WO2023112468A1 - 高周波電源装置及び高周波電力の出力制御方法 - Google Patents

高周波電源装置及び高周波電力の出力制御方法 Download PDF

Info

Publication number
WO2023112468A1
WO2023112468A1 PCT/JP2022/038814 JP2022038814W WO2023112468A1 WO 2023112468 A1 WO2023112468 A1 WO 2023112468A1 JP 2022038814 W JP2022038814 W JP 2022038814W WO 2023112468 A1 WO2023112468 A1 WO 2023112468A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
phase difference
output
amplifier
voltage
Prior art date
Application number
PCT/JP2022/038814
Other languages
English (en)
French (fr)
Inventor
博史 國玉
悟史 河合
卓矢 吉田
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to CN202280082040.8A priority Critical patent/CN118402171A/zh
Priority to KR1020247020065A priority patent/KR20240101692A/ko
Publication of WO2023112468A1 publication Critical patent/WO2023112468A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a high-frequency power supply and a high-frequency power output control method, and more particularly to a high-frequency power supply that outputs high-frequency pulse output in a plurality of stages of two or more levels, and a method for outputting high-frequency pulse output in a plurality of stages of output levels. .
  • a high-frequency signal is power-amplified by a high-frequency amplifier to output a high-frequency pulse output.
  • High-frequency pulse output with an output of 1 kw or more and a frequency range of 27 MHz to 100 MHz is suitable for semiconductor manufacturing equipment, flat panel display (liquid crystal panel, organic panel) manufacturing equipment, solar panel manufacturing equipment, CO 2 laser processing machines, etc. Applied for industrial use.
  • the instantaneous power consumption of a transistor is represented by the product of the instantaneous current and the instantaneous voltage, and the time average of the RF one cycle integral value of the instantaneous power consumption is the time average power consumption of the transistor.
  • the current and voltage at the drain terminal of the transistor are sine waves with opposite phases to each other, and in class A operation there is a large overlap between the current and voltage waveforms.
  • the efficiency of the amplifier is therefore low.
  • the drain current is biased to a half-wave rectified waveform, and the drain voltage is a sine wave voltage.
  • the drain voltage is a sinusoidal voltage
  • the overlapping portion of the current and voltage waveforms is reduced, but the overlap is not eliminated.
  • Class D amplifiers are known to achieve high efficiency by the voltage-current relationship in the time domain
  • class F and EF amplifiers are known to achieve high efficiency by the voltage-current relationship in the frequency domain.
  • Conventionally known methods for controlling the pulse output of a switching mode amplifier include DC voltage control that varies the DC input voltage to be input to the amplifier, and PWM control that controls the pulse width of the gate signal that drives the switching element. ing.
  • Patent Document 1 a power supply device using phase shift control has been proposed.
  • Patent Document 2 a power supply device using phase shift control has been proposed.
  • phase shift control In the method of controlling the high-frequency pulse output by phase shift control, a constant DC voltage is supplied to the amplification section, and the phase difference ⁇ between the two amplification sections is set to a first predetermined value on the High side and a second predetermined value on the Low side. By switching between predetermined values, pulse outputs with two output levels are output.
  • phase shift control when the outputs of two amplifiers are combined by a combiner, the output power is adjusted by varying the phase difference ⁇ between the two amplifiers. At this time, an internal loss occurs due to the dummy resistors mounted in the combiner inside the power supply.
  • Phase shift control has the problem of low power conversion efficiency due to internal loss consumed inside the power supply.
  • the phase difference ⁇ between the two amplifiers is divided into a first predetermined value range (0 [deg] to 90 [deg]) for outputting High side power and a second predetermined value range (90 [deg]) for outputting Low side power. deg] to 180 [deg]), when the output level is switched, the differential power that was not transmitted to the output side at a phase difference other than 0 [deg] in the first predetermined value region is consumed inside the power supply as internal loss. Further, at the phase difference ⁇ in the second predetermined value range, the internal loss is greater than the output power, and the power conversion efficiency of the entire high-frequency power supply is 50% or less.
  • a high-frequency power supply that performs phase shift control has a problem of low power conversion efficiency due to internal loss consumed inside the power supply. This problem also has undesirable effects in terms of manufacturing costs due to reduced productivity and environmental considerations due to CO2 reduction.
  • An object of the present invention is to solve the above-described conventional problems, and to reduce the reduction in power conversion efficiency due to internal loss consumed inside the power supply of the high-frequency power supply, in a high-frequency power supply and a high-frequency power output control method.
  • the present invention is a high-frequency power control that makes the output power of a high-frequency pulse output variable. reduce power conversion efficiency degradation due to internal losses.
  • the DC voltage control controls the output power by controlling the DC voltage supplied to the amplifier.
  • Phase difference control controls the output power by controlling the phase difference ⁇ of a plurality of control signals that control the amplifier.
  • the present invention controls the output power by DC voltage control when the output level is in the high output level range, and controls the output power by phase difference control when the output level is in the low output level range.
  • the phase difference ⁇ ( ⁇ d, ⁇ s) in the phase difference control is fixed and the DC voltage Vdc supplied to the amplifier is made variable in the high output level range. Since DC voltage control does not consume power due to dummy resistors inside the high-frequency power supply, the problems of internal loss consumed inside the power supply and low power conversion efficiency are resolved, and efficiency is improved. There is a drawback in that the size of the device is required to accommodate DC voltage control over the entire range of output levels.
  • control of output power by phase difference control limits the controlled output level to a low output level range.
  • the output level flowing through the dummy resistor of the high-frequency power supply device is suppressed to a low level, so that the internal loss generated in the dummy resistor is reduced and the efficiency is improved.
  • the phase difference control of the present invention includes two controls.
  • the first phase difference control is PWM control that modulates the pulse width with a phase difference ⁇ d between control signals, which is a phase difference between control signals.
  • a duty ratio (Duty) of a pulse signal for driving a switching element is made variable by PWM control.
  • PWM control since there is no internal loss due to the dummy resistance of the high frequency power supply, high efficiency is achieved.
  • phase difference control In the second phase difference control, a pair of control signals input to each of the two amplifiers is set as one set, and the phase difference between the sets of control signals input to the two amplifiers is the phase difference ⁇ s between the control signal sets.
  • the phase shift control (PS control) for shifting the phase difference ⁇ s between the control signal sets.
  • Phase shift control controls the output power obtained by combining the outputs of the two amplifiers. This phase shift control (PS control) causes a loss in the dummy resistor.
  • the phase difference control uses PWM control for the first phase difference control and phase shift control (PS control) for the second phase difference control depending on the output level.
  • the low output level range is divided into a high level side and a low level side.
  • Output power is made variable by shift control (PS control).
  • Phase shift control has the characteristic of lower power conversion efficiency due to internal loss consumed inside the power supply.
  • phase shift control (PS control) on the low level side where the ratio of internal loss is large compared to the output power, when phase shift control is applied to the high level side It is possible to reduce the amount of internal loss.
  • the range of controllable output levels can be expanded to the low level side, internal loss within the entire range of the output level range is reduced, and efficiency is improved. is planned.
  • the DC voltage control and phase difference control according to the present invention make the output power continuously variable within each output level range. Furthermore, at the time of switching between control from DC voltage control to phase difference control or from phase difference control to DC voltage control, by matching the output levels at the ends of both controls, the output power can be controlled over the entire output level range. becomes continuously variable without becoming discontinuous at .
  • the present invention includes (A) an aspect of a high-frequency power supply device and (B) an aspect of a high-frequency power output control method.
  • An aspect of the high-frequency power supply of the present invention includes a pair of amplifiers and a combiner that combines amplifier outputs of the pair of amplifiers to generate high-frequency pulse output power.
  • the control unit for controlling the output power includes a first control unit for controlling the output power by DC voltage control for controlling the DC voltage Vdc supplied to the pair of amplifiers, and the phase difference between the control signals for controlling the amplifier outputs of the pair of amplifiers. and a second control section for phase difference control of the output power by ⁇ ( ⁇ d, ⁇ s). DC voltage control by the first controller and phase difference control by the second controller are switched according to the output level of the output power.
  • the high-frequency power supply device of the present invention comprises a pair of amplifiers and a combiner for generating high-frequency pulse output power by combining the amplifier outputs of the pair of amplifiers as elements constituting the first control unit and the second control unit.
  • a power control unit that calculates a DC voltage command value Vref * used for DC voltage control and a phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) used for phase difference control in controlling the output power of the high-frequency pulse output;
  • a DC voltage control unit that controls a DC voltage Vdc supplied to a pair of amplifiers based on a DC voltage command value Vref * , and positions the pair of amplifiers based on a phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ).
  • a control signal generator is provided for generating a control signal for phase difference control.
  • the power control unit at the output level of the output power, (a) calculating a DC voltage command value Vref * for DC voltage control for a high output level range; (b) A phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) for phase difference control is calculated for a low output level range, and switching between DC voltage control and phase difference control is performed according to the output level of the output power. to control the output power.
  • the first control unit that performs DC voltage control includes a DC voltage calculation unit that calculates the DC voltage command value Vref * in the power control unit, and a DC voltage control unit that performs DC voltage control based on the DC voltage command value Vref * . Configured.
  • a second control unit that performs phase difference control includes a phase difference calculation unit that calculates phase difference command values ⁇ * ( ⁇ d * , ⁇ s*) and a phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) in the power control unit. * ) to generate a control signal having a phase difference ⁇ ( ⁇ d, ⁇ s).
  • a single-ended signal or a differential signal can be used as the control signal used in the present invention, but a differential signal is preferable in the high-frequency region.
  • a differential signal is preferable in the high-frequency region.
  • the power control unit determines the output level of the output power based on the output power command value, and determines whether to apply DC voltage control or phase difference control according to the level of the output level. It determines whether the output level is in the high output level range or the low output level range, and switches between DC voltage control and phase difference control.
  • the power control unit Based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB, the power control unit performs DC voltage control when the output level is in the high output level range, and performs phase difference control when the output level is in the low output level range. I do.
  • the DC voltage command value Vref * is calculated based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB by DC voltage control.
  • the DC voltage command value Vref * is a reference voltage for the DC voltage Vdc applied to the amplifier. By applying the DC voltage Vdc to the amplifier, the amplifier outputs the output power FWD based on the DC voltage command value Vref * .
  • phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) is calculated based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB by phase difference control.
  • the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) is used as a manipulated variable for generating a control signal based on the phase difference command value ⁇ * in the control signal generator, and the phase difference ⁇ ( ⁇ d, ⁇ s)
  • the amplifier outputs the output power FWD based on the output power command value FWD_ref * .
  • the DC voltage control unit varies the DC voltage Vdc supplied to the amplifier in the high output level range based on the DC voltage command value Vref * obtained by the DC voltage control of the power control unit, This controls the output power of the amplifier.
  • the DC voltage control unit Based on the difference between the feedback voltage Vdc_FB and the DC voltage command value Vref * , the DC voltage control unit sets the manipulated variable ⁇ for controlling the DC voltage Vdc applied to the amplifier to match the DC voltage command value Vref * .
  • An AD/DC converter is provided that controls the AD/DC converter of the amplifier according to the manipulated variable ⁇ to make the DC voltage Vdc variable.
  • the output voltage of the DC voltage Vdc is controlled by controlling the AD/DC converter with the manipulated variable ⁇ based on the DC voltage command value Vref * .
  • the control signal generating section generates two amplifiers based on the phase difference command values ⁇ * ( ⁇ d * , ⁇ s * ) obtained by the phase difference control of the power control section in the low output level range. to control the phase difference ⁇ ( ⁇ d, ⁇ s) of a pair of control signals input to .
  • the phase difference ⁇ ( ⁇ d, ⁇ s) of the control signal corresponds to the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) obtained by the phase difference control of the power control section.
  • one differential signal is composed of a pair of signals, a P signal and an N signal, which have an anti-phase relationship.
  • a pair of control signals has a total of two pairs of four signals.
  • the phase difference control includes calculation of phase difference command values ⁇ * ( ⁇ d * , ⁇ s * ) performed by the power control unit and phase difference command values ⁇ * ( ⁇ d * , ⁇ s * ) performed by the control signal generation unit. and generating a control signal for the phase difference ⁇ ( ⁇ d, ⁇ s).
  • the control signal generator generates a control signal having a phase difference ⁇ ( ⁇ d, ⁇ s) based on the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) calculated by the power controller.
  • the phase difference control of the present invention is based on the calculation of the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) by the power control section and the control signal based on the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ). It consists of generation of a control signal having a phase difference ⁇ ( ⁇ d, ⁇ s) by a generator.
  • Control modes applied to the phase difference control by the phase difference calculator and the control signal generator include (a) PWM control (duty control) and (b) phase shift control (PS control).
  • the control signal generation unit has a function of generating a control signal by phase difference control of PWM control and phase shift control (PS control), and in the low output level range, the phase difference command value obtained by the phase difference calculation of the power control unit
  • a control signal having a phase difference ⁇ ( ⁇ d , ⁇ s) is generated based on ⁇ * ( ⁇ d*, ⁇ s *) .
  • the control signal generated by the control signal generating section is converted into a gate signal by the driver, and drives and controls the switching element of the amplifier to control the output power.
  • Phase difference control has multiple types of control modes.
  • (a) First control mode of phase difference control The first control mode of phase difference control is a control mode by PWM control (duty control). For output power on the high output level side in the low output level range, a control signal having a phase difference ⁇ d between control signals is generated by PWM control using the phase difference command value ⁇ d * between control signals by PWM control. , to control the output power.
  • the inter-control signal phase difference ⁇ d which is determined based on the inter-control signal phase difference command value ⁇ d * , determines the duty ratio (Duty) of the gate signal of the switching element of the amplifier. controlled.
  • the second control mode of phase difference control is a control mode by phase shift control (PS control).
  • PS control phase shift control
  • phase shift control In the phase shift control, a pair of control signals to be input to each amplifier are set, and a phase difference ⁇ s between the control signal sets input to the two amplifiers is controlled. It controls the phase difference of the gate signals between the two amplifiers and controls the output power of the high-frequency pulse output generated by synthesizing the amplifier outputs of the two amplifiers.
  • phase difference control includes PWM control (duty control) of the first control mode and phase shift control (PS control) of the second control mode. It is a control mode consisting of.
  • the power control unit provides a phase difference command including a phase difference command value ⁇ d * between a pair of control signals to be input to each amplifier and a phase difference command value ⁇ s * between a control signal set composed of a pair of control signals to be input to each amplifier. Calculate the value ⁇ * .
  • the control signal generator generates a control signal having a phase difference ⁇ ( ⁇ d, ⁇ s) based on the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) obtained by the phase difference calculation of the power controller, and outputs the output level.
  • the output power of the high-frequency pulse output is controlled by selectively using phase difference control of PWM control and phase shift control according to .
  • the pulse width controlled by PWM control defines the pulse width of the gate signal.
  • the minimum pulse width of the gate signal is limited by the operating characteristics of the switching element. Therefore, the minimum pulse width of the pulse width narrowed by the PWM control is also limited, and there is a possibility that a pulse width shorter than the minimum pulse width may interfere with the PWM control.
  • the pulse width of the gate signal is narrowed by PWM control up to the minimum pulse width narrowed by PWM control, and the pulse width shorter than the minimum pulse width is controlled by phase shift control. This controls the output power down to an arbitrary low level range.
  • Aspect of high-frequency power output control method of the present invention is a high-frequency power control method that controls a pair of amplifiers and makes the output power of the high-frequency pulse output variable. DC voltage control and phase difference control are switched according to the level.
  • the output power is controlled by DC voltage control for controlling the DC voltage supplied to the pair of amplifiers.
  • the output power is controlled by phase difference control for controlling the phase difference ⁇ ( ⁇ d, ⁇ s) of a plurality of control signals input to the pair of amplifiers.
  • DC voltage control DC voltage control obtains a DC voltage command value Vref * in the high output level range, and varies the DC voltage Vdc supplied to the amplifier based on the obtained DC voltage command value Vref * . to control the output power of the
  • Phase Difference Control Phase difference control is applied to the low power level range.
  • the low output level range is divided into the high output level side and the low output level side, and the output power on the high output level side is controlled by PWM control (duty control) using the phase difference ⁇ d between the control signals, and the low output level is controlled.
  • PWM control duty control
  • the output power on the level side is controlled by phase shift control (PS control) using the phase difference ⁇ s between control signal sets.
  • the phase difference control includes a phase difference calculation step of obtaining phase difference command values ⁇ * ( ⁇ d * , ⁇ s * ), and a phase difference ⁇ ( ⁇ d, ⁇ s) based on the phase difference command values ⁇ * ( ⁇ d * , ⁇ s * ). and a control signal generating step for generating
  • phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) is calculated based on the difference between the output power command value and the output power feedback value.
  • Control signal phase difference control generates a control signal having a phase difference ⁇ ( ⁇ d, ⁇ s) based on a phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) obtained by phase difference calculation.
  • the output power is controlled by driving the amplifier with a control signal.
  • Phase difference control is applied to (a) the first control mode by PWM control (duty control) and (b) the second control mode by phase shift control (PS control). Phase difference control is applied to the low output level range and the switching elements of the amplifier are driven and controlled by gate signals generated based on the control signal to control the output power.
  • PWM control duty control
  • PS control phase shift control
  • phase difference ⁇ is the phase difference ⁇ d between the control signals input to the amplifier, and the phase difference control adjusts the pulse width between the control signals.
  • the output power of the high-frequency pulse output is controlled by PWM control that controls the phase difference ⁇ d and controls the duty ratio (Duty) of the gate signal of the switching element of the amplifier.
  • phase difference ⁇ is the phase difference ⁇ s between the control signal sets of the control signals input to the amplifier, and the phase difference control is phase shift control (PS control).
  • phase difference control includes PWM control (duty control) of the first control mode and phase shift control (PS control) of the second control mode. It is a control mode consisting of.
  • phase difference control PWM control and phase shift control (PS control) are selectively used according to the output level.
  • the output power is controlled by PWM control using the phase difference ⁇ d between control signals on the high output level side, and the phase difference ⁇ s between control signal sets is used on the low output level side.
  • the output power is controlled by phase shift control.
  • phase difference command value ⁇ * between the control signal phase difference command value ⁇ d * to be input to each amplifier and the phase difference command value ⁇ s * between the control signal sets to be input to each amplifier are obtained by phase difference calculation, and the obtained phase difference command
  • the values ⁇ * ( ⁇ d * , ⁇ s * ) are used to generate control signals with phase differences ⁇ ( ⁇ d, ⁇ s) by phase difference control.
  • the pulse width controlled by PWM control defines the pulse width of the gate signal. Since the pulse width of the gate signal is limited by the operating characteristics of the switching element, the minimum pulse width of the pulse width narrowed by PWM control is also limited, and there is a possibility that problems may arise in PWM control with a pulse width shorter than the minimum pulse width. .
  • the pulse width of the gate signal is controlled by PWM control up to the minimum pulse width narrowed by PWM control, and the pulse width shorter than the minimum pulse width is controlled by phase shift control (PS control).
  • PS control phase shift control
  • phase difference control between control signals by the power control section has a plurality of modes of first to third modes.
  • the power control unit compares the output power feedback value FWD_FB of the high-frequency pulse output with the output power command value FWD_ref * to generate a pair of control signals to be input to each amplifier. Phase difference control is performed to obtain a control signal phase difference command value ⁇ d * between control signals.
  • the power control unit sets the control signal phase difference command value ⁇ d * between the pair of control signals in each amplifier based on the comparison of the amplifier output of each amplifier. Adjust and provide phase difference control to balance the amplifier outputs of the two amplifiers.
  • the power control unit includes, in each of the two amplifiers, a first inter-control-signal phase difference ⁇ da between a pair of control signals input to one of the amplifiers, and Phase difference control for adjusting the control signal phase difference command values ⁇ da * and ⁇ db * such that the second control signal phase difference ⁇ db between the pair of control signals input to the other amplifier is the same phase difference amount. conduct.
  • phase difference control section performs phase shift control to generate a control signal having a phase difference ⁇ s based on a phase difference command value ⁇ s * between control signal sets.
  • Control mode of PWM control PWM control includes a plurality of control modes of a first control mode to a third control mode. include.
  • phase shift control In phase shift control, control between two sets of control signals based on a comparison between the output power feedback value FWD_FB of the high frequency pulse output and the output power command value FWD_ref * A phase difference command value ⁇ s * between signal sets is obtained.
  • control signal is in the form of a differential signal whose phases are opposite to each other, so that noise immunity is enhanced in driving the switching elements of the amplifier.
  • differential signals operation using single-ended signals is not excluded.
  • FIG. 3 is a schematic diagram of control of the present invention
  • FIG. 5 is a diagram showing how to properly use DC voltage control and phase difference control according to the present invention
  • FIG. 4 is a diagram for explaining the relationship between power control and output power according to the present invention
  • FIG. 4 is a diagram for explaining the relationship between power control and output power according to the present invention
  • It is a figure for demonstrating the relationship between duty ratio Duty and an output voltage.
  • FIG. 4 is a diagram for explaining the relationship between PWM control and output power
  • 4 is a flow chart for explaining an aspect of a high-frequency power output control method according to the present invention
