WO2023109171A1 - 一种低碳高纯五氧化二钽粉末及其制备方法和用途 - Google Patents

一种低碳高纯五氧化二钽粉末及其制备方法和用途 Download PDF

Info

Publication number
WO2023109171A1
WO2023109171A1 PCT/CN2022/114374 CN2022114374W WO2023109171A1 WO 2023109171 A1 WO2023109171 A1 WO 2023109171A1 CN 2022114374 W CN2022114374 W CN 2022114374W WO 2023109171 A1 WO2023109171 A1 WO 2023109171A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
tantalum pentoxide
powder
ppm
pentoxide powder
Prior art date
Application number
PCT/CN2022/114374
Other languages
English (en)
French (fr)
Inventor
郭顺
郑金凤
郭涛
梁宏源
程越伟
王英
刘彤
秦洪洁
左婧懿
张丽
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Priority to DE112022001058.4T priority Critical patent/DE112022001058T5/de
Priority to JP2023564248A priority patent/JP2024514351A/ja
Priority to MX2023010933A priority patent/MX2023010933A/es
Priority to US18/284,211 priority patent/US20240150194A1/en
Priority to BR112023021943A priority patent/BR112023021943A2/pt
Publication of WO2023109171A1 publication Critical patent/WO2023109171A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to the field of powder manufacturing, more specifically to a low-carbon high-purity tantalum pentoxide powder and its preparation method and application.
  • Tantalum pentoxide (commonly known as tantalum oxide) is the raw material for the production of metal tantalum, and is also used in the electronics industry to make lithium tantalate single crystals and optical glass (especially high-refraction and low-dispersion special optical glass), chemical industry can be used as a catalyst.
  • tantalum oxide is mainly prepared by neutralization and precipitation.
  • tantalum and niobium concentrates as raw materials, tantalum liquid is formed during the process of separating tantalum and niobium through liquid-liquid extraction.
  • the tantalum in the tantalum liquid exists in the form of H 2 TaF 7 and contains a certain amount of HF and H 2 SO 4 .
  • CN104386751A and CN104310323A relate to related technologies. However, the disadvantage of these methods is that it is difficult to remove carbon in tantalum oxide relatively sufficiently.
  • tantalum pentoxide Unfortunately, excessive carbon content is especially harmful to the purity of tantalum pentoxide, which restricts the application of tantalum pentoxide in the preparation of high-purity materials, such as the preparation of high-purity tantalum powder and the growth of high-purity lithium tantalate crystals .
  • the invention relates to a low-carbon and high-purity tantalum pentoxide.
  • low-carbon high-purity tantalum pentoxide or “high-purity” tantalum pentoxide both refer to tantalum pentoxide with a carbon content not greater than 15ppm.
  • the carbon content therein is 10 ppm to 15 ppm, preferably 3 ppm to 10 ppm.
  • tantalum oxide is generally the popular name for tantalum pentoxide, for the sake of rigor, this article mainly uses tantalum pentoxide to represent Tb 2 O 5 .
  • the present invention relates to the preparation method of aforementioned tantalum pentoxide powder, and the method comprises:
  • step (2) filter and wash the tantalum hydroxide slurry obtained in step (1), and then carry out solid-liquid separation to obtain a tantalum hydroxide filter cake;
  • step (3) (4) calcining the tantalum hydroxide powder obtained in step (3), crushing and sieving the calcined sample to obtain tantalum pentoxide powder;
  • step (4) Heat-treat the tantalum pentoxide powder obtained in step (4) at a temperature of 1000° C. to 1500° C. to obtain high-purity tantalum pentoxide powder.
  • the oxide content of the fluorotantalic acid (H 2 TaF 7 ) solution calculated by Ta 2 O 5 be 20-80 g/L, preferably 35-65 g/L.
  • As Ta2O5 is clear to those skilled in the art. However, in order to make it easier for those skilled in the art to understand, the applicant explains "calculated as Ta 2 O 5 " as follows. This is a common expression method for the concentration of fluorotantalic acid solution (sometimes referred to as “tantalic acid solution” in this paper). Tantalum in fluorotantalic acid solution mainly exists in the form of complexes. During the determination, tantalum in fluorotantalic acid is detected. content, and then converted to Ta 2 O 5 content, used to represent the concentration of tantalic acid solution, refer to the national standard GB/T15076.1 for details.
  • the precipitating agent includes but not limited to one or more of sodium bicarbonate, ammonium carbonate, urea, ammonia water, ammonia gas, and sodium hydroxide.
  • ammonia water is used as the precipitating agent; at this time, adding the precipitating agent can also be referred to as feeding ammonia gas.
  • feeding ammonia gas There is no limitation on the rate of feeding ammonia water, but slow feeding is preferred.
