、特許文献2(実施例1~39)ではAs/Cu=6.1~35.6%である。As/Cuは砒素非含有硫化鉱物と砒素含有硫化鉱物との間の電位差(ガルバニック電位の差)により生じる酸化の程度に影響すると考えられる。As/Cuの相違により、本実施形態では、砒素含有硫化鉱物の親水性が高くなる、あるいは、砒素非含有硫化鉱物の疎水性が高くなると推測される。そのため、砒素含有硫化鉱物が浮鉱として回収される。
 つぎに、実施例を説明する。
 銅精鉱に含まれる砒素非含有硫化銅鉱物と砒素含有硫化銅鉱物とを浮遊選鉱により分離する試験を行なった。
 銅精鉱は粒子状であり、その粒径は篩下100μmである。銅精鉱の組成を、XRF(蛍光X線分析装置、Rigaku、ZSX Primus II、以下同じ。)を用いて分析したところ、銅が28.0~30.2重量%、砒素が1.3~1.7重量%、銅に対する砒素の重量割合(As/Cu)は4.4~5.8%であった。
 銅精鉱に水を添加し、1,150rpmで10分間撹拌した後、固液分離する操作を3回繰り返して、銅精鉱を水洗した。その後、銅精鉱875gおよび水875mLをロッドミルに装入し、10分間運転して磨鉱した。
 鉱物スラリーに水を添加して固形分濃度を33重量%に調整した。鉱物スラリーに水酸化カルシウムを添加してpH調整を行なった。つぎに、鉱物スラリーに過酸化水素を添加して30分撹拌した。つぎに、PAXを添加して3分間撹拌した。つぎに、MIBCを添加して1分間撹拌した。
 容量5Lのデンバー浮選機を用いて、気泡供給型の撹拌翼の回転数を1,150rpmとし、浮遊選鉱を30分行なって、浮鉱と沈鉱とを得た。
 得られた浮鉱および沈鉱のそれぞれについて、重量を測定し、元素組成および鉱物組成を分析した。元素組成の分析にはXRFを用いた。鉱物組成の分析にはMLA分析法を用いた。また、分析結果から、浮遊選鉱による砒素非含有硫化銅鉱物と砒素含有硫化銅鉱物との分離効率を示すニュートン効率を求めた。ニュートン効率は以下の手順で求められる。
 まず、浮鉱率Rおよび沈鉱率Lを、式(1)、(2)により求める。
 R=Wr/(Wr+Wl)   ・・・(1)
 L=Wl/(Wr+Wl)   ・・・(2)
 ここで、Wrは浮鉱の重量、Wlは沈鉱の重量である。浮鉱率Rは浮鉱および沈鉱として回収された鉱物のうちの浮鉱の重量割合を意味する。沈鉱率Lは浮鉱および沈鉱として回収された鉱物のうちの沈鉱の重量割合を意味する。
 砒素非含有硫化銅鉱物の浮鉱率RN-Asは式(3)により求められる。
 RN-As=R×Gr(CuN-As)/(R×Gr(CuN-As)+L×Gl(CuN-As))   ・・・(3)
 ここで、Gr(CuN-As)は浮鉱の砒素非含有硫化銅鉱物に含まれる銅の品位、Gl(CuN-As)は沈鉱の砒素非含有硫化銅鉱物に含まれる銅の品位である。Gr(CuN-As)およびGl(CuN-As)は、浮鉱および沈鉱の銅品位および鉱物組成から求められる。砒素非含有硫化銅鉱物の浮鉱率RN-Asは、浮鉱および沈鉱として回収された砒素含有硫化銅鉱物のうちの浮鉱の重量割合を意味する。
 砒素含有硫化銅鉱物の浮鉱率RAsは式(4)により求められる。
 RAs=R×Gr(CuAs)/(R×Gr(CuAs)+L×Gl(CuAs))   ・・・(4)
 ここで、Gr(CuAs)は浮鉱の砒素含有硫化銅鉱物に含まれる銅の品位、Gl(CuAs)は沈鉱の砒素含有硫化銅鉱物に含まれる銅の品位である。Gr(CuAs)およびGl(CuAs)は、浮鉱および沈鉱の銅品位および鉱物組成から求められる。砒素含有硫化銅鉱物の浮鉱率RAsは、浮鉱および沈鉱として回収された砒素含有硫化銅鉱物のうちの浮鉱の重量割合を意味する。
 ニュートン効率ηNは、砒素非含有硫化銅鉱物の浮鉱率RN-Asおよび砒素含有硫化銅鉱物の浮鉱率RAsを用いた式(5)により求められる。ニュートン効率ηNが正の値の場合、砒素含有硫化銅鉱物が沈鉱に濃縮されたことを意味する。
 ηN=RN-As-RAs   ・・・(5)
 上記の手順の試験を12回行なった。各試験で用いた銅精鉱の品位、添加剤の量、pHおよびニュートン効率を表1に示す。また、pHとニュートン効率との関係を図1に示す。なお、pHは添加剤添加後の値である。
Figure JPOXMLDOC01-appb-T000001
 図1から分かるように、pHが低い領域(9以下)ではニュートン効率が負の値となっている。これは、砒素含有硫化銅鉱物が浮鉱に濃縮されたことを意味している、一方、pHが10以上の領域ではニュートン効率が正の値となっている。これは、砒素含有硫化銅鉱物が沈鉱に濃縮されたことを意味している。しかも、pHが10以上の領域ではニュートン効率の絶対値が大きい。これは、砒素含有硫化銅鉱物と砒素非含有硫化銅鉱物とを効率よく分離できることを意味している。これより、pHを10以上とすれば、砒素含有硫化銅鉱物を効率よく除去できることが確認された。なお、pHの上限は不明であるが、pH12以下、少なくともpH11以下であれば、同様の傾向が見られるといえる。