  • It is a figure for demonstrating the structural example of the high frequency power supply device of this invention.
  • FIG. 4 is a diagram for explaining a configuration example of a main part of a power control unit of the present invention;
  • FIG. 4 is a signal diagram for explaining control signals, gate signals, etc. of the high-frequency power supply device of the present invention;
  • FIG. 4 is a signal diagram for explaining control signals, gate signals, etc. of the high-frequency power supply device of the present invention;
  • FIG. 4 is a signal diagram for explaining control signals, gate signals, etc. of the high-frequency power supply device of the present invention;
  • FIG. 4 is a signal diagram for explaining control signals, gate signals, etc. of the high-frequency power supply device of the present invention;
  • FIG. 4 is a signal diagram for explaining an example of parallel connection of the high-frequency power supply device of the present invention;
  • FIG. 1 The outline of the control according to the present invention will be described below with reference to FIGS. 1 and 2.
  • FIG. Regarding power control according to the present invention, the relationship between the power control according to the present invention and output power will be described using FIGS. 3 and 4, the relationship between internal loss and output power will be described using FIG. 5, and FIG. to explain the relationship between PWM control and output power.
  • the aspect of the high-frequency power output control method of the present invention will be described using the flowchart of FIG. 7, and the configuration example of the high-frequency power supply device of the present invention will be described using FIGS. Furthermore, a configuration example of a main part of the power control unit will be described with reference to FIG. 11 . 12 to 14 are signal diagrams of control signals, gate signals, etc. of the high-frequency power supply device of the present invention. Further, in the high-frequency power supply device of the present invention, a configuration example in which a plurality of sets of the configuration example shown in FIG. 8 are used and connected in parallel will be described with reference to FIG.
  • FIG. 1 is a schematic diagram for explaining control according to the present invention
  • FIG. 2 is a diagram for explaining proper use of DC voltage control and phase difference control according to the present invention
  • FIG. 2(b) and 2(c) show a case where the power output is controlled by phase difference control (CNTL2).
  • FIG. 2(b) shows a case where phase difference control (CNTL2) is performed by PWM control
  • FIG. 2(c) shows a case where phase difference control (CNTL2) is performed by phase shift control.
  • the high-frequency power output control selectively uses DC voltage control (CNTL1) and phase difference control (CNTL2) according to the output level.
  • the phase difference control (CNTL2) of the present invention is applied to a configuration in which the amplifier outputs of the two amplifiers 2 (2A, 2B) are combined by the combiner 5 to output the output power.
  • the configuration that combines the amplifier outputs of two amplifiers 2 (2A, 2B) to generate output power is based on the phase difference ⁇ s between the two control signal sets input to the amplifier. This configuration is applied to power control by phase shift control for controlling the phase difference ⁇ s amp between amplifier outputs and controlling the output power.
  • the output power when controlling the output power in the high output level range, the output power is controlled by the DC voltage control (CNTL1), and when controlling the output power in the low output level range, the phase difference control (CNTL2 ) to control the output power.
  • the DC voltage control CTL1
  • the phase difference control CTL2
  • the output level threshold that distinguishes between the high output level range and the low output level range can be arbitrarily determined in consideration of the DC voltage control configuration, main circuit system, power conversion efficiency, or the like.
  • DC voltage control (CNTL1)
  • the DC voltage Vdc supplied to the amplifier is made variable in the high output level range.
  • the phase difference command value ⁇ * is fixed so that the phase difference ⁇ of the phase difference control is fixed, and the DC voltage Vdc supplied to the pair of amplifiers 2 (2A, 2B) is changed to the DC voltage command value Vref *. to control each output power and control the combined output power. Note that the DC voltage command value Vref * is not shown in FIG.
  • phase difference ⁇ of phase difference control is fixed, and the output power is varied only by DC voltage control.
  • the phase difference ⁇ is fixed by fixing the phase difference of both the control signal phase difference ⁇ d between the control signals and the phase difference ⁇ s between the control signal sets. Stop variable output power by
  • the output level range to which the DC voltage control of the present invention is applied can be limited to an arbitrary high output level range. As a result, the size and weight of the high-frequency power supply can be reduced.
  • high output power indicated by High is output by DC voltage control
  • low output power indicated by Low 1 is output by phase difference control of PWM control
  • low output power indicated by phase shift control (PS control) is indicated by Low 2.
  • a lower output level of low output power is output.
  • Solid line arrows, dashed line arrows, and dashed line arrows in FIG. 1 indicate control states of DC voltage control, phase difference control of PWM control, and phase difference control of phase shift control (PS control), respectively. .
  • FIG. 2(a) shows the control mode of power output by DC voltage control (CNTL1)
  • the left side of the horizontal axis in the figure shows the control mode in the control signal
  • the right side shows the control mode in the amplifier.
  • the vertical axis in FIG. 2 indicates the output power
  • the area above the dashed line indicates the high output level range
  • the area below the dashed line indicates the low output level range.
  • the output power is made variable only by DC voltage control in the control mode of the amplifier.
  • the high output level range is defined by a maximum DC voltage value Vdc_max and a minimum DC voltage value Vdc_min.
  • the maximum value Vdc_max of the DC voltage is set according to the specifications of a device that generates a DC voltage, such as an AC/DC converter that outputs a DC voltage.
  • the minimum value Vdc_min of the DC voltage is arbitrarily determined depending on the control system and main circuit system of the device that generates the DC voltage, power conversion efficiency, and the like.
  • phase difference control In DC voltage control, by fixing the phase difference ⁇ d between control signals for PWM control of phase difference control and the phase difference ⁇ s between control signal sets for phase shift control, output power is not controlled by phase difference control.
  • the output power is controlled by varying only the DC voltage Vdc.
  • the inter-control signal phase difference ⁇ d and inter-control signal set phase difference ⁇ s can be fixed by fixing inter-control signal phase difference command value ⁇ d * and inter-control signal set phase difference command value ⁇ s * . can.
  • phase difference control (CNTL2)
  • the control signal used for the phase difference control of the present invention can be a single-ended signal or a differential signal.
  • a differential signal with high noise resistance is suitable for accurately transmitting phase difference and duty information.
  • control signals based on differential signals will be described. Note that the differential signal is two signals whose phases are opposite to each other, and can be converted into a single-ended signal by the difference between the two signals.
  • Control of output power by phase difference control limits the output level range for control to a low output level range. As a result, the internal loss due to the dummy resistance of the high-frequency power supply is reduced, and the efficiency is improved.
  • a pair of control signals are input to each one amplifier.
  • a pair of control signals Sig1a and Sig2a are input to the amplifier 2A, and a pair of control signals Sig1b and Sig2b are input to the amplifier 2B.
  • each of the control signals Sig1a, Sig2a, Sig1b, and Sig2b is a differential signal
  • two pairs of control signals are input to each amplifier when two differential signals are regarded as a pair of signals. Therefore, the number of signals included in the two pairs of control signals is four.
  • phase difference between two pairs of control signals input to one amplifier is the phase difference between control signals ⁇ d
  • phase difference between the two pairs of control signals (Sig1a, Sig2a) input to the amplifier 2A is
  • the phase difference between the control signals is represented by ⁇ da
  • the phase difference between the two pairs of control signals (Sig1b, Sig2b) input to the amplifier 2B is represented by the phase difference between control signals ⁇ db.
  • the two pairs of control signals (Sig1a, Sig2a) input to the amplifier 2A and the two pairs of control signals (Sig1b, Sig2b) input to the amplifier 2B constitute sets of control signals, respectively.
  • the phase difference between the control signal sets is represented by the phase difference ⁇ s between the control signal sets.
  • the phase difference control includes two controls, the first phase difference control (CNTL2d) and the second phase difference control (CNTL2s).
  • the first phase difference control (CNTL2d) is PWM control that modulates the pulse width by the phase difference ⁇ d between control signals, and the duty ratio (Duty) of the pulse signal that drives the switching element based on the PWM-controlled control signal. is variable.
  • the second phase difference control (CNTL2s) is a phase shift control (PS control) that shifts the inter-control signal set phase difference ⁇ s between a pair of control signal sets, and the degree of overlap of the output powers of the two amplifiers. to control the output power.
  • the control of the output power by PWM control is highly efficient because there is no internal loss due to the dummy resistance of the high-frequency power supply.
  • CNTL2d indicates PWM control in which the pulse width is modulated by the phase difference ⁇ d ( ⁇ da, ⁇ db) between the control signals of two pairs of control signals
  • CNTL2s indicates the phase difference between the control signal sets between the pair of control signal sets.
  • Phase shift control (PS control) for shifting the phase difference ⁇ s is shown.
  • phase difference between the two pairs of control signals Sig1a and Sig2a input to the amplifier 2A is controlled to be the phase difference ⁇ da between the control signals.
  • phase difference between the pair of control signals Sig1b and Sig2b is controlled to be the inter-control-signal phase difference ⁇ db.
  • a control signal Sig1a and a control signal Sig2a which are two pairs of differential signals having a phase difference ⁇ da between the control signals, are input to the amplifier 2A, and the duty ratio of the gate signal of the switching element is determined based on the phase difference ⁇ da between the control signals. (Duty) is controlled, and the output power of the high-frequency pulse output is controlled by the duty ratio (Duty).
  • control signal Sig1b and the control signal Sig2b which are two pairs of differential signals having a phase difference ⁇ db between the control signals, are input to the amplifier 2B, and the gate signal of the switching element is input based on the phase difference ⁇ db between the control signals. is controlled, and the output power of the high-frequency pulse output is controlled by the duty ratio (Duty).
  • DutyA DutyA based on the phase difference ⁇ da between the control signals
  • DutyB DutyB based on the phase difference ⁇ db between the control signals
  • Phase difference control divides the low output level range into high output level and low output level, (i) A mode of applying PWM control of the first phase difference control for high output levels (ii) A mode of applying phase shift control (PS control) of the second phase difference control to low output levels can do.
  • FIG. 2(b) shows a control mode of power output by only PWM control of the first phase difference control in the control of output power by phase difference control (CNTL2).
  • the left side of the dashed line shows the control mode of the control signal
  • the right side shows the control mode of the amplifier.
  • the vertical axis in the figure indicates the output power, with the lower dashed line as the boundary, the upper side indicates the high output level side, and the lower side indicates the low output level side.
  • the output power is made variable by the phase difference control of PWM control (CNTL2d) in the control mode of the control signal, and in the control mode of the amplifier,
  • the output power is made variable by duty control based on the phase difference ⁇ d ( ⁇ da, ⁇ db) between PWM-controlled control signals.
  • the duty ratio Duty (DutyA, DutyB) of the gate signals for driving the amplifier is obtained based on the phase difference ⁇ d ( ⁇ da, ⁇ db) between the control signals.
  • the high output level side within the low output level range is defined by the maximum duty ratio Duty_max at which the duty ratio reaches its maximum value and the minimum duty ratio Duty_min at which the duty ratio reaches its minimum value.
  • the maximum duty ratio Duty_max is determined as the minimum required dead time DT_min from the balance between the output power of the switching element and the power conversion efficiency, and the power output obtained at this time matches the minimum output during DC voltage control.
  • the minimum duty ratio Duty_min is determined depending on the response speed of the switching elements included in the amplifier, and is set by the pulse width corresponding to the fastest response speed of the switching elements.
  • the DC voltage Vdc for performing DC voltage control and the phase difference ⁇ s between control signal sets for performing phase shift control are fixed, and the phase difference between control signals for performing PWM control is fixed.
  • the output power is controlled by varying only ⁇ d.
  • the fixed values of the DC voltage Vdc and the phase difference ⁇ s between control signal sets can be determined arbitrarily.
  • the phase difference between control signals is The control width of the output power can be controlled in the PWM control performed by making the phase difference ⁇ d variable.
  • FIG. 2(c) shows power output control only by the phase shift control of the second phase difference control in the control of the output power by the phase difference control (CNTL2). It shows the mode.
  • the left side of the dashed line shows the control mode of the control signal
  • the right side shows the control mode of the amplifier.
  • the vertical axis in the figure indicates the output power, with the lower dashed line as the boundary, the upper side indicates the high output level side, and the lower side indicates the low output level side.
  • phase shift control is applied instead of PWM control.
  • the inter-control signal set phase difference ⁇ s between sets of control signals for driving and controlling the amplifier is varied in the range of 0 [deg] to 180 [deg].
  • the output power when the phase difference ⁇ s between the control signal sets is 0 [deg] corresponds to the output power when the duty ratio Duty is the minimum duty ratio Duty_min in the PWM control.
  • the output power when the phase difference ⁇ s between control signal sets is 180 [deg] corresponds to power zero.
  • the output power is made variable by the phase shift control (CNTL2s) of the phase difference control in the control mode of the control signal, and in the control mode of the amplifier
  • the switching element is driven by the gate signal of the inter-amplifier phase difference ⁇ s amp based on the inter-amplifier phase difference ⁇ s of the phase-shift controlled control signals to make the output power variable.
  • the range of the phase difference ⁇ s between control signal sets for performing phase shift control is 0 [deg] to 180 [deg].
  • the phase shift control when the phase difference ⁇ s between the control signal sets is 0 [deg], the maximum output power in the phase shift control is obtained, and when the phase difference ⁇ s between the control signal sets is 180 [deg], the phase shift is Minimum output power in control is obtained.
  • the output power can be varied continuously.
  • the pulse width controlled by PWM control defines the pulse width of the gate signal. Since the pulse width of the gate signal is limited by the operating characteristics of the switching element, the minimum pulse width of the pulse width narrowed by PWM control is also limited, and PWM control with a pulse width shorter than the minimum pulse width may cause problems. .
  • the pulse width of the gate signal is controlled by PWM control up to the minimum pulse width of the pulse width narrowed by PWM control, and the pulse width shorter than the minimum pulse width is controlled by phase shift control (PS control).
  • PWM control enables control even in a low level range, which is difficult to control, and enables control of the output power up to an arbitrary low level range.
  • phase difference control may be performed only by PWM control without applying phase shift control (PS control).
  • Phase shift control has a problem of low power conversion efficiency due to internal loss consumed inside the power supply. , the amount of internal loss can be made smaller than when phase shift control (PS control) is applied even on the high level side. As a result, the internal loss is reduced in the entire range of output levels, and efficiency is improved.
  • the output power is continuously variable within each output level range, and the control is switched from DC voltage control to phase difference control or from phase difference control to DC voltage control.
  • the output power of the output level can be made continuously variable over the entire range without being discontinuous.
  • the present invention can arbitrarily set the change characteristics of the output power in each of the high output voltage range and the low output voltage range.
  • 3 and 4 show examples of change characteristics. Here, an example of four output voltage ranges of high output voltage High, low output voltages Low1 and Low2, and zero output voltage is shown.
  • FIG. 3 shows an example of a mode in which output power is kept constant by a constant output voltage within each output voltage range.
  • the phase differences ⁇ da and ⁇ db between the control signals and the phase difference ⁇ s between the control signal sets are fixed, and the DC voltage Vdc is variable. Control power. At this time, the output power is made constant by keeping the DC voltage Vdc constant.
  • the output power is controlled by PWM control in which the DC voltage Vdc and the phase difference ⁇ s between the control signal sets are fixed, and the phase differences ⁇ da and ⁇ db between the control signals are variable. At this time, the output power is made constant by making the phase differences ⁇ da and ⁇ db between the control signals constant.
  • the output power is controlled by phase shift control in which the DC voltage Vdc and the phase differences ⁇ da and ⁇ db between the control signals are fixed, and the phase difference ⁇ s between the control signal sets is variable. At this time, the output power is made constant by setting the phase difference ⁇ s between the control signal sets to a constant phase difference.
  • the output voltage is set to zero output voltage by DC voltage control or phase difference control, and variable control of the output voltage is not performed. According to this constant output power mode, the output power changes stepwise between each output voltage range.
  • FIG. 4(a) shows an example of aspect in which the output power is linearly variable within each output voltage range.
  • the phase differences ⁇ da and ⁇ db between the control signals and the phase difference ⁇ s between the control signal sets are fixed, and the DC voltage Vdc is made variable.
  • Output power is controlled by DC voltage control.
  • the DC voltage Vdc is made variable in a root function (square root function) manner with respect to the linear change in the output power so that the output power is linearly variable.
  • the relationship between the change in the inter-control-signal-set phase difference ⁇ s and the change in the output power does not necessarily have a linear relationship. adjust for changes in
  • DC voltage control or phase difference control is set so that the output voltage becomes zero output voltage, and variable control of the output voltage is not performed.
  • FIG. 4(b) shows an example of a mode in which the output power is exponentially variable within each output voltage range.
  • the phase differences ⁇ da and ⁇ db between the control signals and the phase difference ⁇ s between the control signal sets are fixed, and the DC voltage Vdc is made variable.
  • the output power is controlled by DC voltage control. At this time, the DC voltage Vdc is variable so that the output power is exponentially variable.
  • the DC voltage Vdc and the phase differences ⁇ da and ⁇ db between the control signals are fixed, and the phase difference ⁇ s between the control signal sets is variable.
  • Control power since the change in the phase difference ⁇ s between the control signal sets and the change in the output power do not necessarily have a linear relationship, the phase difference between the control signal sets is adjusted so that the output power becomes exponentially variable. Adjust for changes in ⁇ s. In the case of zero output voltage, the output voltage is set to zero output voltage by DC voltage control or phase difference control, and variable control of the output voltage is not performed.
  • FIG. 5 shows output voltage waveforms during PWM control of push-pull amplifiers based on D-, F-, and EF-class switching modes.
  • the output voltage waveform Vdd indicates the drain-to-drain voltage.
  • the output voltage waveform Vdd is a square waveform with an amplitude equal to the drain-source voltage Vds.
  • harmonic components other than the fundamental wave are removed by an output filter, and only the fundamental wave is output. Therefore, if the output voltage waveform Vdd is equivalently calculated as a sine wave voltage Vac of only the fundamental wave component, it is represented by the following equation (3).
  • the duty ratio Duty is normalized by a half cycle of 180 [deg].
  • Vac (4/.pi.).Vds.sin ⁇ (.pi./2).Duty ⁇ .sin( .omega.s.t ) (3)
  • Vds voltage between drain and source
  • Duty duty ratio
  • ⁇ s angular frequency of fundamental wave
  • FIG. 6 is a diagram of the output power P out in the case of PWM control with a variable duty ratio Duty in the high-frequency power supply, obtained based on the equation (3).
  • the horizontal axis indicates the duty ratio Duty [%]
  • the vertical axis indicates the power of Pout .
  • high efficiency is achieved by providing a dead time DT to the gate signal voltage Vgs.
  • Vac shown in Equation (3) has a duty ratio Duty term in the sine function, it becomes a function that draws an S-shaped curve.
  • the duty ratio Duty is in the range of 20% to 80%, which exhibits a substantially linear linear characteristic. In the range of , the slope becomes gentle, and the nonlinear characteristics strongly appear. From such output characteristics of the sine wave voltage Vac, in the PWM control of the high-frequency power supply, the duty ratio vs. output power gain changes extremely low outside the range of 20% to 80%, and the duty ratio Duty makes the output It becomes difficult to adjust the power gain, and the controllability deteriorates.
  • the rated duty in PWM control is selected in the vicinity of 80% in order to avoid a duty ratio duty range in which controllability is low.
  • the duty ratio Duty near 80% corresponds to 140 [deg] to 160 [deg] when converted to the phase differences ⁇ da and ⁇ db between the control signals.
  • the output power will be about 1/10 of the rated output. If the range of the duty ratio Duty is selected in this way from 20% to 80% and the region determined by the range of this duty ratio Duty is the PWM control region, the output power will be 10% of the rated output at the minimum duty ratio Duty_min. reduced.
  • the output power range in the PWM control region is represented as P_high and P_low.
  • phase shift control is applied instead of PWM control.
  • the phase difference ⁇ s between control signal sets which is the phase difference between amplifiers, is varied within the range of 0 [deg] to 180 [deg].
  • the output power when the phase difference ⁇ s between the control signal sets is 0 [deg] corresponds to the output power when the duty ratio Duty is the minimum duty ratio Duty_min in the PWM control.
  • the output power when the phase difference ⁇ s between control signal sets is 180 [deg] corresponds to power 0.
  • the maximum internal loss of phase shift control is when the phase difference ⁇ s between control signal sets is 180 [deg]. match.
  • the phase difference ⁇ s between control signal sets of 180 [deg] corresponds to the output power with the minimum duty ratio Duty_min, so the internal loss is reduced to about 1/10. .
  • the internal loss is equivalent to 10% of the rated power, the internal loss is improved by about 90% compared to output power control only by phase shift control.
  • the outline of the high-frequency power output control according to the present invention is to selectively use DC voltage control and phase difference control according to the output power level, thereby reducing the internal loss due to the dummy resistance of the high-frequency power supply.
  • FIG. 7(a) is a flowchart for explaining the outline of output control.
  • S1 When there is a change in the output power (S1), it is determined whether the level of the output power is in a preset High level range (high output level range) or in a Low level range (low output level range). Determine (S2).
  • S3 When the output power level is within the High level range, DC voltage control is performed (S3), and when the output power level is within the Low level range, phase difference control is performed (S4).
  • FIG. 7(b) is a flow chart showing the detailed flow of the phase difference control, and the process of S4 in the flow chart shown in FIG. 7(a) is enclosed by a dashed line.
  • S2 Low level range
  • S4a preset minimum duty ratio Duty_min
  • the phase difference command values ⁇ da * and ⁇ db * between the control signals are obtained by calculating the phase difference of the phase difference control, and the calculated phase difference between the control signals is calculated.
  • control signals having inter-control signal phase differences ⁇ da and ⁇ db are generated (S4b1).
  • the duty ratios DutyA and DutyB of the driving signals are determined based on the generated phase differences ⁇ da and ⁇ db between the control signals, and the switching elements of the amplifier are PWM-controlled by the determined duty ratios DutyA and DutyB (S4b2).
  • the phase difference calculation of the phase difference control determines the inter-control signal set command value phase difference ⁇ s, which is the phase difference between the control signal sets. Ask for * .
  • a control signal having an inter-control signal set phase difference ⁇ s is generated based on the determined inter-control signal set phase difference command value ⁇ s * (S4c1), and phase shift control is performed on the switching elements of the amplifier (S4c2).
  • either one of the PWM control and the phase shift control is selected in the phase difference control. It is also possible to adopt a mode in which shift control is executed simultaneously.
  • phase difference control inter-control signal phase difference command values ⁇ da * and ⁇ db * and inter-control signal set phase difference command values ⁇ s * are obtained by calculation, and respective command values ⁇ da * and ⁇ db * related to the obtained phase differences are calculated.
