WO2021241755A1 - タイヤ用ゴム組成物及びタイヤ - Google Patents

タイヤ用ゴム組成物及びタイヤ Download PDF

Info

Publication number
WO2021241755A1
WO2021241755A1 PCT/JP2021/020510 JP2021020510W WO2021241755A1 WO 2021241755 A1 WO2021241755 A1 WO 2021241755A1 JP 2021020510 W JP2021020510 W JP 2021020510W WO 2021241755 A1 WO2021241755 A1 WO 2021241755A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber
mass
content
conjugated diene
Prior art date
Application number
PCT/JP2021/020510
Other languages
English (en)
French (fr)
Inventor
正樹 佐藤
秀彬 佐和
敬佑 伊藤
翔 伊津野
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP21812966.6A priority Critical patent/EP4159475A4/en
Priority to CN202180039146.5A priority patent/CN115698172A/zh
Publication of WO2021241755A1 publication Critical patent/WO2021241755A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire and a tire.
  • Patent Document 1 a composition containing a modified conjugated diene-based rubber and silica is known (for example, Patent Document 1).
  • the present invention is manufactured by using the tire rubber composition having a small rolling resistance temperature dependence and excellent wet performance when made into a tire, and the tire rubber composition.
  • the purpose is to provide tires that have been made.
  • the rolling resistance temperature dependence and wet performance when the tire is used are also simply referred to as rolling resistance temperature dependence and wet performance.
  • the present inventors have found that the above problems can be solved by using a specific modified conjugated diene rubber and a specific butadiene rubber in a predetermined amount, and have reached the present invention. .. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the rubber component contains a specific conjugated diene-based rubber and a specific butadiene rubber.
  • the content of the specific conjugated diene rubber is 35% by mass or more, and the content of the specific butadiene rubber is 15% by mass or more.
  • the above-mentioned specific conjugated diene rubber It is provided with a polymer block (A) containing an isoprene monomer unit and a polymer block (B) containing a 1,3-butadiene monomer unit, and has a modified structure with a siloxane compound at at least one terminal. It is a conjugated diene-based rubber that is equipped.
  • At least one of the polymer block (A) and the polymer block (B) contains a unit of a vinyl compound containing a functional group capable of interacting with silica.
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, and the overall weight average molecular weight (Mw) is in the range of 50,000 to 5,000,000.
  • the total aromatic vinyl monomer unit content is 30 to 45% by mass. It is a conjugated diene-based rubber having a total vinyl bond content of 15 to 35% by mass.
  • the specific butadiene rubber is a butadiene rubber having a glass transition temperature of ⁇ 85 ° C. or lower.
  • the content of the silica is 50 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • a thermoplastic resin having a softening point of 50 ° C. or higher is contained.
  • a tire when a tire is made, it is manufactured by using a rubber composition for a tire having a small rolling resistance temperature dependence and excellent wet performance, and the rubber composition for a tire. Can provide tires that have been made.
  • each component contained in the rubber composition for a tire of the present invention may be used alone or in combination of two or more.
  • the content of the component means the total content unless otherwise specified.
  • composition of the present invention is Contains a rubber component, silica, and a silane coupling agent, The rubber component contains a specific conjugated diene-based rubber and a specific butadiene rubber.
  • the content of the specific conjugated diene rubber is 35% by mass or more, and the content of the butadiene rubber is 15% by mass or more.
  • the above-mentioned specific conjugated diene rubber It is provided with a polymer block (A) containing an isoprene monomer unit and a polymer block (B) containing a 1,3-butadiene monomer unit, and has a modified structure with a siloxane compound at at least one terminal. It is a conjugated diene-based rubber that is equipped. At least one of the polymer block (A) and the polymer block (B) contains a unit of a vinyl compound containing a functional group capable of interacting with silica.
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, and the overall weight average molecular weight (Mw) of the conjugated diene rubber is 50,000 to 5,000. In the range of 000, The aromatic vinyl monomer unit content is 30 to 45% by mass, and the content is 30 to 45% by mass.
  • the specific butadiene rubber is a butadiene rubber having a glass transition temperature of ⁇ 85 ° C. or lower.
  • the content of the silica is 50 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • a rubber composition for a tire, wherein the content of the silane coupling agent is 3 to 30% by mass with respect to the content of the silica.
  • the rubber component contained in the composition of the present invention contains a specific conjugated diene-based rubber and a specific butadiene rubber.
  • the content of the specific conjugated diene rubber is 35% by mass or more, and the content of the specific butadiene rubber is 15% by mass or more.
  • the rubber component may contain a rubber component (other rubber component) that does not correspond to any of the specific conjugated diene-based rubber and the specific butadiene rubber.
  • the rubber component is preferably in a solid state.
  • the rubber component contains the specific conjugated diene-based rubber.
  • the above-mentioned specific conjugated diene rubber is It is provided with a polymer block (A) containing an isoprene monomer unit and a polymer block (B) containing a 1,3-butadiene monomer unit, and has a modified structure with a siloxane compound at at least one terminal. It is a conjugated diene-based rubber that is equipped. At least one of the polymer block (A) and the polymer block (B) contains a unit of a vinyl compound containing a functional group capable of interacting with silica.
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, and the overall weight average molecular weight (Mw) is in the range of 50,000 to 5,000,000.
  • the total aromatic vinyl monomer unit content is 30 to 45% by mass. It is a conjugated diene-based rubber having a total vinyl bond content of 15 to 35% by mass. Since the total aromatic vinyl monomer unit content of the specific conjugated diene rubber is 30 to 45% by mass, at least one of the polymer block (A) and the polymer block (B) is aromatic vinyl. Contains monomeric units.
  • the polymer block (A) may be any as long as it contains an isoprene monomer unit (preferably one containing an isoprene monomer unit as a main component), and is not particularly limited, and only from the isoprene monomer unit. Or it may be composed of an isoprene monomer unit and a monomer unit other than the isoprene monomer unit. In this case, as the monomer unit other than the isoprene monomer unit, an aromatic vinyl monomer unit is preferably mentioned, and the polymer block (A) of the present invention is added to the isoprene monomer unit. , It is preferable that it also contains an aromatic vinyl monomer unit.
  • the content of the isoprene monomer unit (isoprene monomer unit content) in the polymer block (A) is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass. % Or more.
  • the upper limit of the isoprene monomer unit content is not particularly limited, but is preferably 99% by mass or less.
  • the vinyl bond content in the isoprene monomer unit in the polymer block (A) is preferably 3 to 90% by mass, more preferably 5 to 80% by mass.
  • the vinyl bond content in the isoprene monomer unit has an isoprene monomer unit having a 1,2-structure and a 3,4-structure in the isoprene monomer unit. It shall refer to the total amount of isoprene monomer units.
  • aromatic vinyl compounds for forming aromatic vinyl monomer units examples include styrene, methylstyrene, ethylstyrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, chlorstyrene and bromo.
  • Examples thereof include styrene, methoxystyrene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, diethylaminomethylstyrene, diethylaminoethylstyrene, cyanoethylstyrene, vinylnaphthalene and the like. Of these, styrene is preferable.
  • aromatic vinyl monomer unit for example, styrene monomer unit
  • polymer block (A) aromatic vinyl monomer unit content
  • aromatic vinyl monomer unit content for example, styrene monomer unit content
  • the lower limit of the aromatic vinyl monomer unit content is not particularly limited, but is preferably 1% by mass or more.
  • the specific conjugated diene-based rubber contains a unit of a vinyl compound containing a functional group capable of interacting with silica in at least one of a polymer block (A) and a polymer block (B) described later.
  • a case where the polymer block (A) contains a unit of a vinyl compound containing a functional group capable of interacting with such silica will be described as an example, but with respect to silica.
  • the unit of the vinyl compound containing the interactable functional group may be contained in at least one of the polymer block (A) and the polymer block (B) described later, and thus can interact with silica.
  • the unit of the vinyl compound containing a functional group is contained in the polymer block (B) described later, it does not necessarily have to be contained in the polymer block (A).
  • ⁇ Vinyl compound containing a functional group that can interact with silica As a vinyl compound containing a functional group capable of interacting with silica for forming a unit of a vinyl compound containing a functional group capable of interacting with silica, a functional group capable of interacting with silica is used. Any compound containing a group and a vinyl group may be used, and is not particularly limited.
  • the functional group capable of interacting with silica is an intermolecular force (for example, an ion-dipole) that forms a covalent bond between the functional group and the silica surface or is weaker than the covalent bond.
  • Examples of the functional group capable of interacting with such silica include, but are not limited to, a nitrogen atom-containing functional group, a silicon atom-containing functional group, an oxygen atom-containing functional group, and the like.
  • a silicon atom-containing functional group is preferable from the viewpoint of high interaction.
  • vinyl compound containing a functional group capable of interacting with silica as the vinyl compound containing a silicon atom-containing functional group, for example, a compound represented by the following general formula (1) is preferably used. Can be used.
  • X 1 represents a chemical single bond or a hydrocarbylene group
  • X 2 , X 3 and X 4 are independently substituted amino groups, hydrocarbyloxy groups, or substituted groups, respectively.
  • X 1 is a chemical single bond or a hydrocarbylene group, preferably a chemical single bond.
  • hydrocarbylene group include an alkylene group, an alkanediyl group, an arylene group, and a group in which an arylene group and an alkylene group are bonded.
  • alkylene group include a methylene group, an ethylene group and a trimethylene group.
  • alkenyl group include a vinylene group and an ethylene-1,1-diyl group.
  • the arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • Examples of the group in which the arylene group and the alkylene group are bonded include a group in which a phenylene group and a methylene group are bonded, a group in which a phenylene group and an ethylene group are bonded, and the like.
  • X 1 is a hydrocarbylene group
  • X 1 is preferably an arylene group, more preferably a phenylene group.
  • X 2 , X 3 and X 4 each independently represent a substituted amino group, a hydrocarbyloxy group, or a hydrocarbyl group which may have a substituent.
  • X 2, X 3 and X 4 is preferably at least one of a substituted amino group, of X 2, X 3 and X 4, and more preferably two of a substituted amino group.
  • R 1 and R 2 may be bonded to each other, or may not be attached, when R 1 and R 2 are not bonded to each other, R 1 and R 2 are each independently an optionally substituted hydrocarbyl group, or represents a trihydrocarbyl silyl radical, if R 1 and R 2 are attached to each other, R 1 and R 2 represents a hydrocarbylene group optionally containing nitrogen and / or oxygen atoms.
  • Hydrocarbyl groups that can constitute R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-pentyl group. , N-Hexyl group, -chain alkyl group such as octyl group; cyclic alkyl group such as cyclopentyl group and cyclohexyl group; aryl group such as phenyl group, benzyl group and naphthyl group; and the like.
  • a chain alkyl group is preferable, and a methyl group or an ethyl group is more preferable.
  • a hydrocarbyl group having a hydrocarbyloxy group as a substituent can be mentioned, and the hydrocarbyl group having a hydrocarbyloxy group as a substituent includes methoxy. Examples thereof include an alkoxyalkyl group such as a methyl group, an ethoxymethyl group and a methoxyethyl group; an aryloxyalkyl group such as a phenoxymethyl group; and the like.
