WO2023109165A1 - 一种底填材料及其制备方法和应用 - Google Patents

一种底填材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023109165A1
WO2023109165A1 PCT/CN2022/113627 CN2022113627W WO2023109165A1 WO 2023109165 A1 WO2023109165 A1 WO 2023109165A1 CN 2022113627 W CN2022113627 W CN 2022113627W WO 2023109165 A1 WO2023109165 A1 WO 2023109165A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
underfill material
mercaptopropionate
compound
thiol compound
Prior art date
Application number
PCT/CN2022/113627
Other languages
English (en)
French (fr)
Inventor
林鸿腾
刘涛
李帅
Original Assignee
韦尔通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韦尔通科技股份有限公司 filed Critical 韦尔通科技股份有限公司
Publication of WO2023109165A1 publication Critical patent/WO2023109165A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the invention belongs to the field of chip underfill materials, in particular to an underfill material and its preparation method and application.
  • the bottom mounting technology of the chip is the main way of interconnecting the chip and the terminal.
  • an underfill material as the bottom between the chip and the PCB. Padding treatment.
  • Underfill materials are critical to the reliability of electronic materials such as mobile phones and computers.
  • the underfill material in order to obtain higher production capacity, the underfill material is required to flow quickly at room temperature and have the shortest possible curing time; on the other hand, in order to improve the reliability of the material, the underfill material is required to have a high Glass transition temperature (Tg), and in order to recycle PCB boards and chips with high cost, the underfill material is required to have certain rework performance.
  • Tg Glass transition temperature
  • the current underfill materials for electronic materials cannot satisfy both fast flow at room temperature (that is, ensure that the room temperature viscosity of the underfill material is less than or equal to 1000cps), and short curing time (the common temperature for SMT soldering is 130°C, so it is necessary
  • the time required to reach 95% curing degree at 130°C is less than or equal to 5 minutes
  • high glass transition temperature (Tg greater than or equal to 120°C) high temperature can be repaired.
  • Tg high glass transition temperature
  • the curing time of common underfill materials generally takes 10-15 minutes to reach 95% curing degree, and the Tg is generally 100-110°C.
  • underfill materials generally do not use thiol compounds as curing agents on the basis of epoxy resins, because the use of thiol compounds usually reduces the Tg of underfill materials.
  • the usual practice is to control the equivalent ratio of the active functional groups of the resin contained in the underfill material to the active functional groups of the curing agent at about 1, so that the underfill material can be fully cured to increase Tg.
  • the purpose of the present invention is to provide a high Tg and reworkable underfill that can be quickly filled and cured at room temperature in order to overcome the defects of long curing time, low Tg and poor reworkability of existing underfill materials Materials and their preparation methods and applications.
  • the present invention provides an underfill material, wherein the underfill material contains an epoxy resin, a thiol compound and a catalyst; the epoxy resin has a structure shown in formula (1); the sulfur The equivalent ratio of the mercapto group of the alcohol compound to the epoxy group of the epoxy resin is 0.01 ⁇ 0.5;
  • the content of the thiol compound is 1.2-60 parts by weight, and the content of the catalyst is 1-20 parts by weight.
  • the thiol compound is selected from methyl 3-mercaptopropionate, ethyl 3-mercaptopropionate, butyl 3-mercaptopropionate, bis(3-mercaptopropionate) ethyl Diol, ethylene glycol dimercaptoacetate, tetraethylene glycol bis(3-mercaptopropionic acid), 3,7-dithia-1,9-nonanedithiol, trimethylolpropane tri(3 -mercaptopropionate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione , Tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate, 2,3-dithio(2-mercapto)-1-propanethiol, tetrakis(3-mercaptopropionic acid) At least
  • the catalyst is at least one selected from imidazole compounds, amine compounds and phosphorus compounds.
  • the underfill material also contains a silane coupling agent.
  • the silane coupling agent is selected from ⁇ -methacryloxypropyltrimethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltrimethoxy ylsilane, vinyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxy Silane, anilinomethyltriethoxysilane, ⁇ -(2,3-glycidoxy)propyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane and At least one of ⁇ -ureapropyltriethoxysilane.
  • the content of the silane coupling agent is 0.01-5% of the total weight of the epoxy resin and the thiol compound.
  • the underfill material also contains a stabilizer.
  • the stabilizer is selected from at least one of liquid boric acid ester compound, aluminum chelating agent and barbituric acid.
  • the content of the stabilizer is 0.01-1% of the total weight of the epoxy resin and the thiol compound.
  • the underfill material also contains inorganic fillers.
  • the inorganic filler is selected from silica, alumina, talcum powder, calcium carbonate, barium sulfate, mica stone, quartz powder, glass powder, aluminum hydroxide, zinc oxide, aluminum nitride, Silicon carbide, silicon nitride, boron nitride, titanium nitride, dolomite, titanium dioxide, aluminum silicate, calcium silicate, bentonite, magnesium oxide, magnesium hydroxide, magnesium silicate, cobalt silicate, zirconia, and titanic acid at least one of barium.
  • the content of the inorganic filler is 10-200% of the total weight of the epoxy resin and the thiol compound.
  • the present invention also provides a method for preparing the underfill material, wherein the method comprises uniformly mixing an epoxy resin, a mercaptan compound, a catalyst, and an optional silane coupling agent, a stabilizer, and an inorganic filler to obtain an underfill material .
  • the homogeneous mixing method is to add catalyst and optional silane coupling agent, stabilizer and inorganic filler into epoxy resin and disperse uniformly to obtain epoxy resin composite; Compounds are added to the epoxy resin compound and dispersed uniformly to obtain an underfill material.
  • the invention also provides the application of the underfill material in underfill for chips and PCB boards.
  • thiol compounds are generally not used as curing agents for epoxy resin underfill materials; on the other hand, it is usually required
  • the equivalent ratio of the active functional groups of the resin contained in the underfill material to the active functional groups of the curing agent is controlled at about 1, so that the underfill material can be fully cured, thereby increasing Tg.
  • the present invention has broken the limitation of above-mentioned traditional concept, uses thiol compound as the curing agent of epoxy resin underfill material and selects the epoxy resin with specific structure for use, simultaneously the mercapto group of thiol compound and the epoxy group of epoxy resin The equivalent ratio of the group is controlled at 0.01-0.5. It is unexpectedly found that this ingenious combination can enable thiol compounds to be used in epoxy resin underfill material systems, while ensuring high Tg, fast filling at room temperature, fast curing, and high temperature May be returned for repair purposes.
