WO2023106327A1 - タイヤ用ゴム組成物 - Google Patents

タイヤ用ゴム組成物 Download PDF

Info

Publication number
WO2023106327A1
WO2023106327A1 PCT/JP2022/045073 JP2022045073W WO2023106327A1 WO 2023106327 A1 WO2023106327 A1 WO 2023106327A1 JP 2022045073 W JP2022045073 W JP 2022045073W WO 2023106327 A1 WO2023106327 A1 WO 2023106327A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
rubber composition
tires
parts
Prior art date
Application number
PCT/JP2022/045073
Other languages
English (en)
French (fr)
Inventor
理起 餝矢
亮太 樋口
洋樹 杉本
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2023514917A priority Critical patent/JPWO2023106327A1/ja
Publication of WO2023106327A1 publication Critical patent/WO2023106327A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for tires that achieves both low rolling resistance and wear resistance.
  • Patent Literature 1 proposes a rubber composition for tires containing a coumarone-indene resin having a softening point of 50° C. or less.
  • Patent Document 2 proposes the use of a tire rubber composition containing a modified polybutadiene rubber containing an amine functional group and a natural rubber as a tread rubber.
  • An object of the present invention is to provide a rubber composition for tires that achieves both low rolling resistance and wear resistance.
  • the rubber composition for tires according to the present invention for achieving the above object is a tire composition comprising 100 parts by mass of a diene rubber containing 30 to 70% by mass of a modified styrene-butadiene rubber having an alkoxysilyl group and 30 to 200 parts by mass of silica.
  • the rubber composition for tires has a vinyl content of less than 10 to 45% by mass, and a glass transition temperature of -50°C or lower.
  • the molecular weight distribution curve when measured by gel permeation chromatography is unimodal, the molecular weight distribution (PDI) is less than 1.7, and the vinyl content is 10 to 45 mass. % of modified styrene-butadiene rubber having an alkoxysilyl group and silica, and the glass transition temperature is set to ⁇ 50° C. or lower, so that both low rolling resistance and wear resistance can be achieved.
  • the rubber composition for tires of the present invention 100 parts by mass of the diene rubber containing 40 to 70% by mass of the modified styrene-butadiene rubber and 60 to 200 parts by mass of silica are blended. It is suitable for use in the tread portion of season tires.
  • the ratio tan ⁇ (0 ° C.)/E ' (-20°C) is preferably 0.007 [MPa -1 ] or more and 0.011 [MPa -1 ] or less.
  • the tire rubber composition of the present invention 100 parts by mass of diene rubber containing 30 to 50% by mass of the modified styrene-butadiene rubber and 70 to 50% by mass of natural rubber is blended with 30 to 70 parts by mass of silica.
  • the rubber composition is suitable for use in the tread portion of heavy duty tires.
  • the CTAB adsorption specific surface area of the silica is preferably 100 to 250 m 2 /g.
  • a rubber composition for tires contains a modified styrene-butadiene rubber having an alkoxysilyl group in a diene rubber.
  • This modified styrene-butadiene rubber has an alkoxysilyl group, has a unimodal molecular weight distribution curve when measured by gel permeation chromatography, and has a molecular weight distribution (PDI) of less than 1.7. Characterized by containing such a modified styrene-butadiene rubber, the dispersibility of silica can be improved, and both low rolling resistance and abrasion resistance can be achieved at high levels.
  • alkoxysilyl groups possessed by the modified styrene-butadiene rubber include alkoxysilyl groups containing alkoxy having 1 to 10 carbon atoms. It may have two or three alkoxy groups having different numbers of carbon atoms, or may have one or two alkyl groups.
  • alkoxysilyl groups include methoxysilyl, ethoxysilyl, propoxysilyl, isopropoxysilyl, and butoxysilyl groups. Since the modified styrene-butadiene rubber has an alkoxysilyl group, the affinity with silica can be increased and the dispersibility thereof can be improved.
  • the modified styrene-butadiene rubber has a unimodal molecular weight distribution curve when measured by gel permeation chromatography, and its molecular weight distribution (PDI; polydis-persity index) is less than 1.7.
  • PDI molecular weight distribution index
  • the molecular weight distribution curve of the modified styrene-butadiene rubber is unimodal, the homogeneity of the molecules is high, and the rubber is homogeneously distributed and dispersed in the diene-based rubber, thereby enhancing the affinity with silica.
  • the molecular weight distribution (PDI) is the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography, and the molecular weight distribution (PDI) is less than 1.7. If there is, the homogeneity of the molecules is increased, as is the case with the unimodal molecular weight distribution curve, and they are uniformly distributed and dispersed in the diene-based rubber, and the affinity with silica can be increased.
  • the molecular weight distribution (PDI) is more preferably 1.0 or more and less than 1.7, more preferably 1.1 to 1.6.
  • Such modified styrene-butadiene rubbers are preferably obtainable by continuous polymerization.
  • the modified styrene-butadiene rubber having alkoxysilyl groups is contained in 30 to 70% by mass, preferably 45 to 70% by mass, more preferably 50 to 65% by mass in 100% by mass of the diene rubber.
  • 30% by mass or more of the modified styrene-butadiene rubber having an alkoxysilyl group the dispersibility of silica can be improved. Further, by containing 70% by mass or less, abrasion resistance can be ensured.
  • the modified styrene-butadiene rubber has a vinyl content of 10 to 45% by mass, preferably 20 to 45% by mass, more preferably 25 to 45% by mass, still more preferably 35 to 43% by mass.
  • a vinyl content of the modified styrene-butadiene rubber can be measured using a Fourier transform infrared spectrophotometer (manufactured by Shimadzu Corporation) based on JIS K6239-2 2017.
  • the rubber composition for tires can contain other diene rubbers in addition to the modified styrene-butadiene rubber.
  • Other diene rubbers include, for example, natural rubber, isoprene rubber, butadiene rubber, unmodified styrene-butadiene rubber, modified styrene-butadiene rubber other than the above-mentioned modified styrene-butadiene rubber, styrene-isoprene rubber, isoprene-butadiene rubber, ethylene-propylene- Diene copolymer rubber, chloroprene rubber, acrylonitrile butadiene rubber, and the like can be mentioned.
  • diene-based rubbers may be modified with one or more functional groups.
  • functional groups are not particularly limited, for example, epoxy group, carboxy group, amino group, hydroxy group, alkoxy group, silyl group, alkoxysilyl group, amide group, oxysilyl group, silanol group, isocyanate group, isothiocyanate group, carbonyl group, aldehyde group, and the like.
  • the other diene rubber should be contained in an amount of 30 to 70% by mass, preferably 30 to 55% by mass, more preferably 30 to 50% by mass based on 100% by mass of the diene rubber.
  • diene-based rubbers preferably include natural rubber, butadiene rubber and styrene-butadiene rubber.
  • Natural rubber, butadiene rubber and styrene-butadiene rubber are not particularly limited as long as they are usually used in rubber compositions for tires.
  • By blending natural rubber the wear resistance of the tire can be ensured.
  • butadiene rubber it is possible to ensure the performance of the tire on ice and snow.
  • styrene-butadiene rubber wet grip properties of the tire can be ensured.
  • the rubber composition for tires contains 100 parts by mass of diene rubber and 30 to 200 parts by mass of silica.
  • silica By blending silica, rolling resistance can be reduced and wet performance can be improved.
  • silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. These may be used alone or in combination of two or more. Alternatively, surface-treated silica obtained by treating the surface of silica with a silane coupling agent may be used.
  • the rubber composition for tires preferably contains a silane coupling agent together with silica, so that the dispersibility of silica can be improved.
  • a silane coupling agent a type that is usually blended with silica can be used.
  • the silane coupling agent is preferably blended in an amount of 5 to 15% by mass, more preferably 8 to 12% by mass of the amount of silica.
  • the rubber composition for tires may optionally contain carbon black, calcium carbonate, magnesium carbonate, talc, clay, mica, alumina, aluminum hydroxide, titanium oxide, and calcium sulfate as inorganic fillers other than silica. can. These other inorganic fillers may be used alone or in combination of two or more.
  • Carbon black can be compounded in an amount of preferably 5 to 100 parts by mass, more preferably 5 to 80 parts by mass, per 100 parts by mass of the diene rubber. Tire durability can be ensured by blending 5 parts by mass or more of carbon black. In addition, rigidity can be secured and rolling resistance can be reduced. Low rolling resistance can be ensured by setting the amount of carbon black to 100 parts by mass or less. You may use carbon black in combination of 2 or more types.
  • the rubber composition for tires has a glass transition temperature of -50°C or lower. Abrasion resistance can be ensured by setting the glass transition temperature to ⁇ 50° C. or lower.
  • the glass transition temperature is preferably -75°C or higher and -50°C or lower, more preferably -70°C or higher and -50°C or lower.