  • the aging time in the step (2) (which can also be extended as resting time) is 2 to 5 hours. More preferably the aging time is 3-4h).
  • the filtration and washing in step (2) is repeated several times.
  • the filtration can be carried out in the following manner: adding the tantalum hydroxide solution obtained in step (1) into a filtration tank, and then performing filtration with hot pure water (for example, hot pure water at 90-100° C.).
  • the solid-liquid separation is carried out by negative pressure suction filtration.
  • drying is carried out in the following manner in step (3): the filter cake is placed in a hot air oven, and dried at 80-180°C (preferably 100-160°C, more preferably 120-140°C), for example, for 8 hours ⁇ 12h (preferably 10 ⁇ 11.5h).
  • the calcination in step (4) is preferably carried out by loading the tantalum pentoxide powder obtained in step (3) into a crucible and placing it in a furnace.
  • the furnace used here is preferably a muffle furnace.
  • the calcination temperature is 900°C to 1000°C (preferably 800°C to 900°C), and the calcination time is 8h to 12h (preferably 9-11h)
  • the high-temperature calcination heat treatment temperature is preferably 1200° C. to 1500° C. (for example, 1400° C.), and the time is preferably 1 to 3 hours.
  • the sintering heat treatment atmosphere includes but not limited to vacuum, inert atmosphere (such as helium, argon, neon, etc.) and atmospheric atmosphere. More preferably it is done under vacuum.
  • the high-temperature vacuum heat treatment temperature in step (5) is 1200°C-1400°C, more preferably 1200-1300°C).
  • the heat treatment time is 1h-3h.
  • the carbon content of the high-purity tantalum pentoxide powder obtained in step (5) is 10 ppm to 15 ppm, preferably 3 ppm to 10 ppm.
  • the present invention also relates to the use of the above-mentioned tantalum pentoxide powder in the manufacture of lithium tantalate single crystals and catalysts, and in the manufacture of optical glass (such as high-refraction and low-dispersion optical glass).
  • the inventors after a lot of research, believe that the main reason for the difficulty in further reducing the carbon content in the prior art is: in the production process of high-purity tantalum pentoxide produced by the neutralization precipitation method, due to the early liquid- In the liquid extraction process, a large amount of organic matter is often used as the extractant, which cannot be completely removed in the subsequent process, resulting in a high carbon content in the high-purity tantalum pentoxide powder. Due to the "inheritance" of carbon impurity content, the carbon content in tantalum powder will exceed the standard in the process of using tantalum pentoxide to prepare metal tantalum powder.
  • the inventor found that the ideal low-carbon and high-purity tantalum pentoxide powder can be obtained by the method of the present invention.
  • tantalum hydroxide white powder into a crucible, place it in a muffle furnace for calcination, the calcination temperature is 900° C., and the calcination time is 10 hours.
  • the sintered sample is crushed and sieved to obtain tantalum pentoxide powder.
  • tantalum hydroxide white powder into a crucible, place it in a muffle furnace for calcination, the calcination temperature is 900° C., and the calcination time is 10 hours.
  • the sintered sample is crushed and sieved to obtain tantalum pentoxide powder.
  • tantalum pentoxide powder into a crucible, place it in a high-temperature vacuum furnace, and heat it at a temperature of 1200° C. for 2 hours for heat treatment to obtain a low-carbon tantalum pentoxide powder.
  • tantalum hydroxide white powder into a crucible, place it in a muffle furnace for calcination, the calcination temperature is 800° C., and the calcination time is 10 hours.
  • the sintered samples are crushed and screened to obtain tantalum pentoxide powder.
  • tantalum hydroxide white powder into a crucible, place it in a muffle furnace for calcination, the calcination temperature is 800° C., and the calcination time is 10 hours.
  • the sintered samples are crushed and screened to obtain tantalum pentoxide powder.
  • tantalum pentoxide powder into a crucible, place it in a high-temperature vacuum furnace, and heat it at 1350° C. for 2 hours for heat treatment to obtain low-carbon tantalum pentoxide powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种低碳高纯五氧化二钽粉末及其制备方法和用途。该粉末有不大于15ppm的碳含量,优选10ppm至15ppm,更优选3ppm至10ppm。该制备方法包括:(1)将氟钽酸(H 2TaF 7)溶液加入反应釜中,将反应釜温度控制在30~60℃,加入沉淀剂直至反应溶液的pH=8~10,然后停止通氨,进行陈化,得到氢氧化钽浆料;(2)将步骤(1)得到的氢氧化钽浆料进行滤洗,然后进行固液分离,获得氢氧化钽滤饼;(3)将步骤(2)得到的滤饼进行干燥,得到白色氢氧化钽粉末;(4)将步骤(3)得到的氢氧化钽粉末进行煅烧,将煅烧后的样品进行破碎并筛分,获得五氧化二钽粉末;和(5)将步骤(4)得到的五氧化二钽粉末,在1000℃~1500℃温度下热处理,得到高纯五氧化二钽粉末。

