WO2023112444A1 - ボンディングワイヤ及び半導体装置 - Google Patents

ボンディングワイヤ及び半導体装置 Download PDF

Info

Publication number
WO2023112444A1
WO2023112444A1 PCT/JP2022/037712 JP2022037712W WO2023112444A1 WO 2023112444 A1 WO2023112444 A1 WO 2023112444A1 JP 2022037712 W JP2022037712 W JP 2022037712W WO 2023112444 A1 WO2023112444 A1 WO 2023112444A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
mass
bonding wire
bonding
Prior art date
Application number
PCT/JP2022/037712
Other languages
English (en)
French (fr)
Inventor
圭美 滝川
央 棚橋
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to CN202280073103.3A priority Critical patent/CN118215990A/zh
Publication of WO2023112444A1 publication Critical patent/WO2023112444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Definitions

  • the present invention relates to bonding wires and semiconductor devices containing Ag (silver) as a main component.
  • the bonding wires used for connecting the electrodes on the semiconductor element and the electrodes on the substrate are generally very thin, so they are manufactured from metal materials with good conductivity and excellent workability.
  • bonding wires containing Au (gold) as a main component have been widely used conventionally because of their chemical stability and ease of handling in the atmosphere.
  • bonding wires containing Au as a main component are very expensive because 99% or more of the mass is Au.
  • a bonding wire whose main component is Ag (silver) has also been proposed.
  • Ag is less expensive than Au, but a bonding wire containing Ag as a main component is inferior in long-term reliability and resistance to changes in ambient temperature (heat cycle property).
  • elements such as In (indium), Ga (gallium), and Cd (cadmium) are added to Ag as a main component to improve long-term reliability. is proposed.
  • a free air ball (hereinafter abbreviated as FAB) formed at the tip of a bonding wire by discharge heating or the like is pressed against an electrode and crushed, and then thermal energy and vibration energy are applied to perform 1st bonding. .
  • FAB free air ball
  • the outer peripheral surface of the bonding wire is pressed against the other electrode to perform the 2nd bonding.
  • fine pitch electrodes are progressing. It is required to prevent short circuits.
  • the bonding wire of Patent Literature 1 below has a problem that it is difficult to control the shape of the 1st joint portion and it is difficult to cope with fine pitch.
  • the present invention has been made in view of the above circumstances, and a bonding wire containing Ag as a main component has good long-term reliability and a good circular shape when FAB is brought into contact with an electrode and crushed.
  • An object of the present invention is to provide a bonding wire capable of
  • the bonding wire of the present invention has an In content of 0.005% by mass or more and 2.0% by mass or less, and a content of one or two elements selected from Au and Pd.
  • a total of 0.005% by mass or more and 2.0% by mass or less, a total content of one or more elements selected from Bi and Cu of 5 mass ppm or more and 500 mass ppm or less, Ca, Mg, Ge , Y, Nd, Sm, Gd, La and Ce. is.
  • the total content of one or more elements selected from the group consisting of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce is 10 ppm by mass or more. It can be 500 mass ppm or less.
  • the ratio of the content of In to the total content of Au and Pd can be 5 or less.
  • the bonding wire according to the present invention can contain both elements of Bi and Cu.
  • the total content of one or more elements selected from the group consisting of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce is Bi and Cu It can contain more than the total content of one or two or more elements selected from.
  • the HAZ length generated when fabricating a FAB having a size 2.0 times as large as the wire diameter of a wire having a wire diameter of 25 ⁇ m in a nitrogen gas atmosphere can be 100 ⁇ m or less.
  • the average grain size in the area up to 30% of the wire diameter in the radial direction from the wire surface with respect to the average grain size in the area up to 30% of the wire diameter in the radial direction centering on the wire center The diameter ratio can be 0.5 or more and 5.0 or less.
  • the wire center is included
  • the ratio of the area of the elongated crystal grains to the cross section in the longitudinal direction of the wire can be 40% or less.
  • a semiconductor device of the present invention is a semiconductor device using the bonding wire according to any one of the above-described present inventions.
  • the bonding wire containing Ag as the main component of the present invention long-term reliability can be improved, and the shape of the 1st joint formed when the FAB is brought into contact with the electrode and crushed can be made into a good circular shape.
  • FIG. 2 is an enlarged view of a wire W connecting electrodes in a semiconductor device
  • FIG. FIG. 4 is a SEM image of a cross section in the longitudinal direction including the wire center of the bonding wire of the present embodiment, and is a diagram for explaining a method of calculating the average crystal grain size ratio. It is a SEM image of a cross section in the longitudinal direction including the wire center of the bonding wire of the present embodiment, and is a diagram for explaining a method of calculating the ratio of the area of elongated crystal grains in the cross section in the wire longitudinal direction including the wire center. be.
  • a bonding wire W and a semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings.
  • the semiconductor device M exemplified in FIG. Al alloy electrode, nickel/palladium/gold-coated electrode, Au-coated electrode, etc.) 10 and conductor wiring (electrode) 11 of circuit wiring board (lead frame, ceramic substrate, printed circuit board, etc.) 2 connect bonding wire W. It is connected by the ball bonding method used.
  • the bonding wire W used in the semiconductor device M is selected from the group consisting of 0.005% by mass or more and 2.0% by mass or less of In, and 0.005% by mass or more and 2.0% by mass or less of Au and Pd (palladium). Contains one or two selected elements and one or two elements selected from the group consisting of 5 ppm by mass or more and 500 mass ppm or less of Bi (bismuth) and Cu (copper), and the balance consists of Ag.
  • the wire diameter of the bonding wire W may be of various sizes depending on the application.
  • the wire diameter of the bonding wire W can be 5 ⁇ m or more and 150 ⁇ m or less.