  • the glass transition temperature of the rubber composition for tires is determined by measuring a thermogram under conditions of a temperature increase rate of 10°C/min using a differential scanning calorimeter (manufactured by Shimadzu Corporation) based on JIS K6240-2011. It can be obtained as the midpoint temperature.
  • Tire rubber compositions are generally used in tire rubber compositions such as vulcanizing or cross-linking agents, vulcanization accelerators, antioxidants, plasticizers, processing aids, liquid polymers, and thermosetting resins.
  • Various additives can be blended within a range that does not impair the object of the present invention.
  • such additives can be kneaded by a common method to form a rubber composition for tires and used for vulcanization or crosslinking.
  • the blending amount of these additives can be a conventional general blending amount as long as it does not contradict the object of the present invention.
  • Rubber composition for winter tires and rubber composition for all-season tires can suitably constitute the tread portion of winter tires and all-season tires. More preferably, the rubber composition for winter tires and the rubber composition for all-season tires (hereinafter both may be collectively abbreviated as "rubber composition A for tires”) have the following characteristics: .
  • the tire rubber composition A preferably contains 100 parts by mass of diene rubber containing 40 to 70% by mass of modified styrene-butadiene rubber and 60 to 200 parts by mass of silica.
  • the modified styrene-butadiene rubber is preferably contained in 40 to 70% by mass, more preferably 50 to 65% by mass, based on 100% by mass of the diene rubber.
  • By containing 40% by mass or more of the modified styrene-butadiene rubber dry steering stability and wet braking performance can be ensured. Also, by containing 70% by mass or less, snow braking performance can be ensured.
  • the tire rubber composition A preferably contains 60 to 200 parts by mass, more preferably 80 to 160 parts by mass of silica in 100 parts by mass of diene rubber. By blending 60 parts by mass or more of silica, wet performance can be ensured. Also, by blending 200 parts by mass or less, it is possible to ensure wear resistance and low rolling resistance.
  • the modified styrene-butadiene rubber used in the tire rubber composition A preferably has a styrene content of 25 to 40% by mass, more preferably 30 to 40% by mass.
  • a styrene content of 25 to 40% by mass By setting the styrene content to 25% by mass or more, wet performance can be ensured. In addition, snow performance can be ensured by making it 40% by mass or less.
  • the styrene content of the modified styrene-butadiene rubber can be measured using a Fourier transform infrared spectrophotometer (manufactured by Shimadzu Corporation) based on JIS K6239-2 2017.
  • the tire rubber composition A has a loss tangent tan ⁇ (0 ° C.) [-] at 0 ° C. and a storage elastic modulus E' (-20 ° C.) [MPa] at -20 ° C.
  • Ratio tan ⁇ (0 ° C.)/E' (-20°C) is preferably 0.007 [MPa -1 ] or more and 0.011 [MPa -1 ] or less.
  • the ratio tan ⁇ (0°C)/E' (-20°C) is 0.007 [MPa -1 ] or more, snow performance can be ensured.
  • it is 0.011 [MPa -1 ] or less, dry steering stability and wet braking performance can be ensured.
  • the loss tangent tan ⁇ (0 ° C.) [-] and the storage modulus E' at -20 ° C. (-20 ° C.) [MPa] are based on JIS K6394-2007, using a viscoelasticity tester (manufactured by Ueshima Seisakusho ) under conditions of initial strain of 10%, amplitude of ⁇ 2%, and frequency of 20 Hz.
  • the rubber composition for tires of the present invention can suitably constitute the tread portion of heavy duty tires used for large vehicles such as truck buses. More preferably, the rubber composition for heavy-duty tires (hereinafter sometimes simply abbreviated as "rubber composition B for tires”) has the following characteristics.
  • the tire rubber composition B preferably contains 100 parts by mass of diene rubber containing 30 to 50% by mass of modified styrene-butadiene rubber and 70 to 50% by mass of natural rubber, and 30 to 70 parts by mass of silica. .
  • the modified styrene-butadiene rubber is preferably contained in 30 to 50% by mass, more preferably 30 to 40% by mass, based on 100% by mass of the diene rubber.
  • 30% by mass or more of the modified styrene-butadiene rubber By containing 30% by mass or more of the modified styrene-butadiene rubber, the dispersion of silica is improved and the low rolling resistance is improved. Also, by containing 50% by mass or less, wear resistance can be ensured.
  • the diene rubber of the tire rubber composition B preferably contains 100% by mass of the modified styrene-butadiene rubber and the natural rubber in total.
  • the rubber composition B for tires preferably contains 30 to 70 parts by mass, more preferably 40 to 60 parts by mass of silica in 100 parts by mass of diene rubber. Abrasion resistance is improved by blending 30 parts by mass or more of silica. Moreover, low rolling resistance is improved by blending 70 parts by mass or less.
  • the silica compounded in the tire rubber composition B preferably has a CTAB adsorption specific surface area of 100 to 250 m 2 /g, more preferably 150 to 200 m 2 /g.
  • CTAB adsorption specific surface area of silica is 100 m 2 /g or more, wear resistance is improved.
  • the CTAB adsorption specific surface area shall be measured according to JIS K6217-3.
  • the rubber composition for tires described above is preferably a rubber composition for tire treads, and can suitably constitute the tread portion of a tire.
  • a tire having a tread portion made of the rubber composition for a tire of the present invention can achieve both low rolling resistance and wear resistance.
  • the tire may be either a pneumatic tire or a non-pneumatic tire.
  • Rubber Compositions for Winter Tires and Rubber Compositions for All-Season Tires Tire rubber compositions were kneaded for 5 minutes in a 1.7 L internal Banbury mixer, except for sulfur and vulcanization accelerators, and then discharged from the mixer and cooled to room temperature.
  • a rubber composition for tires was prepared by putting this into the above-mentioned 1.7 L internal Banbury mixer, adding sulfur and a vulcanization accelerator, and mixing.
  • the compounding amounts of the compounding agents shown in Table 3 are shown in parts by mass with respect to 100 parts by mass of the diene rubber shown in Tables 1 and 2.
  • vulcanization was performed at 160°C for 20 minutes in a mold of 15 cm x 15 cm x 0.2 cm to prepare a vulcanized rubber sheet. Viscoelasticity and abrasion resistance were measured.
  • Dynamic viscoelasticity The dynamic viscoelasticity of the vulcanized rubber sheet obtained above was measured using a viscoelasticity spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd. at an initial strain of 10%, an amplitude of ⁇ 2%, and a frequency of 20 Hz.
  • the loss tangent tan ⁇ (0°C) [-] at °C and the storage modulus E' (-20°C) [MPa] at -20°C were determined. Furthermore, their ratio tan ⁇ (0°C)/E' (-20°C) [1/MPa] was calculated. The results obtained are shown in the respective columns of Tables 1 and 2.
  • the obtained results are indexed to the value of Reference Example 1 as 100 in Table 1, and indexed to the value of Reference Example 2 as 100 in Table 2, and are shown in the "wear resistance" column of Tables 1 and 2. rice field. A larger index means better wear resistance.
  • the dynamic viscoelasticity of the vulcanized rubber sheet obtained above was measured using a viscoelasticity spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd. at an initial strain of 10%, an amplitude of ⁇ 2%, and a frequency of 20 Hz.
  • the loss tangent tan ⁇ (60°C) at °C was measured, and its reciprocal was obtained.
  • the obtained results are indexed to the value of Reference Example 1 as 100 in Table 1, and indexed to the value of Reference Example 2 as 100 in Table 2. Indicated. A larger index means better low rolling resistance.
  • the types of raw materials used are as follows.
  • Modified SBR-1 Styrene-butadiene rubber having a hydroxy group, Tuffdene E581 manufactured by Asahi Kasei Corporation, a glass transition temperature of -31 ° C., a unimodal molecular weight distribution curve when measured by gel permeation chromatography (GPC), Its molecular weight distribution (PDI) is 2.3, its styrene content is 37% by weight and its vinyl content is 42% by weight.
  • GPC gel permeation chromatography
  • Modified SBR-2 Styrene-butadiene rubber having an alkoxysilyl group, the rubber produced in Polymerization Example 1, the glass transition temperature of -31 ° C., the molecular weight distribution curve when measured by GPC is unimodal, and the molecular weight distribution ( PDI) of 1.3, a styrene content of 36% by weight and a vinyl content of 42% by weight.
  • Modified SBR-3 Styrene-butadiene rubber having an alkoxysilyl group, NS540 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -29 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) of 1.9, a styrene content of 42% by weight and a vinyl content of 30% by weight.
  • SBR-4 unmodified styrene-butadiene rubber, Toughden 1834 manufactured by Asahi Kasei Corporation, glass transition temperature of ⁇ 72° C., molecular weight distribution curve measured by GPC unimodal, molecular weight distribution (PDI) of 2. 9.
  • the styrene content is 19% by weight and the vinyl content is 10% by weight.
  • - Modified SBR-5 styrene-butadiene rubber having an alkoxysilyl group, the rubber produced in Polymerization Example 2, the glass transition temperature of -53 ° C., the molecular weight distribution curve when measured by GPC is unimodal, and the molecular weight distribution ( PDI) of 1.5, a styrene content of 25% by weight and a vinyl content of 28% by weight.
  • ⁇ NR natural rubber, TSR20, glass transition temperature of -65°C