Description

一种低碳高纯五氧化二钽粉末及其制备方法和用途 技术领域
本发明涉及粉末制造领域,更具体涉及一种低碳高纯五氧化二钽粉末及其制备方法和用途。
背景技术
五氧化二钽(通常又俗称为氧化钽)是生产金属钽的原料,也用于电子工业,用于制作钽酸锂单晶和制造光学玻璃(特别是高折射低色散特种光学玻璃),化工中可用作催化剂。
在现有的技术中,氧化钽的制备主要通过中和沉淀法制取。以钽铌精矿为原料,通过液—液萃取法分离钽铌过程中形成钽液,钽液中钽以H 2TaF 7形式存在,并含有一定量的HF和H 2SO 4,当用氨水中和至PH=8~10时,形成难溶于水的白色氢氧化钽,后经过烘干、煅烧,获得氧化钽。CN104386751A以及CN104310323A涉及相关技术。然而,这些方法的缺点是难以较充分地除去氧化钽中的碳。遗憾的是,过高的碳含量对于五氧化二钽的纯度尤其有害,制约了五氧化二钽在高纯材料制备方面的应用,比如高纯钽粉的制备和高纯钽酸锂晶体的生长。
现有技术中进行了许多研究,然而仍然没有解决进一步降低五氧化二钽中的碳含量的问题。
发明内容
本发明涉及一种低碳高纯五氧化二钽。在本文中,“低碳高纯”的五氧化二钽或“高纯”的五氧化二钽都是指碳含量不大于15ppm的五氧化二钽。优选地,其中碳含量为10ppm至15ppm,优选3ppm至10ppm。
尽管氧化钽一般是五氧化二钽的通俗叫法,但本文为了严谨起见,主要使用五氧化二钽表示Tb 2O 5
本发明涉及前述五氧化二钽粉末的制备方法,该方法包括:
(1)将氟钽酸(H 2TaF 7)溶液加入反应釜中,将反应釜温度控制在30~60℃(优选40~50℃),加入沉淀剂直至反应溶液的pH=8~10(优选8~9.5),然后停止通氨,进行陈化(例如陈化2~5h,优选3-4h),得到氢氧化钽浆料;
(2)将步骤(1)得到的氢氧化钽浆料进行滤洗,然后进行固液分离,获得氢氧化钽滤饼;
(3)将步骤(2)得到的滤饼进行干燥,得到白色氢氧化钽粉末;
(4)将步骤(3)得到的氢氧化钽粉末进行煅烧,将煅烧后的样品进行破碎并筛分,获得五氧化二钽粉末;和
(5)将步骤(4)得到的五氧化二钽粉末,在1000℃~1500℃温度下热处理,得到高纯五氧化二钽粉末。
更加优选地,步骤(1)中反应溶液的pH=8~9时,停止加入沉淀剂。
在步骤(1)中,优选地采用以Ta 2O 5计算,氟钽酸(H 2TaF 7)溶液的氧化物含量为20~80g/L,优选35-65g/L。“以Ta 2O 5计”对于本领域技术人员是清楚的。但为了使本领域技术人员更容易理解,申请人对“以Ta 2O 5计”解释如下。这是氟钽酸溶液(本文中有时简称为“钽酸溶液”)浓度的常用表示方法,氟钽酸溶液中钽主要以络合物的形式存在,在测定过程中检测氟钽酸中的钽含量,然后换算为Ta 2O 5的含量,用以表示钽酸溶液的浓度,具体参照国标GB/T15076.1。
在步骤(1)中,所述沉淀剂包括但不限于碳酸氢钠、碳酸铵、尿素、氨水、氨气、氢氧化钠中的一种或几种。优选地,采用氨水为沉淀剂;此时,添加沉淀剂也可以称为通入氨气。对于通入氨水的速率不进行限制,但优选缓慢通入。在所述步骤(1),优选在反应釜内进行搅拌。更优选地,搅拌时间为5~10min。