  • the underfill material provided by the invention contains epoxy resin, mercaptan compound and catalyst.
  • the mercapto group equivalent of the thiol compound is much smaller than the epoxy group equivalent of the epoxy resin.
  • the content of the thiol compound is preferably 1.2 to 60 parts by weight, such as 1.2, 2, 5, 8, 10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, 50, 52, 55, 58, 60 parts by weight, etc.
  • the content of the catalyst is preferably 1 to 20 parts by weight, such as 1, 1.2 , 1.5, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.2, 3.5, 3.8, 4, 4.2, 4.5, 4.8, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 , 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20 parts by weight, etc.
  • Described epoxy resin has the structure shown in formula (1):
  • thiol compound examples include, but are not limited to: methyl 3-mercaptopropionate, ethyl 3-mercaptopropionate, butyl 3-mercaptopropionate, bis(3-mercaptopropionate) ethylene glycol , ethylene glycol dimercaptoacetate, tetraethylene glycol bis(3-mercaptopropionic acid), 3,7-dithia-1,9-nonanedithiol, trimethylolpropane tris(3-mercapto propionate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, trione [2-(3-Mercaptopropionyloxy)ethyl]isocyanurate, 2,3-dithio(2-mercapto)-1-propanethiol, tetrakis(3-mercaptopropionate)pentaeryth
  • the mercapto group equivalent of the thiol compound is much smaller than the epoxy group equivalent of the epoxy resin.
  • the equivalent ratio of the mercapto group of the thiol compound to the epoxy group of the epoxy resin is 0.01 to 0.5, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.18, 0.2, 0.22, 0.25, 0.28, 0.3, 0.32, 0.35, 0.38, 0.4, 0.42, 0.45, 0.48, 0.5.
  • the inventor of the present invention finds after thorough and extensive research, on the basis of selecting the epoxy resin with specific structure, the equivalent ratio of the mercapto group of the thiol compound and the epoxy group of the epoxy resin is controlled at 0.01 ⁇ 0.5, can
  • the resulting underfill material has a high Tg, can be quickly filled at room temperature, can be cured quickly, and can be repaired at a high temperature.
  • the present invention is not particularly limited to the type of catalyst, and its specific examples include but are not limited to: at least one of imidazole compounds, amine compounds and phosphorus compounds, for example: imidazole compounds that are solid at normal temperature , organic acid dihydrazide; solid dispersion amine adducts such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct system); reaction products of amine compounds and isocyanate compounds or urea compounds, etc.
  • the underfill material also contains a silane coupling agent to enhance the adhesive strength of the system.
  • a silane coupling agent include, but are not limited to: ⁇ -methacryloxypropyltrimethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltrimethoxysilane , Vinyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, Anilinomethyltriethoxysilane, ⁇ -(2,3-glycidoxy)propyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane and ⁇ - At least one of ureapropyltriethoxysilane.
  • the content of the silane coupling agent is preferably 0.01-5% of the total weight of the epoxy resin and thiol compound, such as 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% %, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, etc.
  • the underfill material also contains a stabilizer to improve the stability of the system and prolong the storage period.
  • Described stabilizing agent can be the stabilizing agent of various existing with epoxy resin and vulcanization compound as the main agent, from the angle of improving storage stability effect, described stabilizing agent is preferably selected from liquid boric acid ester compound, aluminum chelate At least one of substances and barbituric acid.
  • liquid borate compound examples include but are not limited to: 2,2'-oxybis(5,5'-dimethyl-1,3,2-oxaborane), boric acid tris Methyl borate, triethyl borate, tri-n-propyl borate, tri-isopropyl borate, tri-n-butyl borate, amyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, trioctyl borate Esters, Trinonyl borate, Tridecyl borate Tridodecyl borate, Trihexadecyl borate, Trioctadecyl borate, Triphenyl borate, Tri-o-toluene borate At least one of ester, tri-m-cresyl borate, triethanolamine borate, etc.
  • the aluminum chelate compound may be, for example, aluminum chelate compound A (manufactured by Kawaken Fine Chemicals Co., Ltd.).
  • the content of the stabilizer is preferably 0.01-1% of the total weight of the epoxy resin and thiol compound, such as 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, etc.
  • the underfill material also contains inorganic fillers to improve the mechanical strength of the system and reduce the coefficient of thermal expansion of the system.
  • the inorganic filler include, but are not limited to: silicon dioxide, aluminum oxide, talcum powder, calcium carbonate, barium sulfate, mica stone, quartz powder, glass powder, aluminum hydroxide, zinc oxide, aluminum nitride, silicon carbide , silicon nitride, boron nitride, titanium nitride, dolomite, titanium dioxide, aluminum silicate, calcium silicate, bentonite, magnesium oxide, magnesium hydroxide, magnesium silicate, cobalt silicate, zirconia and barium titanate at least one of .
  • the content of the inorganic filler is preferably 10-30% of the total weight of the epoxy resin and thiol compound, such as 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 50%, 80%, 100% , 120%, 150%, 180%, 200%, etc.
  • the preparation method of the underfill material provided by the invention comprises uniformly mixing each component to obtain the underfill material.
  • the present invention has no special limitation on the way of mixing the components uniformly.
  • the way of mixing uniformly is to add catalyst and optional silane coupling agent, stabilizer and inorganic filler to epoxy and uniformly dispersed in the resin to obtain an epoxy resin compound; adding a thiol compound to the epoxy resin compound and uniformly dispersed to obtain an underfill material.
  • the types and amounts of each component have been described above, and will not be repeated here.
  • the invention also provides the application of the underfill material in underfill for chips and PCB boards.