  • BR Butadiene rubber, Nipol BR1220 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -105 ° C.
  • ⁇ Silica-1 Ultrasil 9100GR manufactured by Evonik
  • Silica-2 ZEOSIL 1165MP manufactured by Solvay ⁇ Carbon black-1: SEAST 7HM N234 manufactured by Tokai Carbon Co., Ltd.
  • Coupling agent-1 Si69 manufactured by Evonik Degussa, bis (triethoxysilylpropyl) tetrasulfide
  • Aroma oil Extract No. 4S manufactured by Showa Shell Sekiyu K.K.
  • ⁇ Stearic acid Bead stearic acid manufactured by NOF Corporation
  • Zinc oxide 3 types of zinc oxide manufactured by Seido Chemical Industry Co., Ltd.
  • ⁇ Antiaging agent 6PPD manufactured by Korea Kumho Petrochemical
  • Sulfur Fine powdered sulfur with Kinkain oil manufactured by Tsurumi Chemical Industry Co., Ltd.
  • Vulcanization accelerator-1 Noccellar CZ-G manufactured by Ouchi Shinko Kagaku Co., Ltd.
  • Vulcanization accelerator-2 Soxinol DG manufactured by Sumitomo Chemical Co., Ltd.
  • the first reaction solution was injected into the continuous reactor through the first continuous channel at an injection rate of 1.0 g/min using a mass flow meter.
  • the second reaction solution was injected through the second continuous channel at an injection rate of 1.0 g/min.
  • the temperature of the continuous reactor was maintained at ⁇ 10° C.
  • the internal pressure was maintained at 3 bar using a back pressure regulator, and the residence time in the reactor was within 10 minutes. adjusted.
  • the reaction was terminated to obtain a modified initiator.
  • the modified initiator prepared in Preparation Example 1 was injected at a rate of 400.0 g/h. At this time, the temperature of the first reactor was maintained at 55° C., and when the polymerization conversion reached 41%, the polymer was transferred from the first reactor to the second reactor through the transfer pipe. bottom.
  • a 1,3-butadiene solution of 60% by weight of 1,3-butadiene dissolved in n-hexane was injected into the second reactor at a rate of 2.3 kg/h.
  • the temperature of the second reactor was maintained at 65° C., and when the polymerization conversion reached 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe. transferred.
  • the polymer is transferred from the second reactor to the third reactor, and N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl) is used as a modifier.
  • N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl) is used as a modifier.
  • )-N-(3-(trimethoxysilyl)propyl)propan-1-amine solution solvent: n-hexane
  • Li polymerization initiator
  • Polymerization Example 2 In Polymerization Example 1, a styrene solution in which 60% by weight of styrene was dissolved in n-hexane was added at 4.6 kg/h, and 1,3-butadiene in which 60% by weight of 1,3-butadiene was dissolved in n-hexane.
  • the tire rubber compositions of Examples 1 to 3 which are suitable for all-season tires, are excellent in low rolling resistance and wear resistance. It also excels in snow braking performance, dry steering stability, and wet braking performance, which are required for all-season tires.
  • the modified styrene-butadiene rubber (modified SBR-2) exceeds 70% by mass, and the glass transition temperature (Tg) of the rubber composition is higher than -50°C. is inferior. Since the tire rubber composition of Comparative Example 2 contains less than 30% by mass of modified styrene-butadiene rubber (modified SBR-2), dry steering stability and wet braking performance are inferior.
  • the modified styrene-butadiene rubber (modified SBR-3) has a bimodal molecular weight distribution curve and a molecular weight distribution (PDI) of greater than 1.7, and is inferior in abrasion resistance.
  • the tire rubber composition of Comparative Example 4 contains more than 200 parts by mass of silica, and thus is inferior in wear resistance and low rolling resistance.
  • the tire rubber composition of Comparative Example 5 has a modified styrene-butadiene rubber (modified SBR-5) content of more than 70% by mass, and is inferior in snow braking performance. Since the tire rubber composition of Comparative Example 6 contains less than 30% by mass of the modified styrene-butadiene rubber (modified SBR-5), the dry steering stability and wet braking performance are inferior.
  • modified SBR-5 modified styrene-butadiene rubber
  • the modified styrene-butadiene rubber (modified SBR-3) has a bimodal molecular weight distribution curve and a molecular weight distribution (PDI) of greater than 1.7. Poor durability and snow braking performance.
  • the tire rubber composition of Comparative Example 8 contains more than 200 parts by mass of silica, and thus is inferior in wear resistance and low rolling resistance.
  • Rubber composition for heavy-duty tires The compounding agent shown in Table 6 was used as a common compounding agent, and rubber compositions for tires (Examples 7 to 12, Reference example 3, Comparative examples 9 to 14) having the compoundings shown in Tables 4 and 5 were prepared. , sulfur and vulcanization accelerator were kneaded in a 1.7 L internal Banbury mixer for 5 minutes, then discharged from the mixer and cooled to room temperature. A rubber composition for tires was prepared by putting this into the above-mentioned 1.7 L internal Banbury mixer, adding sulfur and a vulcanization accelerator, and mixing. The compounding amounts of the compounding agents shown in Table 6 are shown in parts by mass with respect to 100 parts by mass of the diene rubber shown in Tables 4 and 5.
  • vulcanization was performed at 160°C for 20 minutes in a mold of 15 cm x 15 cm x 0.2 cm to prepare a vulcanized rubber sheet. and low rolling resistance (dynamic viscoelasticity).
  • Modified SBR-1 Styrene-butadiene rubber having a hydroxy group, Tuffdene E581 manufactured by Asahi Kasei Corporation, a glass transition temperature of -31 ° C., a unimodal molecular weight distribution curve when measured by gel permeation chromatography (GPC), Its molecular weight distribution (PDI) is 2.3, its styrene content is 37% by weight and its vinyl content is 42% by weight.
  • GPC gel permeation chromatography
  • Modified SBR-2 styrene-butadiene rubber having an alkoxysilyl group, the rubber produced in Polymerization Example 1 described above, having a glass transition temperature of ⁇ 31° C., a unimodal molecular weight distribution curve when measured by GPC, and a molecular weight Distribution (PDI) of 1.3, styrene content of 36% by weight, vinyl content of 42% by weight.
  • PDI molecular weight Distribution
  • Modified SBR-3 Styrene-butadiene rubber having an alkoxysilyl group, NS540 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -29 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) of 1.9, a styrene content of 42% by weight and a vinyl content of 30% by weight.
  • PDI molecular weight distribution
  • Modified SBR-5 styrene-butadiene rubber having an alkoxysilyl group, the rubber produced in Polymerization Example 2 described above, having a glass transition temperature of ⁇ 53° C., a unimodal molecular weight distribution curve when measured by GPC, and a molecular weight Distribution (PDI) of 1.5, styrene content of 25% by weight, vinyl content of 28% by weight.
  • PDI molecular weight Distribution
  • Modified SBR-6 styrene-butadiene rubber having an alkoxysilyl group, NS560 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -32 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) is 1.5, the styrene content is 41% by weight, and the vinyl content is 29% by weight.
  • ⁇ NR natural rubber
  • TSR20 glass transition temperature of -65°C ⁇ Silica-2: Solvay ZEOSIL 1165MP, CTAB adsorption specific surface area of 160 m 2 /g ⁇ Silica-3: Premium 200MP manufactured by Solvay, CTAB adsorption specific surface area of 200 m 2 /g ⁇ Carbon black-2: Niteron #300IH N 2 SA manufactured by Shin Nikka Carbon Co., Ltd.
  • Coupling agent-1 Si69 manufactured by Evonik Degussa, bis (triethoxysilylpropyl) tetrasulfide Stearic acid: beads stearic acid manufactured by NOF Corporation Zinc oxide: 3 types of zinc oxide manufactured by Seido Chemical Industry Co., Ltd.
  • Anti-aging Agent Santoflex 6PPD manufactured by Flexis ⁇ Sulfur: Mucron OT-20 manufactured by Shikoku Kasei Co., Ltd.
  • ⁇ Vulcanization accelerator -1 Noxeler CZ-G manufactured by Ouchi Shinko Kagaku Co., Ltd.
  • ⁇ Vulcanization accelerator-2 Perkacit DPG manufactured by Flexis
  • the tire rubber compositions of Examples 7 to 12, which are suitable for heavy-duty tires are excellent in low rolling resistance and wear resistance.
  • the tire rubber composition of Comparative Example 9 is inferior in wear resistance because the modified styrene-butadiene rubber (modified SBR-6) has a bimodal molecular weight distribution curve.
  • the modified styrene-butadiene rubber (modified SBR-1) has a molecular weight distribution (PDI) of more than 1.7, so the effects of abrasion resistance and low rolling resistance are not obtained.
  • the tire rubber composition of Comparative Example 11 contains more than 70% by mass of the modified styrene-butadiene rubber (modified SBR-2) and has a Tg higher than -50° C., and is inferior in abrasion resistance. Since the tire rubber composition of Comparative Example 12 contains less than 30% by mass of the modified styrene-butadiene rubber (modified SBR-2), the effects of abrasion resistance and low rolling resistance are not obtained.
  • the tire rubber composition of Comparative Example 13 has a Tg higher than ⁇ 50° C., and is inferior in wear resistance.
  • the modified styrene-butadiene rubber (modified SBR-3) has a bimodal molecular weight distribution curve and a molecular weight distribution (PDI) of greater than 1.7, and is inferior in abrasion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