  • ⁇ s * control signals having respective phase differences ⁇ da, ⁇ db, and ⁇ s are generated, and PWM control (S4b) and phase shift control (PS control) are performed (S4c).
  • phase difference control when the PWM control (S4b) and the phase shift control (S4c) are performed simultaneously, the internal loss increases compared to when both controls are performed individually. For example, when the duty ratio Duty is 50% and the phase difference ⁇ s between control signal sets is 90 [deg], the internal loss is 25% of the rated output. However, this internal loss is superior to the conventional method because the loss is reduced to 1/4 compared to the output power control only by phase shift control.
  • High-Frequency Power Supply A configuration example of the high-frequency power supply of the present invention will be described with reference to FIGS. 8 to 10.
  • Configuration example 1 Configuration Example 1 will be described with reference to FIG.
  • a high-frequency power supply 1 includes a pair of amplifiers 2A and 2B, and a combiner 5 that combines the amplifier outputs of the amplifiers 2A and 2B to generate a high-frequency pulse output.
  • the amplifiers 2A and 2B are class D, class F, or class EF switching mode power amplifiers, and include an AD/DC converter as a component constituting a DC power supply that supplies a DC voltage Vdc to the power amplifiers.
  • FIG. 8 shows, as an example, a configuration in which two LDMOS or one-package switching elements, an output transformer, and a low-pass filter are connected in series. A DC voltage Vdc is applied from the DC power supply of the AC/DC converter 6 to the middle point of the output transformer.
  • Gate signals Gsig1a and Gsig2a and gate signals Gsig1b and Gsig2b which are drive signals from the drive circuits 3A and 3B, are input to the gate terminals of two switching elements provided in the amplifiers 2A and 2B, respectively. Signal driven.
  • the amplifier outputs of amplifiers 2A and 2B are input to combiner 5 via circulators/isolators 4A and 4B.
  • a combiner 5 combines the outputs of the amplifiers 2A and 2B and outputs a high frequency pulse output.
  • Dummy resistors are connected to the circulators/isolators 4A and 4B. The output of the amplifier output that has not been combined by the combiner 5 is consumed in the dummy resistor and becomes an internal loss.
  • the high-frequency power supply 1 includes a configuration for performing DC voltage control as a configuration for controlling the output power of the amplifiers 2A and 2B, and a configuration for performing phase difference control.
  • the phase difference control is composed of the power controller 10 and the control signal generator 12 .
  • the power control unit 10 calculates a command value for controlling the output power, and the control signal generation unit 12 generates a control signal for phase control difference control based on the phase difference control command value obtained by the calculation of the power control unit 10. to generate
  • the power control unit 10 switches between DC voltage control and phase difference control according to the output level of the high frequency pulse output from the high frequency power supply 1, and when the output level is in the high output level range, the DC voltage command value is controlled by the DC voltage control.
  • Vref * is calculated, and when the output level is in the low output level range, the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) is calculated by phase difference control, and the DC voltage command value Vref * is sent to the DC voltage control unit 11, A phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) is sent to the control signal generator 12 .
  • the DC voltage command value Vref * and the phase difference command value ⁇ * ( ⁇ d * , ⁇ s * ) are obtained by performing calculations based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB.
  • the power control unit 10 includes a DC voltage calculation unit 10a for calculating a DC voltage command value Vref * for controlling the output power by DC voltage control, and a phase difference command value ⁇ * for controlling the output power by phase difference control.
  • a phase difference calculator 10b for calculating ( ⁇ d * , ⁇ s * ) is provided.
  • the DC voltage calculation unit 10a calculates a DC voltage command value Vref * for matching the output power with the output power command value FWD_ref * based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB.
  • the DC voltage command value Vref * can be calculated by feedback control that makes the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB zero. For example, when the difference (FWD_ref * )-(FWD_FB) is a positive value, the output power feedback value FWD_FB is smaller than the output power command value FWD_ref * . Bring the output power feedback value FWD_FB closer to the output power command value FWD_ref * . Conversely, when the difference (FWD_ref * ) ⁇ (FWD_FB) is a negative value, the output power feedback value FWD_FB is greater than the output power command value FWD_ref * , so the output power command value Vref * must be decreased. brings the output power feedback value FWD_FB closer to the output power command value FWD_ref * .
  • the DC voltage command value Vref * is used in the DC voltage control unit 11 to calculate the manipulated variable ⁇ for controlling the DC voltage Vdc supplied to the pair of amplifiers 2A and 2B.
  • phase difference calculator 10b calculates a phase difference command value ⁇ * for phase difference control of the output power based on the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB.
  • the phase difference command value ⁇ * includes inter-control-signal phase-difference command values ⁇ da * and ⁇ db * for PWM control and inter-control-signal-set phase-difference command value ⁇ s * for phase-difference control (PS control),
  • the control signal generator 12 generates a control signal having a phase difference ⁇ ( ⁇ da, ⁇ db, ⁇ s) based on the phase difference command value ⁇ * ( ⁇ da * , ⁇ db * , ⁇ s * ).
  • the high-frequency power supply 1 has a DC voltage control unit 11 that controls the output power, and a phase difference command that the power control unit 10 calculates the phase difference ⁇ ( ⁇ d, ⁇ s) between the control signals input to the pair of amplifiers 2A and 2B. and a control signal generator 12 for generating a differential signal based on the value ⁇ * ( ⁇ d * , ⁇ s * ) and controlling the output power.
  • a DC voltage command value Vref * used for DC voltage control, inter-control-signal phase differences ⁇ da and ⁇ db used for phase-difference control, and inter-control-signal-set phase difference ⁇ s are obtained by calculation of the power control unit 10 .
  • a DC voltage control unit 11 is provided as a configuration for performing DC voltage control.
  • the DC voltage control unit 11 generates the manipulated variable ⁇ based on the DC voltage command value Vref * .
  • An AC/DC converter 6 constituting a DC power supply is controlled based on the manipulated variable ⁇ , and supplies an output voltage of a DC voltage Vdc corresponding to the DC voltage command value Vref * to the amplifiers 2A and 2B.
  • DC voltage control unit 11 compares feedback voltage Vdc_FB fed back from amplifiers 2A and 2B with DC voltage command value Vref * , and performs feedback control so that DC voltage Vdc matches DC voltage command value Vref * .
  • a control signal generator 12 is provided as a configuration for performing phase difference control.
  • the control signal generator 12 includes phase difference control function units 12Aa and 12Ab that perform PWM control, and a phase difference control function unit 12B that performs phase shift control.
  • phase differences ⁇ da and ⁇ db between the control signals of the phase difference control function units 12Aa and 12Ab for PWM control and the phase difference ⁇ s between the control signal sets of the phase difference control function unit 12B for phase shift control are calculated by the arithmetic processing of the power control unit 10. It is generated based on the obtained phase command value.
  • phase difference control function units 12Aa and 12Ab responsible for PWM control generate control signals Sig1a and Sig2a for controlling the amplifier 2A and control signals Sig1b and Sig2b for controlling the amplifier 2B, respectively.
  • control signals Sig1a, Sig2a, Sig1b, and Sig2b are composed of differential signals whose phases are opposite to each other, two pairs of control signals including a pair of differential signals are input to each amplifier.
  • control signals Sig1a and Sig2a input to the amplifier 2A form a set signal Siga consisting of two pairs of control signals including a pair of differential signals
  • control signals Sig1b and Sig2b input to the amplifier 2B also Similarly, a set signal Sigb is composed of two pairs of control signals including a pair of differential signals. Therefore, the number of signals included in the set signal Siga and the set signal Sigb is four.
  • the inter-control-signal phase difference ⁇ da between the control signal Sig1a and the control signal Sig2a is generated based on the inter-control-signal phase difference command value ⁇ da * .
  • the pulse widths of the gate signals Gsig1a and Gsig2a output from the driving circuit 3A are PWM-controlled.
  • the inter-control signal phase difference ⁇ db between the control signals Sig1b and Sig2b becomes the inter-control signal phase difference command value ⁇ db * .
  • the pulse widths of the gate signals Gsig1b and Gsig2b output from the driving circuit 3B are PWM-controlled.
  • the drive circuit 3A outputs an amplifier output corresponding to the inter-control signal phase difference ⁇ da
  • the drive circuit 3B outputs an amplifier output corresponding to the inter-control signal phase difference ⁇ db.
  • PWM control is performed with the inter-control-signal phase difference ⁇ da and the inter-control-signal phase difference ⁇ db as the same phase difference.
  • the inter-control-signal phase difference command value ⁇ d * can be calculated by feedback control to zero the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB. For example, when the difference (FWD_ref * ) ⁇ (FWD_FB) is a positive value, the output power feedback value FWD_FB is smaller than the output power command value FWD_ref * . By bringing the duty ratio Duty that widens the pulse width closer to the maximum duty ratio Duty_max, the output power feedback value FWD_FB is brought closer to the output power command value FWD_ref * .
  • phase difference control function unit 12B responsible for phase shift control has a control signal between the set signal Siga of the control signals Sig1a and Sig2a for controlling the amplifiers 2A and 2B and the set signal Sigb of the control signals Sig1b and Sig2b.
  • An inter-set phase difference ⁇ s is given.
  • the phase difference ⁇ s between the control signal sets gives a phase difference ⁇ s between the signal set of the gate signals Gsig1a and Gsig2a output by the drive circuit 3A and the set signal of the gate signals Gsig1b and Gsig2b output by the drive circuit 3B. It is used for phase shift control for controlling the overlap of phases in which the amplifier output of the drive circuit 3A and the amplifier output of the drive circuit 3B are output simultaneously.
  • the inter-amplifier output phase difference ⁇ s amp between the amplifier output of the drive circuit 3A and the amplifier output of the drive circuit 3B is the inter-control signal set phase difference ⁇ s of the control signal generated by the inter-control signal set phase difference command value ⁇ s * . is phase shift controlled based on.
  • the inter-control-signal-set phase difference command value ⁇ s * can be calculated by feedback control that makes the difference between the output power command value FWD_ref * and the output power feedback value FWD_FB zero. For example, when the difference (FWD_ref * ) ⁇ (FWD_FB) is a positive value, the output power feedback value FWD_FB is smaller than the output power command value FWD_ref * . deg] brings the output power feedback value FWD_FB closer to the output power command value FWD_ref * .
  • the inter-control signal set phase difference ⁇ s is set to 180 [deg]. brings the output power feedback value FWD_FB closer to the output power command value FWD_ref * .
  • phase difference control function units 12Aa and 12Ab for PWM control and the phase difference control function unit 12B for phase shift control use the control signal phase difference command values ⁇ da * and ⁇ db * obtained by the arithmetic processing of the power control unit 10 and the control Control signals Sig1a and Sig2a and control signals Sig1b and Sig2b of differential signals based on the clock signal (CLK signal) are generated based on the inter-signal-set phase difference command value ⁇ s * .
  • phase difference control function units 12Aa and 12Ab for PWM control and the phase difference control function unit 12B for phase shift control are each a signal oscillator that makes the frequency/phase of DDS (direct digital synthesis) variable, or an FPGA. (Filed Programmable Gate Way) integrated circuit or the like.
  • the DC voltage command value Vref * is indicated by a circled numeral 1
  • the control signal phase difference command value ⁇ d * ( ⁇ da * , ⁇ db * ) is indicated by a circled numeral 2
  • the phase difference between the control signal sets A circled number 3 indicates the command value ⁇ s * .
  • Configuration example 2 determines whether or not the inter-control-signal phase difference ⁇ d generated by the control-signal generating unit 12 matches the inter-control-signal phase difference command value ⁇ d * obtained by the calculation of the power control unit 10. If they do not match, the control signal phase difference ⁇ d generated by the control signal generator 12 is adjusted so as to match the control signal phase difference command value ⁇ d * .
  • the adjustment of the inter-control signal phase difference ⁇ d In the adjustment of the inter-control signal phase difference ⁇ d, the adjustment of the inter-control signal phase difference ⁇ da between the control signals Sig1a and Sig2a and the adjustment of the inter-control signal phase difference ⁇ db between the control signals Sig1b and Sig2b are performed separately. conduct.
  • circled symbols a1 and a2 feed back the control signals Sig1a and Sig2a output from the control signal generator 12 to the power controller 10, and A route for obtaining the phase difference ⁇ da is shown, and symbols b1 and b2 with circles feed back the control signals Sig1b and Sig2b output from the control signal generation unit 12 to the power control unit 10, and the control signals Sig1b and Sig2b are fed back to the power control unit 10. shows a path for obtaining the inter-control-signal phase difference ⁇ db.
  • the phase difference calculation unit 10b compares the inter-control-signal phase difference command value ⁇ da * obtained by the calculation with the inter-control-signal phase difference ⁇ da obtained by feedback, and the inter-control-signal phase difference ⁇ da is the inter-control-signal phase difference command value.
  • the command value to be commanded to the control signal generator 12 is adjusted so as to match the value ⁇ da * .
  • the control signal phase difference command value ⁇ db * obtained by the calculation and the control signal phase difference ⁇ db obtained by feedback are compared, and the control signal phase difference ⁇ db becomes the control signal phase difference command value ⁇ db * .
  • the command value to be commanded to the control signal generator 12 is adjusted so as to match.
  • the control signal generator 12 adjusts the phase differences ⁇ da and ⁇ db between the control signals based on the adjusted command value.
  • Configuration example 3 Configuration Example 3 will be described with reference to FIG. In configuration example 3, it is determined whether or not there is a difference between the amplifier outputs generated by the amplifiers 2A and 2B. adjust.
  • circled symbols c and d denote paths for feeding back the amplifier outputs of the amplifiers 2A and 2B to the power control unit 10 to obtain the inter-control signal set phase difference ⁇ s.
  • the phase difference calculation unit 10b compares the inter-control signal set phase difference command value ⁇ s * obtained by the calculation with the inter-control signal set phase difference ⁇ s obtained by feedback.
  • the command value to be commanded to the control signal generator 12 is adjusted so as to match the phase difference command value ⁇ s * .
  • the control signal generator 12 adjusts the inter-control signal set phase difference ⁇ s based on the adjusted command value.
  • FIG. 11 shows a configuration example of a main part of the power control unit. Here, an example is shown in which the output power feedback value FWD_FB has two output levels of High output and Low output.
  • the power controller 10a1 power-amplifies this difference to calculate the DC voltage command value Vref * .
  • the DC voltage command value Vref * is converted into the manipulated variable ⁇ by the power controller 10a1, and controls the AC/DC converter of the DC power supply 6.
  • a DC power supply 6 AC-DC-converts AC power from an AC power supply to DC and outputs a DC voltage Vdc.
  • the Low output is sampled (held) by the Low_hold signal, and the difference between the sampled Low output and the Low side output power command value FWD_ref * (L) is calculated.
  • the power controller 10b1 power-amplifies this difference, each phase difference data of the control signal phase difference command value ⁇ d * and the control signal set phase difference command value ⁇ s * are calculated.
  • FIG. 12 shows an outline of the signal of each part of the high frequency power supply device of the present invention, and is an example of the outline signal when DC voltage control is performed in the high output level range.
  • phase difference command value ⁇ d * between control signals and the phase difference command value ⁇ s * between control signal sets are fixed, and variable control of the output power is performed by DC voltage control using DC voltage Vdc.
  • FIGS. 12(a) and (b) show control signals Sig1a and Sig2a on the amplifier (AMP_UNITA) side
  • FIGS. 12(c) and (d) show control signals Sig1b and Sig2b on the amplifier (AMP_UNITB) side.
  • Each signal shows an example of a differential signal whose phases indicated by symbols P and N are opposite to each other.
  • the signal P is indicated by a solid line
  • the signal N is indicated by a broken line.
  • FIG. 12E shows the inter-control signal set phase difference command value ⁇ s * between the set signal of the control signal Sig1a and the control signal Sig2a and the set signal of the control signal Sig1b and the control signal Sig2b. This indicates that the command value ⁇ s * is in a fixed state.
  • the inter-control-signal-set phase difference command value ⁇ s * can be a fixed value of 0 [deg], for example, but may be a phase difference other than 0 [deg].
  • FIG. 12(f) shows that the control signal phase difference command value ⁇ da * between the control signals Sig1a and control signals Sig2a and the control signal phase difference ⁇ db * between the control signals Sig1b and Sig2b are fixed. showing. Since the control signal phase difference command values ⁇ da * and ⁇ db * are fixed, the duty ratio Duty of the gate signal for driving the amplifier is also fixed (FIG. 12(g)).
  • the fixed values of the control signal phase difference command values ⁇ da * and ⁇ db * are recommended to be 140 [deg]-160 [deg] in consideration of high efficiency. is set as the rated duty.
  • FIGS. 12(h) and (i) are gate signal voltages Vgs1a and Vgs2a on the amplifier (AMP_UNITA) side
  • FIGS. 12(j) and (k) are gate signal voltages Vgs1b and Vgs2b on the amplifier (AMP_UNITB) side
  • Each pulse width is determined by the duty ratios DutyA and DutyB in FIG. 12(g).
  • DTA is dead time provided between gate signal voltage Vgs1a and gate signal voltage Vgs2a
  • DTB is dead time provided between gate signal voltage Vgs1b and gate signal voltage Vgs2b.
  • FIG. 12(l) is the DC voltage Vdc determined by the manipulated variable ⁇ by the DC voltage control.
  • the phase difference between the gate signal voltage Vgs1a and the gate signal voltage Vgs1b is the phase difference ⁇ s amp between the amplifier outputs of the amplifiers 2A and 2B, and corresponds to the phase difference ⁇ s between the control signal sets.
  • the control signal set phase difference command value ⁇ s * is fixed at a fixed value of 0 [deg]
  • the amplifier output phase difference ⁇ s amp is 0 [deg].
  • FIG. 13 shows an outline of the signal of each part of the high-frequency power supply device of the present invention, and is an example of an outline signal when performing phase difference control by PWM control in the low output level range.
  • FIGS. 13(a) and (b) show control signals Sig1a and Sig2a on the amplifier (AMP_UNITA) side
  • FIGS. 13(c) and (d) show control signals Sig1b and Sig2b on the amplifier (AMP_UNITB) side.
  • Each signal shows an example of a differential signal whose phases indicated by symbols P and N are opposite to each other.
  • the signal P is indicated by a solid line
  • the signal N is indicated by a broken line.
  • FIG. 13E shows the inter-control signal set phase difference command value ⁇ s * between the set signal of the control signal Sig1a and the control signal Sig2a and the set signal of the control signal Sig1b and the control signal Sig2b. This indicates that the command value ⁇ s * is in a fixed state.
  • FIG. 13F shows that the inter-control-signal phase difference ⁇ da between the control signals Sig1a and Sig2a and the inter-control-signal phase difference command value ⁇ db * between the control signals Sig1b and Sig2b are variable. ing. By making the phase difference command values ⁇ da * and ⁇ db * between the control signals variable, the duty ratio Duty of the gate signal for driving the amplifier becomes variable (FIG. 13(g)).
  • FIGS. 13(h) and (i) are gate signal voltages Vgs1a and Vgs2a on the amplifier (AMP_UNITA) side
  • FIGS. 13(j) and (k) are gate signal voltages Vgs1b and Vgs2b on the amplifier (AMP_UNITB) side
  • Each pulse width is variable by the duty ratios DutyA and DutyB in FIG. 13(g).
  • DTA is the dead time provided between the gate signal voltage Vgs1a and the gate signal voltage Vgs2a
  • DTB is the dead time provided between the gate signal voltage Vgs1b and the gate signal voltage Vgs2b
  • the duty ratios DutyA and DutyB are made variable so as to reduce the output power below the rated duty set at the high output level.
  • FIG. 13(l) is the DC voltage Vdc determined by the manipulated variable ⁇ by the DC voltage control, which is fixed because the DC voltage control is not performed.
  • the phase difference between the gate signal voltage Vgs1a and the gate signal voltage Vgs1b is the phase difference ⁇ s amp between the amplifier outputs of the amplifiers 2A and 2B, and corresponds to the phase difference ⁇ s between the control signal sets.
  • the control signal set phase difference command value ⁇ s * is fixed at a fixed value of 0 [deg]
  • the amplifier output phase difference ⁇ s amp is 0 [deg].
  • PWM control varies the phase difference ⁇ d between control signals within the range from the rated duty set at the time of high output level to the minimum duty ratio Duty_min. , to apply phase shift control.
  • FIG. 14 shows an outline of the signal of each part of the high frequency power supply device of the present invention, and is an example of the outline signal when performing phase difference control by phase shift control in the low output level range. .
  • Phase shift control is applied when the output power cannot be lowered even if the pulse width is reduced to the minimum duty ratio Duty_min by PWM control.
  • the DC voltage command value Vdc * and the control signal phase difference command value ⁇ d * are fixed, and the output power is variably controlled by phase shift control in which the phase difference ⁇ s between the control signal sets is variable. conduct.
  • FIGS. 14(a) and (b) show control signals Sig1a and Sig2a on the amplifier (AMP_UNITA) side
  • FIGS. 14(c) and (d) show control signals Sig1b and Sig2b on the amplifier (AMP_UNITB) side.
  • Each signal shows an example of a differential signal whose phases indicated by symbols P and N are opposite to each other.
  • the signal P is indicated by a solid line
  • the signal N is indicated by a broken line.
  • FIG. 14E shows the inter-control signal set phase difference command value ⁇ s * between the set signal of the control signal Sig1a and the control signal Sig2a and the set signal of the control signal Sig1b and the control signal Sig2b. This indicates that the command value ⁇ s * is variable.
  • control signal phase difference command value ⁇ da * between the control signals Sig1a and control signals Sig2a and the control signal phase difference command value ⁇ db * between the control signals Sig1b and Sig2b are in a fixed state. It is shown that.
  • the duty ratio Duty of the gate signal for driving the amplifier becomes a fixed value (FIG. 14(g)).
  • FIGS. 14(h) and (i) are gate signal voltages Vgs1a and Vgs2a on the amplifier (AMP_UNITA) side
  • FIGS. 14(j) and (k) are gate signal voltages Vgs1b and Vgs2b on the amplifier (AMP_UNITB) side
  • Each pulse width is in a fixed state at the fixed values of the duty ratios DutyA and DutyB in FIG. 14(g).
  • DTA is dead time provided between gate signal voltage Vgs1a and gate signal voltage Vgs2a
  • DTB is dead time provided between gate signal voltage Vgs1b and gate signal voltage Vgs2b.
  • phase differences ⁇ da and ⁇ db between the control signals are fixed at the minimum duty ratio Duty_min that the driver board can supply the duty ratio DutyA of the gate signal voltages Vgs1a and Vgs2a and the duty ratio DutyB of the gate signal voltages Vgs1b and Vgs2b applied to the amplifier. value.
  • FIG. 14(l) shows the DC voltage Vdc determined by the manipulated variable ⁇ by the DC voltage control, which is fixed because the DC voltage control is not performed.
  • the phase difference between the gate signal voltage Vgs1a and the gate signal voltage Vgs1b is the phase difference ⁇ s amp between the amplifier outputs of the amplifiers 2A and 2B, and corresponds to the phase difference ⁇ s between the control signal sets.
  • the phase difference ⁇ s amp between amplifier outputs is an angle corresponding to the variable value of the phase difference command value ⁇ s * between control signal sets.
  • FIG. 15 shows a configuration in which the high-frequency power supply device shown in FIG. 1 is taken as one unit and a plurality of units are connected in parallel.
  • the configuration example shown in FIG. 15 is a configuration in which a plurality of high-frequency power supply devices of unit A to unit N are connected in parallel.
  • Each unit AN includes a drive circuit 3, an amplifier 2, and a circulator/isolator 4, similar to the configuration shown in FIG.
  • the control signals Sig1a, Sig2a, Sig1b, and Sig2b generated by the control signal generator 12 are distributed by the signal distributor 7 and supplied to the units A to N.
  • the control of unit A-unit N is performed in the same manner as the control mode described above.
  • the phase difference ⁇ s amp between the amplifier outputs of the two amplifiers output from each unit of unit A to unit N is a phase difference corresponding to the phase difference command value ⁇ s * between the control signal sets.
  • the synthesizer 5 further synthesizes the amplifier outputs obtained by synthesizing in each unit and obtaining through phase shift control, and outputs a final high-frequency pulse output.
  • the high-frequency power supply and the high-frequency pulse output control method of the present invention are applied to industrial equipment using pulse output with an output of 1 kw or more and a frequency range of 27 MHz to 100 MHz, such as semiconductor manufacturing equipment and flat panel displays (liquid crystal panels). , organic panel) manufacturing equipment, solar panel manufacturing equipment, CO2 laser processing machine and other industrial applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Plasma Technology (AREA)
  • Inverter Devices (AREA)