  • the hydrocarbylene groups that can form R 1 and R 2 include a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a heptamethylene group.
  • An alkylene group such as an octamethylene group, a decamethylene group, a dodecamethylene group, a 2,2,4-trimethylhexane-1,6-diyl group; an alkanediyl group such as a pentan-2-ene-1,5-diyl group; Can be mentioned.
  • the hydrocarbylene group constituting R 1 and R 2 contains a nitrogen atom and / or an oxygen atom
  • the hydrocarbylene group containing a nitrogen atom and / or an oxygen atom is -CH.
  • R 1 and R 2 are either an alkyl group, or, it is preferable that a alkylene group bonded with each other R 1 and R 2, R 1 and R 2, more be an alkyl group
  • R 1 and R 2 are more preferably a methyl group or an ethyl group.
  • R 1 and R 2 are hydrocarbyl groups
  • specific examples of the group represented by the above general formula (2) include a dimethylamino group, a diethylamino group, and an ethylmethylamino group.
  • Dialkylamino groups such as di-n-propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group, di-tert-butylamino group; diphenylamino group and the like.
  • Diarylamino group; and the like are preferable, and a dimethylamino group, a diethylamino group, and a di-n-butylamino group are more preferable.
  • R 1 and R 2 are hydrocarbyl groups having a hydroxycarbyloxy group as a substituent
  • a specific example of the group represented by the above general formula (2) is di (methoxy).
  • examples thereof include a di (alkoxyalkyl) amino group such as a methyl) amino group and a di (ethoxymethyl) amino group.
  • R 1 and R 2 are trihydrocarbylsilyl groups
  • specific examples of the group represented by the above general formula (2) include a bis (trimethylsilyl) amino group and a bis (trimethylsilyl) amino group.
  • examples thereof include a trialkylsilyl group-containing amino group such as a tert-butyldimethylsilyl) amino group and an N-trimethylsilyl-N-methylamino group.
  • a dialkylamino group and a 1-alkyleneimino group are preferable, a dialkylamino group is more preferable, and a dimethylamino group, a diethylamino group and a di-n-butylamino group are further preferable. ..
  • the hydrocarbyloxy groups that can constitute X 2 , X 3 and X 4 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group and a sec-butoxy group.
  • An alkoxy group such as a tert-butoxy group; an aryloxy group such as a phenoxy group and a benzyloxy group; and the like.
  • the hydrocarbyl groups that can constitute X 2 , X 3 and X 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert.
  • -Alkyl group such as butyl group
  • aryl group such as phenyl group, 4-methyl-1-phenyl group, benzyl group; and the like.
  • hydrocarbyl group capable of constituting X 2 , X 3 and X 4 has a substituent
  • examples thereof include a hydrocarbyl group having a hydrocarbyloxy group, and a methoxymethyl group, an ethoxymethyl group and an ethoxyethyl group.
  • examples thereof include an alkoxyalkyl group such as.
  • X 1 is a chemical single bond and one of X 2 , X 3 and X 4 is a substituted amino group
  • vinyl compound containing a silicon atom-containing functional group examples include (dimethylamino) dimethylvinylsilane, (ethylmethylamino) dimethylvinylsilane, (di-n-propylamino) dimethylvinylsilane, (diisopropylamino) dimethylvinylsilane, and (.
  • (Dialkylamino) dialkylvinylsilanes such as (dimethylamino) diethylvinylsilane, (ethylmethylamino) diethylvinylsilane, (di-n-propylamino) diethylvinylsilane, (diisopropylamino) diethylvinylsilane; [bis (trimethylsilyl) amino] dimethylvinylsilane, [Bis (trialkylsilyl) amino] dialkylvinylsilane such as [bis (t-butyldimethylsilyl) amino] dimethylvinylsilane, [bis (trimethylsilyl) amino] diethylvinylsilane, [bis (t-butyldimethylsilyl) amino] diethylvinylsilane (Dimethylamino) di (methoxymethyl) vinylsilane, (dimethylamino) di
  • Specific examples of the vinyl compound containing an atomic-containing functional group include (dimethylamino) dimethyl-4-vinylphenylsilane, (dimethylamino) dimethyl-3-vinylphenylsilane, and (diethylamino) dimethyl-4-vinylphenylsilane.
  • X 1 is a chemical single bond and two of X 2, X 3 and X 4 are substituted amino groups.
  • Specific examples of the vinyl compound containing a silicon atom-containing functional group include bis (dimethylamino) methylvinylsilane, bis (diethylamino) methylvinylsilane, bis (di-n-propylamino) methylvinylsilane, and bis (di-n-butyl).
  • Bis (dialkylamino) such as amino) methylvinylsilane, bis (dimethylamino) ethylvinylsilane, bis (diethylamino) ethylvinylsilane, bis (di-n-propylamino) ethylvinylsilane, and bis (di-n-butylamino) ethylvinylsilane.
  • vinyl compounds containing an atom-containing functional group include bis (dimethylamino) methyl-4-vinylphenylsilane, bis (dimethylamino) methyl-3-vinylphenylsilane, and bis (diethylamino) methyl-4-vinyl.
  • Phenylsilane bis (diethylamino) methyl-3-vinylphenylsilane, bis (di-n-propylamino) methyl-4-vinylphenylsilane, bis (di-n-propylamino) methyl-3-vinylphenylsilane, bis (Di-n-butylamino) methyl-4-vinylphenylsilane, bis (di-n-butylamino) methyl-3-vinylphenylsilane, bis (dimethylamino) ethyl-4-vinylphenylsilane, bis (dimethylamino) ) Ethyl-3-vinylphenylsilane, bis (diethylamino) ethyl-4-vinylphenylsilane, bis (diethylamino) ethyl-3-vinylphenylsilane, bis (di-n-propylamin
  • X 1 is a chemical single bond and three of X 2 , X 3 and X 4 are substituted amino groups, it is represented by the above general formula (1).
  • the vinyl compound containing a silicon atom-containing functional group include tris (dimethylamino) vinylsilane, tris (diethylamino) vinylsilane tris (di-n-propylamino) vinylsilane, and tris (di-n-butylamino) vinylsilane. Tris (dialkylamino) vinylsilane and the like.
  • Specific examples of the vinyl compound containing an atomic-containing functional group include tris (dimethylamino) -4-vinylphenylsilane, tris (dimethylamino) -3-vinylphenylsilane, tris (diethylamino) -4-vinylphenylsilane, and the like.
  • the vinyl compound containing an atomic-containing functional group include trialkoxyvinylsilanes such as trimethoxyvinylsilane, triethoxyvinylsilane and tripropoxyvinylsilane; dialkoxyalkylvinylsilanes such as methyldimethoxyvinylsilane and methyldiethoxyvinylsilane; di (tert).
  • -Dialkoxyarylvinylsilanes such as pentoxy) phenylvinylsilane and di (tert-butoxy) phenylvinylsilane; monoalkoxydialkylvinylsilanes such as dimethylmethoxyvinylsilane; monoalkoxydiarylvinylsilanes such as tert-butoxydiphenylvinylsilane and tert-pentoxydiphenylvinylsilane; Examples thereof include monoalkoxyalkylarylvinylsilanes such as tert-butoxymethylphenylvinylsilane and tert-butoxyethylphenylvinylsilane; substituted alkoxyvinylsilane compounds such as tris ( ⁇ -methoxyethoxy) vinylsilane; and the like.
  • X 1 is a chemical single bond
  • X 1 is a chemical single bond
  • X 2 , X 3 and X 4 are obtained.
  • a compound in which two are substituted amino groups is more preferable
  • a compound in which X 1 is a chemical single bond and two of X 2, X 3 and X 4 are dialkyl amino groups are particularly preferable. ..
  • bis (dimethylamino) methylvinylsilane, bis (diethylamino) methylvinylsilane, and bis (di-n-butylamino) methylvinylsilane are preferable, and bis (diethylamino) methylvinylsilane is preferable. Especially preferable.
  • Examples of vinyl compounds containing functional groups capable of interacting with silica other than the compound represented by the above general formula (1) include 4-N, N-bis (trimethylsilyl) aminostyrene and 3-N. , N-bis (trimethylsilyl) aminostyrene and other bis (trialkylsilyl) aminostyrene; 4-bis (trimethylsilyl) aminomethylstyrene, 3-bis (trimethylsilyl) aminomethylstyrene, 4-bis (trimethylsilyl) aminoethylstyrene, Examples thereof include bis (trialkylsilyl) aminoalkylstyrene such as 3-bis (trimethylsilyl) aminoethylstyrene; pyrrolidinoethylstyrene and the like, and among them, pyrrolidinoethylstyrene is preferable.
  • the pyrrolidinoethyl styrene may be an ortho-form, a meta-form, or a para-form, but a meta-form or a para-form is preferable, and a mixture of the meta-form and the para-form is more preferable.
  • the specific conjugated diene rubber contains the compound with respect to silica.
  • a unit of the vinyl compound containing an interactable functional group a unit represented by the following general formula (3) will be introduced.
  • X 5 represents a chemical single bond or a hydrocarbylene group
  • X 6 , X 7 and X 8 are independent hydroxyl groups, substituted amino groups and hydrocarbyloxy groups, respectively.
  • it represents a hydrocarbyl group which may have a substituent.
  • X 5 corresponds to X 1 in the compound represented by the general formula (1)
  • X 6 , X 7 and X 8 correspond to X 2 , X 3 and X 4 in the compound represented by the above general formula (1), respectively. Therefore, in the unit represented by the general formula (3), X 5 , X 6 , X 7 and X 8 are X 1 , X 2 , X 3 and X 1, X 2, X 3 in the compound represented by the general formula (1). can be X 4 the same as, respectively.
  • X 2 , X 3 and X 4 are substituted amino group or a hydrocarbyloxy group as the compound represented by the above general formula (1)
  • a substituted amino group is used.
  • the hydrocarbyloxy group can be hydrolyzed at any step and timing to make at least one of X 2 , X 3 and X 4 a hydroxyl group.
  • the content of the unit of the vinyl compound containing a functional group capable of interacting with silica in the polymer block (A) is not particularly limited, and all the monomer units constituting the polymer block (A) are used. It is preferable to adjust the content so as to be preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.02 to 2% by mass, and particularly in the range of 0.05 to 1% by mass.
  • the polymer block (A) is a monomer unit other than the isoprene monomer unit, the aromatic vinyl monomer unit, and the vinyl compound unit containing a functional group capable of interacting with silica. May be contained.
  • Other compounds constituting such other monomer units include chain olefin compounds such as ethylene, propylene and 1-butene; cyclic olefin compounds such as cyclopentene and 2-norbornene; 1,3-butadiene, 2 , 3-Dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, and conjugated diene compounds other than isoprene such as 1,3-hexadiene; 1,5-hexadiene, 1, Non-conjugated diene compounds such as 6-heptadiene, 1,7-octadien, dicyclopentadiene, and 5-ethylidene-2-norbornene; and the like.
  • the content of other monomer units in the polymer block (A) is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 6% by mass or less. preferable.