  • Embodiment 1 (equivalent ratio 0.01)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g of modified amine catalyst FXR-1020 and 1.2g of tetrakis(3-mercaptopropionic acid ) pentaerythritol esters;
  • Step 2 Add modified amine catalyst FXR-1020 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain an epoxy resin compound;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptopropionate) into the epoxy resin compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Embodiment 2 (equivalent ratio 0.12)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g of modified amine catalyst FXR-1020 and 15g of tetrakis(3-mercaptopropionic acid) Pentaerythritol esters;
  • Step 2 Add modified amine catalyst FXR-1020 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain an epoxy resin compound;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptopropionate) into the epoxy resin compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Embodiment 3 (equivalent ratio 0.5)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g of modified amine catalyst FXR-1020 and 60g of tetrakis(3-mercaptopropionic acid) Pentaerythritol esters;
  • Step 2 Add modified amine catalyst FXR-1020 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain an epoxy resin compound;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptopropionate) into the epoxy resin compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Embodiment 4 (equivalent ratio 0.11)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g of modified amine catalyst FXR-1020 and 15g of tetrakis(3-mercaptobutyric acid) Pentaerythritol esters;
  • Step 2 Add modified amine catalyst FXR-1020 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain an epoxy resin compound;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptobutyrate) into the epoxy resin compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Embodiment 5 (equivalent ratio 0.12)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g of modified amine catalyst FXR-1020, 0.2g of barbituric acid and 15g of four (3-mercaptopropionic acid) pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 and barbituric acid to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain epoxy resin Complex;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptopropionate) into the epoxy resin compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Embodiment 6 (equivalent ratio 0.12)
  • Step 1 Prepare 100g 4-(diglycidylamino)phenyl glycidyl ether (with the structure shown in formula (1)), 4g modified amine catalyst FXR-1020, 3-(2,3-epoxy Propoxy) propyltrimethoxysilane and 15g tetrakis (3-mercaptopropionate) pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding, then add 1g 3-(2, 3-glycidyloxy) propyltrimethoxysilane is uniformly dispersed at a rotating speed of 2000 rpm to obtain a 4-(diglycidylamino) phenyl glycidyl ether complex;
  • Step 3 Add tetrakis(3-mercaptopropionic acid)pentaerythritol ester to the 4-(diglycidylamino)phenyl glycidyl ether compound obtained in step 2, and disperse evenly at a speed of 2000rpm to obtain the underfill Material.
  • Embodiment 7 (equivalent ratio 0.12)
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether, 4g of modified amine catalyst FXR-1020, 20g of silica fume SO-E2 and 15g of tetrakis(3-mercaptopropionic acid)pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 and silicon powder SO-E2 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain 4- (Diglycidylamino)phenyl glycidyl ether complex;
  • Step 3 Add tetrakis(3-mercaptopropionic acid)pentaerythritol ester to the 4-(diglycidylamino)phenyl glycidyl ether compound obtained in step 2, and disperse evenly at a speed of 2000rpm to obtain the underfill Material.
  • Step 1 Prepare 100g epoxy resin EXA-830CRP, 4g modified amine catalyst FXR-1020, 20g silicon powder SO-E2 and 9g tetrakis(3-mercaptopropionate) pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 and silicon powder SO-E2 to the epoxy resin 830CRP prepared in step 1, and disperse evenly through three-roll grinding to obtain an epoxy resin 830CRP compound;
  • Step 3 Add pentaerythritol tetrakis(3-mercaptopropionate) into the epoxy resin 830CRP compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Step 1 Prepare 100g of 4-(diglycidylamino)phenyl glycidyl ether, 4g of modified amine catalyst FXR-1020, 20g of silica fume SO-E2 and 0.132g of tetrakis(3-mercaptopropionic acid)pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 and silicon powder SO-E2 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain 4- (Diglycidylamino)phenyl glycidyl ether complex;
  • Step 3 Add tetrakis(3-mercaptopropionic acid)pentaerythritol ester to the 4-(diglycidylamino)phenyl glycidyl ether compound obtained in step 2, and disperse evenly at a speed of 2000rpm to obtain the underfill Material.
  • the bottom filling material is prepared according to the method of Example 7, the difference is that the amount of tetrakis (3-mercaptopropionate) pentaerythritol ester is adjusted from 15g to 100g so that the mercapto group of the thiol compound and the epoxy group of the epoxy resin Equivalence ratio is controlled at 0.83, and all the other conditions are identical with embodiment 7, and concrete steps are as follows:
  • Step 1 Prepare 100g 4-(diglycidylamino)phenyl glycidyl ether, 4g modified amine catalyst FXR-1020, 20g silica fume SO-E2 and 100g tetrakis(3-mercaptopropionate) pentaerythritol ester;
  • Step 2 Add modified amine catalyst FXR-1020 and silicon powder SO-E2 to the 4-(diglycidylamino)phenyl glycidyl ether prepared in step 1, and disperse evenly through three-roll grinding to obtain 4- (Diglycidylamino)phenyl glycidyl ether complex;
  • Step 3 Add tetrakis(3-mercaptopropionic acid)pentaerythritol ester to the 4-(diglycidylamino)phenyl glycidyl ether compound obtained in step 2, and disperse evenly at a speed of 2000rpm to obtain the underfill Material.
  • Comparative example 4 (conventional bottom filler, equivalent ratio 0.98)
  • Step 1 Prepare 100g epoxy resin EXA-830CRP, 4g modified amine catalyst FXR-1020, 100g methylhexahydrophthalic anhydride;
  • Step 2 Add modified amine catalyst FXR-1020 to EXA-830CRP prepared in step 1, and disperse evenly through three-roll grinding to obtain epoxy resin 830CRP compound;
  • Step 3 Add methyl hexahydrophthalic anhydride to the epoxy resin 830CRP compound obtained in Step 2, and disperse evenly at a speed of 2000 rpm to obtain the underfill material.
  • Viscosity Mettler rheometer was used to test the viscosity of the underfill materials obtained in the various examples and comparative examples. A 20mm plate rotor was used, the test temperature was 25°C, the rotational speed was 20s -1 , and the balance was performed for 2 minutes After measuring the viscosity, the average value of three sets of parallel data is taken as the final viscosity value. The results obtained are shown in Table 2.
  • Curing time adopt the DSC method to measure the time required for the underfill material obtained in each embodiment and comparative example to reach 95% curing degree at 130° C., specifically, the DSC equipment (Mettler-Toledo differential scanning volume Heat meter DSC3) preheat to 130°C, add the sample to be tested, set the program to 130°C constant temperature for 1h, and calculate the time required to reach 95% curing degree according to the integral curve. The results obtained are shown in Table 2.