  • Ag constituting the bonding wire W may contain impurities such as iron (Fe) that inevitably exist in terms of refining. It is preferable to fabricate an Ag alloy that constitutes
  • the corrosion resistance of the 1st joint 12 formed on the electrode 10 is improved by crimping the melted FAB to the electrode 10, and the long-term reliability can be improved.
  • Electrodes of semiconductor packages are often coated with Al (aluminum) or an Al alloy.
  • Al aluminum
  • an intermetallic compound layer of Ag and Al such as Ag 2 Al or Ag 3 Al is generated at the joint interface.
  • the intermetallic compound layer formed on the joint interface is likely to deteriorate the 1st joint portion 12 due to entry of water or chlorine from the outside.
  • the bonding wire contains a certain amount of In, deterioration of the Ag-Al intermetallic compound layer due to water or chlorine entering from the bonding interface can be suppressed, and the corrosion resistance of the 1st bonding portion 12 can be improved.
  • the In content is 0.005% by mass or more, the corrosion resistance of the 1st joint 12 is improved, and long-term reliability can be improved.
  • the In content is 2.0% by mass or less, the specific resistance of the wire is maintained within an appropriate range. Further, when the In content is 2.0% by mass or less, the loop shape formed when the electrodes 10 and 11 are connected is less likely to vary.
  • the bonding wire W can improve the corrosion resistance of the 1st joint 12 and improve the long-term reliability.
  • the corrosion resistance of the 1st joint 12 is remarkably improved while the specific resistance of the bonding wire W is suppressed, and the long-term reliability is greatly improved. can do.
  • the loop height H (see FIG. 1) formed when the electrodes 10 and 11 are connected can be reduced.
  • the total content of one or two elements selected from Au and Pd is preferably 0.005% by mass or more and 2.0% by mass or less. When it is 0.005% by mass or more, long-term reliability can be improved and the loop height H can be reduced. When the total content of Au and Pd is 2.0% by mass or less, the noble metal content is low and the manufacturing cost of the bonding wire can be suppressed.
  • Au it preferably contains Pd and In, more preferably 1 or more and 3 or less.
  • the bonding wire W can control the shape of the 1st joint portion 12 to be nearly circular.
  • the total content of Bi and Cu is preferably from 5 ppm by mass to 500 ppm by mass, more preferably from 5 ppm by mass to 100 ppm by mass, and even more preferably from 5 ppm by mass to 50 ppm by mass.
  • a group consisting of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce may additionally contain one or more elements selected from That is, the selected element group is an arbitrary component. If the total content of the selective element group is 500 ppm by mass or less, the above-described effects obtained by adding Au, Pd, In, Bi and Cu are not impaired. In addition, when the total content of the selected element group is 10 ppm by mass or more, the heat resistance of the wire is improved, and a large crystal grain region called HAZ (Heat Affected Zone) is less likely to occur during FAB formation.
  • HAZ Heat Affected Zone
  • the total content of the selected element group is preferably 10 mass ppm or more and 500 mass ppm or less, more preferably 10 mass ppm or more and 100 mass ppm or less.
  • the total content of the selective element group is preferably larger than the total content of Bi and Cu.
  • the loop height H can be reduced without deteriorating the sphericity of the FAB shape.
  • the rod-shaped ingot is drawn to reduce its diameter until it reaches a predetermined diameter, thereby forming a bonding wire.
  • a softening heat treatment may be performed during wire drawing, if necessary.
  • the wire is run in a heat treatment furnace as necessary to perform refining heat treatment, and a bonding wire is obtained.
  • the bonding wire of the present embodiment has an In content of 0.005% by mass or more and 2.0% by mass or less, and a total content of one or two elements selected from Au and Pd of 0.005% by mass. % or more and 2.0 mass % or less, the total content of one or more elements selected from Bi and Cu is 5 mass ppm or more and 500 mass ppm or less, and the balance is Ag, so long-term reliability
  • the height of the loop formed during connection can be reduced, the stability of the loop shape can be improved, and the stability of the shape of the joint with the electrode can be improved.
  • the bonding wire W of the present embodiment may additionally contain one or more elements selected from the group consisting of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce. , the total content of these elements is preferably 10 ppm by mass or more and 500 ppm by mass or less.
  • the bonding wire W of the present embodiment may additionally contain one or more elements selected from the group consisting of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce.
  • the HAZ length generated when fabricating a FAB having a diameter 2.0 times the wire diameter in a nitrogen gas atmosphere can be 100 ⁇ m or less. With such a length, the height of the loop formed at the time of wire connection can be reduced, and the thickness of the semiconductor device can be reduced.
  • the HAZ length can be measured by observing the appearance of the bonding wire using a general-purpose electron microscope.
  • the bonding wire of the present embodiment in the SEM image of the cross section in the longitudinal direction including the wire center C of the bonding wire as shown in FIG. (Regions up to 15% of the wire diameter on both sides in the radial direction across the wire center C)
  • the shape of the 1st joint 12 formed when the FAB is pressed and crushed against the electrode can be controlled to be nearly circular.
  • the average crystal grain size in this specification can be obtained by the following formula (1).
  • N arbitrarily selects a region with a length of 3 to 4 times the wire diameter in the longitudinal direction of the wire from the cross-sectional SEM image of the bonding wire as shown in FIG. It is the number of existing crystal grains.
  • S is the area of the region selected as above.
  • the bonding wire according to the present invention if a crystal that exists in the center of the wire and has a ratio of the length in the wire radial direction to the length in the wire longitudinal direction of 1/10 or less is an elongated crystal grain, it is shown in FIG.