低転がり抵抗性および耐摩耗性を両立させるタイヤ用ゴム組成物を提供する。 アルコキシシリル基を有する変性スチレンブタジエンゴムを30~70質量%含むジエン系ゴム100質量部に、シリカを30~200質量部配合したタイヤ用ゴム組成物であって、前記変性スチレンブタジエンゴムをゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形を有し、かつその分子量分布(PDI)が1.7未満、ビニル含有量が10~45質量%であり、前記タイヤ用ゴム組成物のガラス転移温度が-50℃以下であることを特徴とする。

Description

タイヤ用ゴム組成物
 本発明は、低転がり抵抗性および耐摩耗性を両立させるタイヤ用ゴム組成物に関する。
 近年、地球環境に配慮したタイヤとして、燃費性能に優れること、すなわち転がり抵抗が小さいこと求められるが、同時にグリップ性能や耐久性などの基本性能を従来品と同等以上に確保することが重要である。例えば、ウィンタータイヤにおいて雪上性能のみならず、ドライ性能、ウェット性能や耐摩耗性まで高次元で性能をバランスさせることが求められている。ドライ性能、ウェット性能を向上させるため、タイヤ用ゴム組成物の0℃の損失正接(tanδ)を大きくする方法がある。しかし、これによりタイヤ用ゴム組成物のガラス転移温度(Tg)が高くなって雪上性能と耐摩耗性が悪化する虞がある。また、Tgや雪上性能を補うためブタジエンゴムを多く含有させると、シリカの分散性が悪化し、転がり抵抗やウェット性能が低下する傾向がある。このため、特許文献1では、軟化点が50℃以下のクマロンインデン樹脂を配合したタイヤ用ゴム組成物を提案する。
 また、例えば、トラックバス等の大型車両に用いるタイヤ(以下、「重荷重用タイヤ」と記すことがある。)においても、環境規制が年々強化されており、欧州では2016年11月からECE R117‐02が導入され、日本でも2023年に同様の法律が施行することが決まっている。そのため、重荷重用タイヤ向けのトレッド用タイヤ用ゴム組成物でも転がり抵抗の低減が課題となっており、フィラーとしてシリカを用いることが多くなっている。しかし、重荷重用タイヤのトレッド用タイヤ用ゴム組成物は、天然ゴムの含有率が高く、そのためシリカの分散性を良好にするのが難しく、シリカの分散性が悪いと重荷重用タイヤに要求される耐摩耗性、耐カット性などの耐久性が悪化してしまう。このため、特許文献2では、アミン系官能基を含有する変性ポリブタジエンゴムと天然ゴムとを含むタイヤ用ゴム組成物をトレッドゴムに用いることを提案する。
 しかし、近年、低転がり抵抗性および耐摩耗性をより高いレベルで両立させたタイヤ用ゴム組成物への需要が高まり、更なる改良が求められている。
日本国特開2013-139522号公報 日本国特開2010-013602号公報
 本発明の目的は、低転がり抵抗性および耐摩耗性を両立させるタイヤ用ゴム組成物を提供することにある。
 上記目的を達成する本発明のタイヤ用ゴム組成物は、アルコキシシリル基を有する変性スチレンブタジエンゴムを30~70質量%含むジエン系ゴム100質量部に、シリカを30~200質量部配合したタイヤ用ゴム組成物であって、前記変性スチレンブタジエンゴムをゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形を有し、かつ前記変性スチレンブタジエンゴムの分子量分布(PDI)が1.7未満、ビニル含有量が10~45質量%であり、前記タイヤ用ゴム組成物のガラス転移温度が-50℃以下であることを特徴とする。
 本発明のタイヤ用ゴム組成物によれば、ゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形でその分子量分布(PDI)が1.7未満、ビニル含有量が10~45質量%であるアルコキシシリル基を有する変性スチレンブタジエンゴムを含むジエン系ゴムおよびシリカを含み、ガラス転移温度を-50℃以下にしたので、低転がり抵抗性および耐摩耗性を両立させることができる。
 本発明のタイヤ用ゴム組成物において、前記変性スチレンブタジエンゴムを40~70質量%含むジエン系ゴム100質量部に、シリカを60~200質量部配合したタイヤ用ゴム組成物は、ウィンタータイヤやオールシーズンタイヤのトレッド部に用いるのに好適である。このとき、前記タイヤ用ゴム組成物の0℃における損失正接tanδ(0℃)[-]と-20℃における貯蔵弾性率E'(-20℃)[MPa]の比tanδ(0℃)/E'(-20℃)が、0.007[MPa-1]以上0.011[MPa-1]以下であるとよい。
 本発明のタイヤ用ゴム組成物において、前記変性スチレンブタジエンゴムを30~50質量%、天然ゴムを70~50質量%含むジエン系ゴム100質量部に、シリカを30~70質量部配合したタイヤ用ゴム組成物は、重荷重用タイヤのトレッド部に用いるのに好適である。このとき、前記シリカのCTAB吸着比表面積が100~250m2/gであるとよい。
 タイヤ用ゴム組成物は、ジエン系ゴムに、アルコキシシリル基を有する変性スチレンブタジエンゴムを含有する。この変性スチレンブタジエンゴムは、アルコキシシリル基を有し、ゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形であり、かつその分子量分布(PDI)が1.7未満であることを特徴とする。このような変性スチレンブタジエンゴムを含有することにより、シリカの分散性を向上させ、低転がり抵抗性および耐摩耗性を高いレベルで兼備することができる。
 変性スチレンブタジエンゴムが有するアルコキシシリル基として、例えば炭素数1~10のアルコキシを含むアルコキシシリル基を挙げることができる。炭素数の異なるアルコキシを2つ又は3つ有してもよいし、単数または2つのアルキルを有してもよい。アルコキシシリル基として、例えばメトキシシリル基、エトキシシリル基、プロポキシシリル基、イソプロポキシシリル基、ブトキシシリル基、等を挙げることができる。変性スチレンブタジエンゴムがアルコキシシリル基を有することによりシリカとの親和性を高くし、その分散性を向上することができる。
 変性スチレンブタジエンゴムは、ゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形を有し、かつその分子量分布(PDI;polydis-persity index)が1.7未満である。変性スチレンブタジエンゴムの分子量分布曲線が単峰形であると、分子の均一性が高くなり、ジエン系ゴム中に均質に分配、分散されシリカとの親和性をより高くすることができる。分子量分布(PDI)は、ゲルパーミエーションクロマトグラフィーで測定された重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)であり、分子量分布(PDI)が1.7未満であると、分子量分布曲線が単峰形であることと同様に、分子の均一性が高くなり、ジエン系ゴム中に均質に分配、分散されシリカとの親和性をより高くすることができる。分子量分布(PDI)は、より好ましくは1.0以上1.7未満、さらに好ましくは1.1~1.6であるとよい。このような変性スチレンブタジエンゴムは、好ましくは連続式重合で得ることができる。
 本明細書において、変性スチレンブタジエンゴムをゲルパーミエーションクロマトグラフィーにより、その分子量分布曲線、重量平均分子量(Mw)および数平均分子量(Mn)を測定するとき、例えば以下の条件を挙げることができる。
装置:ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8020]
カラム:東ソー社製GMH-HR-H(2本直列接続)
測定温度:40℃
キャリアガス:ヘリウム
流量:5mmol/L
試料:10mgを10mLのTHFに溶解
注入量:10μL
検出器:示差屈折率計(RI-8020)
 アルコキシシリル基を有する変性スチレンブタジエンゴムは、ジエン系ゴム100質量%中30~70質量%、好ましくは45~70質量%、より好ましくは50~65質量%含有する。アルコキシシリル基を有する変性スチレンブタジエンゴムを30質量%以上含有することにより、シリカの分散性を向上することができる。また70質量%以下含有することにより、耐摩耗性を確保することができる。
 変性スチレンブタジエンゴムは、ビニル含有量が10~45質量%、好ましくは20~45質量%、より好ましくは25~45質量%、さらに好ましくは35~43質量%である。変性スチレンブタジエンゴムのビニル含有量を10質量%以上にすることにより、低転がり抵抗性能を確保することが出来るようになる。また、ビニル含有量を45質量%以下にすることにより、耐摩耗性能を確保出来るようになる。本明細書において、変性スチレンブタジエンゴムのビニル含有量は、JIS K6239-2 2017に基づき、フーリエ変換赤外分光光度計(島津製作所製)を使用し測定することができる。