  • the score T is calculated according to the standards in Table 1, where UF represents the wafer, pad represents the input/output part of the chip, and traces represents the signal line.
  • Table 2 The results obtained are shown in Table 2, where T ⁇ 1 indicates that repair is not possible, 1 ⁇ T ⁇ 3 indicates that repair is possible, 3 ⁇ T ⁇ 7 indicates acceptable, and 7 ⁇ T ⁇ 10 indicates that repair is easy.
  • the thiol compound is used as the curing agent of the epoxy resin underfill material and the epoxy resin with a specific structure is selected, and the mercapto group of the thiol compound is combined with the epoxy group of the epoxy resin.
  • the equivalence ratio is controlled at 0.01-0.5, so that the thiol compound can be used in the epoxy resin underfill material system, while ensuring high Tg, fast filling at room temperature, fast curing, and rework at high temperature. From the comparison of Example 7 and Comparative Example 1, it can be seen that when the epoxy resin having the structure shown in formula (1) is replaced by other epoxy resins, the Tg of the obtained underfill material will be significantly reduced.
  • Example 7 and Comparative Example 2 From the comparison of Example 7 and Comparative Example 2, it can be seen that when the equivalent ratio of the mercapto group of the thiol compound to the epoxy group of the epoxy resin is lower than 0.01, the curing time of the obtained underfill material is long, and there is no potential Repairability. From the comparison of Example 7 and Comparative Example 3, it can be seen that when the equivalent ratio of the mercapto group of the thiol compound to the epoxy group of the epoxy resin is higher than 0.5, the Tg will be seriously reduced. From the comparison of Example 7 and Comparative Example 4, it can be seen that the underfill material provided by the present invention has a higher Tg than the conventional underfill material and can be cured faster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本发明属于芯片底填材料领域,涉及一种室温可快速填充的高Tg且可返修的底填材料及其制备方法和应用。所述底填材料中含有环氧树脂、硫醇化合物和催化剂;所述环氧树脂具有式(1)所示的结构;所述硫醇化合物的巯基与环氧树脂的环氧基团的当量比为0.01~0.5。本发明将硫醇化合物作为环氧树脂底填材料的固化剂并选用具有特定结构的环氧树脂,同时将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在0.01~0.5,可以使得硫醇化合物能够用于环氧树脂底填材料体系中,同时确保高Tg、室温可快速填充、快速固化、高温可返修的目的。

Description

一种底填材料及其制备方法和应用
相关申请的交叉引用
本申请要求于2021年12月16日提交至中国专利局、申请号为2021115465232、申请名称为“一种底填材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合至本申请中。
技术领域
本发明属于芯片底填材料领域,特别涉及一种底填材料及其制备方法和应用。
背景技术
芯片的底部贴装技术是现在芯片跟终端互联的主要方式,为了防止芯片跟PCB板之间由于应力差异较大导致焊接焊球断裂,往往需要在芯片跟PCB板之间采用底填材料做底部填充处理。
底填材料对手机、电脑等电子材料的可靠性至关重要。一方面,为了获得更高的产能,要求底填材料在室温下即可快速流动,并且具有尽可能短的固化时间;另一方面,为了提高材料的可靠性,要求底填材料具有较高的玻璃化转变温度(Tg),同时为了回收成本较高的PCB板和芯片,要求底填材料具有一定的返修性能。然而,当前的用于电子材料的底填材料,无法同时满足室温下可快速流动(即确保底填材料的室温粘度小于或等于1000cps)、短固化时间(SMT焊接常用温度为130℃,因此需要在130℃下达到95%固化程度所需时间小于或等于5min)、高玻璃化转变温度(Tg大于或等于120℃)、高温可返修。目前常见底填材料的固化时间一般都需要10~15分钟才能够达到95%的固化程度,且Tg一般都在100~110℃。再则,目前常见的底填材料一般不会在采用环氧树脂的基础上以硫醇化合物作为固化剂,因为硫醇化合物的使用通常会降低底填材料的Tg。此外,为了提高Tg,通常的做法是将底填材料中所含树脂的活性官能团与固化剂的活性官能团的当量比控制在1左右,如此能够使得底填材料得以最充分固化以提高Tg。
发明内容
本发明的目的是为了克服现有的底填材料的固化时间长、Tg较低且可返修性较差的缺陷,而提供一种室温可快速填充及快速固化的高Tg且可返修的底填材料及其制备方法和应用。
具体地,本发明提供了一种底填材料,其中,所述底填材料中含有环氧树脂、硫醇化合物和催化剂;所述环氧树脂具有式(1)所示的结构;所述硫醇化合物的巯基与环氧树脂的环氧基团的当量比为0.01~0.5;
Figure PCTCN2022113627-appb-000001
在一种优选实施方式中,相对于100重量份的所述环氧树脂,所述硫醇化合物的含量为1.2~60重量份,所述催化剂的含量为1~20重量份。