  • the ratio Q of the total area of the elongated crystal grains in the cross section in the longitudinal direction of the wire including the wire center C (in the case of FIG. 3, corresponds to the area of the region R3 composed of the elongated crystal grains present in the center of the wire) It can be 40% or less. In such a case, loop shape stability can be enhanced.
  • bonding wire W of this embodiment can be used as a bonding wire for various aspects other than the semiconductor device as described above.
  • an Ag alloy having a composition as shown in Table 1 below was melted, and a rod-shaped ingot was produced by a continuous casting method.
  • the produced rod-shaped ingots were subjected to wire drawing to reduce the diameter to reach 25 ⁇ m, and then subjected to refining heat treatment to obtain bonding wires of Examples 1 to 11 and Comparative Examples 1 to 7.
  • the wire diameters (diameters) of the bonding wires of Examples 1 to 11 and Comparative Examples 1 to 7 are all 25 ⁇ m.
  • FAB sphericity (formability) Using the wire bonder used in (2) above, a FAB having a size 1.9 to 2.1 times the diameter of the wire was produced in a nitrogen gas atmosphere.
  • FAB sphericity (formability) 100 FABs were prepared for each bonding wire of Examples and Comparative Examples, and then examined with a general-purpose electron microscope (manufactured by JEOL Ltd., JSM-6510LA). The appearance was observed, and the lengths of the fabricated FAB in the wire parallel direction and the wire vertical direction were measured.
  • the average value of the ratio (X/Y) of the length X in the wire parallel direction to the length Y in the vertical direction of the FAB is 85% or more and 115% or less, it is judged to be "spherical" and "A", above. If the average value of the ratio (X/Y) was less than 85% or greater than 115%, or if a circular shape was not visually observed, it was rated as "D".
  • HAZ length Observe the appearance of the wire from which the FAB was produced in (3) above with the general-purpose electron microscope, measure the length of the HAZ generated in the wire portion near the FAB, and calculate the average value. bottom. If the HAZ length was 100 ⁇ m or less, it was rated “A”, and if it was longer than that, it was rated “B”.
  • Ratio P of the average crystal grain size in the surface region of the bonding wire to the average crystal grain size in the internal region of the bonding wire After exposing the cross section of the wire in the longitudinal direction with a cross-section sample preparation device (manufactured by JEOL Ltd., IB-09020CP), a general-purpose electron microscope (manufactured by JEOL Ltd., JSM-6510LA) was used to examine the cross section of the wire. An SEM image of the metallographic structure was acquired, and a region with a length of three times the wire diameter was arbitrarily selected from the acquired SEM image in the longitudinal direction of the wire.
  • the average grain size D1 in a region R1 of 30% of the wire diameter in the radial direction around the wire center C, and the average grain size in a region R2 of up to 30% of the wire diameter in the radial direction from the wire surface D2 was calculated, and the ratio P of the average crystal grain size D2 in the region R2 to the average crystal grain size D1 in the region R1 was calculated.
  • the average crystal grain size D1 is obtained by measuring the number N of crystal grains present in the region R1 and the area S of the region R1 over a length three times the wire diameter in the longitudinal direction of the wire from the SEM image, and using the above formula ( 1).
  • the average crystal grain size D2 is obtained by measuring the number N of crystal grains present in the region R2 and the area S of the region R2 over a length three times the wire diameter in the longitudinal direction of the wire from the SEM image, and using the above formula (1). obtained by
  • A was given when the ratio P of the average crystal grain size D2 in the region R2 to the average crystal grain size D1 in the region R1 was 0.5 or more and 5.0 or less, and "B" otherwise.
  • Ratio Q of the area of elongated crystal grains to the area of the entire wire From the SEM image of the metal structure obtained by the same method as in (5) above, a region with a length three times the wire diameter is arbitrarily selected in the longitudinal direction of the wire, and the crystal grains present in the selected region are examined in the longitudinal direction of the wire. And the length in the radial direction of the wire was measured, and the ratio of the length in the radial direction of the wire to the length in the longitudinal direction of the wire was calculated. Crystals with a calculated ratio of 1/10 or less were defined as elongated crystal grains, and the total area (total area) of the elongated crystal grains existing in the selected region was measured. Then, the ratio Q of the total area of the elongated crystal grains to the area of the selected region was calculated. "A” was given when the calculated ratio Q was 40% or less, and "B” was given otherwise.
  • the number of wires evaluated was 500, and if the number of defective wires in which the wire center C deviated from the straight line by 20 ⁇ m or more is 5% or less of the entire evaluated wires, “A” is exceeded, and if it is more than 5% and 10% or less. It was rated as “B”, and if it exceeded 10%, the loop could not be formed stably, so it was rated as "D".
  • Comparative Example 1 in which the total content of Bi and Cu exceeded 500 ppm by mass, FAB with high sphericity could not be formed.
  • Comparative Example 2 in which the In content exceeds 2.0% by mass, the evaluation of specific resistance and loop formability was "D”.
  • Comparative Example 3 in which the total content of Au and Pd is less than 0.005% by mass, was evaluated as “D” in the heat cycle test and the high temperature storage test.
  • Comparative Example 6 in which the total content of Ca, Mg, Ge, Y, Nd, Sm, Gd, La and Ce exceeded 500 mass ppm, the evaluation of specific resistance and FAB formation was "D".
  • Comparative Example 5 In Comparative Example 5, in which the total content of Au and Pd exceeded 2.0% by mass, the specific resistance was evaluated as “D”. Comparative Example 6, in which the In content was less than 0.005% by mass, was evaluated as “D” in the high-temperature storage test. In Comparative Example 7 in which the total content of Bi and Cu was less than 5 ppm by mass, the evaluation of the shape of the 1st joint was "D".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