Abstract

高周波パルス出力の出力電力を可変とする高周波電力制御において、出力レベルの出力レベル範囲に応じて、直流電圧制御と位相差制御とを使い分けることにより、高周波電源装置の電源内部で消費される内部損失による電力変換効率の低下を軽減する。直流電圧制御は、増幅器に供給する直流電圧を制御することにより出力電力を制御する。位相差制御は、増幅器を制御する複数の制御信号の位相差φを制御することにより出力電力を制御する。出力レベル範囲が高出力レベル範囲であるときには直流電圧制御により出力電力を制御し、出力レベル範囲が低出力レベル範囲であるときには位相差制御により出力電力を制御する。

Description

高周波電源装置及び高周波電力の出力制御方法
 本発明は、高周波電源装置及び高周波電力の出力制御方法に関し、高周波のパルス出力を2レベル以上の複数段階で出力する高周波電源装置、及び高周波のパルス出力を複数段階の出力レベルで出力する方法に関する。
 高周波電源装置では、高周波信号を高周波増幅器で電力増幅して高周波のパルス出力を出力している。出力が1kw以上で周波数範囲が27MHz~100MHzの高周波のパルス出力は、例えば、半導体製造装置やフラットパネルディスプレイ(液晶パネル、有機パネル)製造装置、太陽光パネル製造装置、COレーザー加工機などの産業用途に適用される。
 半導体製造プロセスでは、高周波電源装置のパルス出力をHighとLowの2レベル、またはHighとLowとZeroの3レベルのように、複数段階に切り替えて出力するマルチレベルパルス機能の要望が高まっている。
 また、製造コストの低減の生産性の側面、及びCO削減による環境の側面から、高効率な電力変換効率が求められる傾向にある。
 増幅器において、トランジスタの瞬時消費電力は瞬時電流と瞬時電圧の積で表され、瞬時消費電力のRF一周期積分値の時間平均はトランジスタの時間平均消費電力となる。
 A級増幅器は、トランジスタのドレイン端子における電流と電圧は互いに逆相の正弦波であり、A級動作では電流・電圧波形の重なり部分は大きい。そのため増幅器の効率は低い。B級動作は、ドレイン電流をバイアスにより半波整流波形とし、ドレイン電圧を正弦波電圧とする。ドレイン電圧を正弦波電圧としたB級動作では電流・電圧波形の重なり部分は小さくなるものの、重なりは無くならない。増幅器の高効率化には、ドレイン電圧とドレイン電流との関係において、瞬時電圧と瞬時電流とが同時に存在しない状態とすることが求められる。
 増幅器の効率化を図る方式としてD級増幅、F級増幅、EF級増幅のスイッチングモード方式による電力増幅が知られている。D級増幅器は時間領域の電圧・電流関係によって高効率化を図ることが知られ、F級増幅器、EF級増幅器は周波数領域の電圧・電流関係によって高効率化を図ることが知られている。
 スイッチングモード方式の増幅器のパルス出力を制御する方式として、従来、増幅器に入力する直流の入力電圧を可変とする直流電圧制御、スイッチング素子を駆動するゲート信号のパルス幅を制御するPWM制御が知られている。
 直流電圧制御では、入力電圧を可変としてDC/DCコンバータを駆動する構成であることから、小型化や軽量化の課題の他に、電力変換効率も低いという課題がある。このような直流電圧制御の課題を解決するために、位相シフト制御を用いた電源装置が提案されている(特許文献1)。
 また、PWM制御では、DC/DCコンバータのスイッチング素子の動作能力が高周波数に追従できないため高周波数領域での制御が困難であるという課題がある。この高周波数領域における制御の課題を解決するために、位相シフト制御を用いた電源装置が提案されている(特許文献2)。
国際公開第2015/097812号 特開平6―37375号公報
 位相シフト制御により高周波のパルス出力を制御する方式では、増幅部に一定の直流電圧を供給し、2つの増幅部間の位相差φをHigh側の第1の所定値とLow側の第2の所定値との間で切り替えることにより、2つの出力レベルのパルス出力を出力している。
位相シフト制御では、2つ増幅器の出力を合成器で合成する際、2つの増幅器間の位相差φを可変とすることにより出力電力を調整している。このとき、電源内部の合成器に実装されたダミー抵抗により内部損失が発生する。
 位相シフト制御は、電源内部で消費される内部損失により電力変換効率が低いという課題がある。2つの増幅器間の位相差φを、High側電力を出力する第1の所定値領域(0[deg]~90[deg])と、Low側電力を出力する第2の所定値領域(90[deg]~180[deg])として、出力レベルの切り替えを行う場合には、第1の所定値領域において位相差φが0[deg]以外の位相差では、出力側に伝送されなかった差分電力は内部損失として電源内部で消費される。また、第2の所定値領域の位相差φでは、出力電力よりも内部損失が多くなり、高周波電源装置全体の電力変換効率が50%以下となる。
 したがって、位相シフト制御を行う高周波電源装置では、電源内部で消費される内部損失により電力変換効率が低いという課題がある。この課題は、生産性低減による製造コストの側面、CO削減による環境配慮の側面等においても望ましくない影響を及ぼす。
 本発明は前記した従来の課題を解決して、高周波電源装置、及び高周波電力の出力制御方法において、高周波電源装置の電源内部で消費される内部損失による電力変換効率の低下を軽減することを目的とする。
 本発明は、高周波パルス出力の出力電力を可変とする高周波電力制御において、出力レベルの出力レベル範囲に応じて、直流電圧制御と位相差制御とを使い分けることにより、高周波電源装置の電源内部で消費される内部損失による電力変換効率の低下を軽減する。
 直流電圧制御は、増幅器に供給する直流電圧を制御することにより出力電力を制御する。一方、位相差制御は、増幅器を制御する複数の制御信号の位相差φを制御することにより出力電力を制御する。
 本発明は、出力レベルが高出力レベル範囲であるときには直流電圧制御により出力電力を制御し、出力レベルが低出力レベル範囲であるときには位相差制御により出力電力を制御する。
 直流電圧制御による出力電力の制御では、高出力レベル範囲において、位相差制御における位相差φ(φd、φs)を固定した状態とし、増幅器に供給する直流電圧Vdcを可変とする。直流電圧制御は、高周波電源装置の内部のダミー抵抗による消費電力が存在しないため、電源内部で消費される内部損失、及び電力の低変換効率の課題が解消され、高効率化が図られる。直流電圧制御を出力レベルの全範囲に対応させるためには装置の大型化が必要となるという欠点がある。
 一方、位相差制御による出力電力の制御は、制御する出力レベルを低出力レベル範囲に制限する。これにより、高周波電源装置のダミー抵抗に流れる出力レベルは低レベルに抑えられるため、ダミー抵抗で発生する内部損失は低減され、高効率化が図られる。
 本発明の位相差制御は2つの制御を含む。
 第1の位相差制御は、制御信号間の位相差である制御信号間位相差φdによりパルス幅を変調するPWM制御である。PWM制御によりスイッチング素子を駆動するパルス信号のデューティ比(Duty)を可変とする。この第1の位相差制御(PWM制御)では、高周波電源装置のダミー抵抗による内部損失が無いため、高効率化が図られる。
 第2の位相差制御は、2つの増幅器の各増幅器に入力する一対の制御信号を一つのセットとし、2つの増幅器に入力する制御信号のセット間の位相差を制御信号セット間位相差φsとし、この制御信号セット間位相差φsをシフトする位相シフト制御(PS制御)である。位相シフト制御により2つの増幅器の出力を合成して得られる出力電力を制御する。この位相シフト制御(PS制御)ではダミー抵抗に損失が生じる。
 位相差制御は、低出力レベル範囲において、出力レベルの高低によって第1の位相差制御のPWM制御と第2の位相差制御の位相シフト制御(PS制御)を出力レベルに応じて使い分ける。
 PWM制御と位相シフト制御(PS制御)とを使い分ける態様において、低出力レベル範囲を高レベル側と低レベル側とに分け、高レベル側ではPWM制御により出力電力を可変とし、低レベル側では位相シフト制御(PS制御)により出力電力を可変とする。
 位相シフト制御(PS制御)は電源内部で消費される内部損失により電力変換効率が低くなる特性がある。この特性に鑑みて、本発明では出力電力と比較して内部損失の比率が大きくなる低レベル側において位相シフト制御(PS制御)を適用することにより、位相シフト制御を高レベル側に適用した場合よりも内部損失の損失量を小さくすることができる。
 PWM制御と位相シフト制御(PS制御)とを使い分ける態様により、制御可能な出力レベルの範囲を低レベル側に広げることができ、出力レベル範囲の全範囲内での内部損失が低減され、高効率化が図られる。
 本発明による直流電圧制御及び位相差制御は、各出力レベル範囲内において出力電力を連続的に可変とする。更に、直流電圧制御から位相差制御へ、あるいは位相差制御から直流電圧制御への制御間の切り替え時点において、両制御の端部の出力レベルを合わせることにより、出力電力は出力レベル範囲の全範囲において不連続となることなく連続的に可変となる。
 本発明は、(A)高周波電源装置の態様、及び(B)高周波電力の出力制御方法の態様を備える。
(A)高周波電源装置の態様
 本発明の高周波電源装置の態様は、一対の増幅器と、一対の増幅器の増幅器出力を合成して高周波パルスの出力電力を生成する合成器とを備える。出力電力を制御する制御部は、一対の増幅器に供給する直流電圧Vdcを制御する直流電圧制御により出力電力を制御する第1制御部と、一対の増幅器の増幅器出力を制御する制御信号の位相差φ(φd、φs)により出力電力を位相差制御する第2制御部とを備える。出力電力の出力レベルに応じて、第1制御部による直流電圧制御と第2制御部による位相差制御とを切り替える。
 本発明の高周波電源装置は、第1制御部及び第2制御部を構成する要素として、一対の増幅器と、一対の増幅器の各増幅器出力を合成して高周波パルスの出力電力を生成する合成器と、高周波パルス出力の出力電力の制御において、直流電圧制御に用いる直流電圧指令値Vref*、及び位相差制御に用いる位相差指令値φ*(φd*、φs*)を演算する電力制御部と、一対の増幅器に供給する直流電圧Vdcを直流電圧指令値Vref*に基づいて直流電圧制御する直流電圧制御部と、一対の増幅器を位相差指令値φ*(φd*、φs*)に基づいて位相差制御する制御信号を生成する制御信号生成部を備える。
 電力制御部は、出力電力の出力レベルにおいて、
 (a)高出力レベル範囲に対して、直流電圧制御の直流電圧指令値Vref*を演算し、
 (b)低出力レベル範囲に対して、位相差制御の位相差指令値φ*(φd*、φs*)を演算し、出力電力の出力レベルに応じて直流電圧制御と位相差制御とを切り替えて出力電力を制御する。
 直流電圧制御を行う第1制御部は、電力制御部の内で直流電圧指令値Vref*を演算する直流電圧演算部と、直流電圧指令値Vref*に基づいて直流電圧制御する直流電圧制御部により構成される。位相差制御を行う第2制御部は、電力制御部の内で位相差指令値φ*(φd*、φs*)を演算する位相差演算部、及び位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を有する制御信号を生成する制御信号生成部により構成される。
 本発明に用いる制御信号は、シングルエンド信号や差動信号を用いることができるが、高周波領域では差動信号が好適である。数十Mhz-100Mhzを超える高周波で増幅器のスイッチング素子を駆動する場合には、位相差やデューティ情報を正確に伝送するには信号のノイズを抑える必要がある。シングルエンド信号ではこのような耐ノイズの要求を満足することが難しいのに対して、一対の信号の位相が互いに逆相関係にある差動信号は耐ノイズ性が高いため高周波パルス出力を制御する制御信号として好適である。
(1)電力制御部
 電力制御部は、出力電力指令値に基づいて出力電力の出力レベルを判定し、出力レベルの高低に応じて直流電圧制御あるいは位相差制御の何れの制御を適用するかを判定し、出力レベルが高出力レベル範囲にあるか、あるいは低出力レベル範囲にあるかにより直流電圧制御と位相差制御とを切り替える。
 電力制御部は、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて、出力レベルが高出力レベル範囲であるときには直流電圧制御を行い、低出力レベル範囲であるときには位相差制御を行う。
(a)高出力レベル範囲において、直流電圧制御により出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて直流電圧指令値Vref*を演算する。直流電圧指令値Vref*は、増幅器に印加する直流電圧Vdcの基準電圧であり、直流電圧Vdcを増幅器に印加することにより、増幅器は直流電圧指令値Vref*に基づく出力電力FWDを出力する。
(b)低出力レベル範囲において、位相差制御により出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて位相差指令値φ*(φd*、φs*)を演算する。位相差指令値φ*(φd*、φs*)は、制御信号生成部において位相差指令値φ*に基づいて制御信号を生成するための操作量として使用され、位相差φ(φd、φs)の制御信号に基づく駆動信号で増幅器を駆動することにより、増幅器は出力電力指令値FWD_ref*に基づいて出力電力FWDを出力する。
(2)直流電圧制御部
 直流電圧制御部は、高出力レベル範囲において、電力制御部の直流電圧制御により得られた直流電圧指令値Vref*に基づいて増幅器に供給する直流電圧Vdcを可変とし、これにより増幅器の出力電力を制御する。
 直流電圧制御部は、フィードバック電圧Vdc_FBと直流電圧指令値Vref*との差分に基づいて、増幅器に印加する直流電圧Vdcが直流電圧指令値Vref*に一致するように制御するための操作量αを求め、操作量αにより増幅器のAD/DCコンバータを制御して直流電圧Vdcを可変とするAD/DCコンバータを備える。このAD/DCコンバータを直流電圧指令値Vref*に基づく操作量αにより制御することにより、直流電圧Vdcの出力電圧が制御される。
(3)制御信号生成部
 制御信号生成部は、低出力レベル範囲において、電力制御部の位相差制御により得られた位相差指令値φ*(φd*、φs*)に基づいて、2つの増幅器に入力する一対の制御信号の位相差φ(φd、φs)を制御する。制御信号の位相差φ(φd、φs)は、電力制御部の位相差制御により得られた位相差指令値φ*(φd*、φs*)に対応している。
 なお、制御信号として差動信号を用いる場合には、一つの差動信号は逆相関係にあるP信号とN信号の一対の信号で構成されることから、各増幅器に入力する位相差φを有する一対の制御信号は併せて二対の合計4つの信号から構成される。
 位相差制御は、電力制御部が行う位相差指令値φ*(φd*、φs*)の演算と、制御信号生成部が行う、位相差指令値φ*(φd*、φs*)に基づく位相差φ(φd、φs)の制御信号の生成とを含む。制御信号生成部は、電力制御部で演算した位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を有した制御信号を生成する。
 したがって、本発明の位相差制御は、電力制御部による位相差指令値φ*(φd*、φs*)の演算と、位相差指令値φ*(φd*、φs*)に基づいて行う制御信号生成部による位相差φ(φd、φs)を有した制御信号の生成からなる。
 位相差演算部及び制御信号生成部による位相差制御に適用される制御態様として、(a)PWM制御(デューティ制御)の制御態様、及び(b)位相シフト制御(PS制御)がある。
 制御信号生成部は、PWM制御及び位相シフト制御(PS制御)の位相差制御により制御信号を生成する機能を備え、低出力レベル範囲において、電力制御部の位相差演算で求めた位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を有する制御信号を生成する。制御信号生成部で生成された制御信号は、ドライバにおいてゲート信号に変換され、増幅器のスイッチング素子を駆動制御して出力電力を制御する。
 位相差制御は、複数種類の制御態様を備える。
(a)位相差制御の第1の制御態様
 位相差制御の第1の制御態様は、PWM制御(デューティ制御)による制御態様である。低出力レベル範囲の内、高出力レベル側の出力電力に対しては、PWM制御により制御信号間位相差指令値φd*を用いてPWM制御により制御信号間位相差φdを有する制御信号を生成し、出力電力を制御する。
 一つの増幅器に対して一対の制御信号が用いられるため、一対の増幅器に対しては二対の制御信号が生成される。差動信号により制御信号を構成する場合には、一対の増幅器に入力される制御信号の信号数は4となる。
 制御信号間位相差指令値φd*に基づいて定まる制御信号間位相差φdは、増幅器のスイッチング素子のゲート信号のデューティ比(Duty)を定め、これにより高周波パルス出力はPWM制御(デューティ制御)で制御される。
(b)位相差制御の第2の制御態様
 位相差制御の第2の制御態様は、位相シフト制御(PS制御)による制御態様である。
低出力レベル範囲の低出力レベル側の出力電力に対しては、制御信号セット間位相差指令値φs*を用いて位相シフト制御により制御信号セット間位相差φsを有する制御信号を生成して出力電力を制御する。
 位相シフト制御は、各増幅器に入力する一対の制御信号をセットとし、2つの増幅器に入力する制御信号のセット間の制御信号セット間位相差φsを制御し、この制御信号セット間位相差φsにより2つの増幅器間のゲート信号の位相差を制御し、2つの増幅器の増幅器出力が合成されて生成される高周波パルス出力の出力電力を制御する。
(c)位相差制御の第3の制御態様
 位相差制御の第3の制御態様は、第1の制御態様のPWM制御(デューティ制御)と第2の制御態様の位相シフト制御(PS制御)とからなる制御態様である。
 電力制御部は、各増幅器に入力する一対の制御信号間位相差指令値φd*と、各増幅器に入力する一対の制御信号からなる制御信号セット間位相差指令値φs*とを含む位相差指令値φ*を演算により求める。
 制御信号生成部は、電力制御部の位相差演算で求めた位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を有する制御信号を生成し、出力レベルに応じてPWM制御と位相シフト制御の位相差制御を使い分けて、高周波パルス出力の出力電力を制御する。
 位相差制御において、PWM制御で制御されるパルス幅はゲート信号のパルス幅を規定する。ゲート信号のパルス幅の最小幅はスイッチング素子の動作特性に制限される。そのため、PWM制御により絞られるパルス幅の最小パルス幅も制限され、最小パルス幅よりも短いパルス幅ではPWM制御に支障が生じるおそれがある。
 本発明は、ゲート信号のパルス幅の絞りを、PWM制御により絞られるパルス幅の最小パルス幅まではPWM制御で行い、最小パルス幅よりも短いパルス幅については位相シフト制御で行う。これにより、出力電力の任意の低レベル域まで制御する。
(B)高周波電力の出力制御方法の態様
 本発明の高周波電力の出力制御方法の態様は、一対の増幅器を制御し、高周波パルス出力の出力電力を可変とする高周波電力の制御方法であり、出力レベルに応じて直流電圧制御と位相差制御とを切り替える。
(a)出力レベルが高出力レベル範囲では、一対の増幅器に供給する直流電圧を制御する直流電圧制御により出力電力を制御する。
(b)出力レベルが低出力レベル範囲では、一対の増幅器に入力する複数の制御信号の位相差φ(φd、φs)を制御する位相差制御により出力電力を制御する。
(1)直流電圧制御
 直流電圧制御は、高出力レベル範囲において直流電圧指令値Vref*を求め、求めた直流電圧指令値Vref*に基づいて増幅器に供給する直流電圧Vdcを可変とし、これにより増幅器の出力電力を制御する。
(2)位相差制御
 位相差制御は低出力レベル範囲に適用される。低出力レベル範囲を高出力レベル側と低出力レベル側とに区分し、高出力レベル側の出力電力については、制御信号間位相差φdを用いたPWM制御(デューティ制御)で制御し、低出力レベル側の出力電力については、制御信号セット間位相差φsを用いた位相シフト制御(PS制御)で制御する。
位相差制御は、位相差指令値φ*(φd*、φs*)を求める位相差演算工程と、位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を生成する制御信号生成工程とを備える。
 位相差演算の工程は、位相差演算は、出力電力指令値と出力電力フィードバック値との差分に基づいて位相差指令値φ*(φd*、φs*)を演算する。制御信号位相差制御は、位相差演算で得た位相差指令値φ*(φd*、φs*)に基づいて位相差φ(φd、φs)を有した制御信号を生成する。制御信号により増幅器を駆動することにより出力電力を制御する。
 位相差制御は、(a)PWM制御(デューティ制御)による第1の制御態様、及び(b)位相シフト制御(PS制御)による第2の制御態様に適用される。位相差制御は低出力レベル範囲に適用され、増幅器のスイッチング素子は制御信号に基づいて生成されるゲート信号により駆動制御され、出力電力が制御される。
(a)位相差制御の第1の制御態様
 第1の制御態様において、位相差φは増幅器に入力する制御信号の制御信号間位相差φdであり、位相差制御は、パルス幅を制御信号間位相差φdにより制御し、増幅器のスイッチング素子のゲート信号のデューティ比(Duty)を制御するPWM制御により高周波パルス出力の出力電力を制御する。