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, preferably in the range of 1,500 to 20,000, and more preferably in the range of 2,000 to 10, It is in the range of 000. If the weight average molecular weight (Mw) of the polymer block (A) is too small, the effect of suppressing adhesion to the roll, low heat generation, and the effect of improving steering stability cannot be obtained. On the other hand, if the weight average molecular weight (Mw) of the polymer block (A) is too large, the low heat build-up of the obtained rubber crosslinked product is lowered.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer block (A) is preferably 1.0 to 1.5. It is more preferably 1.0 to 1.3.
  • the value (Mw / Mn) of the molecular weight distribution of the polymer block (A) is within the above range, the production of the conjugated diene rubber becomes easier.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be obtained as polystyrene-equivalent values by gel permeation chromatography (GPC) measurement.
  • the polymer block (B) may be any one containing 1,3-butadiene monomer units (preferably one containing 1,3-butadiene monomer units as a main component), and is not particularly limited. , 1,3-butadiene monomer unit only, or from 1,3-butadiene monomer unit and monomer unit other than 1,3-butadiene monomer unit. It may be.
  • the aromatic vinyl monomer unit is preferably mentioned, and the polymer block (B) of the present invention is 1,3-. It preferably contains an aromatic vinyl monomer unit in addition to the butadiene monomer unit.
  • the content of 1,3-butadiene monomer unit (content of 1,3-butadiene monomer unit) in the polymer block (B) is preferably 55 to 65% by mass, and more preferably 55. It is ⁇ 63% by mass, more preferably 55-60% by mass.
  • the vinyl bond content in the 1,3-butadiene monomer unit in the polymer block (B) is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass. Is. By setting the vinyl bond content in the 1,3-butadiene monomer unit in the polymer block (B) within the above range, the obtained rubber crosslinked product can be made more excellent in low heat generation.
  • aromatic vinyl compounds for forming aromatic vinyl monomer units those exemplified in the above-mentioned explanation of the polymer block (A) can be used, and among the above-mentioned aromatic vinyl compounds, styrene is used. preferable.
  • the aromatic vinyl monomer unit content of the polymer block (B) is preferably 35 to 45% by mass, more preferably 40 to 45% by mass.
  • the specific conjugated diene-based rubber contains a unit of a vinyl compound containing a functional group capable of interacting with silica.
  • the unit of the vinyl compound containing a functional group capable of interacting with such silica is contained only in the polymer block (A), that is, the polymer block. It may be any of the embodiments contained only in (B) and the embodiments contained in both the polymer block (A) and the polymer block (B).
  • the specific conjugated diene-based rubber preferably contains at least a unit of a vinyl compound containing a functional group in which the polymer block (B) can interact with silica, for the reason that the effect of the present invention is more excellent.
  • Vinyl compound containing a functional group that can interact with silica examples include the above-mentioned polymer block (A). Those exemplified in the description can be used, and those exemplified as preferable in the above-mentioned description of the polymer block (A) can be preferably used.
  • the content of the unit of the vinyl compound containing a functional group capable of interacting with silica in the polymer block (B) is not particularly limited, and all the monomer units constituting the polymer block (B) are used. It is preferable to adjust the content so as to be preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.02 to 2% by mass, and particularly in the range of 0.05 to 1% by mass.
  • the polymer block (B) is a unit other than the 1,3-butadiene monomer unit, the aromatic vinyl monomer unit, and the vinyl compound unit containing a functional group capable of interacting with silica. It may contain a monomer unit. As other compounds constituting such other monomer units, in addition to the same compounds as those exemplified in the above-mentioned polymer block (A) (excluding 1,3-butadiene), isoprene. Can be used.
  • the content of other monomer units in the polymer block (B) is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 25% by mass or less. preferable.
  • Mass ratio of polymer block (A) to polymer block (B) The mass ratio of the polymer block (A) and the polymer block (B) in the specific conjugated diene rubber (when a plurality of polymer blocks (A) and polymer blocks (B) are present, the total mass of each is used.
  • the reference mass ratio) is (mass of polymer block (A)) / (mass of polymer block (B)), preferably 0.001 to 0.2, and 0.005 to 0. It is more preferably 1 and particularly preferably 0.01 to 0.05.
  • the content of 1,3-butadiene monomer unit (content of 1,3-butadiene monomer unit) of the entire specific conjugated diene rubber is not particularly limited, and the effect of the present invention is more excellent. It is preferably ⁇ 65% by mass, more preferably 55 to 63% by mass, and even more preferably 55 to 60% by mass.
  • the content of 1,3-butadiene monomer unit in the entire specific conjugated diene rubber is the content of 1,3-butadiene monomer unit with respect to all the monomer units constituting the specific conjugated diene rubber. Point to.
  • the content of the aromatic vinyl monomer unit (content of the aromatic vinyl monomer unit) of the entire specific conjugated diene rubber is 30 to 45% by mass.
  • the aromatic vinyl monomer unit content of the entire specific conjugated diene rubber refers to the content of the aromatic vinyl monomer unit with respect to all the monomer units constituting the specific conjugated diene rubber.
  • the content of the aromatic vinyl monomer unit in the entire specific conjugated diene rubber is preferably 35 to 45% by mass, more preferably 40 to 45% by mass, for the reason that the effect of the present invention is more excellent. ..
  • compositions of units of vinyl compounds containing functional groups that can interact with silica The content of the unit of the vinyl compound containing the functional group capable of interacting with the silica described above (for example, the content of the bis (diethylamino) methylvinylsilane monomer unit) in the entire specific conjugated diene rubber is particularly limited. However, for the reason that the effect of the present invention is more excellent, it is preferably 0.01 to 20% by mass, more preferably 0.02 to 2% by mass, and more preferably 0.05 to 1% by mass. Is even more preferable.
  • the vinyl bond content in the conjugated diene monomer unit (for example, isoprene monomer unit and 1,3-butadiene monomer unit) in the entire specific conjugated diene-based rubber (hereinafter, simply "the entire specified conjugated diene-based rubber”.
  • the entire specific conjugated diene-based rubber (hereinafter, simply "the entire specified conjugated diene-based rubber”.
  • “vinyl bond content” is 15 to 35% by mass. Among them, 20 to 25% by mass is preferable, and 25 to 35% by mass is more preferable, for the reason that the effect of the present invention is more excellent.
  • the specific conjugated diene rubber has a modified structure with a siloxane compound at at least one terminal.
  • the modified structure of the siloxane compound may be introduced via the modified structure of other modifying agents.
  • the siloxane compound may be any compound having a siloxane structure (-Si-O-) as a main chain, and is not particularly limited, but an organosiloxane having an organic group in the side chain is preferable, and is represented by the following general formula (4).
  • the polyorganosiloxane to be produced is more preferable.
  • R 3 to R 10 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 9 and X 12 are composed of an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a group having 4 to 12 carbon atoms containing an epoxy group. Any group selected from the group, which may be the same or different from each other.
  • X 10 is an alkoxy group having 1 to 5 carbon atoms or a group having 4 to 12 carbon atoms containing an epoxy group, and when there are a plurality of X 10s , they may be the same or different from each other. good.
  • X 11 is a group containing repeating units of 2 to 20 alkylene glycols, and when there are a plurality of X 11 , they may be the same or different from each other.
  • m is an integer of 1 to 200
  • n is an integer of 0 to 200
  • k is an integer of 0 to 200
  • m + n + k is 1 or more.
  • examples of the alkyl group having 1 to 6 carbon atoms which can constitute R 3 to R 10 , X 9 and X 12 in the general formula (4) are, for example. , Methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group and the like.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of ease of production of the polyorganosiloxane itself.
  • examples of the alkoxy group having 1 to 5 carbon atoms that can constitute X 9 , X 10 and X 12 include a methoxy group, an ethoxy group and a propoxy group. , Isopropoxy group and butoxy group and the like. Among these, a methoxy group and an ethoxy group are preferable from the viewpoint of easiness of producing the polyorganosiloxane itself.
  • the polyorganosiloxane represented by the above general formula (4) as a group having 4 to 12 carbon atoms containing an epoxy group capable of constituting X 9 , X 10 and X 12, for example, the following general formula ( The group represented by 5) can be mentioned.
  • Z 1 is an alkylene group or an alkylarylene group having 1 to 10 carbon atoms
  • Z 2 is a methylene group, a sulfur atom or an oxygen atom
  • E is a carbon having an epoxy group. It is a hydrocarbon group having a number of 2 to 10.
  • the group represented by the general formula (5) is preferably a Z 2 is an oxygen atom, Z 2 is an oxygen atom, and is more preferable E is a glycidyl group, Z 1 is carbon It is particularly preferable that the alkylene group has the number 1 to 3, where Z 2 is an oxygen atom and E is a glycidyl group.
  • X 9 and X 12 among the above, group having 4 to 12 carbon atoms containing an epoxy group, or a number of 1 to 6 carbon atoms Alkyl groups are preferred.
  • group having 4 to 12 carbon atoms containing an epoxy group is preferable.
  • X 9 and X 12 are alkyl groups having 1 to 6 carbon atoms
  • X 10 is a group having 4 to 12 carbon atoms containing an epoxy group.
  • X 11 that is, as the group containing repeating units of alkylene glycol having 2 to 20 preferably a group represented by the following general formula (6) ..
  • t is an integer of 2 to 20
  • X 13 is an alkylene group or an alkyl arylene group having 2 to 10 carbon atoms
  • R 11 is a hydrogen atom or a methyl group
  • X 14 is. It is an alkoxy group or an aryloxy group having 1 to 10 carbon atoms.
  • t is an integer of 2 to 8
  • X 13 is an alkylene group having 3 carbon atoms
  • R 11 is a hydrogen atom
  • X 14 is a methoxy group.
  • m is an integer of 1 to 200, preferably an integer of 20 to 150, and more preferably an integer of 30 to 120.
  • m is 1 to 200, the polyorganosiloxane itself represented by the above general formula (4) can be easily produced, its viscosity does not become too high, and it becomes easier to handle.
  • n is an integer of 0 to 200, preferably an integer of 0 to 150, and more preferably an integer of 0 to 120.
  • k is an integer of 0 to 200, preferably an integer of 0 to 150, and more preferably an integer of 0 to 130.
  • the total number of m, n and k is 1 or more, preferably 3 to 400, more preferably 20 to 300, and particularly preferably 30 to 250.
  • the weight average molecular weight (Mw) of the entire specific conjugated diene rubber is in the range of 50,000 to 5,000,000, preferably in the range of 75,000 to 3,000,000, and more preferably 100. It ranges from 000 to 1,000,000.
  • the overall molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the entire specific conjugated diene rubber is 1.1 to 3.0. It is preferably 1.2 to 2.5, more preferably 1.2 to 2.2.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the specific conjugated diene rubber is preferably 20 to 100, more preferably 30 to 90, and particularly preferably 35 to 80.
  • the conjugated diene rubber is an oil-extended rubber, it is preferable that the Mooney viscosity of the oil-extended rubber is in the above range.
  • the glass transition temperature (Tg) of the specific conjugated diene rubber is not particularly limited, but is preferably 20 to ⁇ 110 ° C., more preferably 10 to ⁇ 70 ° C.