优选地,所述步骤(2)中的陈化时间(也可拓为静止时间)为2~5h。更优选地陈化时间为3-4h)。优选地,步骤(2)中的滤洗反复进行多次。例如,该滤洗可以通过如下方式进行:将步骤(1)得到的氢氧化钽溶液加入滤洗槽,然后用热纯水(例如90~100℃的热纯水)进行滤洗。优选地,采用负压抽滤的方式进行固液分离。
优选地,在步骤(3)中通过如下方式进行干燥:将滤饼放置于热风烘箱,在80~180℃(优选100-160℃,更优选120℃-140℃)下进行干燥,例如干燥8h~12h(优选10~11.5h)。
优选地,步骤(4)中的煅烧优选通过将步骤(3)得到的氢五氧化二钽粉末装入坩埚,放置于炉进行中。这里所用的炉优选为马弗炉。优选地,煅烧温度为900℃~1000℃(优选800℃~900℃),煅烧时间8h~12h(优选9-11h)
所述步骤(5)中高温煅烧热处理温度优选为1200℃~1500℃(例如1400℃),时间优选为1~3h。所述步骤(5)中,烧结热处理气氛包括但不限于真空、惰性气氛(例如氦气、氩气、氖气等)和大气气氛。更优选在真空下进行。
优选地,步骤(5)中高温真空热处理温度为1200℃~1400℃,更优选1200~1300℃)。优选地,热处理时间1h~3h。
优选地,步骤(5)中得到的高纯五氧化二钽粉末的碳含量为10ppm~15ppm,优选3ppm~10ppm。
本发明还涉及上述五氧化二钽粉末在制造钽酸锂单晶和催化剂以及制造光学玻璃(例如高折射低色散光学玻璃)的用途。
不束缚于一般理论,发明人经过大量的研究后,认为现有技术中难以进一步降低碳含量的主要原因是:在中和沉淀法制取高纯五氧化二钽的生产过程中,由于前期液—液萃取过程中多以大量的有机物作为萃取剂,萃取剂在后续工序中无法彻底去除,从而导致高纯五氧化二钽粉末中碳含量较高。由于碳杂质含量的“传承”性,在采用五氧化二钽制备金属钽粉的过程中,会造成钽粉中碳含量超标。
发明人经过大量的研究后发现,通过本发明的方法,能够得到理想的低碳高纯五氧化二钽粉末。
具体实施方式
为了更好地说明本发明,提供以下实施例。这些实施例仅仅是为了更好地使本领域技术人员更容易理解本发明,而不意图限制本发明。
实施例中未注明具体条件者,按照常规条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
出于本说明书的目的,在说明书和权利要求书中所有表示成分的量、反应条件等的数字在所有的情况下应被理解为由术语“约”修饰,除非另有指定。相应地,以下的说明书和所附权利要求书中给出的数值参数是近似值,其可根据本发明试图得到的所希望的性质而变化,除非有相反的指示。至少,且不打算限制等同原则在权利要求范围上的应用,每个数值参数应该至少按照所报道的有效数字的位数并按照通常的四舍五入技术来解释。
比较例1:
1、量取氟钽酸溶液100L,其氧化物含量以Ta 2O 5计算为50g/L,加入反应釜中,控制反应釜的温度为40℃。将氨水缓慢通入到钽酸溶液中,直至反应溶液的pH=9,得到氢氧化钽浆料,然后陈化3h。
2、将氢氧化钽浆料转入滤洗槽,采用温度为95℃的热纯水对反应沉淀物进行反复滤洗,最后采用负压抽滤进行固液分离,获得白色滤饼。