在一种优选实施方式中,所述硫醇化合物选自3-巯基丙酸甲酯、3-巯基丙酸乙酯、3-氢硫基丙酸丁酯、双(3-巯基丙酸)乙二醇、双巯基乙酸乙二醇酯、四乙烯乙二醇双(3-巯基丙酸)、3,7-二硫杂-1,9-壬二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、1,3,5-三(3-巯基丁酰氧基乙基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、三[2-(3-巯基丙酰氧基)乙基]异氰脲酸酯、2,3-二硫代(2-巯基)-1-丙烷硫醇、四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯以及肌醇六(巯基丙酸酯)中的至少一种。
在一种优选实施方式中,所述催化剂选自咪唑系化合物、胺系化合物和磷系化合物中的至少一种。
在一种优选实施方式中,所述底填材料中还含有硅烷偶联剂。
在一种优选实施方式中,所述硅烷偶联剂选自γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷以及γ-脲丙基三乙氧基硅烷中的至少一种。
在一种优选实施方式中,所述硅烷偶联剂的含量为所述环氧树脂和硫醇化合物的总重量的0.01~5%。
在一种优选实施方式中,所述底填材料中还含有稳定剂。
在一种优选实施方式中,所述稳定剂选自液体硼酸酯化合物、铝螯合剂及巴比妥酸中的至少一种。
在一种优选实施方式中,所述稳定剂的含量为所述环氧树脂和硫醇化合物的总重量的0.01~1%。
在一种优选实施方式中,所述底填材料中还含有无机填料。
在一种优选实施方式中,所述无机填料选自二氧化硅、氧化铝、滑石粉、碳酸钙、硫酸钡、云母石、石英粉、玻璃粉、氢氧化铝、氧化锌、氮化铝、碳化硅、氮化硅、氮化硼、氮化钛、白云石、二氧化钛、硅酸铝、硅酸钙、膨润土、氧化镁、氢氧化镁、硅酸镁、硅酸钴、氧化锆以及钛酸钡中的至少一种。
在一种优选实施方式中,所述无机填料的含量为所述环氧树脂和硫醇化合物的总重量的10~200%。
本发明还提供了所述底填材料的制备方法,其中,该方法包括将环氧树脂、硫醇化合物和催化剂以及任选的硅烷偶联剂、稳定剂和无机填料混合均匀,得到底填材料。
在一种优选实施方式中,所述混合均匀的方式为将催化剂以及任选的硅烷偶联剂、稳定剂和无机填料加入环氧树脂中并分散均匀,得到环氧树脂复合物;将硫醇化合物加入到所述环氧树脂复合物中并分散均匀,得到底填材料。
本发明还提供了所述底填材料在用于芯片和PCB板的底填中的应用。
如上所述,一方面,由于硫醇化合物的使用通常会降低环氧树脂底填材料的Tg,因此一般不会将硫醇化合物作为环氧树脂底填材料的固化剂;另一方面,通常需要将底填材料中所含树脂的活性官能团与固化剂的活性官能团的当量比控制在1左右,以使得底填材料得以最充分固化,从而提高Tg。而本发明打破了以上传统观念的局限,将硫醇化合物作为环氧树脂底填材料的固化剂并选用具有特定结构的环氧树脂,同时将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在0.01~0.5,意外地发现,这种巧妙的配合可以使得硫醇化合物能够用于环氧树脂底填材料体系中,同时确保高Tg、室温可快速填充、快速固化、高温可返修的目的。
具体实施方式
本发明提供的底填材料中含有环氧树脂、硫醇化合物和催化剂。其中,所述硫醇化合物的巯基当量远远小于环氧树脂的环氧基团当量。其中,相对于100重量份的所述环氧树脂,所述硫醇化合物的含量优选为1.2~60重量份,如1.2、2、5、8、10、12、15、18、20、 22、25、28、30、32、35、38、40、42、45、48、50、52、55、58、60重量份等;所述催化剂的含量优选为1~20重量份,如1、1.2、1.5、1.8、2、2.2、2.5、2.8、3、3.2、3.5、3.8、4、4.2、4.5、4.8、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20重量份等。
所述环氧树脂具有式(1)所示的结构:
Figure PCTCN2022113627-appb-000002
所述硫醇化合物的具体实例包括但不限于:3-巯基丙酸甲酯、3-巯基丙酸乙酯、3-氢硫基丙酸丁酯、双(3-巯基丙酸)乙二醇、双巯基乙酸乙二醇酯、四乙烯乙二醇双(3-巯基丙酸)、3,7-二硫杂-1,9-壬二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、1,3,5-三(3-巯基丁酰氧基乙基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、三[2-(3-巯基丙酰氧基)乙基]异氰脲酸酯、2,3-二硫代(2-巯基)-1-丙烷硫醇、四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯以及肌醇六(巯基丙酸酯)中的至少一种。
本发明中,所述硫醇化合物的巯基当量远远小于环氧树脂的环氧基团当量。具体地,所述硫醇化合物的巯基与环氧树脂的环氧基团的当量比为0.01~0.5,如0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.12、0.15、0.18、0.2、0.22、0.25、0.28、0.3、0.32、0.35、0.38、0.4、0.42、0.45、0.48、0.5。本发明的发明人经过深入且广泛的研究之后发现,在选用具有特定结构环氧树脂的基础上将硫醇化合物的巯基和环氧树脂的环氧基团的当量比控制在0.01~0.5,能够使得使所得底填材料具有高Tg、室温可快速填充、快速固化、高温可返修。
本发明对所述催化剂的种类没有特别的限定,其具体实例包括但不限于:咪唑系化合物、胺系化合物和磷系化合物中的至少一种,可列举例如:在常温下为固体的咪唑化合物、有机酸二酰肼;胺化合物与环氧化合物的反应产物(胺-环氧加合物系)等固体分散型胺加合物;胺化合物与异氰酸酯化合物或脲化合物的反应产物等。
在一种优选实施方式中,所述底填材料中还含有硅烷偶联剂,以增强体系的粘接强度。所述硅烷偶联剂的具体实例包括但不限于:γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-氨丙基三甲氧基 硅烷、γ-氨丙基三乙氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷以及γ-脲丙基三乙氧基硅烷中的至少一种。此外,所述硅烷偶联剂的含量优选为所述环氧树脂和硫醇化合物的总重量的0.01~5%,如0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、2.0%、3.0%、4.0%、5.0%等。
在一种优选实施方式中,所述底填材料中还含有稳定剂,以提高体系的稳定性,延长贮存期。所述稳定剂可以为现有的各种以环氧树脂和硫化化合物为主剂的稳定剂,从提高贮存稳定效果的角度出发,所述稳定剂优选选自液体硼酸酯化合物、铝螯合物及巴比妥酸中的至少一种。其中,所述液体硼酸酯化合物的具体实例包括但不限于:2,2′-氧基双(5,5′-二甲基-1,3,2-氧杂己硼烷)、硼酸三甲酯、硼酸三乙酯、硼酸三正丙酯、硼酸三异丙酯、硼酸三正丁酯、硼酸戊酯、硼酸三烯丙酯、硼酸三己酯、硼酸三环己酯、硼酸三辛酯、硼酸三壬酯、硼酸三癸酯硼酸三(十二烷基)酯、硼酸三(十六烷基)酯、硼酸三(十八烷基)酯、硼酸三苯酯、硼酸三邻甲苯酯、硼酸三间甲苯酯、三乙醇胺硼酸酯等中的至少一种。所述液体硼酸酯化合物在常温(25℃)下为液状,因此将配合物粘度抑制为较低,故而优选。所述铝螯合物例如可以为铝螯合物A(川研精密化学公司制)。此外,所述稳定剂的含量优选为所述环氧树脂和硫醇化合物的总重量的0.01~1%,如0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%等。
在一种优选实施方式中,所述底填材料中还含有无机填料,以提高体系的机械强度,降低体系的热膨胀系数。所述无机填料的具体实例包括但不限于:二氧化硅、氧化铝、滑石粉、碳酸钙、硫酸钡、云母石、石英粉、玻璃粉、氢氧化铝、氧化锌、氮化铝、碳化硅、氮化硅、氮化硼、氮化钛、白云石、二氧化钛、硅酸铝、硅酸钙、膨润土、氧化镁、氢氧化镁、硅酸镁、硅酸钴、氧化锆以及钛酸钡中的至少一种。此外,所述无机填料的含量优选为所述环氧树脂和硫醇化合物的总重量的10~30%,如10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、50%、80%、100%、120%、150%、180%、200%等。