  • the glass transition temperature of the specific conjugated diene-based rubber is appropriately adjusted by, for example, adjusting the content of the aromatic vinyl monomer unit in the conjugated diene-based rubber and the vinyl bond content in the conjugated diene monomer unit portion. can do.
  • step A of polymerizing a monomer (a) containing isoprene in an inert solvent with a polymerization initiator to form a polymer block (A) having an active end.
  • the obtained polymer block (A) having an active terminal and the monomer (b) containing 1,3-butadiene are mixed to continue the polymerization reaction, and the polymer block (A) and the polymer block are continued.
  • step B) of obtaining a conjugated diene-based polymer chain having an active terminal which comprises (B), It can be produced through a step (step C) of reacting a siloxane compound with the active end of the obtained conjugated diene-based polymer chain having an active end.
  • the monomer (a) for forming the polymer block (A) may be any as long as it contains isoprene, and the monomer composition of the polymer block (A) to be formed (the above-mentioned monomer composition). ) May be used.
  • the polymer block (A) is composed of an isoprene monomer unit and an aromatic vinyl monomer unit, the monomer (a) contains isoprene and an aromatic vinyl compound. And it is sufficient.
  • the polymer block (A) has a unit of a vinyl compound containing a functional group capable of interacting with silica in addition to the isoprene monomer unit and the aromatic vinyl monomer unit.
  • the monomer (a) may contain, in addition to isoprene and an aromatic vinyl compound, a vinyl compound containing a functional group capable of interacting with silica.
  • the inert solvent used for the polymerization of the monomer (a) containing isoprene for forming the polymer block (A) is usually used in solution polymerization and does not inhibit the polymerization reaction. If there is, it is not particularly limited.
  • Specific examples of the inert solvent include propane, n-butane, isobutane, n-pentane isopentane, n-hexane, propene, 1-butene, isobutene, trans-2-butene, cis-2-butene, 1-pentene, and the like.
  • Chained or branched aliphatic hydrocarbons such as 2-pentene, 1-hexene, 2-hexene and n-heptane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; benzene, ethylbenzene, toluene, xylene and the like. Aromatic hydrocarbons; ether compounds such as tetrahydrofuran, diethyl ether; and the like.
  • These inert solvents may be used alone or in combination of two or more.
  • the amount of the inert solvent used is not particularly limited, but the monomer concentration is, for example, 1 to 80% by mass, preferably 5 to 50% by mass.
  • the polymerization initiator used to form the polymer block (A) is any one that can polymerize the monomer (a) containing isoprene to give a polymer chain having an active terminal. Not particularly limited. Specific examples thereof include a polymerization initiator using an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like as a main catalyst.
  • organic alkali metal compound examples include n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithiumethyllithium, n-propyllithium, isopropyllithium, tert-octyllithium and n-decyllithium.
  • Organic monolithium compounds such as 2-naphthyllithium, 2-butylphenyllithium, 4-phenylbutyllithium, hexyllithium, cyclopentyllithium, reaction products of diisopropenylbenzene and butyllithium, stillbenlithium; dilithiomethane, 1,4 -Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene, reaction product of sec-butyllithium and diisopropenylbenzene, Organic polyvalent lithium compounds such as reaction products of n-butyllithium, 1,3-butadiene and divinylbenzene, reaction products of n-butyllithium and polyacetylene compounds; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene.
  • Examples thereof include potassium compounds; organic rubidium compounds; and organic cesium compounds.
  • alcoholides such as lithium, sodium and potassium, sulfonates, carbonates, amides and the like can be mentioned. Further, it may be used in combination with other organometallic compounds.
  • known organic alkali metal compounds disclosed in US Pat. No. 5,708,092, UK Pat. No. 2,241,239, US Pat. No. 5,527,753, etc. Can be used.
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, dit-butoxystrontium, diethoxybarium, and diisopropoxybarium. , Diethyl mercaptobarium, dit-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
  • Examples of the polymerization initiator using a lanthanum-series metal compound as a main catalyst include a lanthanum-series metal such as lanthanum, cerium, placeodim, neodym, samarium, and gadrinium, and a lanthanum-series metal composed of a carboxylic acid and a phosphorus-containing organic acid.
  • Examples thereof include a polymerization initiator composed of a salt of the above as a main catalyst and a co-catalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • an organic monolithium compound and an organic polyvalent lithium compound are preferably used, and an organic monolithium compound is more preferably used, from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • an organic monolithium compound is more preferably used, from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • n-butyllithium is particularly preferably used.
  • the organic alkali metal compound is previously reacted with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine to obtain an organic alkali metal amide compound. You may use it.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the organic alkali metal amide compound is not particularly limited, and is, for example, lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, lithium dodecamethyleneimide, lithium dimethylamide, lithium diethylamide, and lithium dibutyl.
  • the amount of the polymerization initiator used may be determined according to the target molecular weight, but is preferably 4 to 250 mmol, more preferably 6 to 200 mmol, particularly preferably 6 to 200 mmol per 100 g of the monomer (a) containing isoprene. Is in the range of 10-70 mmol.
  • the polymerization temperature at the time of polymerizing the monomer (a) containing isoprene is preferably in the range of ⁇ 80 to + 150 ° C., more preferably 0 to 100 ° C., still more preferably 20 to 90 ° C.
  • any mode such as a batch type or a continuous type can be adopted.
  • the bonding mode when the polymer block (A) is a copolymer chain various bonding modes such as a block shape, a tapered shape, and a random shape can be used.
  • a polar compound is added to the inert solvent during the polymerization.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds; and the like.
  • ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable.
  • These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound to be used may be determined according to the target vinyl bond content, and is preferably 0.01 to 30 mol, more preferably 0.05 to 10 mol, per 1 mol of the polymerization initiator.
  • the amount of the polar compound used is within the above range, the vinyl bond content in the isoprene monomer unit can be easily adjusted, and problems due to deactivation of the polymerization initiator are unlikely to occur. Further, by increasing the amount of the polar compound used within the above range, the vinyl bond content in the isoprene monomer unit can be increased.
  • Step B [Step of obtaining a conjugated diene-based polymer chain having an active terminal (step B)]
  • the polymer block (A) having an active terminal obtained by polymerizing the monomer (a) containing isoprene and the monomer (b) containing 1,3-butadiene were mixed.
  • the polymer block (B) can be formed in succession with the polymer block (A), whereby the polymer block (A) and the polymer block (B) are provided.
  • a conjugated diene polymer chain having an active terminal can be obtained.
  • the formed polymer block (B) has an active end, while the active end disappears from the polymer block (A).
  • the monomer (b) for forming the polymer block (B) may be any as long as it contains 1,3-butadiene, and the monomer composition of the polymer block (B) to be formed (described above).
  • a monomer according to the monomer composition) may be used.
  • the monomer (b) includes 1,3-butadiene and It may contain an aromatic vinyl compound.
  • the polymer block (B) has a unit of a vinyl compound containing a functional group capable of interacting with silica in addition to the 1,3-butadiene monomer unit and the aromatic vinyl monomer unit. If so, the monomer (b) shall contain, in addition to 1,3-butadiene and an aromatic vinyl compound, a vinyl compound containing a functional group capable of interacting with silica. Just do it.
  • At least one of the above-mentioned polymer block (A) and polymer block (B) contains a unit of a vinyl compound containing a functional group capable of interacting with silica. Is. Therefore, in the above production method, the monomer (a) containing isoprene used for forming the polymer block (A) and 1,3- used for forming the polymer block (B) are formed. At least one of the butadiene-containing monomer (b) may contain a vinyl compound containing a functional group capable of interacting with silica.
  • the inert solvent used for the polymerization of the monomer (b) containing 1,3-butadiene for forming the polymer block (B) is not particularly limited, and is the same as the above-mentioned inert solvent. Can be used.
  • the amount of the polymer block (A) having an active terminal used in forming the polymer block (B) may be determined according to the target molecular weight, but is a monomer containing 1,3-butadiene.
  • the range is preferably 0.1 to 5 mmol, more preferably 0.15 to 2 mmol, and further preferably 0.2 to 1.5 mmol per 100 g.
  • the method for mixing the polymer block (A) and the monomer (b) containing 1,3-butadiene is not particularly limited, and the active terminal is contained in the solution of the monomer (b) containing 1,3-butadiene.
  • the polymer block (A) having the above may be added, or the monomer (b) containing 1,3-butadiene may be added to the solution of the polymer block (A) having an active terminal. From the viewpoint of controlling the polymerization, a method of adding the polymer block (A) having an active terminal to the solution of the monomer (b) containing 1,3-butadiene is preferable.
  • the polymerization temperature at the time of polymerizing the monomer (b) containing 1,3-butadiene is preferably in the range of ⁇ 80 to + 150 ° C., more preferably 0 to 100 ° C., still more preferably 20 to 90 ° C.
  • the polymerization mode any mode such as a batch type or a continuous type can be adopted.
  • a batch type is preferable because it is easy to control the randomness of the bond.
  • the bonding mode of each monomer can be, for example, various bonding modes such as a block shape, a tapered shape, and a random shape.
  • the random shape is preferable. By making it random, the low heat generation of the obtained rubber crosslinked product can be further improved.
  • the vinyl bond content in the isoprene monomer unit in the polymer block (A) is adjusted.
  • an amount of the polar compound sufficient to adjust the vinyl bond content in the 1,3-butadiene monomer unit in the polymer block (B) was added to the inert solvent. If is added, it is not necessary to newly add the polar compound.
  • the polar compound used for adjusting the vinyl bond content the same polar compound as described above can be used.
  • the amount of the polar compound to be used may be determined according to the desired vinyl bond content, and the polymerization initiation used in the initial polymerization reaction (polymerization reaction for forming the first polymer block (A)) may be started. It may be adjusted in the range of preferably 0.01 to 100 mol, more preferably 0.1 to 30 mol with respect to 1 mol of the agent. When the amount of the polar compound used is in this range, the vinyl bond content in the 1,3-butadiene monomer unit can be easily adjusted, and problems due to deactivation of the polymerization initiator are unlikely to occur.
  • the conjugated diene-based polymer chain having an active terminal is composed of a polymer block (A) -polymer block (B) from the viewpoint of productivity, and the terminal of the polymer block (B). Is preferably an active terminal, but may have a plurality of polymer blocks (A), or may have other polymer blocks.
  • a conjugated diene-based polymer chain having an active terminal such as polymer block (A) -polymer block (B) -polymer block (A) can be mentioned.
  • the active terminal is formed at the end of the polymer block (A) formed following the polymer block (B).
  • the amount of isoprene used is the initial polymerization reaction (polymerization reaction for forming the first polymer block (A)). ), It is preferably 10 to 100 mol, more preferably 15 to 70 mol, and particularly preferably 20 to 35 mol with respect to 1 mol of the polymerization initiator used.
  • Step C [Step of reacting a siloxane compound with the active end of a conjugated diene polymer chain having an active end (step C)] Then, by reacting the siloxane compound with the active end of the obtained conjugated diene-based polymer chain having the active end, a modified structure by the siloxane compound is introduced at the end of the conjugated diene-based polymer chain.