3、将白色滤饼放入料盘,放置于热风烘箱,在100℃下干燥10h,得到氢氧化钽白色粉末。
4、将氢氧化钽白色粉末装入坩埚,置于马弗炉中煅烧,煅烧温度900℃,煅烧时间10h,将烧结后的样品进行破碎和筛分,获得五氧化二钽粉末。
按照中国标准GB/T15076.8分析上述五氧化二钽粉末的碳含量,将测到的结果列于表1中。
实施例1:
1、量取氟钽酸溶液100L,其氧化物含量以Ta 2O 5计算为50g/L,加入反应釜中,控制反应釜的温度为40℃。将氨水缓慢通入到钽酸溶液中,直至反应溶液的pH=9,得到氢氧化钽浆料,陈化时间3h。
2、将氢氧化钽浆料转入滤洗槽,采用温度为95℃的热纯水对反应沉淀物进行反复滤洗,最后采用负压抽滤进行固液分离,获得白色滤饼。
3、将白色滤饼放入料盘,放置于热风烘箱,在100℃下干燥10h,得到氢氧化钽白色粉末。
4、将氢氧化钽白色粉末装入坩埚,置于马弗炉中煅烧,煅烧温度900℃,煅烧时间10h,将烧结后的样品进行破碎和筛分,获得五氧化二钽粉末。
5、将五氧化二钽粉末装入坩埚,放置于高温真空炉中,在温度1200℃下加热2h以进行热处理,得到低碳五氧化二钽粉末。
按照中国标准GB/T15076.8分析上述五氧化二钽粉末的碳含量,将测到的结果列于表1中。
比较例2:
1、量取氟钽酸溶液100L,其氧化物含量以Ta 2O 5计算为35g/L,加入反应釜中,控制反应釜的温度为60℃。将氨水缓慢通入到钽酸溶液中,直至反应溶液的pH=10,得到氢氧化钽浆料,陈化时间3h。
2、将氢氧化钽加料转入滤洗槽,采用温度为95℃的热纯水对反应沉淀物进行反复滤洗,最后采用负压抽滤进行固液分离,获得白色滤饼。
3、将白色滤饼放入料盘,放置于热风烘箱,在100℃下干燥10h,获得氢氧化钽白色粉末。
4、将氢氧化钽白色粉末装入坩埚,置于马弗炉中煅烧,煅烧温度800℃,煅烧时间10h,将烧结后的样品进行破碎筛分,获得五氧化二钽粉末。
按照国标GB/T15076.8分析上述五氧化二钽粉末的碳含量,将测到的结果列于表1中。
实施例2:
1、量取氟钽酸溶液100L,其氧化物含量以Ta 2O 5计算为35g/L,加入反应釜中,控制反应釜的温度为60℃。将氨水缓慢通入到钽酸溶液中,直至反应溶液的pH=10,得到氢氧化钽浆料,陈化时间3h。
2、将氢氧化钽加料转入滤洗槽,采用温度为95℃的热纯水对反应沉淀物进行反复滤洗,最后采用负压抽滤进行固液分离,获得白色滤饼。
3、将白色滤饼放入料盘,放置于热风烘箱,在100℃下干燥10h,获得氢氧化钽白色粉末。
4、将氢氧化钽白色粉末装入坩埚,置于马弗炉中煅烧,煅烧温度800℃,煅烧时间10h,将烧结后的样品进行破碎筛分,获得五氧化二钽粉末。
5、将五氧化二钽粉末装入坩埚,放置于高温真空炉中,在温度1350℃下加热2h以进行热处理,得到低碳五氧化二钽粉末。
按照国标GB/T15076.8分析上述五氧化二钽粉末的碳含量,将测到的结果列于表1中。
表1低碳五氧化二钽分析结果
试样 碳含量(ppm)
比较例1 102
实施例1 12
比较例2 110
实施例2 7
从该表1可以看出,通过本发明的方法得到的五氧化二钽粉的碳含量有了预料不到的降低,产生了数量级的区别。