 タイヤ用ゴム組成物は、変性スチレンブタジエンゴム以外に他のジエン系ゴムを含有することができる。他のジエン系ゴムとして、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、未変性のスチレンブタジエンゴム、上述した変性スチレンブタジエンゴムを除く変性スチレンブタジエンゴム、スチレンイソプレンゴム、イソプレンブタジエンゴム、エチレン-プロピレン-ジエン共重合ゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、等を挙げることができる。これら他のジエン系ゴムは、1つ以上の官能基で変性されていてもよい。官能基の種類は、特に限定されるものではないが、例えばエポキシ基、カルボキシ基、アミノ基、ヒドロキシ基、アルコキシ基、シリル基、アルコキシシリル基、アミド基、オキシシリル基、シラノール基、イソシアネート基、イソチオシアネート基、カルボニル基、アルデヒド基、等が挙げられる。他のジエン系ゴムは、ジエン系ゴム100質量%中30~70質量%、好ましくは30~55質量%、より好ましくは30~50質量%含有するとよい。
 他のジエン系ゴムとして、好ましくは天然ゴム、ブタジエンゴムおよびスチレンブタジエンゴムが挙げられる。天然ゴム、ブタジエンゴムおよびスチレンブタジエンゴムは、通常タイヤ用ゴム組成物に用いられるものであれば特に制限されるものではない。天然ゴムを配合することにより、タイヤの耐摩耗性を確保することができる。また、ブタジエンゴムを配合することにより、タイヤの氷上・雪上性能を確保することができる。更に、スチレンブタジエンゴムを配合することにより、タイヤのウェットグリップ性を確保することができる。
 タイヤ用ゴム組成物は、ジエン系ゴム100質量部にシリカを30~200質量部配合する。シリカを配合することにより、転がり抵抗を小さくし、ウェット性能を向上することができる。シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらを単独または2種以上を組み合わせて使用してもよい。またシリカの表面をシランカップリング剤により表面処理が施された表面処理シリカを使用してもよい。
 タイヤ用ゴム組成物は、シリカと共にシランカップリング剤を配合することが好ましく、シリカの分散性を良好にすることができる。シランカップリング剤は、通常シリカと共に配合する種類を用いることができる。シランカップリング剤は、シリカ量の好ましくは5~15質量%、より好ましくは8~12質量%を配合するとよい。
 タイヤ用ゴム組成物は、シリカ以外の他の無機充填材として、カーボンブラック、炭酸カルシウム、炭酸マグネシウム、タルク、クレー、マイカ、アルミナ、水酸化アルミニウム、酸化チタン、硫酸カルシウムを任意に配合することができる。これら他の無機充填剤は単独または2種以上を組み合わせて使用してもよい。
 カーボンブラックは、ジエン系ゴム100質量部に、好ましくは5~100質量部、より好ましくは5~80質量部配合することができる。カーボンブラックを5質量部以上配合することにより、タイヤ耐久性を確保することができる。また剛性を確保し転がり抵抗を小さくすることができる。カーボンブラックを100質量部以下にすることにより、低転がり抵抗性を確保することができる。カーボンブラックは、2種類以上を組み合わせて使用してもよい。
 タイヤ用ゴム組成物は、そのガラス転移温度が-50℃以下である。ガラス転移温度を-50℃以下にすることにより、耐摩耗性を確保することができる。ガラス転移温度は、好ましくは-75℃以上-50℃以下、より好ましくは-70℃以上-50℃以下であるとよい。タイヤ用ゴム組成物のガラス転移温度は、JIS K6240-2011に基づき、示差走査熱量計(島津製作所製)を使用し、10℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度として求めることができる。
 タイヤ用ゴム組成物は、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤、液状ポリマー、熱硬化性樹脂などのタイヤ用ゴム組成物に一般的に使用される各種添加剤を、本発明の目的を阻害しない範囲内で配合することができる。またかかる添加剤は一般的な方法で混練してタイヤ用ゴム組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
  ウィンタータイヤ用ゴム組成物およびオールシーズンタイヤ用ゴム組成物
 本発明のタイヤ用ゴム組成物は、ウィンタータイヤおよびオールシーズンタイヤのトレッド部を好適に構成することができる。ウィンタータイヤ用ゴム組成物およびオールシーズンタイヤ用ゴム組成物(以下、両者を合わせて「タイヤ用ゴム組成物A」と略記することがある。)として、より好ましくは、以下の特徴を有するとよい。
 タイヤ用ゴム組成物Aは、上述した変性スチレンブタジエンゴムを40~70質量%含むジエン系ゴム100質量部に、シリカを60~200質量部配合することが好ましい。ジエン系ゴム100質量%中、変性スチレンブタジエンゴムを好ましくは40~70質量%、より好ましくは50~65質量%含有するとよい。変性スチレンブタジエンゴムを40質量%以上含有することにより、ドライ操縦安定性、ウェット制動性能を確保することができる。また、70質量%以下含有することにより、スノー制動性能を確保することができる。
 タイヤ用ゴム組成物Aは、ジエン系ゴム100質量部に、シリカを好ましくは60~200質量部、より好ましくは80~160質量部含有するとよい。シリカを60質量部以上配合することにより、ウェット性能を確保することが出来るようになる。また、200質量部以下配合することにより、耐摩耗性および低転がり抵抗性を確保することができる。
 タイヤ用ゴム組成物Aに使用する変性スチレンブタジエンゴムは、そのスチレン含有量が好ましくは25~40質量%で、より好ましくは30~40質量%であるとよい。スチレン含有量を25質量%以上にすることにより、ウェット性能を確保することが出来るようになる。また、40質量%以下にすることにより、スノー性能を確保することが出来るようになる。本明細書において、変性スチレンブタジエンゴムのスチレン含有量は、JIS K6239-2 2017に基づき、フーリエ変換赤外分光光度計(島津製作所製)を使用し測定することができる。
 タイヤ用ゴム組成物Aは、その0℃における損失正接tanδ(0℃)[-]と-20℃における貯蔵弾性率E'(-20℃)[MPa]の比tanδ(0℃)/E'(-20℃)が、好ましくは0.007[MPa-1]以上0.011[MPa-1]以下であるとよい。比tanδ(0℃)/E'(-20℃)が0.007[MPa-1]以上であると、スノー性能を確保出来るようになる。また0.011[MPa-1]以下であると、ドライ操縦安定性およびウェット制動性能を確保出来るようになる。本明細書において、損失正接tanδ(0℃)[-]および-20℃における貯蔵弾性率E'(-20℃)[MPa]は、JIS K6394-2007に基づき、粘弾性試験機(上島製作所製)を使用し、初期歪み10%、振幅±2%、周波数20Hzの条件で測定することができる。
   重荷重用タイヤ用ゴム組成物
 本発明のタイヤ用ゴム組成物は、トラックバス等の大型車両に用いる重荷重用タイヤのトレッド部を好適に構成することができる。重荷重用タイヤ用ゴム組成物(以下、単に「タイヤ用ゴム組成物B」と略記することがある。)として、より好ましくは、以下の特徴を有するとよい。
 タイヤ用ゴム組成物Bは、上述した変性スチレンブタジエンゴムを30~50質量%、天然ゴムを70~50質量%含むジエン系ゴム100質量部に、シリカを30~70質量部配合することが好ましい。ジエン系ゴム100質量%中、変性スチレンブタジエンゴムを好ましくは30~50質量%、より好ましくは30~40質量%含有するとよい。変性スチレンブタジエンゴムを30質量%以上含有することにより、シリカの分散が向上し低転がり抵抗性が良化する。また、50質量%以下含有することにより、耐摩耗性を確保することができる。タイヤ用ゴム組成物Bのジエン系ゴムは、変性スチレンブタジエンゴムおよび天然ゴムの合計が100質量%であるとよい。
 タイヤ用ゴム組成物Bは、ジエン系ゴム100質量部に、シリカを好ましくは30~70質量部、より好ましくは40~60質量部含有するとよい。シリカを30質量部以上配合することにより、耐摩耗性が向上する。また、70質量部以下配合することにより、低転がり抵抗性が良化する。
 タイヤ用ゴム組成物Bに配合するシリカは、CTAB吸着比表面積が好ましくは100~250m2/g、より好ましくは150~200m2/gであるとよい。シリカのCTAB吸着比表面積が100m2/g以上であると、耐摩耗性が向上する。また、250m2/g以下であると、低転がり抵抗性が良化する。本明細書において、CTAB吸着比表面積は、JIS K6217-3に準拠して、測定するものとする。
 上述したタイヤ用ゴム組成物は、好ましくはタイヤトレッド用ゴム組成物であり、タイヤのトレッド部を好適に構成することができる。本発明のタイヤ用ゴム組成物でトレッド部を構成したタイヤは、低転がり抵抗性および耐摩耗性を両立させることができる。なお、タイヤは、空気入りタイヤ、非空気式タイヤのいずれでもよい。
 以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
   ウィンタータイヤ用ゴム組成物およびオールシーズンタイヤ用ゴム組成物
 表3に示す配合剤を共通配合とし、表1,2に示す配合からなるタイヤ用ゴム組成物(実施例1~6、基準例1,2、比較例1~8)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーで5分間混練りした後、ミキサーから放出して室温冷却した。これを上述した1.7Lの密閉式バンバリーミキサーに投入し、硫黄および加硫促進剤を加えて混合することにより、タイヤ用ゴム組成物を調製した。また表3に記載した配合剤の配合量は、表1,2に記載したジエン系ゴム100質量部に対する質量部で示した。