本发明提供的底填材料的制备方法包括将各组分混合均匀,得到底填材料。本发明对将各组分混合均匀的方式没有特别的限定,在一种优选实施方式中,所述混合均匀的方式为将催化剂以及任选的硅烷偶联剂、稳定剂和无机填料加入环氧树脂中并分散均匀,得到环氧树脂复合物;将硫醇化合物加入到所述环氧树脂复合物中并分散均匀,得到底填材料。其中,各组分的种类和用量已经在上文中有所描述,在此不作赘述。
本发明还提供了所述底填材料在用于芯片和PCB板的底填中的应用。
下面将结合实施例,对本发明作进一步说明。
实施例1(当量比0.01)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020以及1.2g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,得到环氧树脂复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得环氧树脂复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施例2(当量比0.12)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020以及15g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,得到环氧树脂复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得环氧树脂复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施例3(当量比0.5)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020以及60g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,得到环氧树脂复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得环氧树脂复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施例4(当量比0.11)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020以及15g四(3-巯基丁酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,得到环氧树脂复合物;
步骤三:将四(3-巯基丁酸)季戊四醇酯加入到步骤二所得环氧树脂复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施例5(当量比0.12)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020、0.2g巴比妥酸以及15g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020和巴比妥酸,通过三辊研磨分散均匀,得到环氧树脂复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得环氧树脂复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施列6(当量比0.12)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚(具有式(1)所示的结构)、4g改性胺催化剂FXR-1020、3-(2,3-环氧丙氧)丙基三甲氧基硅烷以及15g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,随后再加入1g 3-(2,3-环氧丙氧)丙基三甲氧基硅烷,在2000rpm的转速下分散均匀,得到4-(二缩水甘油基氨基)苯基缩水甘油醚复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得4-(二缩水甘油基氨基)苯基缩水甘油醚复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
实施列7(当量比0.12)
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚、4g改性胺催化剂FXR-1020、20g硅粉SO-E2以及15g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020和硅粉SO-E2,通过三辊研磨分散均匀,得到4-(二缩水甘油基氨基)苯基缩水甘油醚复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得4-(二缩水甘油基氨基)苯基缩水甘油醚复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
对比例1(当量比0.12)
按照实施例7的方法制备底填材料,不同的是,将4-(二缩水甘油基氨基)苯基缩水甘油醚采用相同重量份的环氧树脂(购自日本dic株式会社,牌号为EXA-830CRP,其具有式(2)所示的结构,下同)替代,同时将四(3-巯基丙酸)季戊四醇酯的用量由15g调整为9g以将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在与实施例7相同的水平,具体步骤如下:
步骤一:准备好100g环氧树脂EXA-830CRP、4g改性胺催化剂FXR-1020、20g硅粉SO-E2以及9g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的环氧树脂830CRP中加入改性胺催化剂FXR-1020和硅粉SO-E2,通过三辊研磨分散均匀,得到环氧树脂830CRP复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得环氧树脂830CRP复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
Figure PCTCN2022113627-appb-000003
对比例2(当量比0.001)
按照实施例7的方法制备底填材料,不同的是,将四(3-巯基丙酸)季戊四醇酯的用量由15g调整为0.132g以将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在0.001,其余条件与实施例7相同,具体步骤如下:
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚、4g改性胺催化剂FXR-1020、20g硅粉SO-E2以及0.132g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020和硅粉SO-E2,通过三辊研磨分散均匀,得到4-(二缩水甘油基氨基)苯基缩水甘油醚复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得4-(二缩水甘油基氨基)苯基缩水甘油醚复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
对比例3(当量比0.83)
按照实施例7的方法制备底填材料,不同的是,将四(3-巯基丙酸)季戊四醇酯的用量由15g调整为100g以将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在0.83,其余 条件与实施例7相同,具体步骤如下:
步骤一:准备好100g 4-(二缩水甘油基氨基)苯基缩水甘油醚、4g改性胺催化剂FXR-1020、20g硅粉SO-E2以及100g四(3-巯基丙酸)季戊四醇酯;