Claims (9)

  1. 五氧化二钽粉末,其具有不大于15ppm的碳含量,优选10ppm至15ppm,更优选3ppm至10ppm。
  2. 五氧化二钽粉末的制备方法,该方法包括:
    (1)将氟钽酸(H 2TaF 7)溶液加入反应釜中,将反应釜温度控制在30~60℃(优选40~50℃),加入沉淀剂直至反应溶液的pH=8~10(优选8~9.5,更加优选地pH=8~9),然后停止通氨,进行陈化(例如陈化2~5h,优选3-4h),得到氢氧化钽浆料;
    (2)将步骤(1)得到的氢氧化钽浆料进行滤洗,然后进行固液分离,获得氢氧化钽滤饼;
    (3)将步骤(2)得到的滤饼进行干燥,得到白色氢氧化钽粉末;
    (4)将步骤(3)得到的氢氧化钽粉末进行煅烧,将煅烧后的样品进行破碎并筛分,获得五氧化二钽粉末;和
    (5)将步骤(4)得到的五氧化二钽粉末,在1000℃~1500℃温度下热处理,得到高纯五氧化二钽粉末。
  3. 根据权利要求2所述的方法,其中在步骤(1)中,采用以Ta 2O 5计算,氟钽酸(H 2TaF 7)溶液的氧化物含量为20~80g/L,优选35-65g/L;和/或优选地,所述沉淀剂包括但不限于碳酸氢钠、碳酸铵、尿素、氨水、氨气、氢氧化钠中的一种或几种,优选地,采用氨水为沉淀剂;和/或优选地,在反应釜内进行搅拌,更优选地,搅拌时间为5~10min。
  4. 根据权利要求2-3中任一项所述的方法,其中在所述步骤(2)中的陈化时间为2~5h,更优选为3-4h);和/或其中优选地,步骤(2)中的滤洗反复进行多次;和/或其中在所述步骤(2)中,采用负压抽滤的方式进行固液分离。
  5. 根据权利要求2-4中任一项所述的方法,其中在步骤(3)中通过如下方式进行干燥:将滤饼放置于热风烘箱,在80~180℃(优选100-160℃,更优选120℃-140℃)下进行干燥,例如干燥8h~12h(优选10~11.5h)。
  6. 根据权利要求2-5中任一项所述的方法,其中在步骤(4)中的煅烧通过如下方式进行:将步骤(3)得到的氢五氧化二钽粉末装入坩埚,放置于炉进行中,所用的炉优选为马弗炉;优选地,煅烧温度为900℃~1000℃(优选800℃~900℃),煅烧时间优选为8h~12h(优选9-11h)
  7. 根据权利要求2-6中任一项所述的方法,其中在所述步骤(5)中,高温热处理温度优选为1200℃~1500℃(优选1200℃~1400℃,例如1400℃,更优选1200~1300℃),时间优选为1~3h;和/或其中优选地,烧结热处理气氛包括但不限于真空、惰性气氛(例如氦气、氩气、氖气等)和大气气氛,更优选在真空下进行。
  8. 五氧化二钽粉末,其是根据权利要求2-7中任一项所述的方法得到的,优选该粉末的碳含量为10ppm~15ppm,更优选3ppm~10ppm。
  9. 根据权利要求1或8的五氧化二钽粉末在制造钽酸锂单晶和催化剂以及制造光学玻璃的用途。
PCT/CN2022/114374 2021-12-15 2022-08-24 一种低碳高纯五氧化二钽粉末及其制备方法和用途 WO2023109171A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112022001058.4T DE112022001058T5 (de) 2021-12-15 2022-08-24 Kohlenstoffarmes, hochreines Tantalpentoxidpulver sowie Verfahren zu seiner Herstellung und seine Verwendung
JP2023564248A JP2024514351A (ja) 2021-12-15 2022-08-24 低炭素高純度五酸化タンタル粉末およびそれを調製する方法およびその使用
MX2023010933A MX2023010933A (es) 2021-12-15 2022-08-24 Polvo de pentoxido de tantalo de alta pureza bajo contenido de carbono y el metodo de preparacion y uso del mismo.
US18/284,211 US20240150194A1 (en) 2021-12-15 2022-08-24 Low-carbon high-purity tantalum pentoxide powder and preparation method and use thereof
BR112023021943A BR112023021943A2 (pt) 2021-12-15 2022-08-24 Pó de pentóxido de tântalo de alta pureza e baixo carbono e método de preparação e uso do mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111532673.8 2021-12-15
CN202111532673.8A CN114057227B (zh) 2021-12-15 2021-12-15 一种低碳高纯五氧化二钽粉末及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2023109171A1 true WO2023109171A1 (zh) 2023-06-22