 また得られたタイヤ用ゴム組成物を使用して、15cm×15cm×0.2cmの金型中で、160℃、20分間加硫して加硫ゴムシートを作製し、下記の方法により動的粘弾性、および耐摩耗性を測定した。
   動的粘弾性
 上記で得られた加硫ゴムシートの動的粘弾性を、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzで測定し、0℃における損失正接tanδ(0℃)[-]および-20℃における貯蔵弾性率E'(-20℃)[MPa]を求めた。更にそれらの比tanδ(0℃)/E'(-20℃)[1/MPa]を算出した。得られた結果は、表1,2のそれぞれの欄に記載した。
   耐摩耗性
 上記で得られた加硫ゴムシートについて、ランボーン摩耗試験機(岩本製作所社製)を用いて、JIS K6264-2:2005に準拠し、付加力4.0kg/cm3(=39N)、スリップ率30%、摩耗試験時間4分、試験温度を室温の条件で摩耗試験を行い、摩耗質量を測定し、その逆数を求めた。得られた結果は、表1では基準例1の値を100とする指数とし、表2では基準例2の値を100とする指数とし、表1~2の「耐摩耗性」の欄に示した。この指数が大きいほど、耐摩耗性が優れることを意味する。
   スノー制動性能
 上記ゴム組成物をタイヤトレッドに使用して製造されたサイズ205/55R16のタイヤを排気量2000ccのABSを搭載した試験車両に、フロントタイヤおよびリヤタイヤの空気圧をともに220kPaとして装着した。試験車両を圧雪路面上を走行させ、初速40km/時で制動をかけたときの制動距離を測定した。得られた結果は、それぞれの逆数を算出し、表1では基準例1の値を100とする指数とし、表2では基準例2の値を100とする指数とし、表1~2の「スノー制動性能」の欄に示した。この指数が大きいほど、スノー制動性能が優れることを意味する。
   ドライ操縦安定性
 上記ゴム組成物をタイヤトレッドに使用して製造されたサイズ205/55R16のタイヤを排気量2000ccのABSを搭載した試験車両に、フロントタイヤおよびリヤタイヤの空気圧をともに220kPaとして装着した。試験車両を比較的凸凹の少ない乾燥路面上を走行させ、ハンドルをきったときの応答性を官能評価した。得られた結果は、表1では基準例1の値を100とする指数とし、表2では基準例2の値を100とする指数とし、表1~2の「ドライ操縦安定性」の欄に示した。この指数が大きいほど、ドライ操縦安定性が優れることを意味する。
   ウェット制動性能
 上記ゴム組成物をタイヤトレッドに使用して製造されたサイズ205/55R16のタイヤを排気量2000ccのABSを搭載した試験車両に装着し、フロントタイヤおよびリヤタイヤの空気圧をともに220kPaとして、水深2.0~3.0mmに散水したアスファルト路面上で速度100km/hからの制動停止距離を測定した。得られた結果は、それぞれの逆数を算出し、表1では基準例1の値を100とする指数とし、表2では基準例2の値を100とする指数とし、表1~2の「ウェット制動性能」の欄に示した。この指数が大きいほど、ウェット制動性能が優れることを意味する。
   低転がり抵抗性
 上記で得られた加硫ゴムシートの動的粘弾性を、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzで測定し、60℃における損失正接tanδ(60℃)を測定し、その逆数を求めた。得られた結果は、表1では基準例1の値を100とする指数とし、表2では基準例2の値を100とする指数とし、表1~2の「低転がり抵抗性」の欄に示した。この指数が大きいほど、低転がり抵抗性が優れることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3において、使用した原材料の種類は、以下の通りである。
・変性SBR-1:ヒドロキシ基を有するスチレンブタジエンゴム、旭化成社製タフデンE581、ガラス転移温度が-31℃、ゲルパーミエーションクロマトグラフィー(GPC)で測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が2.3、スチレン含有量が37質量%、ビニル含有量が42質量%。
・変性SBR-2:アルコキシシリル基を有するスチレンブタジエンゴム、重合例1で製造したゴム、ガラス転移温度が-31℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.3、スチレン含有量が36質量%、ビニル含有量が42質量%。
・変性SBR-3:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS540、ガラス転移温度が-29℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.9、スチレン含有量が42質量%、ビニル含有量が30質量%。
・SBR-4:未変性のスチレンブタジエンゴム、旭化成社製タフデン1834、ガラス転移温度が-72℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が2.9、スチレン含有量が19質量%、ビニル含有量が10質量%。
・変性SBR-5:アルコキシシリル基を有するスチレンブタジエンゴム、重合例2で製造したゴム、ガラス転移温度が-53℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.5、スチレン含有量が25質量%、ビニル含有量が28質量%。
・NR:天然ゴム、TSR20、ガラス転移温度が-65℃
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220、ガラス転移温度が-105℃
・シリカ-1:Evonik社製Ultrasil 9100GR
・シリカ-2:Solvay社製ZEOSIL 1165MP
・カーボンブラック-1:東海カーボン社製シースト7HM N234
・カップリング剤-1:Evonik Degussa社製Si69、ビス(トリエトキシシリルプロピル)テトラスルフィド
・アロマオイル:昭和シェル石油社製エキストラクト4号S
・ステアリン酸:日油社製ビーズステアリン酸
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・老化防止剤:Korea Kumho Petrochemical社製6PPD
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤-1:大内新興化学社製ノクセラーCZ-G
・加硫促進剤-2:住友化学社製ソクシノールD-G
   [製造例1]
 真空乾燥させた、4Lのステンレス鋼製の圧力容器を2つ準備した。第1の圧力容器に、シクロヘキサン6,922g、下記化学式(1)で表される化合物85g、およびテトラメチルエチレンジアミン60gを投入し、第1反応溶液を製造した。これと同時に、第2の圧力容器に、液状の2.0Mのn-ブチルリチウム180gおよびシクロヘキサン6,926gを投入し、第2反応溶液を製造した。この際、化学式(1)で表される化合物、n-ブチルリチウム、およびテトラメチルエチレンジアミンのモル比は1:1:1であった。各圧力容器の圧力を7barに維持させた状態で、質量流量計を用いて、連続式反応器内に、第1連続式チャンネルを介して第1反応溶液を1.0g/minの注入速度で、第2連続式チャンネルを介して第2反応溶液を1.0g/minの注入速度でそれぞれ注入した。この際、連続式反応器の温度は-10℃に維持し、内部圧力は背圧レギュレータ(backpressure regulator)を用いて3barに維持し、反応器内での滞留時間は10分以内となるように調節した。反応を終了し、変性開始剤を得た。
Figure JPOXMLDOC01-appb-C000004
   [重合例1]
 3器の反応器が直列で連結された連続反応器のうち第1反応器に、n‐ヘキサンにスチレンが60重量%で溶解されたスチレン溶液を6.5kg/h、n‐ヘキサンに1,3‐ブタジエンが60重量%で溶解された1,3‐ブタジエン溶液を7.7kg/h、n‐ヘキサンを47.0kg/h、n‐ヘキサンに1,2‐ブタジエンが2.0重量%で溶解された1,2‐ブタジエン溶液を40g/h、極性添加剤として、n‐ヘキサンにN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)が10重量%で溶解された溶液を50.0g/h、製造例1で製造された変性開始剤を400.0g/hの速度で注入した。この際、第1反応器の温度は55℃になるように維持し、重合転換率が41%となった時に、移送配管を介して、第1反応器から第2反応器へ重合物を移送した。
 次に、第2反応器に、n‐ヘキサンに1,3‐ブタジエンが60重量%で溶解された1,3‐ブタジエン溶液を2.3kg/hの速度で注入した。この際、第2反応器の温度は65℃になるように維持し、重合転換率が95%以上となった時に、移送配管を介して、第2反応器から第3反応器へ重合物を移送した。
 前記第2反応器から第3反応器に重合物を移送し、変性剤として、N-(3-(1H-1,2,4-トリアゾール-1-イル)プロピル)-3-(トリメトキシシリル)-N-(3-(トリメトキシシリル)プロピル)プロパン-1-アミンが溶解された溶液(溶媒:n-ヘキサン)を連続的に第3反応器に投入した[変性剤:act.Li(重合開始剤)=1:1mol]。第3反応器の温度は65℃になるように維持した。