  • the amount of the siloxane compound used in reacting the conjugated diene polymer chain having an active end with the siloxane compound is the initial polymerization reaction (polymerization reaction for forming the first polymer block (A)). ), The amount is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, based on 1 mol of the polymerization initiator. When the amount of the siloxane compound used is within the above range, the low heat generation property of the obtained rubber crosslinked product can be further enhanced.
  • the number of moles per siloxane structure (—Si—O—) is preferably in the above range.
  • the method for reacting the siloxane compound with the conjugated diene-based polymer chain having an active terminal is not particularly limited, and examples thereof include a method of mixing these in a solvent in which each of them can be dissolved.
  • the solvent used at this time those exemplified as the inert solvent used in the above-mentioned polymerization reaction can be used.
  • a method of adding the siloxane compound to the polymerization solution used for the polymerization for obtaining the conjugated diene-based polymer chain having an active terminal is convenient and preferable.
  • the siloxane compound is preferably dissolved in an inert solvent and added to the polymerization system, and the solution concentration thereof is preferably in the range of 1 to 50% by mass.
  • the reaction temperature is not particularly limited, but is usually 0 to 120 ° C.
  • the reaction time is also not particularly limited, but is usually 1 minute to 1 hour.
  • the timing of adding the siloxane compound to the solution containing the conjugated diene polymer chain having an active end is not particularly limited, but the polymerization reaction is not completed and contains the conjugated diene polymer chain having an active end.
  • a state in which the solution also contains a monomer more specifically, a solution containing a conjugated diene polymer chain having an active terminal is 100 ppm or more, more preferably 300 to 50,000 ppm of the monomer. It is desirable to add the siloxane compound to this solution in the state of containing.
  • siloxane compound By adding the siloxane compound in this way, it is possible to suppress side reactions between the conjugated diene polymer chain having an active terminal and impurities contained in the polymerization system, and to control the reaction satisfactorily. Become.
  • a siloxane compound is added to a solution containing a conjugated diene-based polymer chain having an active terminal and reacted, and then an organic metal compound is further mixed. Also, this can enhance the processability of the resulting rubber composition (compound Mooney can be kept low). Further, in this case, after mixing the organometallic compound, a siloxane compound may be further added and further reacted.
  • Examples of the organic metal compound include n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, ethyllithium, n-propyllithium, isopropyllithium, tert-octyllithium, n-decyllithium and 2-.
  • Examples thereof include naphthyllithium, 2-butylphenyllithium, 4-phenylbutyllithium, hexyllithium, cyclopentyllithium, reaction products of diisopropenylbenzene and butyllithium, and organic monolithium compounds such as stillbenlithium.
  • a modified structure by the siloxane compound is introduced into at least one end of the conjugated diene polymer chain.
  • the conjugated diene-based polymer chain after the reaction has a modified structure made of a siloxane compound introduced at the end of the polymer chain, but in addition to this, an unmodified conjugated diene-based polymer chain that has not been modified with a siloxane compound. It may contain a polymer chain.
  • a polymer block (A) having an active terminal at the end (for example, polymer block (A) -polymer block (B) -polymer block (A). ) Is used to react the siloxane compound with the end of the polymer block (A) to introduce a modified structure with the siloxane compound at the end of the polymer block (A).
  • a polymer block using a polymer block (B) having an active terminal (for example, a polymer chain represented by the polymer block (A) -polymer block (B)) is used.
  • a modified structure of the siloxane compound may be introduced at the end of the polymer block (B).
  • a siloxane compound is reacted at the end of the polymer block (B) to form a modified structure with the siloxane compound at the end of the polymer block (B). It is preferable to introduce it.
  • the conjugated diene polymer chain having an active end remains in the state before the siloxane compound is reacted with the conjugated diene polymer chain having an active end, or after the siloxane compound is reacted.
  • a part of the active end of the conjugated diene polymer chain having an active end is put into the polymerization system, such as a coupling agent which has been conventionally used, as long as the effect of the present invention is not impaired. It may be added and coupled.
  • a solution of the conjugated diene rubber having a modified structure with a siloxane compound at the end can be added to a solution of a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer, if desired.
  • Anti-aging agents, crumbing agents, anti-scale agents, etc. are added to the reaction solution, and then the polymerization solvent is separated from the reaction solution by direct drying or steam stripping, etc., and modified with a solid, siloxane compound. Recover the conjugated diene-based rubber having a structure at the end.
  • a stretchable oil may be blended to use the conjugated diene-based rubber as the oil-extended rubber.
  • the spreading oil include paraffin-based, aromatic-based and naphthen-based petroleum-based softeners, plant-based softeners, and fatty acids.
  • the content of polycyclic aromatics extracted by the method of IP346 is preferably less than 3%.
  • the amount used is usually 5 to 100 parts by mass with respect to 100 parts by mass of the conjugated diene rubber.
  • the content of the specific conjugated diene-based rubber in the rubber component is 35% by mass or more. Among them, 40 to 85% by mass is preferable, and 45 to 80% by mass is more preferable, for the reason that the effect of the present invention is more excellent.
  • the rubber component contains the specified butadiene rubber.
  • the specific butadiene rubber is a butadiene rubber having a glass transition temperature of ⁇ 85 ° C. or lower.
  • the glass transition temperature (Tg) of the specific butadiene rubber is ⁇ 85 ° C. or lower.
  • the Tg is preferably ⁇ 90 ° C. or lower because the effect of the present invention is more excellent.
  • the lower limit of Tg is not particularly limited, but is preferably ⁇ 150 ° C. or higher, more preferably ⁇ 120 ° C. or higher, for the reason that the effect of the present invention is more excellent.
  • the glass transition temperature (Tg) is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC) and calculated by the midpoint method.
  • DSC differential scanning calorimeter
  • the weight average molecular weight (Mw) of the specific butadiene rubber is not particularly limited, but is preferably 50,000 to 5,000,000, preferably 75,000 to 3,000,000, for the reason that the effect of the present invention is more excellent. It is more preferably 100,000 to 1,000,000.
  • the specific butadiene rubber is preferably a modified butadiene rubber, and more preferably a modified butadiene rubber having a modifying group containing a heteroatom at at least one terminal, for the reason that the effect of the present invention is more excellent.
  • the modifying group is not particularly limited, and examples thereof include a hydroxyl group, an epoxy group, a carboxy group, and a hydrocarbyloxysilyl group.
  • the position of the modifying group may be either the main chain (side chain) or the terminal.
  • the microstructure of the specific butadiene rubber (cis-1,4-bond, trans-1,4-bond, vinyl bond) is not particularly limited.
  • Specific modified butadiene rubber As one preferred embodiment of the specific butadiene rubber, a modified butadiene rubber having a modifying group containing a hetero atom at least one terminal is preferable, and a cis-1,4-bond is preferable, because the effect of the present invention is more excellent.
  • examples thereof include a modified butadiene polymer (specific modified butadiene rubber) obtained by modifying the active terminal of a butadiene polymer having a content of 75 mol% or more with at least a hydrocarbyloxysilane compound.
  • the specific modified butadiene rubber is described in, for example, paragraphs [0017] to [0023] of International Publication No. 2018/135530, and the contents thereof are incorporated in the present specification as a reference.
  • the content of the specific butadiene rubber in the rubber component is 15% by mass or more. Above all, it is preferably 20% by mass or more because the effect of the present invention is more excellent.
  • the upper limit of the content of the specific butadiene rubber in the rubber component is preferably 65% by mass or less, more preferably 50% by mass or less, and more preferably 30% by mass or less because the effect of the present invention is more excellent. It is more preferable to have.
  • Amount ratio of specific conjugated diene rubber to specific butadiene rubber The ratio of the above-mentioned specific butadiene rubber content to the above-mentioned specific conjugated diene rubber content in the rubber component (specific butadiene rubber / specific conjugated diene rubber)
  • the rubber is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and even more preferably 30 to 40% by mass because the effect of the present invention is more excellent.
  • the rubber component may contain a rubber component (other rubber component) that does not fall under any of the above-mentioned specific conjugated diene-based rubber and the above-mentioned specific butadiene rubber.
  • examples of such other rubber components include natural rubber (NR), isoprene rubber (IR), butadiene rubber other than the above-mentioned specific butadiene rubber (BR), and styrene butadiene rubber other than the above-mentioned specific conjugated diene rubber (SBR).
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • the weight average molecular weight (Mw) of the other rubber components is not particularly limited, but is preferably 50,000 to 5,000,000, preferably 75,000 to 3,000, for the reason that the effect of the present invention is more excellent. It is more preferably 000, and even more preferably 100,000 to 1,000,000.
  • the content of other rubber components in the rubber component is not particularly limited, but is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, for the reason that the effect of the present invention is more excellent. It is more preferably 20 to 30% by mass.
  • silica contained in the composition of the present invention is not particularly limited, but any conventionally known silica blended in the rubber composition for applications such as tires can be used.
  • Specific examples of silica include wet silica, dry silica, fumed silica, diatomaceous earth and the like. Among them, wet silica is preferable because the effect of the present invention is more excellent.
  • the silica one kind of silica may be used alone, or two or more kinds of silica may be used in combination.
  • the content of silica is 50 to 150 parts by mass with respect to 100 parts by mass of the above-mentioned rubber component. Among them, 60 to 100 parts by mass is preferable because the effect of the present invention is more excellent.
  • the silica contains 20 parts by mass or more of silica (specific silica) having a CTAB (cetyltrimethylammonium bromide) adsorption specific surface area of 190 m 2 / g or more because the effect of the present invention is more excellent.
  • CTAB cetyltrimethylammonium bromide
  • the upper limit of the CTAB adsorption specific surface area of the specific silica is not particularly limited, but it is preferably 300 m 2 / g or less for the reason that the effect of the present invention is more excellent.
  • the CTAB adsorption specific surface area is a value obtained by measuring the amount of CTAB adsorbed on the silica surface according to JIS K6217-3: 2001 "Part 3: How to obtain the specific surface area-CTAB adsorption method".
  • the silane coupling agent contained in the composition of the present invention is not particularly limited as long as it is a silane compound having a hydrolyzable group and an organic functional group.
  • the hydrolyzable group is not particularly limited, and examples thereof include an alkoxy group, a phenoxy group, a carboxyl group, and an alkenyloxy group. Of these, an alkoxy group is preferable because the effect of the present invention is more excellent.
  • the hydrolyzable group is an alkoxy group
  • the number of carbon atoms of the alkoxy group is preferably 1 to 16 and more preferably 1 to 4 for the reason that the effect of the present invention is more excellent.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group and the like.
  • the above organic functional group is not particularly limited, but is preferably a group capable of forming a chemical bond with an organic compound, for example, an epoxy group, a vinyl group, an acryloyl group, a methacryloyl group, an amino group, a sulfide group, a mercapto group, or a block.
  • examples thereof include a mercapto group (protected mercapto group) (for example, an octanoylthio group), and among them, a sulfide group (particularly, a disulfide group and a tetrasulfide group), a mercapto group, and a block mercapto group for the reason that the effect of the present invention is more excellent. Is preferable.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, and mercaptopropyltrimethoxy.