Family

ID=80229512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114374 WO2023109171A1 (zh) 2021-12-15 2022-08-24 一种低碳高纯五氧化二钽粉末及其制备方法和用途

Country Status (7)

Country Link
US (1) US20240150194A1 (zh)
JP (1) JP2024514351A (zh)
CN (2) CN114057227B (zh)
BR (1) BR112023021943A2 (zh)
DE (1) DE112022001058T5 (zh)
MX (1) MX2023010933A (zh)
WO (1) WO2023109171A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057227B (zh) * 2021-12-15 2023-09-19 宁夏东方钽业股份有限公司 一种低碳高纯五氧化二钽粉末及其制备方法和用途
CN115784605B (zh) * 2022-12-01 2024-08-13 武汉科技大学 一种用于铝硅玻璃的钽酸盐添加剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068097A (en) * 1989-02-14 1991-11-26 Herman C. Starck Berlin Gmbh & Co. Kg Highly pure tantalum pentoxide and a process for its preparation
CN103274468A (zh) * 2013-05-29 2013-09-04 复旦大学 一种球形五氧化二钽的制备方法及应用
CN104386751A (zh) * 2014-11-19 2015-03-04 九江有色金属冶炼有限公司 一种超高纯度氧化钽的制备方法及其制备的超高纯度氧化钽
CN110156082A (zh) * 2019-05-27 2019-08-23 九江有色金属冶炼有限公司 一种大松装密度氧化钽的制备方法
CN111850686A (zh) * 2020-07-22 2020-10-30 宁夏东方钽业股份有限公司 一种五氧化二钽晶须及其制备方法
CN114057227A (zh) * 2021-12-15 2022-02-18 宁夏东方钽业股份有限公司 一种低碳高纯五氧化二钽粉末及其制备方法和用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490340A (en) * 1984-02-29 1984-12-25 Gte Products Corporation Process for the recovery of high purity tantalum oxide
US5635146A (en) * 1995-11-30 1997-06-03 Osram Sylvania Inc. Method for the dissolution and purification of tantalum pentoxide
JP2005255454A (ja) * 2004-03-11 2005-09-22 Stella Chemifa Corp 酸化タンタル及び/又は酸化ニオブ及びその製造方法
US7399335B2 (en) * 2005-03-22 2008-07-15 H.C. Starck Inc. Method of preparing primary refractory metal
JP2006263504A (ja) * 2005-03-22 2006-10-05 Hitachinaka Techno Center:Kk 酸化タンタル系光触媒およびその製造方法
CN105883919A (zh) * 2016-04-28 2016-08-24 宁夏东方钽业股份有限公司 一种球形氧化钽或球形氧化铌的制备方法
CN112592180A (zh) * 2020-12-15 2021-04-02 海宁拓材科技股份有限公司 一种低氟高纯五氧化二钽光学镀膜材料制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068097A (en) * 1989-02-14 1991-11-26 Herman C. Starck Berlin Gmbh & Co. Kg Highly pure tantalum pentoxide and a process for its preparation
CN103274468A (zh) * 2013-05-29 2013-09-04 复旦大学 一种球形五氧化二钽的制备方法及应用
CN104386751A (zh) * 2014-11-19 2015-03-04 九江有色金属冶炼有限公司 一种超高纯度氧化钽的制备方法及其制备的超高纯度氧化钽
CN110156082A (zh) * 2019-05-27 2019-08-23 九江有色金属冶炼有限公司 一种大松装密度氧化钽的制备方法
CN111850686A (zh) * 2020-07-22 2020-10-30 宁夏东方钽业股份有限公司 一种五氧化二钽晶须及其制备方法
CN114057227A (zh) * 2021-12-15 2022-02-18 宁夏东方钽业股份有限公司 一种低碳高纯五氧化二钽粉末及其制备方法和用途