本発明のボンディングワイヤは、Inの含有量が0.005質量%以上2.0質量%以下、Au及びPdから選択された1種又は2種の元素の含有量の合計が0.005質量%以上2.0質量%以下、Bi及びCuから選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上500質量ppm以下、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が0質量ppm以上500質量ppm以下であり、残部がAgからなるものである。これにより、長期信頼性に優れ、FABを電極に接触させ潰した時の形状を良好な円形とすることができる。

Description

ボンディングワイヤ及び半導体装置
 本発明は、Ag(銀)を主成分とするボンディングワイヤ及び半導体装置に関する。
 半導体素子上の電極と基板の電極との結線等に用いられるボンディングワイヤは、一般に非常に細いため、導電性が良好で加工性に優れた金属材料により製造されている。特に、化学的な安定性や大気中での取り扱いやすさから、従来からAu(金)を主成分とするボンディングワイヤが広く用いられている。しかし、Auを主成分とするボンディングワイヤは質量の99%以上がAuであり非常に高価である。
 そこで、Ag(銀)を主成分とするボンディングワイヤも提案されている。AgはAuと比べ安価ではあるが、Agを主成分とするボンディングワイヤでは、長期信頼性や周囲温度の変化に対する耐性(ヒートサイクル性)が劣る。この問題を解決するために、下記特許文献1のようにIn(インジウム)、Ga(ガリウム)、Cd(カドミウム)などの元素を主成分のAgに添加して長期信頼性を向上させたボンディングワイヤが提案されている。
 ところで、ボールボンディングでは、放電加熱等によりボンディングワイヤの先端に形成したフリーエアボール(以下、FABと略記する)を電極に押し当てて潰した後、熱エネルギー及び振動エネルギーを与えて1st接合を行う。1st接合の後、ボンディングワイヤの外周面を他方の電極に押し当てて2nd接合を行う。近年の半導体素子の高密度化に伴い、電極のファインピッチ化が進んでおり、FABを電極に押し当て潰した時に形成される1st接合部の形状を円形に制御して隣接する電極間での短絡を防止することが求められている。しかし、下記特許文献1のボンディングワイヤでは、1st接合部の形状を制御しにくく、ファインピッチ化に対応しにくいという問題がある。
特許第6207793号
 本発明は、上記事情に鑑みてなされたものであり、Agを主成分とするボンディングワイヤにおいて、長期信頼性を良好にするとともに、FABを電極に接触させ潰した時の形状を良好な円形とすることができるボンディングワイヤを提供することを目的とする。
 上記課題を解決するため、本発明のボンディングワイヤは、Inの含有量が0.005質量%以上2.0質量%以下、Au及びPdから選択された1種又は2種の元素の含有量の合計が0.005質量%以上2.0質量%以下、Bi及びCuから選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上500質量ppm以下、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が0質量ppm以上500質量ppm以下であり、残部がAgからなるものである。
 本発明に係るボンディングワイヤにおいて、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が10質量ppm以上500質量ppm以下とすることができる。
 本発明に係るボンディングワイヤにおいて、Au及びPdの含有量の合計に対するInの含有量の比率が5以下とすることができる。
 本発明に係るボンディングワイヤにおいて、Bi及びCuの両元素を含有することができる。
 本発明に係るボンディングワイヤにおいて、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が、Bi及びCuから選択された1種又は2種以上の元素の含有量の合計より多く含有することができる。
本発明に係るボンディングワイヤにおいて、ワイヤ直径が25μmのワイヤに対してワイヤ直径の2.0倍の大きさのFABを窒素ガス雰囲気で作製した時に生じるHAZ長さを100μm以下とすることができる。
 本発明に係るボンディングワイヤにおいて、ワイヤ中心を中心として半径方向にワイヤ直径の30%までの領域内における平均結晶粒径に対する、ワイヤ表面から半径方向にワイヤ直径の30%までの領域における平均結晶粒径の比率が、0.5以上5.0以下とすることができる。
 本発明に係るボンディングワイヤにおいて、ワイヤの中心部に存在し、ワイヤ長手方向の長さに対するワイヤ半径方向の長さの比が1/10以下である結晶を細長い結晶粒とすると、ワイヤ中心を含むワイヤ長手方向の断面に占める細長い結晶粒の面積の比率が40%以下とすることができる。
 本発明の半導体装置は、上記の本発明のいずれか1つに係るボンディングワイヤを使用した半導体装置である。
 本発明のAgを主成分とするボンディングワイヤでは、長期信頼性を良好にするとともに、FABを電極に接触させ潰した時に形成される1st接合部の形状を良好な円形とすることができる。
半導体装置において電極間を結線したワイヤWを拡大して示す図である。 本実施形態のボンディングワイヤのワイヤ中心を含む長手方向の断面のSEM像であって、平均結晶粒径の比率を算出する方法を説明するための図である。 本実施形態のボンディングワイヤのワイヤ中心を含む長手方向の断面のSEM像であって、ワイヤ中心を含むワイヤ長手方向の断面に占める細長い結晶粒の面積の比率の算出方法を説明するための図である。 フラットボンドを行ったボンディングワイヤの拡大図