步骤二:往步骤一中准备好的4-(二缩水甘油基氨基)苯基缩水甘油醚中加入改性胺催化剂FXR-1020和硅粉SO-E2,通过三辊研磨分散均匀,得到4-(二缩水甘油基氨基)苯基缩水甘油醚复合物;
步骤三:将四(3-巯基丙酸)季戊四醇酯加入到步骤二所得4-(二缩水甘油基氨基)苯基缩水甘油醚复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
对比例4(常规底填胶,当量比0.98)
步骤一:准备好100g环氧树脂EXA-830CRP、4g改性胺催化剂FXR-1020、100g甲基六氢苯酐;
步骤二:往步骤一中准备好的EXA-830CRP中加入改性胺催化剂FXR-1020,通过三辊研磨分散均匀,得到环氧树脂830CRP复合物;
步骤三:将甲基六氢苯酐加入到步骤二所得环氧树脂830CRP复合物中,在2000rpm的转速下分散均匀,即可得到底填材料。
测试例
(1)粘度:采用梅特勒流变仪对各实施例和对比例所得底填材料的粘度进行测试,其中,采用20mm平板转子,测试温度为25℃,转速为20s -1,平衡2分钟后测定粘度,取三组平行数据的平均值为最终粘度值。所得结果见表2。
(2)固化时间:采用DSC法测定各实施例和对比例所得底填材料在130℃下达到95%固化程度所需时间,具体地,将DSC设备(梅特勒-托利多差示扫描量热仪DSC3)预热到130℃,加入待测样品,程序设置为130℃恒温1h,根据积分曲线计算出达到95%固化程度所需要的时间。所得结果见表2。
(3)玻璃化转变温度(Tg):将各实施例和对比例所得底填材料完全固化后制成直径8mm×4mm的圆柱形样块,之后采用美国TA仪器的Q-400型DMA测试仪在液氮氛围和薄膜拉伸模式下进行测试,测试温度范围为-40~200℃,采用升温-降温-升温三段循环,升温速率为5℃/min,测试频率为1Hz,取第二段升温曲线的拐点作为玻璃化转变温度(T g)。结果见表2。
(4)200℃下的返修性:采用高温胶带将PCB基板(PCB基板远离高温胶带的一侧表面锡焊有芯片,芯片与PCB基板之间采用底填材料做底部填充处理)固定在热台上,加热到200℃,采用热风枪给芯片周边的边胶(从芯片边缘溢出来的底填材料)加热,去除边胶,热风枪加热芯片,达到锡的熔点,用镊子铲除边胶,翘取芯片,用吸锡带出去PCB基板上多余的锡,去除残胶。其中,按照表1的标准计算分值T,其中,UF代表晶圆,pad代表芯片的input/output部分,traces代表信号线。所得结果见表2,其中,T≤1表明不可返修,1<T≤3表明可返修,3<T≤7表明可接受,7<T≤10表明容易返修。
表1
Figure PCTCN2022113627-appb-000004
表2
Figure PCTCN2022113627-appb-000005
从表2的结果可以看出,将硫醇化合物作为环氧树脂底填材料的固化剂并选用具有特定结构的环氧树脂,同时将硫醇化合物的巯基与环氧树脂的环氧基团的当量比控制在0.01~0.5,可以使得硫醇化合物能够用于环氧树脂底填材料体系中,同时确保高Tg、室温可快速填充、快速固化、高温可返修的目的。从实施例7与对比例1的对比可以看出,当将具有式(1)所示结构的环氧树脂采用其他环氧树脂替代之后,所得底填材料的Tg会显著降低。从实施例7与对比例2的对比可以看出,当硫醇化合物的巯基与环氧树脂的环氧基团的当量比低于0.01时,所得底填材料的固化时间长,且不具有可返修性。从实施例7 与对比例3的对比可以看出,当硫醇化合物的巯基与环氧树脂的环氧基团的当量比高于0.5时,会严重降低Tg。从实施例7与对比例4的对比可以看出,本发明提供的底填材料较常规底填材料具有更高的Tg并能够得以更快速固化。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种底填材料,其特征在于,所述底填材料中含有环氧树脂、硫醇化合物和催化剂;所述环氧树脂具有式(1)所示的结构;所述硫醇化合物的巯基与环氧树脂的环氧基团的当量比为0.01~0.5;
    Figure PCTCN2022113627-appb-100001
  2. 根据权利要求1所述的底填材料,其特征在于,相对于100重量份的所述环氧树脂,所述硫醇化合物的含量为1.2~60重量份,所述催化剂的含量为1~20重量份。
  3. 根据权利要求1所述的底填材料,其特征在于,所述硫醇化合物选自3-巯基丙酸甲酯、3-巯基丙酸乙酯、3-氢硫基丙酸丁酯、双(3-巯基丙酸)乙二醇、双巯基乙酸乙二醇酯、四乙烯乙二醇双(3-巯基丙酸)、3,7-二硫杂-1,9-壬二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、1,3,5-三(3-巯基丁酰氧基乙基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、三[2-(3-巯基丙酰氧基)乙基]异氰脲酸酯、2,3-二硫代(2-巯基)-1-丙烷硫醇、四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯以及肌醇六(巯基丙酸酯)中的至少一种。
  4. 根据权利要求1所述的底填材料,其特征在于,所述催化剂选自咪唑系化合物、胺系化合物和磷系化合物中的至少一种。
  5. 根据权利要求1所述的底填材料,其特征在于,所述底填材料中还含有硅烷偶联剂;所述硅烷偶联剂选自γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷以及γ-脲丙基三乙氧基硅烷中的至少一种;所述硅烷偶联剂的含量为所述环氧树脂和硫醇化合物的总重量的0.01~5%。
  6. 根据权利要求1所述的底填材料,其特征在于,所述底填材料中还含有稳定剂;所述稳定剂选自液体硼酸酯化合物、铝螯合剂及巴比妥酸中的至少一种;所述稳定剂的含量为所述环氧树脂和硫醇化合物的总重量的0.01~1%。
  7. 根据权利要求1所述的底填材料,其特征在于,所述底填材料中还含有无机填料; 所述无机填料选自二氧化硅、氧化铝、滑石粉、碳酸钙、硫酸钡、云母石、石英粉、玻璃粉、氢氧化铝、氧化锌、氮化铝、碳化硅、氮化硅、氮化硼、氮化钛、白云石、二氧化钛、硅酸铝、硅酸钙、膨润土、氧化镁、氢氧化镁、硅酸镁、硅酸钴、氧化锆以及钛酸钡中的至少一种;所述无机填料的含量为所述环氧树脂和硫醇化合物的总重量的10~200%。
  8. 权利要求1所述的底填材料的制备方法,其特征在于,该方法包括将环氧树脂、硫醇化合物和催化剂以及任选的硅烷偶联剂、稳定剂和无机填料混合均匀,得到底填材料。
  9. 根据权利要求8所述的底填材料的制备方法,其特征在于,所述混合均匀的方式为将催化剂以及任选的硅烷偶联剂、稳定剂和无机填料加入环氧树脂中并分散均匀,得到环氧树脂复合物;将硫醇化合物加入到所述环氧树脂复合物中并分散均匀,得到底填材料。
  10. 权利要求1所述的底填材料在用于芯片和PCB板的底填中的应用。
PCT/CN2022/113627 2021-12-16 2022-08-19 一种底填材料及其制备方法和应用 WO2023109165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111546523.2A CN114057995B (zh) 2021-12-16 2021-12-16 一种底填材料及其制备方法和应用
CN202111546523.2 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023109165A1 true WO2023109165A1 (zh) 2023-06-22

Family

ID=80229736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113627 WO2023109165A1 (zh) 2021-12-16 2022-08-19 一种底填材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114057995B (zh)