(b)位相差制御の第2の制御態様
 第2の制御態様において、位相差φは増幅器に入力する制御信号の制御信号セット間位相差φsであり、位相差制御は、位相シフト制御(PS制御)による制御態様である。
(c)位相差制御の第3の制御態様
 位相差制御の第3の制御態様は、第1の制御態様のPWM制御(デューティ制御)と第2の制御態様の位相シフト制御(PS制御)とからなる制御態様である。
 この位相差制御では、出力レベルに応じてPWM制御と位相シフト制御(PS制御)とを使い分ける。位相差制御が適用される低出力レベル範囲において、高出力レベル側では制御信号間位相差φdを用いたPWM制御により出力電力を制御し、低出力レベル側では制御信号セット間位相差φsを用いた位相シフト制御により出力電力を制御する。
 各増幅器に入力する制御信号間位相差指令値φd*と、各増幅器に入力する制御信号セット間位相差指令値φs*の位相差指令値φ*を位相差演算で求め、求めた位相差指令値φ*(φd*、φs*)を用いて、位相差制御により位相差φ(φd、φs)を有する制御信号を生成する。
 位相差制御において、PWM制御で制御されるパルス幅はゲート信号のパルス幅を規定する。ゲート信号のパルス幅はスイッチング素子の動作特性に制限されるため、PWM制御により絞られるパルス幅の最小パルス幅も制限され、最小パルス幅よりも短いパルス幅によるPWM制御に支障が生じるおそれがある。
 本発明は、ゲート信号のパルス幅を、PWM制御により絞られるパルス幅の最小パルス幅まではPWM制御で行い、最小パルス幅よりも短いパルス幅については位相シフト制御(PS制御)で行う。これにより、PWM制御では制御が困難な低レベル域においても制御が可能となり、出力電力の任意の低レベル域まで制御することができる。
(3)電力制御部による制御信号間の位相差制御の形態
 電力制御部による制御信号間の位相差制御は第1の形態-第3の形態の複数形態を備える。
(a)第1の形態
 第1形態において、電力制御部は、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、各増幅器に入力する制御信号の一対の制御信号間の制御信号間位相差指令値φd*を求める位相差制御を行う。
(b)第2の形態
 第2形態において、電力制御部は、各増幅器の増幅器出力の比較に基づいて、各増幅器において、制御信号の一対の信号間の制御信号間位相差指令値φd*を調整し、2つの増幅器の増幅器出力を均衡化する位相差制御を行う。
(c)第3の形態
 第3形態において、電力制御部は、2つの増幅器の各増幅器において、一方の増幅器に入力する一対の制御信号の信号間の第1の制御信号間位相差φda、及び他方の増幅器に入力する一対の制御信号の信号間の第2の制御信号間位相差φdbを同一の位相差量とする制御信号間位相差指令値φda*及びφdb*を調整する位相差制御を行う。
(4)電力制御部による制御信号セット間の位相差制御の形態
 電力制御部は、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、2つの信号セット間の位相差指令値φs*を求める。位相差制御部は、制御信号セット間の位相差指令値φs*に基づいて、位相差φsを有する制御信号を生成する位相シフト制御を行う。
(C)高周波電源装置、及び高周波電力の出力制御方法に共通して適用される形態
(1)PWM制御の制御態様
 PWM制御は第1の制御態様-第3の制御態様の複数の制御態様を含む。
(a)第1の制御形態
 PWM制御の第1の制御態様において、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、各増幅器に入力する制御信号の一対の信号間の制御信号間位相差指令値φd*を求める。
(b)第2の制御態様
 PWM制御の第2の制御態様において、各増幅器の増幅器出力の比較に基づいて、各増幅器において、制御信号の一対の信号間の制御信号間位相差指令値φd*を調整し、一対の増幅器の増幅器出力を均衡化する。
(c)第3の制御態様
 PWM制御の第3の制御態様において、一対の増幅器の各増幅器において、一方の増幅器に入力する一対の制御信号の信号間の第1の制御信号間位相差φda、及び他方の増幅器に入力する一対の制御信号の信号間の第2の制御信号間位相差φdbを同一の位相差量とする制御信号間位相差指令値φda*及びφdb*を調整する位相差制御を行う。
(2)位相シフト制御(PS制御)の制御態様
 位相シフト制御において、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、2つの制御信号のセット間の制御信号セット間位相差指令値φs*を求める。
(3)制御信号の形態
 本発明において、制御信号は位相が互いに逆相の位相関係にある差動信号の形態を用いることにより、増幅器のスイッチング素子の駆動において、耐ノイズ性が高まる。本発明では、制御信号として差動信号を用いることが望ましいが、シングルエンド信号を用いた動作を除くものではない。
 以上説明したように、本発明によれば、高周波電源装置、及び高周波電力の出力制御方法において、高周波電源装置の電源内部で消費される内部損失に起因する電力変換効率の低下を軽減することができる。
本発明の制御の概要図である。 本発明による直流電圧制御と位相差制御の使い分けを示す図である。 本発明による電力制御と出力電力との関係を説明するための図である。 本発明による電力制御と出力電力との関係を説明するための図である。 デューティ比Dutyと出力電圧との関係を説明するための図である。 PWM制御と出力電力との関係を説明するための図である。 本発明の高周波電力の出力制御方法の態様を説明するためのフローチャートである。 本発明の高周波電源装置の構成例を説明するための図である。 本発明の高周波電源装置の構成例を説明するための図である。 本発明の高周波電源装置の構成例を説明するための図である。 本発明の電力制御部の要部の構成例を説明するための図である。 本発明の高周波電源装置の制御信号、ゲート信号等を説明するための信号図である。 本発明の高周波電源装置の制御信号、ゲート信号等を説明するための信号図である。 本発明の高周波電源装置の制御信号、ゲート信号等を説明するための信号図である。 本発明の高周波電源装置の並列接続例を説明するための信号図である。
 以下、図1~図2を用いて本発明による制御の概要を説明する。本発明による電力制御に関して、図3~図4を用いて本発明による電力制御と出力電力との関係を説明し、図5を用いて内部損失と出力電力との関係を説明し、図6を用いてPWM制御と出力電力との関係を説明する。
 本発明の態様に関して、図7のフローチャートを用いて本発明の高周波電力の出力制御方法の態様を説明し、図8~図10を用いて本発明の高周波電源装置の構成例を説明する。さらに、図11を用いて電力制御部の要部の構成例を説明する。図12~図14は本発明の高周波電源装置の制御信号、ゲート信号等の信号図である。また、本発明の高周波電源装置において、図8に示した構成例を複数セット用い、これらを並列接続した構成例について図15を用いて説明する。
1.制御概要
1-1.制御概要
 本発明の制御概要を図1、図2を用いて説明する。図1は本発明による制御を説明するための概要図であり、図2は本発明による直流電圧制御と位相差制御の使い分けを説明するための図であり、図2(a)は直流電圧制御(CNTL1)により電力出力を制御する場合を示し、図2(b)及び図2(c)は位相差制御(CNTL2)により電力出力を制御する場合を示している。また、図2(b)は位相差制御(CNTL2)をPWM制御により行う場合であり、図2(c)は位相差制御(CNTL2)を位相シフト制御により行う場合である。
 本発明による高周波電力の出力の制御は、出力レベルに応じて直流電圧制御(CNTL1)と位相差制御(CNTL2)とを使い分ける。本発明の位相差制御(CNTL2)では、2つの増幅器2(2A、2B)の増幅器出力を合成器5で合成し出力電力を出力する構成に適用される。2つの増幅器2(2A、2B)の増幅器出力を合成して出力電力を生成する構成は、増幅器に入力する2つの制御信号のセット間の制御信号セット間位相差φsに基づいて増幅器出力間の増幅器出力間位相差φsampを制御し、出力電力を制御する位相シフト制御による電力制御に適用される構成である。
 本発明において、高出力レベル範囲で出力電力を制御する場合には、直流電圧制御(CNTL1)により出力電力を制御し、低出力レベル範囲で出力電力を制御する場合には、位相差制御(CNTL2)により出力電力を制御する。
 高出力レベル範囲と低出力レベル範囲とを区分する出力レベルの閾値は、直流電圧制御の構成や主回路方式、あるいは電力変換効率等を考慮して任意に定めることができる。
a.直流電圧制御(CNTL1)
 直流電圧制御による出力電力の制御では、高出力レベル範囲において、増幅器に供給する直流電圧Vdcを可変とする。
 直流電圧制御は、位相差指令値φ*を固定して位相差制御の位相差φを固定した状態とし、一対の増幅器2(2A、2B)に供給する直流電圧Vdcを直流電圧指令値Vref*に基づいて制御して各出力電力を制御し、合成した出力電力を制御する。なお、直流電圧指令値Vref*は図1には図示していない。
 直流電圧制御により電力制御を行う場合には、位相差制御の位相差φを固定状態とし、直流電圧制御のみによって出力電力を可変する。なお、位相差φの固定は、制御信号間の制御信号間位相差φd、及び制御信号セット間位相差φsの両方の制御信号の位相差を固定するものであり、これにより位相差φの制御による出力電力の可変を停止しておく。
 直流電圧制御による出力電力の制御では、高周波電源装置の内部においてはダミー抵抗による消費電力が存在しないため、電源内部で消費される内部損失、及び電力の低変換効率の課題が解消され、高効率化が図られる。
 また、直流電圧制御を出力レベル範囲の全範囲に対応させるには装置の大型化が必要となるが、本発明の直流電圧制御を適用する出力レベル範囲を任意の高出力レベル範囲に制限することにより、高周波電源装置の小型化や軽量化が図られる。
 図1において、直流電圧制御によりHighで示す高出力電力が出力され、PWM制御の位相差制御によりLow1で示す低出力電力が出力され、位相シフト制御(PS制御)の位相差制御によりLow2で示す更に低い出力レベルの低出力電力が出力される。図1中の実線の矢印、破線の矢印、及び一点鎖線の矢印は、それぞれ直流電圧制御、PWM制御の位相差制御、及び位相シフト制御(PS制御)の位相差制御の制御状態を示している。
 図2(a)は直流電圧制御(CNTL1)による電力出力の制御態様を示し、図中の横軸の左方は制御信号における制御態様を示し、右方は増幅器における制御態様を示している。また図2の縦軸は出力電力を示し、破線よりも上方は高出力レベル範囲を示し、破線よりも下方は低出力レベル範囲を示している。
 出力電力の出力レベル範囲が高出力レベル範囲では、増幅器の制御態様において直流電圧制御のみにより出力電力を可変とする。高出力レベル範囲は、直流電圧の最大値Vdc_maxと直流電圧の最小値Vdc_minにより規定される。直流電圧の最大値Vdc_maxは、例えば直流電圧を出力するAC/DCコンバータ等の直流電圧を生成する装置が備える仕様により設定される。また、直流電圧の最小値Vdc_minは、直流電圧を生成する装置の制御方式や主回路方式、あるいは電力変換効率等により任意に決定される。
 直流電圧制御では、位相差制御のPWM制御を行う制御信号間位相差φd、及び位相シフト制御を行う制御信号セット間位相差φsを固定することにより位相差制御による出力電力の制御を行なわず、直流電圧Vdcのみを可変させることにより出力電力を制御する。位相差の固定値はφs=0[deg]の他、制御信号間位相差φdは任意に定めることができる。なお、制御信号間位相差φd、及び制御信号セット間位相差φsの固定は、制御信号間位相差指令値φd*、及び制御信号セット間位相差指令値φs*を固定することにより行うことができる。
b.位相差制御(CNTL2)
 本発明の位相差制御に用いる制御信号は、シングルエンド信号あるいは差動信号を用いることができるが、出力が1kw以上で周波数範囲が27MHz~100MHzの高周波のパルス出力に適用される高周波電源装置及び高周波電力の出力制御では、位相差やデューティ情報を正確に伝送するためには耐ノイズ性が高い差動信号が好適である。以後の説明では差動信号による制御信号について説明する。なお、差動信号は、位相が互いに逆相関係にある2つの信号であり、2つの信号の差分によりシングルエンド信号に変換することができる。
 位相差制御(CNTL2)による出力電力の制御は、制御を行う出力レベル範囲を低出力レベル範囲に制限する。これにより、高周波電源装置のダミー抵抗による内部損失は低減され、高効率化が図られる。
 図1において、2つの増幅器(2A,2B)において、各1つの増幅器には一対の制御信号が入力される。増幅器2Aには制御信号Sig1a、Sig2aの一対の制御信号が入力され、増幅器2Bには制御信号Sig1b、Sig2bの一対の制御信号が入力される。
 各制御信号Sig1a、Sig2a、Sig1b、Sig2bはそれぞれ差動信号であるため、各1つの増幅器には差動信号の2信号を一対の信号と見なすと、二対の制御信号が入力される。したがって、二対の制御信号に含まれる信号数は4信号となる。
 図1において、1つの増幅器に入力される二対の制御信号間の位相差を制御信号間位相差φdとし、増幅器2Aに入力される二対の制御信号(Sig1a、Sig2a)間の位相差は制御信号間位相差φdaで表し、増幅器2Bに入力される二対の制御信号(Sig1b、Sig2b)間の位相差は制御信号間位相差φdbで表す。
 増幅器2Aに入力される二対の制御信号(Sig1a、Sig2a)、及び増幅器2Bに入力される二対の制御信号(Sig1b、Sig2b)は、それぞれ制御信号のセットを構成し、この制御信号のセット間の位相差は制御信号セット間位相差φsで表す。
 位相差制御(CNTL2)は第1の位相差制御(CNTL2d)と第2の位相差制御(CNTL2s)の2つの制御を含む。第1の位相差制御(CNTL2d)は、制御信号間位相差φdによりパルス幅を変調するPWM制御であり、PWM制御された制御信号に基づいてスイッチング素子を駆動するパルス信号のデューティ比(Duty)を可変とする。第2の位相差制御(CNTL2s)は、一対の制御信号セットのセット間の制御信号セット間位相差φsをシフトする位相シフト制御(PS制御)であり、2つの増幅器の出力電力の重複の程度を制御することにより出力電力を制御する。
 PWM制御による出力電力の制御は、高周波電源装置のダミー抵抗による内部損失が無いため、高効率化が図られる。
 図1において、CNTL2dはそれぞれ二対の制御信号の制御信号間位相差φd(φda,φdb)によりパルス幅を変調するPWM制御を示し、CNTL2sは一対の制御信号セットのセット間の制御信号セット間位相差φsをシフトする位相シフト制御(PS制御)を示している。
 パルス幅制御(PWM制御)により、増幅器2Aに入力される二対の制御信号Sig1a及び制御信号Sig2a間の位相差は制御信号間位相差φdaとなるように制御され、増幅器2Bに入力される二対の制御信号Sig1b及び制御信号Sig2bの位相差は制御信号間位相差φdbとなるように制御される。
 増幅器2Aには、制御信号間位相差φdaを有する二対の差動信号からなる制御信号Sig1a及び制御信号Sig2aが入力され、この制御信号間位相差φdaに基づいてスイッチング素子のゲート信号のデューティ比(Duty)が制御され、デューティ比(Duty)により高周波パルス出力の出力電力が制御される。
 同様に、増幅器2Bには、制御信号間位相差φdbを有する二対の差動信号からなる制御信号Sig1b及び制御信号Sig2bが入力され、この制御信号間位相差φdbに基づいてスイッチング素子のゲート信号のデューティ比(Duty)が制御され、デューティ比(Duty)により高周波パルス出力の出力電力が制御される。
 デューティ比(Duty)制御において、制御信号間位相差φdaによるデューティ比DutyA、及び制御信号間位相差φdbによるデューティ比DutyBは、それぞれ
 DutyA=φda/180[deg]  …(1)
 DutyB=φdb/180[deg]  …(2)
で表される。
 位相差制御は、低出力レベル範囲を高出力レベルと低出力レベルに分け、
 (i)高出力レベルに対して第1の位相差制御のPWM制御を適用する態様
 (ii)低出力レベルに対して第2の位相差制御の位相シフト制御(PS制御)を適用する態様
とすることができる。
(i)PWM制御を適用する態様
 図2(b)は、位相差制御(CNTL2)による出力電力の制御において、第1の位相差制御のPWM制御のみによる電力出力の制御態様を示し、図中の横軸において一点鎖線を挟んで左方は制御信号における制御態様を示し、右方は増幅器における制御態様を示している。また図中の縦軸は出力電力を示し、下側の破線を境に上方は高出力レベル側を示し、下方は低出力レベル側を示している。
 出力電力の出力レベルが低出力レベル範囲内の高出力レベル側である場合には、制御信号の制御態様でPWM制御(CNTL2d)の位相差制御により出力電力を可変とし、増幅器の制御態様において、PWM制御された制御信号の制御信号間位相差φd(φda、φdb)に基づくDuty制御により出力電力を可変とする。増幅器を駆動するゲート信号のデューティ比Duty(DutyA、DutyB)は制御信号間位相差φd(φda、φdb)に基づいて得られる。
 低出力レベル範囲内の高出力レベル側は、デューティ比が最大値となる最大デューティ比Duty_maxとデューティ比が最小値となる最小デューティ比Duty_minにより規定される。最大デューティ比Duty_maxは、スイッチング素子の出力電力と電力変換効率のバランスから最小必要デットタイムDT_minとして決定され、このときに得られる電力出力は直流電圧制御時の最小出力と一致する。また、最小デューティ比Duty_minは、増幅器が備えるスイッチング素子の応答速度に依存して定まり、スイッチング素子の最速の応答速度に対応するパルス幅により設定される。
 第1の位相差制御のPWM制御では、直流電圧制御を行うための直流電圧Vdc、及び位相シフト制御を行うための制御信号セット間位相差φsを固定し、PWM制御を行う制御信号間位相差φdのみを可変させることにより出力電力を制御する。直流電圧Vdc及び制御信号セット間位相差φsの固定値は任意に定めることができる。なお、固定する制御信号セット間位相差φsはφs=0[deg]を基本とする。制御信号セット間位相差φs=0[deg]は位相シフト制御において最大出力が得られる位相差であるので、制御信号セット間位相差φsを0[deg]に固定することにより、制御信号間位相差φdを可変として行うPWM制御において出力電力の制御幅をすることができる。
(ii)位相シフト制御(PS制御)を適用する態様
 図2(c)は、位相差制御(CNTL2)による出力電力の制御において、第2の位相差制御の位相シフト制御のみによる電力出力の制御態様を示している。図中の横軸において一点鎖線を挟んで左方は制御信号における制御態様を示し、右方は増幅器における制御態様を示している。また図中の縦軸は出力電力を示し、下側の破線を境に上方は高出力レベル側を示し、下方は低出力レベル側を示している。
 PWM制御において最小デューティ比Duty_minで制御される値よりも出力電力を低減させる場合には、PWM制御に代えて位相シフト制御を適用する。この位相シフト制御では、増幅器を駆動制御する制御信号のセット間の制御信号セット間位相差φsを0[deg]~180[deg]の範囲で可変する。位相シフト制御において制御信号セット間位相差φsが0[deg]の出力電力は、PWM制御においてデューティ比Dutyが最小デューティ比Duty_minの出力電力に相当する。また、位相シフト制御において制御信号セット間位相差φsが180[deg]の出力電力は電力0に相当する。
 出力電力の出力レベルが低出力レベル範囲内の低出力レベル側である場合には、制御信号の制御態様では位相差制御の位相シフト制御(CNTL2s)により出力電力を可変とし、増幅器の制御態様では位相シフト制御された制御信号の制御信号セット間位相差φsに基づく増幅器間位相差φsampのゲート信号によりスイッチング素子を駆動して出力電力を可変とする。
 位相シフト制御(CNTL2s)を行う制御信号セット間位相差φsの範囲は、0[deg]~180[deg]の範囲である。位相シフト制御(CNTL2s)において、制御信号セット間位相差φsが0[deg]のときには位相シフト制御での最大出力電力が得られ、制御信号セット間位相差φsが180[deg]のときには位相シフト制御での最小出力電力が得られる。
 ここで、制御信号セット間位相差φsが0[deg]のときの出力電力を、PWM制御(CNTL2d)においてデューティ比が最小デューティ比Duty_minのときの出力電力に合わせることにより、PWM制御(CNTL2d)と位相シフト制御(CNTL2s)との切り替え時点での出力電力のずれを無くすことにより、出力電力の可変は連続的となる。