 以下、本発明の一実施形態に係るボンディングワイヤW及び半導体装置について図面を参照して説明する。
 図1に例示する半導体装置Mは、例えば、パワーIC、LSI、トランジスタ、BGA(Ball Grid Array package)、QFN(Quad Flat Nonlead package)、LED(発光ダイオード)等の半導体素子1上の電極(例えば、Al合金電極、ニッケル・パラジウム・金被覆電極、Au被覆電極等)10と、回路配線基板(リードフレーム、セラミック基板、プリント基板等)2の導体配線(電極)11とが、ボンディングワイヤWを用いたボールボンディング法によって接続されたものである。
 半導体装置Mに用いられるボンディングワイヤWは、0.005質量%以上2.0質量%以下のInと、0.005質量%以上2.0質量%以下のAu及びPd(パラジウム)からなる群から選択された1種又は2種の元素と、5質量ppm以上500質量ppm以下のBi(ビスマス)及びCu(銅)からなる群から選択された1種又は2種の元素とを含有し、残部がAgからなるものである。
 ボンディングワイヤWの線径は用途に応じて種々の大きさとしてよい。例えば、ボンディングワイヤWの線径は5μm以上150μm以下とすることができる。
 具体的には、ボンディングワイヤWを構成するAgは、精製上不可避的に存在する鉄(Fe)等の不純物を含有してもよく、純度99.9質量%以上のAgを用いてボンディングワイヤWを構成するAg合金を製作することが好ましい。
 ボンディングワイヤWは、Inを含有することにより、電極10に溶融したFABを圧着することで電極10上に形成される1st接合部12の耐食性が向上し、長期信頼性を改善することができる。半導体パッケージの電極にはAl(アルミニウム)もしくはAl合金が被覆されていることが多い。AgとAlを接合すると、接合界面にAgAlやAgAlといったAgとAlの金属間化合物層が生成する。接合界面に生成された金属間化合物層は、外部から水や塩素が進入して1st接合部12の劣化を起こしやすい。ボンディングワイヤがInを一定量含有すると、接合界面から進入する水や塩素によるAgとAlの金属間化合物層の劣化を抑えることができ、1st接合部12の耐食性を向上することができる。
 Inの含有量が0.005質量%以上であると1st接合部12の耐食性が向上し、長期信頼性を改善することができる。Inの含有量が2.0質量%以下であるとワイヤの固有抵抗が適切な範囲に維持される。また、Inの含有量が2.0質量%以下であると、電極10、11の間を結線した時にできるループ形状にばらつきが生じにくくなる。
 ボンディングワイヤWは、Au及びPdの少なくとも一方の元素を含有することにより、1st接合部12の耐食性が向上し、長期信頼性を改善することができる。特に、Inに加えてAu及びPdの少なくとも一方の元素を含有することによって、ボンディングワイヤWの固有抵抗を小さく抑えつつ、1st接合部12の耐食性が顕著に向上し、長期信頼性を大幅に改善することができる。また、Au及びPdの少なくとも一方の元素を含有することにより、電極10,11を結線した時にできるループ高さH(図1参照)を小さくすることができる。
 Au及びPdが選択された1種又は2種の元素の含有量の合計が0.005質量%以上2.0質量%以下であることが好ましい。0.005質量%以上であると長期信頼性を改善することができ、ループ高さHを小さくすることができる。Au及びPdの含有量の合計が2.0質量%以下であると、貴金属の含有量が低くボンディングワイヤの製造コストを抑えることができる。
 特に、ボンディングワイヤWの固有抵抗を抑えつつ長期信頼性を向上させることができる点から、Au及びPdの含有量の合計に対するInの含有量の比率が、1以上5以下となるようにAu、Pd及びInを含有することが好ましく、より好ましくは1以上3以下である。
 ボンディングワイヤWは、Bi及びCuの少なくとも一方を含有することにより、1st接合部12の形状を円形に近い形状に制御することができる。Bi及びCuの含有量の合計は、5質量ppm以上500質量ppm以下であることが好ましく、より好ましくは5質量ppm以上100質量ppm以下、更に好ましくは5質量ppm以上50質量ppmである。
 Bi及びCuはそれぞれ単独で添加しても1st接合部12の形状を円形に近い形状に制御する効果が得られるが、BiとCuを複合して含有することで、添加量が少量でも平均結晶粒がより揃ってさらに円形に近い形状になる。Cuに比べてBiを多く添加するとFABの表面に凹凸を生じたり引け巣を生じたりすることを抑制できるので、BiをCuより多く含有するのがより好ましい。
 なお、本発明では、上記したAu、Pd、In、Bi及びCuに加え、更に、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群(以下、「選択元素群」ということもある)から選択された1種又は2種以上の元素を追加的に含有してもよい。つまり、選択元素群は任意成分である。この選択元素群の含有量の合計が500質量ppm以下であれば、Au、Pd、In、Bi及びCuを添加したことによる上記した作用効果を損なうことがない。また、選択元素群の含有量の合計が10質量ppm以上であると、ワイヤの耐熱性が向上するとともにFAB形成時にHAZ(Heat Affected Zone)と呼ばれる結晶粒の大きな領域が発生しにくくなり結線時のループの高さHを小さくすることができる。よって、選択元素群を添加する場合、選択元素群の含有量の合計は、10質量ppm以上500質量ppm以下であることが好ましく、より好ましくは10質量ppm以上100質量ppm以下である。
 また、選択元素群を添加する場合、選択元素群の含有量の合計は、Bi及びCuの含有量の合計より多く含有することが好ましい。Bi及びCuより選択元素群から選択された元素を多く含有することによって、FAB形状の真球性を悪化させることなくループ高さHを小さくすることができる。