WO (1) WO2023109165A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057995B (zh) * 2021-12-16 2023-09-01 韦尔通科技股份有限公司 一种底填材料及其制备方法和应用
CN114940807B (zh) * 2022-05-12 2024-01-16 郯城博化化工科技有限公司 一种改性氧化锌和硫醇协同增韧的高抗冲击性环氧树脂复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479311A (zh) * 2006-06-26 2009-07-08 松下电器产业株式会社 热固化性树脂组合物以及使用其的电路基板的安装方法以及修复工序
JP2014031461A (ja) * 2012-08-06 2014-02-20 Panasonic Corp 液状エポキシ樹脂組成物と複合部材および電子部品装置
CN104774584A (zh) * 2014-12-29 2015-07-15 北京海斯迪克新材料有限公司 一种用于led背光模组lens粘接的单组份环氧胶粘剂
CN108192082A (zh) * 2018-01-31 2018-06-22 浙江大学 利用本体点击化学反应制备可逆交联增韧环氧树脂的方法
CN108299623A (zh) * 2018-01-31 2018-07-20 浙江大学 利用本体点击化学反应制备可重复利用环氧树脂的方法
CN108440740A (zh) * 2018-02-14 2018-08-24 苏州大学 一种可逆自修复环氧树脂及其制备与回收重塑方法
CN109232861A (zh) * 2018-07-02 2019-01-18 深圳市力博得科技有限公司 聚合物体系及其制备方法
WO2020111244A1 (ja) * 2018-11-30 2020-06-04 日立化成株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
CN114057995A (zh) * 2021-12-16 2022-02-18 韦尔通(厦门)科技股份有限公司 一种底填材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819785B1 (ko) * 2011-01-05 2018-01-17 나믹스 가부시끼가이샤 수지 조성물
CN104039862B (zh) * 2011-12-15 2017-12-22 太阳化学公司 硫化物扩展型环氧树脂及其阻隔涂料应用
JP2017028050A (ja) * 2015-07-21 2017-02-02 日立化成株式会社 アンダーフィル材及びそれを用いた電子部品装置
JP7413678B2 (ja) * 2019-08-09 2024-01-16 味の素株式会社 樹脂組成物
JP6603004B1 (ja) * 2019-08-21 2019-11-06 ナミックス株式会社 エポキシ樹脂組成物
CN110885654B (zh) * 2019-12-09 2022-07-12 南京金世家新材料科技有限公司 一种可返修的单组份的环氧结构胶及制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479311A (zh) * 2006-06-26 2009-07-08 松下电器产业株式会社 热固化性树脂组合物以及使用其的电路基板的安装方法以及修复工序
JP2014031461A (ja) * 2012-08-06 2014-02-20 Panasonic Corp 液状エポキシ樹脂組成物と複合部材および電子部品装置
CN104774584A (zh) * 2014-12-29 2015-07-15 北京海斯迪克新材料有限公司 一种用于led背光模组lens粘接的单组份环氧胶粘剂
CN108192082A (zh) * 2018-01-31 2018-06-22 浙江大学 利用本体点击化学反应制备可逆交联增韧环氧树脂的方法
CN108299623A (zh) * 2018-01-31 2018-07-20 浙江大学 利用本体点击化学反应制备可重复利用环氧树脂的方法
CN108440740A (zh) * 2018-02-14 2018-08-24 苏州大学 一种可逆自修复环氧树脂及其制备与回收重塑方法
CN109232861A (zh) * 2018-07-02 2019-01-18 深圳市力博得科技有限公司 聚合物体系及其制备方法
WO2020111244A1 (ja) * 2018-11-30 2020-06-04 日立化成株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
CN114057995A (zh) * 2021-12-16 2022-02-18 韦尔通(厦门)科技股份有限公司 一种底填材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114057995A (zh) 2022-02-18
CN114057995B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2023109165A1 (zh) 一种底填材料及其制备方法和应用
EP1705199B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
KR101806152B1 (ko) 신규 열래디컬 발생제, 그 제조방법, 액정 실링제 및 액정 표시셀
KR101819264B1 (ko) 에폭시 수지 조성물 및 그것을 사용한 반도체 봉지재
WO2018221681A1 (ja) 封止用液状樹脂組成物及び電子部品装置
CN114106742B (zh) 一种高粘度液晶封框胶
TWI801488B (zh) 樹脂組成物及其硬化物、電子零件用接著劑、半導體裝置,以及電子零件
KR101329695B1 (ko) 재작업이 가능한 에폭시 수지 조성물
JP6430787B2 (ja) 光半導体装置
CN109852338B (zh) 氟硅橡胶组合物、其制备方法以及由该组合物制备的密封胶和涂料
JP2008001748A (ja) 封止用エポキシ樹脂組成物および半導体装置
JP6657716B2 (ja) 封止用液状組成物、封止材、及び電子部品装置
CN113736403B (zh) 一种单组分耐热性环氧树脂组合物及其制备方法和应用
JPH11263826A (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JPH1192550A (ja) 液状エポキシ樹脂組成物
JP2007314702A (ja) エポキシ樹脂組成物と樹脂封止半導体装置
JP4961968B2 (ja) エポキシ樹脂用硬化促進剤、エポキシ樹脂組成物、及び電子材料用樹脂組成物
JPH0673164A (ja) 液晶封止用樹脂組成物及び液晶封止用セルの製造方法
JP3719855B2 (ja) 半導体用樹脂ペースト
JPS6329886B2 (zh)
KR101972411B1 (ko) 반도체 봉지용 일액형 에폭시 수지 조성물
JPH1192549A (ja) 液状エポキシ樹脂組成物
KR100797614B1 (ko) 반도체 소자 언더필용 액상 에폭시 수지 조성물 및 이를이용한 반도체 소자
JP6973768B2 (ja) インクジェット用樹脂組成物、電子部品、電子部品の製造方法
JPH04222887A (ja) 絶縁樹脂ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905924

Country of ref document: EP

Kind code of ref document: A1