Also Published As

Publication number Publication date
BR112023021943A2 (pt) 2024-01-16
CN114057227B (zh) 2023-09-19
JP2024514351A (ja) 2024-04-01
CN114057227A (zh) 2022-02-18
CN117185349A (zh) 2023-12-08
DE112022001058T5 (de) 2023-12-28
US20240150194A1 (en) 2024-05-09
MX2023010933A (es) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2023109171A1 (zh) 一种低碳高纯五氧化二钽粉末及其制备方法和用途
CN102502757B (zh) 一种由程序升温法制备高纯无水氯化镧或氯化铈的方法
EP0130480A2 (en) Process for the preparation of ceramic powders
CN102329212B (zh) 长链二元酸的精制方法
AU2015247017B2 (en) Method for Producing Nickel Powder for Reducing Carbon Concentration and Low Sulfur Concentration Contained in Nickel Powder
CN113716559A (zh) 一种强酸法鳞片石墨提纯工艺及装置
WO2017092217A1 (zh) 常温萃取法生产高纯五氧化二钒的方法
CN110937622A (zh) 一种海绵镓制备4n氧化镓的方法
CN104386751B (zh) 一种超高纯度氧化钽的制备方法及其制备的超高纯度氧化钽
CN109553121B (zh) 一种高纯低钠氢氧化铝的制备方法
CN110357153B (zh) 工业偏钛酸水热制备高纯二氧化钛的方法
CN110468275A (zh) 除去稀土沉淀物中硫酸根的方法及由该方法得到的产品
CN105837431B (zh) 一种醋酸钠和硫酸钠混合体系中分离醋酸钠的方法
WO2020077970A1 (zh) 一种高效甜菊糖苷混合物的制备方法
CN105669511B (zh) 一种羟脯氨酸精制方法
CN101633518A (zh) 一种化学除钙制备低钙氧化镧的制备方法
CN115124072A (zh) 一种硫酸法制备高纯纳米二氧化钛的方法及产品
CN110092364B (zh) 一种高纯度光学玻璃添加剂偏磷酸锌的制备方法
CN108147437B (zh) 以砷酸镁为原料生产高纯氧化镁的方法
RU2396212C2 (ru) Способ получения тетрафторида урана
CN111892072A (zh) 一种菱镁矿尾矿制备硫酸镁的方法
US2344288A (en) Method for solubilizing titaniferous ores
RU2610494C1 (ru) Способ очистки триоксида молибдена
US3415618A (en) Process for producing high purity aluminum nitrate solutions from low grade aluminous ores of intermediate iron content
CN106966431B (zh) 一种4n指定级高纯偏钒酸铵的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010933

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 18284211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001058

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2023564248

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2301006952

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021943

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023021943

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231020