 位相差制御において、PWM制御で制御されるパルス幅はゲート信号のパルス幅を規定する。ゲート信号のパルス幅はスイッチング素子の動作特性に制限されるため、PWM制御により絞られるパルス幅の最小パルス幅も制限され、最小パルス幅よりも短いパルス幅によるPWM制御は支障が生じるおそれがある。
 本発明は、ゲート信号のパルス幅を、PWM制御により絞られるパルス幅の最小パルス幅まではPWM制御で行い、最小パルス幅よりも短いパルス幅については位相シフト制御(PS制御)で行うことにより、PWM制御では制御が困難な低レベル域においても制御が可能となり、出力電力の任意の低レベル域までの制御が可能となる。
 出力電力の最小出力がPWM制御によって制御され得る程度の大きさである場合には、位相シフト制御(PS制御)を適用することなくPWM制御のみによって位相差制御を行ってもよい。
 位相シフト制御(PS制御)は電源内部で消費される内部損失により電力変換効率が低いという課題があるが、本発明では位相シフト制御(PS制御)の適用範囲を低レベル側に制限することにより、高レベル側においても位相シフト制御(PS制御)を適用した場合よりも内部損失の損失量は小さくすることができる。これにより、出力レベルの全範囲内での内部損失が低減され、高効率化が図られる。
 本発明による直流電圧制御及び位相差制御は、各出力レベル範囲内において出力電力は連続的に可変であり、直流電圧制御から位相差制御へ、あるいは位相差制御から直流電圧制御への制御の切り替え時点において、両制御による出力レベルを合わせることにより、出力レベルの出力電力は全範囲において不連続となることなく連続的に可変とすることができる。
1-2.電力制御と出力電力との関係
 本発明は、高出力電圧範囲及び低出力電圧範囲の各出力電圧範囲において、出力電力の変化特性を任意に設定することができる。図3、4は変化特性例を示している。ここでは、高出力電圧High、低出力電圧Low1、Low2、零出力電圧の4つの出力電圧範囲の例を示している。
(a)一定出力電力の態様
 図3は各出力電圧範囲内において一定の出力電圧により出力電力を一定とする態様例である。高出力電圧範囲において、Highの一定出力電力を出力する場合には、制御信号間位相差φda、φdb、制御信号セット間位相差φsを固定し、直流電圧Vdcを可変とする直流電圧制御により出力電力を制御する。このとき直流電圧Vdcを一定電圧とすることにより出力電力を一定とする。
 Low1の一定出力電力を出力する場合には、直流電圧Vdc及び制御信号セット間位相差φsを固定し、制御信号間位相差φda、φdbを可変とするPWM制御により出力電力を制御する。このとき制御信号間位相差φda、φdbを一定位相差とすることにより出力電力を一定とする。
 Low2の一定出力電力を出力する場合には、直流電圧Vdc及び制御信号間位相差φda、φdbを固定し、制御信号セット間位相差φsを可変とする位相シフト制御により出力電力を制御する。このとき制御信号セット間位相差φsを一定位相差とすることにより出力電力を一定とする。
 零出力電圧の場合には、直流電圧制御、あるいは位相差制御により出力電圧が零出力電圧となるように設定しておき、出力電圧の可変制御は行わない。
 この一定出力電力の態様によれば、各出力電圧範囲間において出力電力は階段状の電力変化となる。
(b)線形的可変の態様
 図4(a)は各出力電圧範囲内において出力電力を線形的に可変とする態様例である。
高出力電圧範囲において、Highのレベルで出力電力を線形的に可変とする場合には、制御信号間位相差φda、φdb、制御信号セット間位相差φsを固定し、直流電圧Vdcを可変とする直流電圧制御により出力電力を制御する。このとき出力電力が線形的に可変となるように、直流電圧Vdcは出力電力の線形変化に対してルート関数的(平方根関数的)に可変とする。
 Low1のレベルで出力電力を線形的に可変とする場合には、直流電圧Vdc及び制御信号セット間位相差φsを固定し、制御信号間位相差φda、φdbを可変とするPWM制御により出力電力を制御する。このとき、制御信号間位相差φda、φdbの変化と出力電力の変化との間は、必ずしも線形的な関係とはならないため、出力電力が線形的に可変となるように制御信号間位相差φda、φdbの変化を調整する。
 Low2のレベルで出力電力を線形的に可変とする場合には、直流電圧Vdc及び制御信号間位相差φda、φdbを固定し、制御信号セット間位相差φsを可変とする位相シフト制御により出力電力を制御する。このとき、制御信号セット間位相差φsの変化と出力電力の変化との間は、必ずしも線形的な関係とはならないため、出力電力が線形的に可変となるように制御信号セット間位相差φsの変化を調整する。
 零出力電圧の場合には、直流電圧制御、あるいは位相差制御により出力電圧が零出力電圧となるように設定しておき、出力電圧の可変制御は行わない。
(c)指数関数的可変の態様
 図4(b)は各出力電圧範囲内において出力電力を指数関数的に可変とする態様例である。高出力電圧範囲において、Highのレベルで出力電力を指数関数的に可変とする場合には、制御信号間位相差φda、φdb、制御信号セット間位相差φsを固定し、直流電圧Vdcを可変とする直流電圧制御により出力電力を制御する。このとき直流電圧Vdcは出力電力が指数関数的に可変となるように可変とする。
 Low1のレベルで出力電力を指数関数的に可変とする場合には、直流電圧Vdc及び制御信号セット間位相差φsを固定し、制御信号間位相差φda、φdbを可変とするPWM制御により出力電力を制御する。このとき、制御信号間位相差φda、φdbの変化と出力電力の変化との間は、必ずしも線形的な関係とはならないため、出力電力が指数関数的に可変となるように制御信号間位相差φda、φdbの変化を調整する。
 Low2のレベルで出力電力を指数関数的に可変とする場合には、直流電圧Vdc及び制御信号間位相差φda、φdbを固定し、制御信号セット間位相差φsを可変とする位相シフト制御により出力電力を制御する。このとき、制御信号セット間位相差φsの変化と出力電力の変化との間は、必ずしも線形的な関係とはならないため、出力電力が指数関数的に可変となるように制御信号セット間位相差φsの変化を調整する。
 零出力電圧の場合には、直流電圧制御、あるいは位相差制御により出力電圧が零出力電圧となるように設定しておき、出力電圧の可変制御は行わない。
1-3.内部損失と出力電力との関係
 図5はD級、F級、EF級のスイッチングモード方式によるプッシュプル増幅器のPWM制御時における出力電圧波形を示している。出力電圧波形Vddは、ドレイン-ドレイン間電圧を示している。
 出力電圧波形Vddは方形波状波形であり、振幅はドレイン-ソース間電圧Vdsである。スイッチングモードの高周波電源では、基本波以外の高調波成分は出力フィルタにより除去され、基本波のみが出力される。そこで、出力電圧波形Vddを、基本波成分のみの正弦波電圧Vacとして等価計算すると以下の式(3)で表される。ここで、デューティ比Dutyは半周期の180[deg]で正規化されている。
 Vac=(4/π)・Vds・sin{(π/2)・Duty}・sin(ω・t) …(3)
 Vac:正弦波電圧
 Vds:ドレイン-ソース間電圧
 Duty:デューティ比
 ωs:基本波の角周波数
 図6は、高周波電源においてデューティ比Dutyを可変とするPWM制御した場合の出力電力Poutを式(3)に基づいて求めた図である。図6において、横軸はデューティ比Duty[%]を示し、縦軸はPoutの電力を示している。なお、スイッチングモードの場合には、ゲート信号電圧VgsにデットタイムDTを設けることにより高効率化が図られている。
 式(3)に示すVacはsin関数内にデューティ比Dutyの項が存在するため、S字状の曲線を描く関数となる。S字状の曲線において、デューティ比Dutyが20%~80%の範囲ではほぼ直線状の線形特性を示すのに対して、デューティ比Dutyが80%以上の範囲、及びデューティ比Dutyが20%以下の範囲では傾斜が緩くなり、非線形状の特性が強く現れる。このような正弦波電圧Vacの出力特性から、高周波電源のPWM制御において、デューティ比Dutyが20%~80%の範囲以外では、Duty対出力電力ゲインが極端に低く変化し、デューティ比Dutyにより出力電力ゲインを調整することが難しくなって制御性が悪くなる。
 上記した出力電力の特性から、制御性が低くなるデューティ比Dutyの範囲を避けるために、PWM制御における定格Dutyを80%の近傍に選定する。80%近傍のデューティ比Dutyは制御信号間位相差φda、φdbに換算すると140[deg]~160[deg]に相当する。
 一方、最小パルス幅となる最小デューティ比Duty_minを20%に選定した場合には、出力電力は定格出力に対して1/10程度となる。デューティ比Dutyの範囲をこのように20%~80%の範囲に選定し、このデューティ比Dutyの範囲で定まる領域をPWM制御領域とすると、最小デューティ比Duty_minにおいて出力電力は定格出力の10%に低減される。なお、図6では、PWM制御領域における出力電力の範囲をP_highとP_lowとして表している。
最小デューティ比Duty_minで制御される値よりも出力電力を低減する場合には、PWM制御に代えて位相シフト制御を適用する。この位相シフト制御では、増幅器間の位相差である制御信号セット間位相差φsを0[deg]~180[deg]の範囲で可変する。位相シフト制御において制御信号セット間位相差φsが0[deg]の出力電力は、PWM制御においてデューティ比Dutyが最小デューティ比Duty_minの出力電力に相当する。また、位相シフト制御において、制御信号セット間位相差φsが180[deg]の出力電力は電力0に相当する。
 位相シフト制御の最大内部損失は制御信号セット間位相差φsが180[deg]としたときであるが、本発明ではこのときの内部損失はデューティ比Dutyが最小デューティ比Duty_minのときの出力電力に一致する。位相シフト制御により全制御範囲を出力電力を制御する場合において、出力電力を0まで絞った場合(φs=180[deg])には、High側の定格電力と同等の電力が内部のダミー抵抗で消費されるが、本発明によれば、制御信号セット間位相差φsが180[deg]はデューティ比Dutyが最小デューティ比Duty_minの出力電力に相当するため、内部損失は約1/10程度に収まる。
 したがって、定格電力の10%相当の内部損失で済むため、位相シフト制御のみによる出力電力制御と比較して内部損失が約90%改善されることになる。
2.高周波電力の出力制御方法
 本発明の高周波電力の出力制御方法を図7のフローチャートを用いて説明する。以下のフローチャートではSの符号を用いて各工程の流れを表している。
 本発明による高周波電力の出力制御の概略は、出力電力レベルに応じて直流電圧制御と位相差制御とを使い分け、これにより高周波電源のダミー抵抗による内部損失を低減することにある。
 図7(a)は出力制御の概略を説明するためのフローチャートである。出力電力に変更がある場合には(S1)、出力電力のレベルが、予め設定されたHighレベル範囲(高出力レベル範囲)にあるか、あるいはLowレベル範囲(低出力レベル範囲)にあるかを判定する(S2)。出力電力レベルがHighレベル範囲内にあるときには直流電圧制御を行い(S3)、出力電力レベルがLowレベル範囲内にあるときには位相差制御を行う(S4)。
 図7(b)は位相差制御の詳細な流れを示すフローチャートであり、図7(a)に示したフローチャートのS4の工程を破線の囲みで示している。出力電力レベルがLowレベル範囲内にあると判定されると(S2)、増幅器のスイッチング素子を駆動する駆動信号のデューティ比Dutyと予め設定された最小デューティ比Duty_minとを比較する(S4a)。
 S4aの比較工程において、デューティ比Dutyが最小デューティ比Duty_minよりも大きい場合には、位相差制御の位相差演算により制御信号間位相差指令値φda*、φdb*を求め、求めた制御信号間位相差指令値φda*、φdb*に基づいて制御信号間位相差φda、φdbを有する制御信号を生成する(S4b1)。生成した制御信号間位相差φda、φdbに基づいて駆動信号のデューティ比DutyA、DutyBを求め、求めたデューティ比DutyA、DutyBによって増幅器のスイッチング素子をPWM制御する(S4b2)。
 一方、S4aの比較工程において、デューティ比Dutyが最小デューティ比Duty_minよりも小さい場合には、位相差制御の位相差演算により制御信号のセット間の位相差である制御信号セット間指令値位相差φs*を求める。求めた制御信号セット間位相差指令値φs*に基づいて制御信号セット間位相差φsを有する制御信号を生成し(S4c1)、増幅器のスイッチング素子を位相シフト制御する(S4c2)。
 なお、S4aの工程において、デューティ比Dutyと最小デューティ比Duty_minとが一致する場合に、S4bの制御信号間位相差によるPWM制御を行うか、あるいはS4cの制御信号セット間位相差による位相シフト制御を行うかは、任意に定める設定することができる。
 図7(b)に示したフローチャートでは、位相差制御においてPWM制御と位相シフト制御との何れか一方を選択する構成としているが、図7(c)のフローチャートで示すように、PWM制御と位相シフト制御とを同時に実行する態様とすることもできる。
 位相差制御(S4)において、制御信号間位相差指令値φda*、φdb*及び制御信号セット間位相差指令値φs*を演算で求め、求めた位相差に係る各指令値φda*、φdb*、及びφs*に基づいて各位相差φda、φdb及びφsを有する制御信号を生成し、PWM制御(S4b)と共に位相シフト制御(PS制御)を行う(S4c)。
 位相差制御(S4)において、PWM制御(S4b)と位相シフト制御と(S4c)とを同時に行う場合には、両制御を個別に行う場合と比較して内部損失が高まる。例えば、デューティ比Dutyが50%、制御信号セット間位相差φsが90[deg]の場合には、定格出力の25%が内部損失となる。しかしながら、この内部損失は位相シフト制御のみによる出力電力制御と比較して1/4まで損失は低減するため、従来方式に対して優位性を有している。
3.高周波電源装置
 図8~図10を用いて本発明の高周波電源装置の構成例を説明する。
3-1.構成例1
 構成例1を図8に基づいて説明する。高周波電源装置1は、一対の増幅器2A、2Bと、増幅器2A、2Bの増幅器出力を合成して高周波パルス出力を生成する合成器5とを備える。
 増幅器2A、2Bは、D級、F級、あるいはEF級のスイッチングモード方式による電力増幅器であり、電力増幅器に直流電圧Vdcを供給する直流電源を構成する構成要素としてAD/DCコンバータを備える。図8では、2つのLDMOSあるいはワンパッケージで構成されたスイッチング素子と、出力トランスとローパスフィルタとが直列接続された構成を一例として示している。出力トランスの中点にはAC/DCコンバータ6の直流電源から直流電圧Vdcが印加されている。
 増幅器2A、2Bがそれぞれ備える2つのスイッチング素子のゲート端子には、駆動回路3A、3Bから駆動信号であるゲート信号Gsig1a、Gsig2a、及びゲート信号Gsig1b、Gsig2bが入力され、各スイッチング素子はこれらのゲート信号で駆動される。
 増幅器2A、2Bの増幅器出力は、サーキュレータ/アイソレータ4A、4Bを介して合成器5に入力される。合成器5は2A、2Bの増幅器出力を合成し、高周波パルス出力として出力する。サーキュレータ/アイソレータ4A、4Bにはダミー抵抗が接続される。増幅器出力のうち合成器5で合成に供されなかった出力はダミー抵抗において消費され、内部損失となる。
 高周波電源装置1は、増幅器2A、2Bの出力電力を制御する構成として直流電圧制御を行う構成、及び位相差制御を行う構成を備え、直流電圧制御は電力制御部10及び直流電圧制御部11により構成され、位相差制御は電力制御部10及び制御信号生成部12により構成される。
(電力制御部)
 電力制御部10は出力電力を制御するための指令値を演算し、制御信号生成部12は電力制御部10の演算で求めた位相差制御指令値に基づいて位相制御差制御のための制御信号を生成する。
 電力制御部10は、高周波電源装置1が出力する高周波パルス出力の出力レベルに応じて、直流電圧制御と位相差制御とを切り替え、出力レベルが高出力レベル範囲では直流電圧制御により直流電圧指令値Vref*を演算し、出力レベルが低出力レベル範囲では位相差制御により位相差指令値φ*(φd*、φs*)を演算し、直流電圧指令値Vref*を直流電圧制御部11に送り、位相差指令値φ*(φd*、φs*)を制御信号生成部12に送る。
 直流電圧指令値Vref*、及び位相差指令値φ*(φd*、φs*)は、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて演算を行うことで得られる。
 電力制御部10は、出力電力を直流電圧制御により制御するための直流電圧指令値Vref*を演算する直流電圧演算部10a、及び出力電力を位相差制御により制御するための位相差指令値φ*(φd*、φs*)を演算する位相差演算部10bを備える。
(直流電圧演算部)
 直流電圧演算部10aは、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて出力電力を出力電力指令値FWD_ref*に一致させるための直流電圧指令値Vref*を演算する。
 直流電圧指令値Vref*の演算は、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分を零とするフィードバック制御により行うことができる。例えば、差分(FWD_ref*)-(FWD_FB)が正の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも小さいことから、出力電力指令値であるVref*を増加させることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。逆に、差分(FWD_ref*)-(FWD_FB)が負の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも大きいことから、出力電力指令値であるVref*を減少させることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。
 直流電圧指令値Vref*は、直流電圧制御部11において、一対の増幅器2A、2Bに供給する直流電圧Vdcを制御する操作量αの算出に用いられる。
(位相差演算部10b)
 位相差演算部10bは、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分に基づいて出力電力を位相差制御するための位相差指令値φ*を演算する。位相差指令値φ*は、PWM制御のための制御信号間位相差指令値φda*、φdb*、及び位相差制御(PS制御)のための制御信号セット間位相差指令値φs*を含み、制御信号生成部12は位相差指令値φ*(φda*、φdb*、φs*)に基づいて位相差φ(φda、φdb、φs)を備えた制御信号を生成する。
(直流電圧制御部、及び制御信号生成部)
 高周波電源装置1は、出力電力を制御する直流電圧制御部11と、一対の増幅器2A、2Bに入力する制御信号の位相差φ(φd、φs)を、電力制御部10が演算する位相差指令値φ*(φd*、φs*)に基づいて差動信号を生成し、出力電力を制御する制御信号生成部12とを備える。
 直流電圧制御に用いる直流電圧指令値Vref*、位相差制御に用いる制御信号間位相差φda、φdb及び制御信号セット間位相差φsは電力制御部10の演算により得られる。
(直流電圧制御部)
 直流電圧制御を行う構成として直流電圧制御部11を備える。直流電圧制御部11は、直流電圧指令値Vref*に基づいて操作量αを生成する。直流電源を構成するAC/DCコンバータ6は操作量αに基づいて制御され、直流電圧指令値Vref*に応じた直流電圧Vdcの出力電圧を増幅器2A、2Bに供給する。
 直流電圧制御部11は、増幅器2A、2Bから帰還されるフィードバック電圧Vdc_FBと直流電圧指令値Vref*とを比較し、直流電圧Vdcが直流電圧指令値Vref*と一致するようにフィードバック制御を行う。
(制御信号生成部)
 位相差制御を行う構成として制御信号生成部12を備える。制御信号生成部12は、PWM制御を担う位相差制御機能部12Aa、12Ab、及び位相シフト制御を担う位相差制御機能部12Bを備える。
 PWM制御の位相差制御機能部12Aa、12Abの制御信号間位相差φda、φdb、及び位相シフト制御の位相差制御機能部12Bの制御信号セット間位相差φsは、電力制御部10の演算処理により得られる位相指令値に基づいて生成される。
(PWM制御)
 PWM制御を担う位相差制御機能部12Aa、12Abは、それぞれ増幅器2Aを制御するための制御信号Sig1a、Sig2a、及び増幅器2Bを制御するための制御信号Sig1b、Sig2bを生成する。制御信号Sig1a、Sig2a、Sig1b、Sig2bを位相が互いに逆相関係にある差動信号により構成される場合には、各増幅器には一対の差動信号を含む二対の制御信号が入力される。これにより、増幅器2Aに入力される制御信号Sig1a、Sig2aは、一対の差動信号を含む二対の制御信号からなるセット信号Sigaを構成し、増幅器2Bに入力される制御信号Sig1b、Sig2bにおいても同様に、一対の差動信号を含む二対の制御信号からなるセット信号Sigbを構成する。したがって、セット信号Siga及びセット信号Sigbに含まれる信号数は4信号となる。