Claims (4)

  1.  砒素を含まない硫化鉱物である砒素非含有硫化鉱物と、砒素を含む硫化銅鉱物である砒素含有硫化鉱物とを含む原料に水を添加して鉱物スラリーを得るレパルプ工程と、
    前記鉱物スラリーの液相のpHを10以上に調整するpH調整工程と、
    前記鉱物スラリーに酸化剤およびキサントゲン酸アルカリ金属塩を添加する条件付け工程と、
    前記鉱物スラリーを用いて浮遊選鉱を行ない、前記原料を前記原料よりも前記砒素非含有硫化鉱物の品位が高い浮鉱と前記原料よりも前記砒素含有硫化鉱物の品位が高い沈鉱とに分離する浮遊選鉱工程と、を備え、
    前記原料は銅100重量部に対して砒素を4.4~5.8重量部含む
    ことを特徴とする選鉱方法。
  2.  前記酸化剤は過酸化水素である
    ことを特徴とする請求項1記載の選鉱方法。
  3.  前記キサントゲン酸アルカリ金属塩はアミルキサントゲン酸カリウムである
    ことを特徴とする請求項1または2記載の選鉱方法。
  4.  前記原料を水洗および/または磨鉱する前処理工程を備える
    ことを特徴とする請求項1~3のいずれかに記載の選鉱方法。
PCT/JP2022/044657 2021-12-17 2022-12-05 選鉱方法 WO2023112734A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021204786A JP7385872B2 (ja) 2021-12-17 2021-12-17 選鉱方法
JP2021-204786 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112734A1 true WO2023112734A1 (ja) 2023-06-22

Family

ID=86774310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044657 WO2023112734A1 (ja) 2021-12-17 2022-12-05 選鉱方法

Country Status (2)

Country Link
JP (1) JP7385872B2 (ja)
WO (1) WO2023112734A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239553A (ja) * 2005-03-03 2006-09-14 Sumitomo Metal Mining Co Ltd 銅精鉱からの砒素鉱物の分離方法
JP2010133004A (ja) * 2008-10-29 2010-06-17 Sumitomo Metal Mining Co Ltd 高砒素品位含銅物からの砒素鉱物の分離方法
JP2011156521A (ja) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd 高砒素含銅物からの砒素鉱物の分離方法
JP2012241249A (ja) * 2011-05-21 2012-12-10 Sumitomo Metal Mining Co Ltd 砒素鉱物を含む含銅物からの砒素鉱物の分離方法
JP2020104095A (ja) * 2018-09-14 2020-07-09 国立大学法人九州大学 選鉱方法
JP2021074640A (ja) * 2019-11-05 2021-05-20 国立大学法人九州大学 選鉱方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239553A (ja) * 2005-03-03 2006-09-14 Sumitomo Metal Mining Co Ltd 銅精鉱からの砒素鉱物の分離方法
JP2010133004A (ja) * 2008-10-29 2010-06-17 Sumitomo Metal Mining Co Ltd 高砒素品位含銅物からの砒素鉱物の分離方法
JP2011156521A (ja) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd 高砒素含銅物からの砒素鉱物の分離方法
JP2012241249A (ja) * 2011-05-21 2012-12-10 Sumitomo Metal Mining Co Ltd 砒素鉱物を含む含銅物からの砒素鉱物の分離方法
JP2020104095A (ja) * 2018-09-14 2020-07-09 国立大学法人九州大学 選鉱方法
JP2021074640A (ja) * 2019-11-05 2021-05-20 国立大学法人九州大学 選鉱方法

Also Published As

Publication number Publication date
JP2023090049A (ja) 2023-06-29
JP7385872B2 (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
JP7344504B2 (ja) 選鉱方法
JP4450108B1 (ja) 高砒素品位含銅物からの砒素鉱物の分離方法
JP5550933B2 (ja) 高砒素含銅物からの砒素鉱物の分離方法
JP2017202481A (ja) 選鉱方法
JP7299592B2 (ja) 選鉱方法
JP2012115781A (ja) 砒素を含む含銅物の選鉱方法
JP6491077B2 (ja) 選鉱方法
JP5811010B2 (ja) 微細鉱物を含む鉱石の選鉱方法
WO2021106631A1 (ja) 選鉱方法
WO2017110462A1 (ja) 選鉱方法
JP5774374B2 (ja) 砒素鉱物を含む含銅物からの砒素鉱物の分離方法
JP2010229542A (ja) 含銅物からの黄鉄鉱の分離方法
WO2023112734A1 (ja) 選鉱方法
JP2017066464A (ja) 銀と鉛の浮選分離方法
JP6442636B1 (ja) 選鉱方法
JP6999109B2 (ja) 選鉱方法
Lin Characterization and flotation of sulfur from chalcopyrite concentrate leaching residue
JP6950900B2 (ja) 選鉱方法
JP7438155B2 (ja) 低砒素銅精鉱の製造方法
JP2022032930A (ja) 有価金属の回収方法
JP2022101460A (ja) 選鉱方法
JP2021130064A (ja) 選鉱方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907262

Country of ref document: EP

Kind code of ref document: A1