 次いで、棒状インゴットを伸線加工して所定の直径に達するまで縮径してボンディングワイヤとする。なお、必要に応じて伸線加工の途中で軟化熱処理を行っても良い。
 そして、所定の直径まで伸線加工を行った後、必要に応じて熱処理炉中を走行させて調質熱処理を行い、ボンディングワイヤが得られる。
 本実施形態のボンディングワイヤは、Inの含有量が0.005質量%以上2.0質量%以下、Au及びPdから選択された1種又は2種の元素の含有量の合計が0.005質量%以上2.0質量%以下、Bi及びCuから選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上500質量ppm以下であり、残部がAgからなるので、長期信頼性やヒートサイクル性を良好にするとともに、結線時にできるループの高さを小さくしたり、ループ形状の安定性を高めたり、電極との接合部分の形状の安定性を高めたりすることができる。
 本実施形態のボンディングワイヤWにおいて、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素を追加的に含有してもよく、これらの元素の含有量の合計は10質量ppm以上500質量ppm以下であることが好ましい。Au、Pd、In、Bi及びCuに加え、更に、Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素を追加的に含有することで、ワイヤの強度や耐熱性を上げ、ヒートサイクル性を向上させることができる。
 また、本実施形態のボンディングワイヤにおいて、ワイヤ直径の2.0倍の直径を有するFABを窒素ガス雰囲気下で作製する時に生じるHAZ長さを100μm以下とすることができる。このような長さにすることで、結線時にできるループの高さを小さく設けることができ半導体装置の薄型化が可能となる。
 なお、HAZ長さは、汎用型電子顕微鏡を用いたボンディングワイヤの外観観察によって測定することができる。
 また、本実施形態のボンディングワイヤでは、図2に示すようなボンディングワイヤのワイヤ中心Cを含む長手方向の断面のSEM像において、ワイヤ中心Cを中心として半径方向にワイヤ直径の30%までの領域(ワイヤ中心Cを挟んで半径方向両側にワイヤ直径の15%までの領域)R1内における平均結晶粒径D1に対する、ワイヤ表面から半径方向にワイヤ直径の30%までの領域R2における平均結晶粒径D2の比率P(=D2/D1)を0.5以上5.0以下とすることができる。このような場合、FABを電極に押し当て潰した時に形成される1st接合部12の形状を円形に近い形状に制御することができる。
 なお、本明細書における平均結晶粒径は、下記式(1)により求めることができる。 
Figure JPOXMLDOC01-appb-M000001
 式(1)中、Nは、図2に示すようなボンディングワイヤの断面SEM像からワイヤの長手方向にワイヤ直径の3~4倍の長さの領域を任意に選択し、選択した領域内に存在する結晶粒の個数である。Sは、上記のように選択した領域の面積である。
 本発明に係るボンディングワイヤにおいて、ワイヤの中心部に存在し、ワイヤ長手方向の長さに対するワイヤ半径方向の長さの比が1/10以下である結晶を細長い結晶粒とすると、図3に示すようなワイヤ中心Cを含むワイヤ長手方向の断面に占める細長い結晶粒の面積の合計(図3の場合、ワイヤの中心部に存在する細長い結晶粒からなる領域R3の面積に相当)の比率Qを40%以下とすることができる。このような場合、ループ形状の安定性を高めることができる。
 なお、本実施形態のボンディングワイヤWは、上記したような半導体装置以外にも種々の態様のボンディングワイヤとして使用することができる。
 以上、本発明の実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 純度99.9質量%以上のAg原料を用いて、下記表1に示すような組成のAg合金を溶解し、連続鋳造法にて棒状インゴットを作製した。作製した棒状インゴットに対して伸線加工を施して直径25μmに達するまで縮径し、その後、調質熱処理を施し、実施例1~11及び比較例1~7のボンディングワイヤを得た。なお、実施例1~11及び比較例1~7のボンディングワイヤの線径(直径)はいずれも25μmである。
Figure JPOXMLDOC01-appb-T000002
 得られた実施例1~11及び比較例1~7のボンディングワイヤにつき、次の(1)~(11)の評価を行った。具体的な評価方法は以下のとおりである。
(1)固有抵抗
 実施例1~11及び比較例1~7の各ボンディングワイヤについて3つずつ評価用試料を作成し、4端子法を用いて室温での電気抵抗を測定した。3つの評価用試料の固有抵抗の平均値が4.0μΩ・cm未満であれば十分な導電性を有するので「A」、4.0μΩ・cm以上であれば「D」とした。
(2)ループ高さ
 ワイヤボンダー(株式会社カイジョー製、ワイヤボンダーFB-780)にて、図4に示すように、電極10上に形成した1st接合部12と、1st接合の後にボンディングワイヤWの外周面を電極11に押し当てて形成された接合部(2nd接合部)の高さが同じとなるように窒素ガス雰囲気でフラットボンドを行った。光学顕微鏡を用いて2nd接合部の接地点から最高地点のワイヤまでの高さhを測定した。ワイヤ直径の3~5倍までの高さhであれば「A」、ワイヤ直径の5~10倍までの高さHであれば「B」、ワイヤ直径の10倍以上の高さHであれば「D」とした。
(3)FAB真球性(形成性)