  • Silane mercaptopropyl triethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, trimethoxysilylpropyl-mercaptobenzothiazole tetrasulfide, triethoxysilylpropyl-methacrylate-monosulfide, dimethoxymethylsilyl
  • Examples thereof include propyl-N, N-dimethylthiocarbamoyl-tetrasulfide, 3-octanoylthio-1-propyltriethoxysilane, etc., and one of them may be used alone or two or more thereof may be used in combination. ..
  • the silane coupling agent is preferably a compound represented by the following general formula (S) because the effect of the present invention is more excellent.
  • General formula (S) In the general formula (S), n represents an integer of 1 to 3, m represents an integer of 1 to 5 (preferably an integer of 2 to 4), and k represents an integer of 1 to 15 (preferably 5 to 5 to 5). Represents an integer of 10.
  • the content of the silane coupling agent is 3 to 30% by mass with respect to the above-mentioned silica content (total content of all silica including specific silica). Is. Above all, it is preferably 5 to 20% by mass because the effect of the present invention is more excellent.
  • the content of the silane coupling agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the above-mentioned rubber component, because the effect of the present invention is more excellent. It is more preferably 2 to 20 parts by mass, and even more preferably 3 to 10 parts by mass.
  • composition of the present invention may contain a component (arbitrary component) other than the above-mentioned components, if necessary.
  • components include, for example, fillers other than silica (eg, carbon black), terpene resins (preferably aromatic-modified terpene resins), thermosetting microcapsules, zinc oxide (zinc oxide), stearic acid, and the like.
  • terpene resins preferably aromatic-modified terpene resins
  • thermosetting microcapsules e.g., zinc oxide (zinc oxide), stearic acid, and the like.
  • Various additives commonly used in rubber compositions such as antiaging agents, waxes, processing aids, process oils, liquid polymers, thermosetting resins, vulcanizing agents (eg sulfur), vulcanization accelerators, etc. Can be mentioned.
  • the composition of the present invention preferably contains carbon black because the effect of the present invention is more excellent.
  • the carbon black is not particularly limited, and for example, various grades such as SAF-HS, SAF, ISAF-HS, ISAF, ISAF-LS, IISAF-HS, HAF-HS, HAF, HAF-LS, FEF, GPF, SRF and the like. Can be used.
  • the nitrogen adsorption specific surface area (N 2 SA) of the carbon black is not particularly limited, but is preferably 50 to 200 m 2 / g, preferably 70 to 150 m 2 / g, for the reason that the effect of the present invention is more excellent. Is more preferable.
  • the nitrogen adsorption specific surface area (N 2 SA) is the amount of nitrogen adsorbed on the carbon black surface according to JIS K6217-2: 2001 "Part 2: How to obtain the specific surface area-Nitrogen adsorption method-Single point method". It is a measured value.
  • the content of carbon black is not particularly limited, but for the reason that the effect of the present invention is more excellent, it is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the above-mentioned rubber component. It is more preferably 2 to 10 parts by mass.
  • composition of the present invention is also referred to as alkyltriethoxysilane represented by the following general formula (I) (hereinafter, also referred to as "specific alkyltriethoxysilane") because the effect of the present invention is more excellent. It is preferable to contain (say).
  • R 1 represents an alkyl group having 7 to 20 carbon atoms.
  • Et represents an ethyl group.
  • Specific examples of the alkyl group having 7 to 20 carbon atoms include a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group. Of these, an octyl group and a nonyl group are preferable because the effect of the present invention is more excellent.
  • the content of the specific alkyltriethoxysilane is not particularly limited, but for the reason that the effect of the present invention is more excellent, the above-mentioned silica content (the total content of all silicas including the specific silica). ), It is preferably 2.0 to 15.0% by mass.
  • the composition of the present invention preferably contains a thermoplastic resin because the effect of the present invention is more excellent.
  • the thermoplastic resin include natural resins such as terpene resin and rosin resin, and synthetic resins such as petroleum resin, coal resin, phenol resin and xylene resin.
  • the terpene resin is preferable because the effect of the present invention is more excellent, and the terpene resin includes ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, hydrogenated limonene resin, dipentene resin, terpene phenol resin, and terpene styrene.
  • the aromatic-modified terpene resins is preferable because the effect of the present invention is more excellent.
  • the softening point of the thermoplastic resin is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, for the reason that the effect of the present invention is more excellent.
  • the upper limit of the softening point is preferably 170 ° C. or lower, more preferably 150 ° C. or lower, because the effect of the present invention is more excellent.
  • the softening point is a softening point measured according to JIS K2207: 1996.
  • the content of the thermoplastic resin is 1 to 20 parts by mass with respect to 100 parts by mass of the above-mentioned rubber component because the effect of the present invention is more excellent. It is preferably 1 to 15 parts by mass, more preferably 2 to 15 parts by mass.
  • the composition of the present invention preferably contains a liquid diene rubber because the effect of the present invention is more excellent.
  • the liquid diene-based rubber is preferably liquid SBR or liquid BR, and more preferably liquid BR, because the effect of the present invention is more excellent.
  • the liquid diene rubber preferably has a functional group derived from a silane compound represented by the following general formula (II) because the effect of the present invention is more excellent.
  • R 1 is a divalent alkylene group having 1 to 6 carbon atoms
  • R 2 , R 3 and R 4 are independently methoxy group, ethoxy group, phenoxy group, methyl group and ethyl. Represents a group or phenyl group. Provided that at least one of R 2, R 3 and R 4 are methoxy, ethoxy or phenoxy group.
  • the weight average molecular weight (Mw) of the liquid diene rubber is preferably 3,000 or more and less than 100,000, and preferably 5,000 or more and less than 80,000 because the effect of the present invention is more excellent. More preferred.
  • the content of the liquid diene rubber is relative to the above-mentioned silica content (total content of all silicas including the specific silica) because the effect of the present invention is more excellent. It is preferably 1.0 to 15.0% by mass, more preferably 5.0 to 10.0% by mass.
  • the tire of the present invention is a tire manufactured by using the composition of the present invention described above.
  • the tire of the present invention is preferably a pneumatic tire and can be filled with an inert gas such as air or nitrogen and other gases.
  • an inert gas such as air or nitrogen and other gases.
  • the tire is a pneumatic tire in which the composition of the present invention is used (arranged) for a tire tread (cap tread).
  • FIG. 1 shows a schematic partial cross-sectional view of a tire showing an example of an embodiment of the tire of the present invention, but the tire of the present invention is not limited to the aspect shown in FIG.
  • reference numeral 1 represents a bead portion
  • reference numeral 2 represents a sidewall portion
  • reference numeral 3 represents a tire tread portion
  • a carcass layer 4 in which a fiber cord is embedded is mounted between the pair of left and right bead portions 1, and the end portions of the carcass layer 4 are located around the bead core 5 and the bead filler 6 from the inside to the outside of the tire. It is folded back and rolled up.
  • the belt layer 7 is arranged on the outside of the carcass layer 4 over one circumference of the tire.
  • the rim cushion 8 is arranged at a portion in contact with the rim.
  • the tire tread portion 3 is formed by the composition of the present invention described above.
  • the tire of the present invention can be manufactured, for example, according to a conventionally known method. Further, as the gas to be filled in the tire, an inert gas such as nitrogen, argon or helium can be used in addition to normal or air having an adjusted oxygen partial pressure.
  • an inert gas such as nitrogen, argon or helium can be used in addition to normal or air having an adjusted oxygen partial pressure.
  • the specific conjugated diene rubber 1 was manufactured as follows.
  • Step A Cyclohexane 140.89 and tetramethylethylenediamine 3.0 mmol were added to a nitrogen-substituted 800 ml container, and n-butyl lithium 30.0 mmol was further added. Then, 113.6 g of isoprene and 9.2 g of styrene were slowly added and reacted in a container at 50 ° C. for 120 minutes to obtain a polymer block (A) having an active terminal.
  • the polymer block (A) has a weight average molecular weight (Mw) of 6,500, a molecular weight distribution (Mw / Mn) of 1.10, a styrene monomer unit content of 7.5% by mass, and an isoprene monomer.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • styrene monomer unit content 7.5% by mass
  • isoprene monomer 7.0% by mass.
  • Step C the polyorganosiloxane represented by the following formula (9) was added so that the content of the —Si—O— repeating unit was 7.15 mmol, and the mixture was reacted for 30 minutes.
  • methanol in an amount corresponding to twice the molar amount of n-butyllithium used was added to obtain a solution containing a conjugated diene rubber.
  • Irganox 1520L manufactured by BASF
  • extension oil (trade name "Aromax T-DAE", JX Nippon Oil).
  • the weight average molecular weight (Mw) of the obtained conjugated diene rubber was 590,000, the styrene monomer unit content was 41% by mass, and the vinyl bond content was 25% by mass.
  • the content of bis (diethylamino) methylvinylsilane monomer unit in the obtained conjugated diene rubber was 0.06% by mass.
  • the glass transition temperature of the obtained conjugated diene rubber was ⁇ 26 ° C.
  • the obtained conjugated diene rubber has a polymer block (A) containing an isoprene monomer unit and a styrene monomer unit, a 1,3-butadiene monomer unit, a styrene monomer unit and a bis (diethylamino). ) Methylvinylsilane A polymer block (B) containing a monomer unit (a unit of a vinyl compound containing a functional group capable of interacting with silica) is provided, and the terminal is represented by the above formula (9). It is a conjugated diene rubber having a modified structure by polyorganosiloxane (siloxane compound).
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, and the overall weight average molecular weight (Mw) is in the range of 50,000 to 5,000,000. ..
  • the total styrene monomer unit content (aromatic vinyl monomer unit content) is 30 to 45% by mass, and the total vinyl bond content is 15 to 35% by mass. Therefore, the obtained conjugated diene-based rubber corresponds to the above-mentioned specific conjugated diene-based rubber.
  • the obtained conjugated diene-based rubber is also referred to as a specific conjugated diene-based rubber 1.
  • the weight average molecular weight (Mw) of the obtained conjugated diene rubber was 750,000, the styrene monomer unit content was 28% by mass, and the vinyl bond content was 59% by mass.
  • the content of bis (diethylamino) methylvinylsilane monomer unit in the obtained conjugated diene rubber was 0.15% by mass.
  • the glass transition temperature of the obtained conjugated diene rubber was -21 ° C.
  • the obtained conjugated diene rubber has a polymer block (A) containing an isoprene monomer unit and a styrene monomer unit, a 1,3-butadiene monomer unit, a styrene monomer unit and a bis (diethylamino).
  • a polymer block (B) containing a methylvinylsilane monomer unit (a unit of a vinyl compound containing a functional group capable of interacting with silica) is provided, and the terminal is represented by the above formula (9). It is a conjugated diene rubber having a modified structure with a polyorganosiloxane (siloxane compound).
  • the weight average molecular weight (Mw) of the polymer block (A) is in the range of 1,000 to 30,000, and the overall weight average molecular weight (Mw) is in the range of 50,000 to 5,000,000. ..
  • the total styrene monomer unit content (aromatic vinyl monomer unit content) is out of the range of 30 to 45% by mass, and the total vinyl bond content is Since it is outside the range of 15 to 35% by mass, it does not correspond to the above-mentioned specific conjugated diene-based rubber.