 その後、第3反応器から排出された重合溶液に、酸化防止剤として、30重量%で溶解されたIR1520(BASF社製)溶液を170g/hの速度で注入して撹拌した。その結果として得られた重合物をスチームで加熱された温水に入れ、撹拌して溶媒を除去し、変性共役ジエン系重合体(変性SBR-2)を製造した。
   [重合例2]
 重合例1において、n‐ヘキサンにスチレンが60重量%で溶解されたスチレン溶液を、4.6kg/h、n‐ヘキサンに1,3‐ブタジエンが60重量%で溶解された1,3‐ブタジエン溶液を11.5kg/h、極性添加剤として、n‐ヘキサンにN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)が10重量%で溶解された溶液を40.0g/hで、第1反応器に連続的に投入したことを除き、前記重合例1と同様に行って、変性共役ジエン系重合体(変性SBR-5)を製造した[カップリング剤:act.Li(重合開始剤)=1:1mol]。
 表1から明らかなようにオールシーズンタイヤに好適な実施例1~3のタイヤ用ゴム組成物は、低転がり抵抗性、および耐摩耗性に優れることが確認された。また、オールシーズンタイヤに求められるスノー制動性能、ドライ操縦安定性およびウェット制動性能にも優れる。
 比較例1のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が70質量%を超え、ゴム組成物のガラス転移温度(Tg)が、-50℃より高いので、スノー制動性能が劣る。
 比較例2のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が30質量%未満なので、ドライ操縦安定性およびウェット制動性能が劣る。
 比較例3のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-3)の分子量分布曲線が二峰形で分子量分布(PDI)が1.7より大きいので、耐摩耗性が劣る。
 比較例4のタイヤ用ゴム組成物は、シリカが200質量部を超えるので、耐摩耗性および低転がり抵抗性が劣る。
 表2から明らかなようにウィンタータイヤに好適な実施例4~6のタイヤ用ゴム組成物は、低転がり抵抗性、および耐摩耗性に優れることが確認された。また、ウィンタータイヤに求められるスノー制動性能、ドライ操縦安定性およびウェット制動性能にも優れる。
 比較例5のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-5)が70質量%を超えるので、スノー制動性能が劣る。
 比較例6のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-5)が30質量%未満なので、ドライ操縦安定性およびウェット制動性能が劣る。
 比較例7のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-3)の分子量分布曲線が二峰形で分子量分布(PDI)が1.7より大きいので、耐摩耗性、低転がり抵抗性およびスノー制動性能が劣る。
 比較例8のタイヤ用ゴム組成物は、シリカが200質量部を超えるので、耐摩耗性および低転がり抵抗性が劣る。
   重荷重用タイヤ用ゴム組成物
 表6に示す配合剤を共通配合とし、表4,5に示す配合からなるタイヤ用ゴム組成物(実施例7~12、基準例3、比較例9~14)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーで5分間混練りした後、ミキサーから放出して室温冷却した。これを上述した1.7Lの密閉式バンバリーミキサーに投入し、硫黄および加硫促進剤を加えて混合することにより、タイヤ用ゴム組成物を調製した。また表6に記載した配合剤の配合量は、表4,5に記載したジエン系ゴム100質量部に対する質量部で示した。
 また得られたタイヤ用ゴム組成物を使用して、15cm×15cm×0.2cmの金型中で、160℃、20分間加硫して加硫ゴムシートを作製し、下記の方法により耐摩耗性、および低転がり抵抗性(動的粘弾性)を測定した。
   耐摩耗性
 上記で得られた加硫ゴムシートについて、ランボーン摩耗試験機(岩本製作所社製)を用いて、JIS K6264-2:2005に準拠し、付加力4.0kg/cm3(=39N)、スリップ率30%、摩耗試験時間4分、試験温度を室温の条件で摩耗試験を行い、摩耗質量を測定し、その逆数を求めた。得られた結果は、基準例3の値を100とする指数とし、表4,5の「耐摩耗性」の欄に示した。この指数が大きいほど、耐摩耗性が優れることを意味する。
   低転がり抵抗性(動的粘弾性)
 上記で得られた加硫ゴムシートの動的粘弾性を、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzで測定し、60℃における損失正接tanδ(60℃)を測定し、その逆数を求めた。得られた結果は、基準例3の値を100とする指数とし、表4,5の「低転がり抵抗性」の欄に示した。この指数が大きいほど、低転がり抵抗性が優れることを意味する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4~6において、使用した原材料の種類は、以下の通りである。
・変性SBR-1:ヒドロキシ基を有するスチレンブタジエンゴム、旭化成社製タフデンE581、ガラス転移温度が-31℃、ゲルパーミエーションクロマトグラフィー(GPC)で測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が2.3、スチレン含有量が37質量%、ビニル含有量が42質量%。
・変性SBR-2:アルコキシシリル基を有するスチレンブタジエンゴム、上述した重合例1で製造したゴム、ガラス転移温度が-31℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.3、スチレン含有量が36質量%、ビニル含有量が42質量%。
・変性SBR-3:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS540、ガラス転移温度が-29℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.9、スチレン含有量が42質量%、ビニル含有量が30質量%。
・変性SBR-5:アルコキシシリル基を有するスチレンブタジエンゴム、上述した重合例2で製造したゴム、ガラス転移温度が-53℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.5、スチレン含有量が25質量%、ビニル含有量が28質量%。
・変性SBR-6:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS560、ガラス転移温度が-32℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.5、スチレン含有量が41質量%、ビニル含有量が29質量%。
・NR:天然ゴム、TSR20、ガラス転移温度が-65℃
・シリカ-2:Solvay社製ZEOSIL 1165MP、CTAB吸着比表面積が160m2/g
・シリカ-3:Solvay社製Premium 200MP、CTAB吸着比表面積が200m2/g
・カーボンブラック-2:新日化カーボン社製ニテロン#300IH N2SA=115m2/g
・カップリング剤-1:Evonik Degussa社製Si69、ビス(トリエトキシシリルプロピル)テトラスルフィド
・ステアリン酸:日油社製ビーズステアリン酸
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・老化防止剤:フレキシス社製サントフレックス6PPD
・硫黄:四国化成工業社製ミュークロンOT-20
・加硫促進剤-1:大内新興化学社製ノクセラーCZ-G
・加硫促進剤-2:フレキシス製Perkacit DPG
 表4,5から明らかなように重荷重用タイヤに好適な実施例7~12のタイヤ用ゴム組成物は、低転がり抵抗性、および耐摩耗性に優れることが確認された。
 比較例9のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-6)の分子量分布曲線が二峰形なので、耐摩耗性が劣る。
 比較例10のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-1)の分子量分布(PDI)が1.7より大きいので、耐摩耗性、低転がり抵抗性の効果が出ない。
 比較例11のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が70質量%を超え、ゴム組成物のTgが-50℃より高いので、耐摩耗性が劣る。
 比較例12のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が30質量%未満なので、耐摩耗性、低転がり抵抗性の効果が出ない。
 比較例13のタイヤ用ゴム組成物は、ゴム組成物のTgが-50℃より高いので、耐摩耗性が劣る。
 比較例14のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-3)の分子量分布曲線が二峰形で分子量分布(PDI)が1.7より大きいので、耐摩耗性が劣る。