 上記(2)で用いたワイヤボンダーにてワイヤ直径の1.9倍~2.1倍の大きさのFABを窒素ガス雰囲気で作製した。FAB真球性(形成性)の評価としては、実施例及び比較例のボンディングワイヤ毎にFABを100個ずつ作製した後、汎用型電子顕微鏡(日本電子(株)製、JSM-6510LA)にて外観観察を行い、作製したFABのワイヤ平行方向と垂直方向の長さをそれぞれ測定した。FABのワイヤ平行方向の長さXと垂直方向の長さYの比(X/Y)の平均値が85%以上115%以下であれば「真球性あり」と判断し「A」、上記の比(X/Y)の平均値が85%未満あるいは115%より大きい場合、もしくは目視して円形出なければ「D」とした。
(4)HAZ長さ
 上記(3)においてFABを作製したワイヤを上記汎用型電子顕微鏡にて外観観察を行い、FAB直近のワイヤ部分に発生したHAZの長さを測定し、その平均値を算出した。
HAZ長さが100μm以下であれば「A」、それ以上の場合「B」とした。
(5)ボンディングワイヤの内部領域における平均結晶粒径に対するボンディングワイヤの表面領域における平均結晶粒径の比率P
 ワイヤの長手方向の断面を断面試料作製装置(日本電子(株)製、IB-09020CP)で露出させた後、汎用型電子顕微鏡(日本電子(株)製、JSM-6510LA)にてワイヤ断面の金属組織のSEM画像を取得し、取得したSEM画像からワイヤの長手方向にワイヤ直径の3倍の長さの領域を任意に選択した。選択した領域について、ワイヤ中心Cを中心として半径方向にワイヤ直径の30%の領域R1における平均結晶粒径D1と、ワイヤ表面から半径方向にワイヤ直径の30%までの領域R2における平均結晶粒径D2とを算出し、領域R1における平均結晶粒径D1に対する領域R2における平均結晶粒径D2の比率Pを算出した。
 なお、平均結晶粒径D1は、SEM画像からワイヤの長手方向にワイヤ直径の3倍の長さにわたって領域R1内に存在する結晶粒の個数N及び領域R1の面積Sを計測し、上記式(1)により求めた。平均結晶粒径D2は、SEM画像からワイヤの長手方向にワイヤ直径の3倍の長さにわたって領域R2内に存在する結晶粒の個数N及び領域R2の面積Sを計測し、上記式(1)により求めた。
 領域R1における平均結晶粒径D1に対する領域R2における平均結晶粒径D2の比率Pが、0.5以上5.0以下の場合は「A」、それ以外の場合は「B」とした。
(6)ワイヤ全体の面積に対する細長い結晶粒の面積の比率Q
 上記(5)と同じ方法で取得した金属組織のSEM画像からワイヤの長手方向にワイヤ直径の3倍の長さの領域を任意に選択し、選択した領域に存在する結晶粒について、ワイヤ長手方向及びワイヤ半径方向の長さをそれぞれ計測し、ワイヤ長手方向の長さに対するワイヤ半径方向の長さの比を算出した。算出した比が1/10以下である結晶を細長い結晶粒とし、選択した領域に存在する細長い結晶粒の面積の合計(総面積)を計測した。そして、選択した領域の面積に対する細長い結晶粒の総面積の比率Qを算出した。算出した比率Qが40%以下の場合を「A」、それ以外の場合は「B」とした。
(7)1st接合部のサイズ安定性
 上記(2)で用いたワイヤボンダーにて窒素ガス雰囲気で作製した100個のFABを電極に押し当てて1st接合部の直径がFABの直径の1.4倍の大きさになるようにボンディングを行った。1st接合部の直交する2方向の直径を汎用型電子顕微鏡(日本電子(株)製、JSM-6510LA)を用いて測定した。100個のFAB全てにおいて1st接合部の2方向の直径の差が2.5μm以下であれば「A」、2.5μmを超えて5μm以下の1st接合部が1個でもあれば「B」、5μmを超える1st接合部が1個でもあれば真円性が低くファインピッチ用途に不適と考えて「D」とした。
(8)ヒートサイクル試験
 上記(2)で用いたワイヤボンダーにて窒素ガス雰囲気でボンディングを行った後、エポキシ樹脂封止をした半導体試料を市販の熱サイクル試験装置を用いて評価した。温度履歴は-40℃で60分間保持した後、125℃まで昇温しこの温度で60分間保持する。これを1サイクルとして、1000サイクルの試験を行った。試験後に電気的測定を行い、導通評価をした。評価したワイヤ数は500本であり、不良率が1%以下の場合は「A」、1%を超え3%以下の場合は「B」、3%を超える場合は耐性が低いことから「D」とした。
(9)高温放置試験(長期信頼性)
 上記(2)で用いたワイヤボンダーにて窒素ガス雰囲気でボンディングを行った後、エポキシ樹脂封止をした半導体試料を作成した。市販の恒温槽を用いて作成した半導体試料を175℃で1000時間保持した後、電気的測定を行い、導通評価をした。評価したワイヤ数は500本であり、不良率が1%以下の場合は「A」、1%を超え3%以下の場合は「B」、3%を超える場合は耐性が低いことから「D」とした。
(10)ループ形成性
 上記(2)で用いたワイヤボンダーにて窒素ガス雰囲気で1st接合部と2nd接合部を同一の高さとし、ループ長さ(1st接合部と2nd接合部とを接続するワイヤの長さ)が2mm、ループ高さが200μmとなるようにボンドを行った。ループを真上から観察し、1st接合部の中心と2nd接合部の中心を結んだ直線とワイヤ中心Cとのズレ量の最大値(ワイヤ中心Cが前記直線からワイヤ径方向に最も離れた箇所でのワイヤ中心Cと前記直線との距離)を計測した。評価したワイヤ数は500本であり、前記直線からワイヤ中心Cが20μm以上外れている不良ワイヤが評価したワイヤ全体の5%以下の場合は「A」、5%を超え10%以下の場合は「B」、10%を超える場合はループが安定に形成できないことから「D」とした。
(11)総合評価
 各評価で全て「A」のものを「A」、「B」が1~3つあるものを「B」、「B」が4つ以上あるものを「C」、「D」が1つでもあるものを「D」とした。なお、この評価において、「A」のものは勿論のこと、「B」や「C」のものは、半導体素子の種類により接合条件に制約がない場合等の使用条件によれば、この発明の作用効果を発揮して使用し得る。
Figure JPOXMLDOC01-appb-T000003
 