  • the obtained conjugated diene-based rubber is also referred to as a comparative conjugated diene-based rubber.
  • -Specific conjugated diene-based rubber 1 Specific conjugated diene-based rubber 1 manufactured as described above (as described above, the specific conjugated diene-based rubber 1 corresponds to the above-mentioned specific conjugated diene-based rubber).
  • -Comparative conjugated diene rubber Comparative conjugated diene rubber manufactured as described above (as described above, the comparative conjugated diene rubber does not correspond to the specific conjugated diene rubber described above).
  • -Rubber component 1 Solution-polymerized styrene-butadiene rubber having a polyorganosiloxane group at the end and an isoprene block.
  • BR1220 Nipol BR1220 (butadiene rubber, weight average molecular weight: 460,000, glass transition temperature: -106 ° C, manufactured by Nippon Zeon Corporation) (BR1220 is a butadiene rubber with a glass transition temperature of -85 ° C or less, so the above-mentioned specification Corresponds to butadiene rubber)
  • BR1261 Modified butadiene rubber having a modified group containing a heteroatom at the terminal (weight average molecular weight: 490,000, glass transition temperature: -93 ° C) (Because BR1261 is a modified butadiene rubber having a glass transition temperature of -85 ° C or less.
  • -Specific modified butadiene rubber 1 BR54 manufactured by JSR Corporation (Specific modified butadiene rubber 1 corresponds to the above-mentioned specified butadiene rubber and the above-mentioned specified modified butadiene rubber).
  • NS612 NS612 manufactured by Nippon Zeon (solution polymerization SBR, styrene monomer unit content: 15% by mass, vinyl bond content: 31% by mass, weight average molecular weight: 440,000, Tg-61 ° C.)
  • 7000GR ULTRASIL 7000GR (silica, CTAB adsorption specific surface area: 160m 2 / g, manufactured by Evonik)
  • 9100GR ULTRASIL 9100GR (silica, CTAB adsorption specific surface area: 200 m 2 / g, manufactured by Evonik)
  • N339 Show Black N339 (Carbon Black, manufactured by Cabot Japan)
  • Zinc oxide 3 types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.)
  • Stearic acid Beaded stearic acid (manufactured by NOF CORPORATION)
  • Anti-aging agent Ozonon 6C (manufactured by Seiko Kagaku Co., Ltd.)
  • Process oil Extract No. 4 S (manufactured by Showa Shell Sekiyu Co., Ltd.)
  • -Alkylsilane Octiltriethoxysilane (KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.) (The alkylsilane corresponds to the above-mentioned specific alkyltriethoxysilane).
  • -Thermoplastic resin YS resin TO125 manufactured by Yasuhara Chemical Co., Ltd. (aromatically modified terpene resin, softening point: 125 ° C)
  • -Modified LBR Modified liquid diene-based rubber produced as follows: A sufficiently dried 5 L autoclave was substituted with nitrogen, 1200 g of hexane and 22 g of n-butyllithium (17 mass% hexane solution) were charged, and the temperature was raised to 50 ° C. Under stirring conditions, 1460 g of butadiene was sequentially added while controlling the polymerization temperature to 50 ° C., and the mixture was polymerized for 1 hour.
  • the obtained modified liquid diene rubber is a liquid BR having a functional group derived from the silane compound represented by the above-mentioned general formula (II).
  • -Sulfur Sulfur powder containing Jinhua Ink oil (sulfur content 95.24% by mass, manufactured by Tsurumi Chemical Industry Co., Ltd.)
  • CZ Noxeller CZ-G manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • -Vulcanization accelerator (DPG) 1,3-diphenylguanidine (Soxinol DG, manufactured by Sumitomo Chemical Co., Ltd.)
  • St styrene monomer unit content (mass%)
  • Vn represents a content of vinyl bonds (mass%)
  • Mw represents the weight average molecular weight ( ⁇ 10 4)
  • Tg is Represents the glass transition temperature (° C).
  • Examples 1 to 8 in which the specific conjugated diene rubber and the specific butadiene rubber are used in combination in a predetermined amount have a small rolling resistance temperature dependence and show excellent wet performance. From the comparison between Examples 1 and 2 (contrast between embodiments in which 7000GR is used as silica and BR1220 is used as the specific butadiene rubber), the content of the specific conjugated diene rubber in the rubber component is 50% by mass or more. Example 1 showed better wet performance.
  • Example 4 From the comparison between Examples 1 and 3 and Example 4 (comparison between embodiments in which 7000GR is used as silica and the content of the specific conjugated diene rubber in the rubber component is 75% by mass), the specific butadiene rubber In Examples 3 and 4, which are butadiene rubbers having a modifying group containing a heteroatom at at least one terminal, the rolling resistance temperature dependence is smaller and the wet performance is more excellent. Among them, in Example 4 in which the specific butadiene rubber is the above-mentioned specific modified butadiene rubber, the rolling resistance temperature dependence was even smaller.
  • Example 5 in which the silica contains 20 parts by mass or more of the above-mentioned specific silica showed better wet performance. Further, from the comparison between Example 5 and Example 6 (contrast between modes different only in the presence or absence of alkylsilane), Example 6 containing the specific alkyltriethoxysilane showed better wet performance. Further, from the comparison between Example 5 and Example 7 (contrast between modes different only in the presence or absence of modified LBR), Example 7 containing the liquid diene rubber has a smaller rolling resistance temperature dependence and has a smaller rolling resistance temperature dependence. Showed better wet performance.
  • Example 8 containing the thermoplastic resin has a smaller rolling resistance temperature dependence and has a smaller rolling resistance temperature dependence. Showed better wet performance.
  • Comparative Example 1 Comparative Example 3 and Comparative Example 6 which do not contain the specific conjugated diene rubber
  • Comparative Example 2 which contains the specific conjugated diene rubber but the content in the rubber component is less than 35% by mass
  • Comparative Examples 4 to 5 containing no specific butadiene rubber at least one of rolling resistance temperature dependence and wet performance was insufficient.
  • Bead part 2 Side wall part 3 Tire tread part 4 Carcus layer 5 Bead core 6 Bead filler 7 Belt layer 8 Rim cushion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、転がり抵抗温度依存性が小さくウェット性能に優れるタイヤ用ゴム組成物、これを用いたタイヤを提供することを目的とする。本発明の組成物は、特定共役ジエン系ゴムの含有量が35質量%以上特定ブタジエンゴムの含有量が15質量%以上のゴム成分とシリカとシランカップリング剤とを含有し、特定共役ジエン系ゴムが、イソプレン単位を含有するブロックAとブタジエン単位を含有するブロックBとを備え、末端にシロキサン化合物による変性構造を備え、A及びBの少なくとも一方にシリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有し、AのMwが1,000~30,000であり、全体のMwが50,000~5,000,000であり、全体の芳香族ビニル含有量が30~45質量%であり、全体のビニル結合含有量が15~35質量%であり、特定ブタジエンゴムが、ガラス転移温度が-85℃以下である、タイヤ用ゴム組成物。

Description

タイヤ用ゴム組成物及びタイヤ
 本発明は、タイヤ用ゴム組成物及びタイヤに関する。
 従来、タイヤに用いられるゴム組成物として、変性共役ジエン系ゴムとシリカとを含有する組成物が知られている(例えば、特許文献1)。
国際公開第2019/073828号
 昨今、求められる性能レベルの向上に伴い、タイヤに対して、転がり抵抗の温度依存性が小さいことが求められている。また、求められる安全レベルの向上に伴い、ウェット性能の向上も求められている。
 このようななか、本発明者らが特許文献1を参考にタイヤ用ゴム組成物を調製し、タイヤにしたときの転がり抵抗温度依存性及びウェット性能を評価したところ、昨今求められているレベルを必ずしも満たすものではないことが明らかになった。