 増幅器2Aに入力されるセット信号Sigaを構成する制御信号Sig1a、Sig2aにおいて、制御信号Sig1aと制御信号Sig2aとの間の制御信号間位相差φdaは制御信号間位相差指令値φda*に基づいて生成され、この制御信号間位相差φdaに基づいて、駆動回路3Aが出力するゲート信号Gsig1a、Gsig2aのパルス幅がPWM制御される。
 同様に、増幅器2Bに入力されるセット信号Sigbを構成する制御信号Sig1b、Sig2bにおいて、制御信号Sig1bと制御信号Sig2bとの間の制御信号間位相差φdbは制御信号間位相差指令値φdb*に基づいて生成され、この制御信号間位相差φdbに基づいて、駆動回路3Bが出力するゲート信号Gsig1b、Gsig2bのパルス幅がPWM制御される。
 PWM制御により、駆動回路3Aは制御信号間位相差φdaに対応した増幅器出力を出力し、駆動回路3Bは制御信号間位相差φdbに対応した増幅器出力を出力する。増幅器2A、2Bから同一の制御信号間位相差φdに対応した増幅器出力を出力する場合には、制御信号間位相差φdaと制御信号間位相差φdbとを同一の位相差としてPWM制御を行う。
 制御信号間位相差指令値φd*の演算は、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分を零とするフィードバック制御により行うことができる。
 例えば、差分(FWD_ref*)-(FWD_FB)が正の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも小さいことから、制御信号間位相差指令値φd*を増加させ、パルス幅を広げるデューティ比Dutyを最大デューティ比Duty_maxに近づけることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。
 逆に、差分(FWD_ref*)-(FWD_FB)が負の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも大きいことから、制御信号間位相差指令値φd*を減少させてパルス幅を狭めデューティ比Dutyを最小デューティ比Duty_minに近づけることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。
(位相シフト制御)
 位相シフト制御を担う位相差制御機能部12Bは、それぞれ増幅器2A、2Bを制御するための制御信号Sig1a、Sig2aのセット信号Sigaと制御信号Sig1b、Sig2bのセット信号Sigbとのセット信号間に制御信号セット間位相差φsを付与する。
 制御信号セット間位相差φsは、駆動回路3Aが出力するゲート信号Gsig1a、Gsig2aの信号セットと、駆動回路3Bが出力するゲート信号Gsig1b、Gsig2bのセット信号との信号セット間に位相差φsを付与し、駆動回路3Aの増幅器出力と駆動回路3Bの増幅器出力とを同時に出力する位相の重なりを制御する位相シフト制御に用いられる。駆動回路3Aの増幅器出力と駆動回路3Bの増幅器出力との間の増幅器出力間位相差φsampは、制御信号セット間位相差指令値φs*によって生成された制御信号の制御信号セット間位相差φsに基づいて位相シフト制御制御される。
 制御信号セット間位相差指令値φs*の演算は、出力電力指令値FWD_ref*と出力電力フィードバック値FWD_FBとの差分を零とするフィードバック制御により行うことができる。
 例えば、差分(FWD_ref*)-(FWD_FB)が正の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも小さいことから、制御信号セット間位相差指令値φs*を0[deg]に近づけることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。
 逆に、差分(FWD_ref*)-(FWD_FB)が負の値であるときには、出力電力フィードバック値FWD_FBが出力電力指令値FWD_ref*よりも大きいことから、制御信号セット間位相差φsを180[deg]に近づけることにより出力電力フィードバック値FWD_FBを出力電力指令値FWD_ref*に近づける。
 PWM制御の位相差制御機能部12Aa、12Ab、及び位相シフト制御の位相差制御機能部12Bは、電力制御部10の演算処理で得られた制御信号間位相差指令値φda*、φdb*及び制御信号セット間位相差指令値φs*に基づいて、クロック信号(CLK信号)を基準とした差動信号の制御信号Sig1a、Sig2a及び制御信号Sig1b、Sig2bを生成する。
 PWM制御の位相差制御機能部12Aa、12Ab、及び位相シフト制御の位相差制御機能部12Bは、各機能部分をDDS(ダイレクト・デジタル・シンセシス)の周波数/位相を可変とする信号発振器、あるいはFPGA(ファイルド・プログラマブル・ゲート・ウエイ)の集積回路等により構成することができる。
 なお、図8では、直流電圧指令値Vref*を丸付き数字1で示し、制御信号間位相差指令値φd*(φda*、φdb*)を丸付き数字2で示し、制御信号セット間位相差指令値φs*を丸付き数字3で示している。
3-2.構成例2
 構成例2を図9に基づいて説明する。構成例2は、制御信号生成部12で生成した制御信号間位相差φdが、電力制御部10の演算で得られた制御信号間位相差指令値φd*と一致しているか否かを判定し、不一致の場合には制御信号生成部12で生成する制御信号間位相差φdが制御信号間位相差指令値φd*と一致するように調整する。
 制御信号間位相差φdの調整において、制御信号Sig1a、Sig2aの信号間の制御信号間位相差φdaの調整と、制御信号Sig1b、Sig2bの信号間の制御信号間位相差φdbの調整とを個別に行う。
 図9において、丸印付きの符号a1,a2は、制御信号生成部12から出力される制御信号Sig1a、Sig2aを電力制御部10にフィードバックし、制御信号Sig1aと制御信号Sig2aの間の制御信号間位相差φdaを求める経路を示し、丸印付きの符号b1,b2は、制御信号生成部12から出力される制御信号Sig1b、Sig2bを電力制御部10にフィードバックし、制御信号Sig1bと制御信号Sig2bの間の制御信号間位相差φdbを求める経路を示している。
 位相差演算部10bは、演算で得られた制御信号間位相差指令値φda*とフィードバックにより得られた制御信号間位相差φdaと比較し、制御信号間位相差φdaが制御信号間位相差指令値φda*と一致するように制御信号生成部12に指令する指令値を調整する。同様に、演算で得られた制御信号間位相差指令値φdb*とフィードバックにより得られた制御信号間位相差φdbと比較し、制御信号間位相差φdbが制御信号間位相差指令値φdb*と一致するように制御信号生成部12に指令する指令値を調整する。制御信号生成部12は、調整された指令値に基づいて制御信号間位相差φda、φdbを調整する。
3-3.構成例3
 構成例3を図10に基づいて説明する。構成例3は、増幅器2A、2Bで生成した増幅器出力間に差異が発生しているか否かを判定し、不一致の場合には、制御信号生成部12で生成する制御信号セット間位相差φsを調整する。図10において、丸印付きの符号c、符号dは、増幅器2A、増幅器2Bの増幅器出力を電力制御部10にフィードバックして制御信号セット間位相差φsを求める経路を示している。
 位相差演算部10bは、演算で得られた制御信号セット間位相差指令値φs*とフィードバックにより得られた制御信号セット間位相差φsと比較し、制御信号セット間位相差φsが制御信号セット間位相差指令値φs*と一致するように制御信号生成部12に指令する指令値を調整する。制御信号生成部12は、調整された指令値に基づいて制御信号セット間位相差φsを調整する。
3-4.電力制御部の要部の構成例
 図11は電力制御部の要部の構成例を示している。ここでは、出力電力フィードバック値FWD_FBがHigh出力とLow出力の2段階の出力レベルである例を示している。
 出力電力フィードバック値FWD_FBがHigh出力の出力レベルである場合には、High_hold信号によりHigh出力をサンプリング(保持)し、サンプリングしたHigh出力とHigh側の出力電力指令値FWD_ref*(H)との差分を求め、この差分を電力コントローラ10a1で電力増幅して直流電圧指令値Vref*を演算する。直流電圧指令値Vref*は、電力コントローラ10a1により操作量αに変換され、直流電源6のAC/DCコンバータを制御する。直流電源6は交流電源の交流を直流に交直変換して直流電圧Vdcを出力する。
 出力電力フィードバック値FWD_FBがLow出力の出力レベルである場合には、Low_hold信号によりLow出力をサンプリング(保持)し、サンプリングしたLow出力とLow側の出力電力指令値FWD_ref* (L)との差分を求め、この差分を電力コントローラ10b1で電力増幅した後、制御信号間位相差指令値φd*及び制御信号セット間位相差指令値φs*の各位相差データを演算する。
3-5.概略信号例
3-5a.高出力レベル(直流電圧制御)の信号例
 図12は本発明の高周波電源装置の各部の信号の概略を示し、高出力レベル範囲において直流電圧制御を行う際の概略信号例である。
 直流電圧制御を行う場合には、制御信号間位相差指令値φd*及び制御信号セット間位相差指令値φs*を固定し、直流電圧Vdcによる直流電圧制御により出力電力の可変制御を行う。
 図12(a)、(b)は増幅器(AMP_UNITA)側での制御信号Sig1a、Sig2aを示し、図12(c)、(d)は増幅器(AMP_UNITB)側での制御信号Sig1b、Sig2bを示している。各信号はP、Nの符号で示した位相が互いに逆相の関係にある差動信号の例を示している。図12(a),(b),(c),(d)では信号Pを実線で示し、信号Nを破線で示している。
 図12(e)は、制御信号Sig1aと制御信号Sig2aのセット信号と、制御信号Sig1bと制御信号Sig2bのセット信号との制御信号セット間位相差指令値φs*を示し、制御信号セット間位相差指令値φs*が固定状態であることを示している。制御信号セット間位相差指令値φs*は例えば0[deg]の固定値とすることができるが、0[deg]以外の位相差としてもよい。
 図12(f)は、制御信号Sig1aと制御信号Sig2aとの制御信号間位相差指令値φda*、及び制御信号Sig1bと制御信号Sig2bとの制御信号間位相差φdb*が固定状態であることを示している。制御信号間位相差指令値φda*、φdb*が固定されていることから、増幅器を駆動するゲート信号のデューティ比Dutyについても固定される(図12(g))。
 制御信号間位相差指令値φda*、φdb*の固定値は、高効率化を考慮すると140[deg]-160[deg]が推奨値であり、この制御信号間位相差φdに基づくデューティ比Dutyを定格Dutyとして設定する。
 図12(h)、(i)は増幅器(AMP_UNITA)側のゲート信号電圧Vgs1a、Vgs2aであり、図12(j)、(k)は増幅器(AMP_UNITB)側のゲート信号電圧Vgs1b、Vgs2bであり、それぞれのパルス幅は図12(g)のデューティ比DutyA、DutyBで定まる。なお、DTAはゲート信号電圧Vgs1aとゲート信号電圧Vgs2aの間に設けられるデットタイムであり、DTBはゲート信号電圧Vgs1bとゲート信号電圧Vgs2bの間に設けられるデットタイムである。図12(l)は直流電圧制御による操作量αで定められる直流電圧Vdcである。
 ゲート信号電圧Vgs1aとゲート信号電圧Vgs1bとの位相差は増幅器2Aと増幅器2Bの増幅器出力間位相差φsampであり、制御信号セット間位相差φsに対応している。制御信号セット間位相差指令値φs*が0[deg]の固定値に固定されている場合には、増幅器出力間位相差φsampは0[deg]となる。
3-5b.低出力レベル(PWM制御)の信号例
 図13は本発明の高周波電源装置の各部の信号の概略を示し、低出力レベル範囲においてPWM制御による位相差制御を行う際の概略信号例である。
 PWM制御を行う場合には、直流電圧指令値Vdc*及び制御信号セット間位相差指令値φs*を固定し、制御信号間位相差φdを可変とする位相シフト制御により出力電力の可変制御を行う。
 図13(a)、(b)は増幅器(AMP_UNITA)側での制御信号Sig1a、Sig2aを示し、図13(c)、(d)は増幅器(AMP_UNITB)側での制御信号Sig1b、Sig2bを示している。各信号はP、Nの符号で示した位相が互いに逆相の関係にある差動信号の例を示している。図13(a),(b),(c),(d)では信号Pを実線で示し、信号Nを破線で示している。
 図13(e)は、制御信号Sig1aと制御信号Sig2aのセット信号と、制御信号Sig1bと制御信号Sig2bのセット信号との制御信号セット間位相差指令値φs*を示し、制御信号セット間位相差指令値φs*が固定状態であることを示している。
 図13(f)は、制御信号Sig1aと制御信号Sig2aとの制御信号間位相差φda、及び制御信号Sig1bと制御信号Sig2bとの制御信号間位相差指令値φdb*が可変状態であることを示している。制御信号間位相差指令値φda*、φdb*を可変とすることにより、増幅器を駆動するゲート信号のデューティ比Dutyは可変となる(図13(g))。
 図13(h)、(i)は増幅器(AMP_UNITA)側のゲート信号電圧Vgs1a、Vgs2aであり、図13(j)、(k)は増幅器(AMP_UNITB)側のゲート信号電圧Vgs1b、Vgs2bであり、それぞれのパルス幅は図13(g)のデューティ比DutyA、DutyBにより可変となる。なお、DTAはゲート信号電圧Vgs1aとゲート信号電圧Vgs2aの間に設けられるデットタイムであり、DTBはゲート信号電圧Vgs1bとゲート信号電圧Vgs2bの間に設けられるデットタイムであり、デューティ比DutyA及びDutyBの変化に伴って変化する。デューティ比DutyA及びDutyBは、高出力レベル時に設定した定格Dutyよりも出力電力を絞るように可変とする。
 図13(l)は直流電圧制御による操作量αで定められる直流電圧Vdcであり、直流電圧制御は行われないため固定される。
 ゲート信号電圧Vgs1aとゲート信号電圧Vgs1bとの位相差は増幅器2Aと増幅器2Bの増幅器出力間位相差φsampであり、制御信号セット間位相差φsに対応している。制御信号セット間位相差指令値φs*が0[deg]の固定値に固定されている場合には、増幅器出力間位相差φsampは0[deg]となる。
 PWM制御は、高出力レベル時に設定した定格Dutyから最小デューティ比Duty_minの範囲で制御信号間位相差φdを可変させ、最小デューティ比Duty_minを超えてさらに低出力側に出力電力を垂下させる場合には、位相シフト制御を適用する。
3-5c.低出力レベル(位相シフト制御)の信号例
 図14は本発明の高周波電源装置の各部の信号の概略を示し、低出力レベル範囲において位相シフト制御による位相差制御を行う際の概略信号例である。
 位相シフト制御は、PWM制御によって最小デューティ比Duty_minまでパルス幅を絞っても出力電力が下げきれない場合に適用する。位相シフト制御を行う場合には、直流電圧指令値Vdc*及び制御信号間位相差指令値φd*を固定し、制御信号セット間位相差φsを可変とする位相シフト制御により出力電力の可変制御を行う。制御信号セット間位相差φsを0[deg]≦φs≦180[deg]の範囲で可変とすることで出力電力を零まで垂下させることができる。
 図14(a)、(b)は増幅器(AMP_UNITA)側での制御信号Sig1a、Sig2aを示し、図14(c)、(d)は増幅器(AMP_UNITB)側での制御信号Sig1b、Sig2bを示している。各信号はP、Nの符号で示した位相が互いに逆相の関係にある差動信号の例を示している。図14(a),(b),(c),(d)では信号Pを実線で示し、信号Nを破線で示している。
 図14(e)は、制御信号Sig1aと制御信号Sig2aのセット信号と、制御信号Sig1bと制御信号Sig2bのセット信号との制御信号セット間位相差指令値φs*を示し、制御信号セット間位相差指令値φs*が可変状態であることを示している。
 図14(f)は、制御信号Sig1aと制御信号Sig2aとの制御信号間位相差指令値φda*、及び制御信号Sig1bと制御信号Sig2bとの制御信号間位相差指令値φdb*が固定状態であることを示している。制御信号間位相差指令値φda*、φdb*を固定することにより、増幅器を駆動するゲート信号のデューティ比Dutyは固定値となる(図14(g))。
 図14(h)、(i)は増幅器(AMP_UNITA)側のゲート信号電圧Vgs1a、Vgs2aであり、図14(j)、(k)は増幅器(AMP_UNITB)側のゲート信号電圧Vgs1b、Vgs2bであり、それぞれのパルス幅は図14(g)のデューティ比DutyA、DutyBの固定値で固定状態となる。なお、DTAはゲート信号電圧Vgs1aとゲート信号電圧Vgs2aの間に設けられるデットタイムであり、DTBはゲート信号電圧Vgs1bとゲート信号電圧Vgs2bの間に設けられるデットタイムである。
 制御信号間位相差φda、φdbは増幅器に印加するゲート信号電圧Vgs1a、Vgs2aのデューティ比DutyA、及び、ゲート信号電圧Vgs1b、Vgs2bのデューティ比DutyBをドライバ基板が供給可能な最小デューティ比Duty_minとなる固定値とする。
 図14(l)は直流電圧制御による操作量αで定められる直流電圧Vdcであり、直流電圧制御は行われないため固定される。
 ゲート信号電圧Vgs1aとゲート信号電圧Vgs1bとの位相差は増幅器2Aと増幅器2Bの増幅器出力間位相差φsampであり、制御信号セット間位相差φsに対応している。増幅器出力間位相差φsampは、制御信号セット間位相差指令値φs*が可変値に応じた角度なる。
4.並列接続例
 図15の構成例は、図1で示した高周波電源装置を1ユニットとし、複数ユニットを並列接続する構成を示している。
 図15に示す構成例は、ユニットA-ユニットNの複数個の高周波電源装置を並列接続した構成である。各ユニットA-Nは、図1に示した構成と同様にそれぞれ駆動回路3、増幅器2、及びサーキュレータ/アイソレータ4を備える。制御信号生成部12で生成した制御信号Sig1a、Sig2a、Sig1b、Sig2bは信号分配器7により分配され、ユニットA-ユニットNに供給される。ユニットA-ユニットNの制御は、前記した制御態様と同様に行われる。ユニットA-ユニットNの各ユニットから出力される2つの増幅器の増幅器出力間位相差φsampは制御信号セット間位相差指令値φs*に応じた位相差である。
 合成器5は、各ユニットで合成して位相シフト制御を経て得られる増幅器出力を更に合成して最終的な高周波パルス出力を出力する。
 本発明の高周波電源装置及び高周波のパルス出力の出力制御方法は、出力が1kw以上で周波数範囲が27MHz~100MHzのパルス出力を用いた産業機器に適用され、半導体製造装置やフラットパネルディスプレイ(液晶パネル、有機パネル)製造装置、太陽光パネル製造装置、COレーザー加工機などの産業用途に適用することができる。
1     高周波電源装置
2     増幅器
2、2A、2B       増幅器
3、3A、3B       駆動回路
4、4A、4B       サーキュレータ/アイソレータ
5     合成器
6     直流電源
7     信号分配器
10    電力制御部
10a   直流電圧演算部
10a1、10b1     電力コントローラ
10b   位相差演算部
11    直流電圧制御部
12    制御信号生成部
12Aa、12Ab、12B 位相差制御機能部
A-N   ユニット
DT_min        最小必要デットタイム
DT、DTA、DTB    デットタイム
Duty_max      最大デューティ比
Duty_min      最小デューティ比
Duty、DutyA、DutyB デューティ比
FWD_ref*       出力電力指令値
FWD_FB        出力電力フィードバック値
FWD   出力電力
Gsig1a、Gsig2a ゲート信号
Gsig1b、Gsig2b ゲート信号
P,N   差動信号
out  出力電力
Sig1a、Sig2a   制御信号
Sig1b、Sig2b   制御信号
Siga、Sigb     セット信号
Vac   正弦波電圧
Vdc   直流電圧
Vdc_FB        フィードバック電圧
Vdc_max       最大値
Vdc_min       最小値
Vdc*   直流電圧指令値
Vdd   出力電圧波形
Vds   ドレイン-ソース間電圧
Vgs   ゲート信号電圧
Vgs1a、Vgs2a   ゲート信号電圧
Vgs1b、Vgs2b   ゲート信号電圧
Vref*          直流電圧指令値
α     操作量
φ     位相差
φ*     位相差指令値
φd    制御信号間位相差
φd*    制御信号間位相差指令値
φda   制御信号間位相差
φda*   制御信号間位相差指令値
φdb   制御信号間位相差
φdb*   制御信号間位相差指令値
φs    制御信号セット間位相差
φs*    制御信号セット間位相差指令値
φsamp 増幅器出力間位相差