 結果は、表2に示すとおりであり、実施例1~11では、上記(1)~(11)の全ての評価において良好な結果が得られた。
 一方、Bi及びCuの含有量の合計が500質量ppmを越える比較例1では、真球度の高いFABを形成することができなかった。Inの含有量が2.0質量%を越える比較例2では、固有抵抗及びループ形成性の評価が「D」となった。Au及びPdの含有量の合計が0.005質量%未満の比較例3では、ヒートサイクル試験及び高温放置試験の評価が「D」となった。Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeの含有量の合計が500質量ppmを越える比較例6では、固有抵抗及びFAB形成性の評価が「D」となった。Au及びPdの含有量の合計が2.0質量%を越える比較例5では、固有抵抗の評価が「D」となった。Inの含有量が0.005質量%未満の比較例6では、高温放置試験の評価が「D」となった。Bi及びCuの含有量の合計が5質量ppm未満の比較例7では、1st接合部の形状の評価が「D」となった。

Claims (9)

  1.  Inの含有量が0.005質量%以上2.0質量%以下、
     Au及びPdから選択された1種又は2種の元素の含有量の合計が0.005質量%以上2.0質量%以下、
     Bi及びCuから選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上500質量ppm以下、
     Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が0質量ppm以上500質量ppm以下であり、
     残部がAgからなる、ボンディングワイヤ。
  2.  Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が10質量ppm以上500質量ppm以下である、請求項1に記載のボンディングワイヤ。
  3.  Au及びPdの含有量の合計に対するInの含有量の比率が5以下である、請求項1又は2に記載のボンディングワイヤ。
  4.  Bi及びCuの含有が必須である、請求項1~3のいずれか1項に記載のボンディングワイヤ。
  5.  Ca、Mg、Ge、Y、Nd、Sm、Gd、La及びCeからなる群から選択された1種又は2種以上の元素の含有量の合計が、Bi及びCuから選択された1種又は2種以上の元素の含有量の合計より多い、請求項2に記載のボンディングワイヤ。
  6.  ワイヤ直径が25μmのワイヤに対してワイヤ直径の2.0倍の大きさのFABを窒素ガス雰囲気で作製した時に生じるHAZ長さが100μm以下である、請求項1~5のいずれか1項に記載のボンディングワイヤ。
  7.  ワイヤ中心を中心として半径方向にワイヤ直径の30%までの領域内における平均結晶粒径に対するワイヤ表面から半径方向にワイヤ直径の30%までの領域における平均結晶粒径の比率が、0.5以上5.0以下である、請求項1~6のいずれか1項に記載のボンディングワイヤ。
  8.  ワイヤの中心部に存在し、ワイヤ長手方向の長さに対するワイヤ半径方向の長さの比が1/10以下である結晶を細長い結晶粒とすると、ワイヤ中心を含むワイヤ長手方向の断面に占める前記細長い結晶粒の面積の比率が40%以下である、請求項1~7のいずれか1項に記載のボンディングワイヤ。
  9.  請求項1~8のいずれか1項に記載のボンディングワイヤを使用した、半導体装置。
PCT/JP2022/037712 2021-12-13 2022-10-07 ボンディングワイヤ及び半導体装置 WO2023112444A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280073103.3A CN118215990A (zh) 2021-12-13 2022-10-07 接合线及半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201999A JP7142761B1 (ja) 2021-12-13 2021-12-13 ボンディングワイヤ及び半導体装置
JP2021-201999 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112444A1 true WO2023112444A1 (ja) 2023-06-22

Family

ID=83436679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037712 WO2023112444A1 (ja) 2021-12-13 2022-10-07 ボンディングワイヤ及び半導体装置

Country Status (4)

Country Link
JP (2) JP7142761B1 (ja)
CN (1) CN118215990A (ja)
TW (1) TW202323542A (ja)
WO (1) WO2023112444A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006326A1 (ja) * 2014-07-10 2016-01-14 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
WO2016098707A1 (ja) * 2014-12-17 2016-06-23 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
WO2017187653A1 (ja) * 2016-04-28 2017-11-02 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2021100583A1 (ja) * 2019-11-22 2021-05-27 日鉄ケミカル&マテリアル株式会社 半導体装置用Ag合金ボンディングワイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006326A1 (ja) * 2014-07-10 2016-01-14 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
WO2016098707A1 (ja) * 2014-12-17 2016-06-23 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
WO2017187653A1 (ja) * 2016-04-28 2017-11-02 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2021100583A1 (ja) * 2019-11-22 2021-05-27 日鉄ケミカル&マテリアル株式会社 半導体装置用Ag合金ボンディングワイヤ

Also Published As

Publication number Publication date
JP2023087547A (ja) 2023-06-23
TW202323542A (zh) 2023-06-16
JP7142761B1 (ja) 2022-09-27
JP2023087638A (ja) 2023-06-23
CN118215990A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
TWI428455B (zh) 銀金鈀三元合金系接合線
TWI427719B (zh) The joint structure of the joining wire and its forming method
KR101536554B1 (ko) 본딩용 와이어
JP5616165B2 (ja) 銀ボンディングワイヤ
JP2012079944A (ja) 複層銅ボンディングワイヤの接合構造
WO2020246094A1 (ja) パラジウム被覆銅ボンディングワイヤ、パラジウム被覆銅ボンディングワイヤの製造方法、これを用いた半導体装置及びその製造方法
JP5064577B2 (ja) ボールボンディング用ワイヤ
WO2013018238A1 (ja) ボールボンディングワイヤ
KR101905942B1 (ko) 본딩용 와이어
TWI401323B (zh) Wire with gold alloy wire
TWI812853B (zh) 線接合構造、使用於該線接合構造的接合線及半導體裝置
JP2010245390A (ja) ボンディングワイヤ
CN105063407A (zh) 一种led封装用银合金键合丝及其制造方法
KR102497489B1 (ko) 반도체 장치용 본딩 와이어
WO2023112444A1 (ja) ボンディングワイヤ及び半導体装置
JP5996853B2 (ja) ボールボンディング用ワイヤ
KR102497492B1 (ko) 반도체 장치용 본딩 와이어
JP6714150B2 (ja) ボンディングワイヤ及び半導体装置
JP7146719B2 (ja) 半導体装置
CN111656501A (zh) 接合线
JPH03291340A (ja) 半導体装置用銅合金極細線及び半導体装置
JP3426473B2 (ja) 半導体素子用金合金細線
JP5339101B2 (ja) バンプ用ワイヤ
KR20240026928A (ko) 반도체 장치용 본딩 와이어
JPS62287635A (ja) 半導体素子結線用細線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906979

Country of ref document: EP

Kind code of ref document: A1