Claims (5)

  1.  アルコキシシリル基を有する変性スチレンブタジエンゴムを30~70質量%含むジエン系ゴム100質量部に、シリカを30~200質量部配合したタイヤ用ゴム組成物であって、前記変性スチレンブタジエンゴムをゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形を有し、かつ前記変性スチレンブタジエンゴムの分子量分布(PDI)が1.7未満、ビニル含有量が10~45質量%であり、前記タイヤ用ゴム組成物のガラス転移温度が-50℃以下であることを特徴とするタイヤ用ゴム組成物。
  2.  前記変性スチレンブタジエンゴムを40~70質量%含むジエン系ゴム100質量部に、シリカを60~200質量部配合したことを特徴とする請求項1に記載のタイヤ用ゴム組成物。
  3.  前記タイヤ用ゴム組成物の0℃における損失正接tanδ(0℃)[-]と-20℃における貯蔵弾性率E'(-20℃)[MPa]の比tanδ(0℃)/E'(-20℃)が、0.007[MPa-1]以上0.011[MPa-1]以下であることを特徴とする請求項1または2に記載のタイヤ用ゴム組成物。
  4.  前記変性スチレンブタジエンゴムを30~50質量%、天然ゴムを70~50質量%含むジエン系ゴム100質量部に、シリカを30~70質量部配合したことを特徴とする請求項1に記載のタイヤ用ゴム組成物。
  5.  前記シリカのCTAB吸着比表面積が100~250m2/gであることを特徴とする請求項4に記載のタイヤ用ゴム組成物。
PCT/JP2022/045073 2021-12-08 2022-12-07 タイヤ用ゴム組成物 WO2023106327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514917A JPWO2023106327A1 (ja) 2021-12-08 2022-12-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199169 2021-12-08
JP2021199169 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106327A1 true WO2023106327A1 (ja) 2023-06-15

Family

ID=86730463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045073 WO2023106327A1 (ja) 2021-12-08 2022-12-07 タイヤ用ゴム組成物

Country Status (2)

Country Link
JP (1) JPWO2023106327A1 (ja)
WO (1) WO2023106327A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109152A (ja) * 2017-01-04 2018-07-12 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2019199548A (ja) * 2018-05-16 2019-11-21 横浜ゴム株式会社 スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ
JP2020530060A (ja) * 2017-12-05 2020-10-15 エルジー・ケム・リミテッド 変性共役ジエン系重合体およびそれを含むゴム組成物
WO2021241755A1 (ja) * 2020-05-29 2021-12-02 横浜ゴム株式会社 タイヤ用ゴム組成物及びタイヤ
WO2021241746A1 (ja) * 2020-05-29 2021-12-02 横浜ゴム株式会社 タイヤ用ゴム組成物及びタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109152A (ja) * 2017-01-04 2018-07-12 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2020530060A (ja) * 2017-12-05 2020-10-15 エルジー・ケム・リミテッド 変性共役ジエン系重合体およびそれを含むゴム組成物
JP2019199548A (ja) * 2018-05-16 2019-11-21 横浜ゴム株式会社 スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ
WO2021241755A1 (ja) * 2020-05-29 2021-12-02 横浜ゴム株式会社 タイヤ用ゴム組成物及びタイヤ
WO2021241746A1 (ja) * 2020-05-29 2021-12-02 横浜ゴム株式会社 タイヤ用ゴム組成物及びタイヤ

Also Published As

Publication number Publication date
JPWO2023106327A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
CN107471922B (zh) 充气轮胎
JP4666089B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JPH11189616A (ja) 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
EP2868696A1 (en) Rubber composition for tire treads
JP6996074B2 (ja) ゴム組成物およびタイヤ
JP6329187B2 (ja) タイヤ、及びその製造方法
JP6687069B2 (ja) 空気入りタイヤ
WO2013157545A1 (ja) タイヤ用ゴム組成物、空気入りタイヤ
EP4005820A1 (en) Rubber composition for tire and tire
JPH11349632A (ja) 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
JP5658098B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP7159566B2 (ja) タイヤ用ゴム組成物
JP6824813B2 (ja) 空気入りタイヤ
JP7103434B2 (ja) 空気入りタイヤ
JP7473795B2 (ja) ゴム組成物およびそれを用いたスタッドレスタイヤ
WO2019117093A1 (ja) ゴム組成物及びタイヤ
EP4046820A1 (en) Rubber composition for tires, and tire
JP7457252B2 (ja) タイヤ用ゴム組成物
WO2023106327A1 (ja) タイヤ用ゴム組成物
JP2020117664A (ja) タイヤ用ゴム組成物
JP7339580B2 (ja) タイヤ用ゴム組成物
JP7473825B2 (ja) タイヤ用ゴム組成物
JP6141118B2 (ja) スタッドレスタイヤ用ゴム組成物およびスタッドレスタイヤ
JP7397362B2 (ja) タイヤ用ゴム組成物
JP7375536B2 (ja) トレッド用ゴム組成物およびタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514917

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904255

Country of ref document: EP

Kind code of ref document: A1