Claims (20)

  1.  一対の増幅器と、
     前記一対の増幅器の増幅器出力を合成して高周波パルスの出力電力を生成する合成器と、
    を備え、
     前記一対の増幅器に供給する直流電圧Vdcを制御する直流電圧制御により前記出力電力を制御する第1制御部と、
     前記一対の増幅器の増幅器出力を制御する制御信号の位相差φにより前記出力電力を位相差制御する第2制御部と、
    を備え、
     前記出力電力の出力レベルに応じて、前記第1制御部による直流電圧制御と前記第2制御部による位相差制御とを切り替える、
    高周波電源装置。
  2.  一対の増幅器と、
     前記一対の増幅器の各増幅器出力を合成して高周波パルスの出力電力を生成する合成器と、
     高周波パルス出力の出力電力の制御において、直流電圧制御に用いる直流電圧指令値Vref*、及び位相差制御に用いる位相差指令値φ*を演算する電力制御部と、
     前記一対の増幅器に供給する直流電圧Vdcを前記直流電圧指令値Vref*に基づいて直流電圧制御する直流電圧制御部と、
     前記一対の増幅器を前記位相差指令値φ*に基づいて位相差制御する制御信号を生成する制御信号生成部と、
    を備え、
     前記電力制御部は、前記出力電力の出力レベルにおいて、
     (a)高出力レベル範囲に対して、前記直流電圧制御の直流電圧指令値Vref*を演算し、
     (b)低出力レベル範囲に対して、前記位相差制御の位相差指令値φ*を演算し、
     前記出力電力の出力レベルに応じて前記直流電圧制御と前記位相差制御とを切り替えて出力電力を制御する、
    高周波電源装置。
  3.  前記各増幅器に入力する制御信号は、位相が互いに逆相の位相関係にある差動信号である、請求項2に記載の高周波電源装置。
  4.  前記位相差φは、前記一対の増幅器の各増幅器に入力する各二対の制御信号の信号間の制御信号間位相差φdであり、
     前記電力制御部は、前記制御信号間の位相差指令値φd*を演算し、
     前記制御信号生成部は、
     制御信号位相差制御により、各増幅器に対して、前記位相差指令値φd*に基づいて制御信号間位相差φdの各二対の制御信号を生成し、
     前記制御信号位相差制御された制御信号により、各増幅器のスイッチング素子のゲート信号のデューティ比を制御するPWM制御により高周波パルス出力の出力電力を制御する、
    請求項3に記載の高周波電源装置。
  5.  前記位相差φは、前記一対の増幅器の各増幅器に入力する各二対の制御信号の信号間の制御信号間位相差φd、及び各増幅器に入力する二対の前記制御信号を信号セットとして、各増幅器に入力する信号セット間の制御信号セット間位相差φsを含み、
     前記電力制御部は、前記制御信号間の位相差指令値φd*、及び制御信号セット間位相差指令値φs*を演算し、
     前記制御信号生成部は、前記低出力レベル範囲において高出力レベル側と低出力レベル側とで制御を切り替え、
     (a)前記高出力レベル側では、制御信号位相差制御により、各増幅器に対して、前記位相差指令値φd*に基づいて制御信号間位相差φdの各二対の制御信号を生成し、
     前記制御信号位相差制御された制御信号により、各増幅器のスイッチング素子のゲート信号のデューティ比を制御するPWM制御により高周波パルス出力の出力電力を制御し、 (b)前記低出力レベル側では、位相シフト制御により、一対の増幅器間において、前記制御信号セット間位相差指令値φs*に基づいて制御信号セット間位相差φsの二対の制御信号の信号セットを生成し、位相シフト制御された二対の制御信号の信号セットにより、一対の増幅器間のゲート信号の位相差を制御し、前記ゲート信号の位相差により高周波パルス出力の出力電力を制御し、
     (c)前記制御信号位相差制御及び位相シフト制御により生成された前記一対の増幅器の増幅器出力を合成して高周波パルス出力を生成する
    請求項3に記載の高周波電源装置。
  6.  前記電力制御部は、
     高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、各増幅器に入力する二対の制御信号の信号間の制御信号間位相差指令値φd*を求める、
    請求項4又は5に記載の高周波電源装置。
  7.  前記電力制御部は、前記各増幅器の増幅器出力の比較に基づいて、各増幅器において、二対の制御信号の信号間の制御信号間位相差指令値φd*を調整し、一対の増幅器の増幅器出力を均衡化する、
    請求項4又は5に記載の高周波電源装置。
  8.  前記電力制御部は、前記一対の増幅器の各増幅器において、一方の増幅器に入力する二対の制御信号の信号間の第1の制御信号間位相差φda、及び他方の増幅器に入力する二対の制御信号の信号間の第2の制御信号間位相差φdbを同一の位相差量とする制御信号間位相差指令値φda*及びφda*を調整する、
    請求項4又は5に記載の高周波電源装置。
  9.  前記電力制御部は、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、前記信号セット間の制御信号セット間位相差指令値φs*を求める、
    請求項5に記載の高周波電源装置。
  10.  前記直流電圧制御部は、前記増幅器に供給される直流電圧のフィードバック電圧Vdc_FBと直流電圧指令値Vref*との差に基づいて得られる操作量αによりAD/DCコンバータの直流出力電圧を制御する、
    請求項2に記載の高周波電源装置。
  11.  前記増幅器は、スイッチングモード方式による電力増幅器であり、前記制御信号により位相差を有して動作する2つのスイッチング素子の直列回路である、
    請求項1から9の何れか一つに記載の高周波電源装置。
  12.  一対の増幅器を制御し、高周波パルス出力の出力電力を可変とする高周波電力の出力制御方法であり、
     出力レベルに応じて直流電圧制御と位相差制御(CNTL2)とを切り替え、
     (a)出力レベルが高出力レベル範囲では、前記一対の増幅器に供給する直流電圧Vdcを制御する直流電圧制御により出力電力を制御し、
     (b)出力レベルが低出力レベル範囲では、前記一対の増幅器に入力する制御信号の位相差φを制御する位相差制御により出力電力を制御する、
    高周波電力の出力制御方法。
  13.  前記各増幅器に入力する制御信号は、位相が互いに逆相の位相関係にある差動信号である、
    請求項12に記載の高周波電力の出力制御方法。
  14.  前記位相差φは、前記一対の増幅器の各増幅器に入力する各二対の制御信号の信号間の制御信号間位相差φdであり、
     前記位相差制御は、
     パルス幅を前記制御信号間位相差φdとする制御信号を生成し、
     前記制御信号により、各増幅器のスイッチング素子のゲート信号のデューティ比を制御するPWM制御により高周波パルス出力の出力電力を制御する、
    請求項13に記載の高周波電力の出力制御方法。
  15.  前記位相差φは、前記各増幅器に入力する二対の前記制御信号の信号間の制御信号間位相差φd、及び各増幅器に入力する二対の前記制御信号を信号セットとして、一対の増幅器に入力する信号セット間の制御信号セット間位相差φsであり、
     前記位相差制御は、前記低出力レベル範囲において高出力レベル側と低出力レベル側とで制御を切り替え、
     (a)前記高出力レベル側では、パルス幅を前記制御信号間位相差φdとする制御信号を生成し、前記制御信号により、各増幅器のスイッチング素子のゲート信号のデューティ比を制御するPWM制御により高周波パルス出力の出力電力を制御し、
     (b)前記低出力レベル側では、制御信号の信号セット間の制御信号セット間位相差φsを有する制御信号を生成し、前記制御信号により、前記一対の増幅器のゲート信号の位相差を位相シフト制御して高周波パルス出力の出力電力を制御し、
     (c)前記一対の増幅器の増幅器出力を合成して高周波パルス出力を生成する、
    請求項13に記載の高周波電力の出力制御方法。
  16.  前記位相差制御において、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、各増幅器に入力する制御信号の二対の信号間の制御信号間位相差指令値φd*を求める、
    請求項14又は15に記載の高周波電力の出力制御方法。
  17.  前記位相差制御において、前記各増幅器の増幅器出力の比較に基づいて、各増幅器において、制御信号の二対の信号間の制御信号間位相差指令値φd*を調整し、一対の増幅器の増幅器出力を均衡化する、
    請求項14又は15に記載の高周波電力の出力制御方法。
  18.  前記位相差制御において、
     前記一対の増幅器の各増幅器において、一方の増幅器に入力する二対の制御信号の信号間の第1の制御信号間位相差φda、及び他方の増幅器に入力する二対の制御信号の信号間の第2の制御信号間位相差φdbを同一の位相差量とする制御信号間位相差指令値φda*及びφda*を調整する、
    請求項14に記載の高周波電力の出力制御方法。
  19.  前記位相シフト制御において、高周波パルス出力の出力電力フィードバック値FWD_FBと出力電力指令値FWD_ref*との比較に基づいて、前記信号セット間の制御信号セット間位相差指令値φs*を求める、
    請求項15に記載の高周波電力の出力制御方法。
  20.  前記直流電圧制御は、前記増幅器に供給される直流電圧のフィードバック電圧Vdc_FBと直流電圧指令値Vref*との差に基づいて出力電圧を制御する、請求項12に記載の高周波電力の出力制御方法。
PCT/JP2022/038814 2021-12-16 2022-10-18 高周波電源装置及び高周波電力の出力制御方法 WO2023112468A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280082040.8A CN118402171A (zh) 2021-12-16 2022-10-18 高频电源装置及高频电力的输出控制方法
KR1020247020065A KR20240101692A (ko) 2021-12-16 2022-10-18 고주파 전원 장치 및 고주파 전력의 출력 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-203970 2021-12-16
JP2021203970A JP7068540B1 (ja) 2021-12-16 2021-12-16 高周波電源装置及び高周波電力の出力制御方法

Publications (1)

Publication Number Publication Date
WO2023112468A1 true WO2023112468A1 (ja) 2023-06-22

Family

ID=81606814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038814 WO2023112468A1 (ja) 2021-12-16 2022-10-18 高周波電源装置及び高周波電力の出力制御方法

Country Status (4)

Country Link
JP (1) JP7068540B1 (ja)
KR (1) KR20240101692A (ja)
CN (1) CN118402171A (ja)
WO (1) WO2023112468A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024021540A (ja) * 2022-08-04 2024-02-16 株式会社京三製作所 高周波電源装置
JP2024038728A (ja) * 2022-09-08 2024-03-21 株式会社京三製作所 高周波電源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637375A (ja) 1992-07-15 1994-02-10 Amada Co Ltd レーザ発振器の高周波電源
WO2015097812A1 (ja) 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 共振型電力伝送装置
JP2015144505A (ja) * 2014-01-31 2015-08-06 株式会社ダイヘン 高周波電源
JP2015533065A (ja) * 2012-10-30 2015-11-16 イーティーエー デバイシズ, インコーポレイテッド 伝送機アーキテクチャおよび関連方法
JP2016004745A (ja) * 2014-06-19 2016-01-12 株式会社ダイヘン 高周波電源
WO2016093269A1 (ja) * 2014-12-12 2016-06-16 株式会社ダイヘン 高周波電源

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148484A1 (en) 2018-02-05 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) H-bridge power amplifier arrangement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637375A (ja) 1992-07-15 1994-02-10 Amada Co Ltd レーザ発振器の高周波電源
JP2015533065A (ja) * 2012-10-30 2015-11-16 イーティーエー デバイシズ, インコーポレイテッド 伝送機アーキテクチャおよび関連方法
WO2015097812A1 (ja) 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 共振型電力伝送装置
JP2015144505A (ja) * 2014-01-31 2015-08-06 株式会社ダイヘン 高周波電源
JP2016004745A (ja) * 2014-06-19 2016-01-12 株式会社ダイヘン 高周波電源
WO2016093269A1 (ja) * 2014-12-12 2016-06-16 株式会社ダイヘン 高周波電源

Also Published As

Publication number Publication date
KR20240101692A (ko) 2024-07-02
TW202327261A (zh) 2023-07-01
JP7068540B1 (ja) 2022-05-16
JP2023089465A (ja) 2023-06-28
CN118402171A (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
WO2023112468A1 (ja) 高周波電源装置及び高周波電力の出力制御方法
JP6571718B2 (ja) 高周波電源
US10042407B2 (en) Power supply systems and methods for generating power
US8680777B2 (en) Versatile zero-voltage switch resonant inverter for industrial dielectric barrier discharge generator applications
US9641141B1 (en) Harmonics suppression circuit for a switch-mode power amplifier
EP1977503B1 (en) Apparatus, method and system for control of ac/ac conversion
JP6254861B2 (ja) 高周波電源
JP2006101687A (ja) 電圧モード・モータ・コントローラにおけるトルク・リップル低減
JP4135134B2 (ja) モータ制御装置
CN108809103A (zh) 级联双有源桥dc-dc变换器的最小电流应力控制方法
JP2007066778A (ja) 高周波電源装置
EP3667906B1 (en) Flying capacitor voltage control in an amplifier
JP6362931B2 (ja) 高周波電源
TWI854374B (zh) 高頻電源裝置及高頻電力之輸出控制方法
JP2016181968A (ja) モータ制御装置
CN100388610C (zh) Ups逆变器及其脉宽调制死区补偿方法
TW201714199A (zh) 用於反應氣體產生器應用的直接三相並聯共振反相器
US8704594B2 (en) Dual rail out-phased envelope tracking modulator
JP2015012686A (ja) 高周波電源装置
JP2005348548A (ja) インバータ装置
Zhou et al. Design of high-frequency, paralleled resonant inverter to control output power for plasma generation
JP6474985B2 (ja) 高周波電源
CN116633149A (zh) 基于数字环路控制的谐振变换器变换方法及芯片、电源
JP2009111659A (ja) 矩形波発振器、電磁誘導加熱装置、及び電磁誘導加熱調理装置
JPH0297278A (ja) インバータ装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247020065

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022907003

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022907003

Country of ref document: EP

Effective date: 20240716