 そこで、本発明は、上記実情を鑑みて、タイヤにしたときに、転がり抵抗温度依存性が小さく、且つ、ウェット性能に優れるタイヤ用ゴム組成物、並びに、上記タイヤ用ゴム組成物を用いて製造されたタイヤを提供することを目的とする。
 なお、以下、タイヤにしたときの、転がり抵抗温度依存性、ウェット性能を、単に、転がり抵抗温度依存性、ウェット性能とも言う。
 本発明者らは、上記課題について鋭意検討した結果、特定の変性共役ジエン系ゴムと特定のブタジエンゴムとを所定の量で併用することで、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) ゴム成分と、シリカと、シランカップリング剤とを含有し、
 上記ゴム成分が、特定共役ジエン系ゴムと、特定ブタジエンゴムとを含有し、
 上記ゴム成分中、上記特定共役ジエン系ゴムの含有量が35質量%以上であり、上記特定ブタジエンゴムの含有量が15質量%以上であり、
 上記特定共役ジエン系ゴムが、
  イソプレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位を含有する重合体ブロック(B)とを備えるとともに、少なくとも1つの末端にシロキサン化合物による変性構造を備える、共役ジエン系ゴムであって、
  上記重合体ブロック(A)及び上記重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有し、
  上記重合体ブロック(A)の重量平均分子量(Mw)が1,000~30,000の範囲であり、全体の重量平均分子量(Mw)が50,000~5,000,000の範囲であり、
  全体の芳香族ビニル単量体単位含有量が、30~45質量%であり、
  全体のビニル結合含有量が、15~35質量%である、共役ジエン系ゴムであり、
 上記特定ブタジエンゴムが、ガラス転移温度が-85℃以下のブタジエンゴムであり、
 上記シリカの含有量が、上記ゴム成分100質量部に対して、50~150質量部であり、
 上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3~30質量%である、タイヤ用ゴム組成物。
(2) 上記特定共役ジエン系ゴムの芳香族ビニル単量体単位含有量が、35~45質量%である、上記(1)に記載のタイヤ用ゴム組成物。
(3) 上記特定ブタジエンゴムが、少なくとも1つの末端にヘテロ原子を含む変性基を有する、上記(1)又は(2)に記載のタイヤ用ゴム組成物。
(4) 上記シリカが、CTAB吸着比表面積が190m/g以上のシリカである特定シリカを20質量部以上含む、上記(1)~(3)のいずれかに記載のタイヤ用ゴム組成物。
(5) さらに、後述する一般式(I)で表されるアルキルトリエトキシシランを含有し、
 上記アルキルトリエトキシシランの含有量が、上記シリカの含有量に対して、2.0~15.0質量%である、上記(1)~(4)のいずれかに記載のタイヤ用ゴム組成物。
(6) さらに、重量平均分子量が3,000以上の液状ジエン系ゴムを含有し、
 上記液状ジエン系ゴムの含有量が、上記シリカの含有量に対して、1.0~15.0質量%である、上記(1)~(5)のいずれかに記載のタイヤ用ゴム組成物。
(7) 上記液状ジエン系ゴムが、後述する一般式(II)で表されるシラン化合物に由来する官能基を有する、上記(6)に記載のタイヤ用ゴム組成物。
(8) さらに、軟化点が50℃以上の熱可塑性樹脂を含有し、
 上記熱可塑性樹脂の含有量が、上記ゴム成分100質量部に対して、1~20質量部である、上記(1)~(7)のいずれかに記載のタイヤ用ゴム組成物。
(9) 上記(1)~(8)のいずれかに記載のタイヤ用ゴム組成物を用いて製造された、タイヤ。
 以下に示すように、本発明によれば、タイヤにしたときに、転がり抵抗温度依存性が小さく、且つ、ウェット性能に優れるタイヤ用ゴム組成物、並びに、上記タイヤ用ゴム組成物を用いて製造されたタイヤを提供することができる。
本発明のタイヤの実施態様の一例を表す部分断面概略図である。
 以下に、本発明のタイヤ用ゴム組成物及び上記タイヤ用ゴム組成物を用いて製造されたタイヤについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本発明のタイヤ用ゴム組成物に含有される各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
[A]タイヤ用ゴム組成物
 本発明のタイヤ用ゴム組成物(以下、「本発明の組成物」とも言う)は、
 ゴム成分と、シリカと、シランカップリング剤とを含有し、
 上記ゴム成分が、特定共役ジエン系ゴムと、特定ブタジエンゴムとを含有し、
 上記ゴム成分中、上記特定共役ジエン系ゴムの含有量が35質量%以上であり、上記ブタジエンゴムの含有量が15質量%以上であり、
 上記特定共役ジエン系ゴムが、
  イソプレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位を含有する重合体ブロック(B)とを備えるとともに、少なくとも1つの末端にシロキサン化合物による変性構造を備える、共役ジエン系ゴムであって、
  上記重合体ブロック(A)および上記重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有し、
  上記重合体ブロック(A)の重量平均分子量(Mw)が1,000~30,000の範囲であり、上記共役ジエン系ゴムの全体の重量平均分子量(Mw)が50,000~5,000,000の範囲であり、
  芳香族ビニル単量体単位含有量が、30~45質量%であり、
  ビニル結合含有量が、15~35質量%である、共役ジエン系ゴムであり、
 上記特定ブタジエンゴムが、ガラス転移温度が-85℃以下のブタジエンゴムであり、
 上記シリカの含有量が、上記ゴム成分100質量部に対して、50~150質量部であり、
 上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3~30質量%である、タイヤ用ゴム組成物である。
 以下、本発明の組成物に含有される各成分について説明する。
[I]ゴム成分
 本発明の組成物に含有されるゴム成分は、特定共役ジエン系ゴムと、特定ブタジエンゴムとを含有する。
 ここで、上記ゴム成分中、上記特定共役ジエン系ゴムの含有量は35質量%以上であり、上記特定ブタジエンゴムの含有量は15質量%以上である。
 上記ゴム成分は、上記特定共役ジエン系ゴム及び上記特定ブタジエンゴムのいずれにも該当しないゴム成分(その他のゴム成分)を含有してもよい。
 上記ゴム成分は、固体状であることが好ましい。
[1]特定共役ジエン系ゴム
 上述のとおり、ゴム成分は特定共役ジエン系ゴムを含有する。
 上記特定共役ジエン系ゴムは、
  イソプレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位を含有する重合体ブロック(B)とを備えるとともに、少なくとも1つの末端にシロキサン化合物による変性構造を備える、共役ジエン系ゴムであって、
  上記重合体ブロック(A)及び上記重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有し、
  上記重合体ブロック(A)の重量平均分子量(Mw)が1,000~30,000の範囲であり、全体の重量平均分子量(Mw)が50,000~5,000,000の範囲であり、
  全体の芳香族ビニル単量体単位含有量が、30~45質量%であり、
  全体のビニル結合含有量が、15~35質量%である、共役ジエン系ゴムである。
 なお、特定共役ジエン系ゴムは、全体の芳香族ビニル単量体単位含有量が30~45質量%であるため、重合体ブロック(A)及び重合体ブロック(B)の少なくとも一方は芳香族ビニル単量体単位を含有する。
[重合体ブロック(A)]
 重合体ブロック(A)は、イソプレン単量体単位を含有するもの(好ましくは、イソプレン単量体単位を主成分とするもの)であればよく、特に限定されず、イソプレン単量体単位のみからなるものであってよいし、あるいは、イソプレン単量体単位と、イソプレン単量体単位以外の単量体単位とからなるものであってもよい。この場合における、イソプレン単量体単位以外の単量体単位としては、芳香族ビニル単量体単位が好適に挙げられ、本発明の重合体ブロック(A)は、イソプレン単量体単位に加えて、芳香族ビニル単量体単位をも含有するものであることが好ましい。
〔イソプレン単量体単位含有量〕
 重合体ブロック(A)中における、イソプレン単量体単位の含有量(イソプレン単量体単位含有量)は、好ましくは50質量%以上であり、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。また、イソプレン単量体単位含有量の上限は、特に限定されないが、好ましくは99質量%以下である。重合体ブロック(A)中のイソプレン単量体単位含有量を上記範囲とすることにより、共役ジエン系ゴムにシリカなどの配合剤を配合した場合に、共役ジエン系ゴムとシリカなどの配合剤との親和性をより高めることができ、これにより、得られるゴム架橋物を、低発熱性により優れたものとすることができる。
〔イソプレン単量体単位中のビニル結合含有量〕
 重合体ブロック(A)における、イソプレン単量体単位中のビニル結合含有量は、3~90質量%が好ましく、5~80質量%がより好ましい。イソプレン単量体単位中のビニル結合含有量を上記範囲内とすることにより、得られるゴム架橋物の低発熱性をより向上させることができる。なお、本明細書中において、イソプレン単量体単位中のビニル結合含有量とは、イソプレン単量体単位中の、1,2-構造を有するイソプレン単量体単位および3,4-構造を有するイソプレン単量体単位の合計量を指すものとする。
〔芳香族ビニル単量体単位を形成するための芳香族ビニル化合物〕
 芳香族ビニル単量体単位を形成するための芳香族ビニル化合物としては、スチレン、メチルスチレン、エチルスチレン、t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンが好ましい。重合体ブロック(A)中における、芳香族ビニル単量体単位(例えば、スチレン単量体単位)の含有量(芳香族ビニル単量体単位含有量)(例えば、スチレン単量体単位含有量)は、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは10質量%以下である。また、芳香族ビニル単量体単位含有量の下限は、特に限定されないが、好ましくは1質量%以上である。
〔シリカに対して相互作用可能な官能基を含有するビニル化合物の単位〕
 また、特定共役ジエン系ゴムは、重合体ブロック(A)及び後述する重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有するものである。以下においては、重合体ブロック(A)に、このようなシリカに対して相互作用可能な官能基を含有するビニル化合物の単位が含有されている場合を例示して説明するが、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位は、重合体ブロック(A)および後述する重合体ブロック(B)の少なくとも一方に含有されていればよいため、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位が、後述する重合体ブロック(B)に含有されている場合には、重合体ブロック(A)には、必ずしも含有されている必要はない。
<シリカに対して相互作用可能な官能基を含有するビニル化合物>
 シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を形成するための、シリカに対して相互作用可能な官能基を含有するビニル化合物としては、シリカに対して相互作用可能な官能基と、ビニル基を含有する化合物であればよく、特に限定されない。ここで、シリカに対して相互作用可能な官能基とは、該官能基とシリカ表面との間で共有結合を形成するか、または、共有結合よりも弱い分子間力(たとえば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等)を形成することが可能な官能基である。このようなシリカに対して相互作用可能な官能基としては、特に限定されないが、窒素原子含有官能基、ケイ素原子含有官能基、酸素原子含有官能基などが挙げられ、これらの中でも、シリカとの相互作用が高いという観点より、ケイ素原子含有官能基が好ましい。
(好適な態様)
 シリカに対して相互作用可能な官能基を含有するビニル化合物の好ましい態様としての、ケイ素原子含有官能基を含有するビニル化合物としては、たとえば、下記一般式(1)で表される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000003

 上記一般式(1)中、Xは、化学的な単結合またはヒドロカルビレン基を表し、X、XおよびXは、それぞれ独立して、置換アミノ基、ヒドロカルビルオキシ基、または置換基を有していてもよいヒドロカルビル基を表す。
 上記一般式(1)中、Xは、化学的な単結合またはヒドロカルビレン基であり、好ましくは、化学的な単結合である。ヒドロカルビレン基としては、アルキレン基、アルケンジイル基、アリーレン基、または、アリーレン基とアルキレン基とが結合した基などが挙げられる。
 アルキレン基としては、メチレン基、エチレン基、トリメチレン基などが挙げられる。アルケンジイル基としては、ビニレン基、エチレン-1,1-ジイル基などが挙げられる。アリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基などが挙げられる。アリーレン基とアルキレン基とが結合した基としては、フェニレン基とメチレン基とが結合した基、フェニレン基とエチレン基とが結合した基などが挙げられる。Xがヒドロカルビレン基である場合には、Xは、アリーレン基であることが好ましく、フェニレン基であることがより好ましい。
 上記一般式(1)中、X、XおよびXは、それぞれ独立して、置換アミノ基、ヒドロカルビルオキシ基、または置換基を有していてもよいヒドロカルビル基を表す。X、XおよびXのうち、少なくとも1つが置換アミノ基であることが好ましく、X、XおよびXのうち、2つが置換アミノ基であることがより好ましい。
 X、XおよびXを構成し得る置換アミノ基としては、下記一般式(2)で表される基が好適である。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)中、RおよびRは、互いに結合していても、あるいは、結合していなくてもよく、RおよびRが互いに結合していない場合には、RおよびRは、それぞれ独立して、置換基を有していてもよいヒドロカルビル基、または、トリヒドロカルビルシリル基を表し、RとRとが互いに結合している場合には、RおよびRは、窒素原子および/または酸素原子を含有していてもよいヒドロカルビレン基を表す。
 RおよびRを構成し得るヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、-オクチル基などの鎖状アルキル基;シクロペンチル基、シクロヘキシル基などの環状アルキル基;フェニル基、ベンジル基、ナフチル基などのアリール基;などが挙げられる。これらの中でも、鎖状アルキル基が好ましく、メチル基またはエチル基がより好ましい。
 RおよびRを構成し得るヒドロカルビル基が、置換基を有する場合には、置換基としてヒドロカルビルオキシ基を有するヒドロカルビル基などが挙げられ、置換基としてヒドロカルビルオキシ基を有するヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基などのアルコキシアルキル基;フェノキシメチル基などのアリールオキシアルキル基;などが挙げられる。
 RおよびRを構成し得るトリヒドロカルビルシリル基の具体例としてはトリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基などのトリアルキルシリル基などが挙げられる。
 RとRとが互いに結合している場合において、RおよびRを構成し得るヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、2,2,4-トリメチルヘキサン-1,6-ジイル基などのアルキレン基;ペンタン-2-エン-1,5-ジイル基などのアルケンジイル基;などが挙げられる。また、RおよびRを構成し得るヒドロカルビレン基が、窒素原子および/または酸素原子を含有する場合には、窒素原子および/または酸素原子を含有するヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基、-CH-CH-O-CH-CH-で表される基などが挙げられる。
 RおよびRは、アルキル基であるか、あるいは、RとRとは互いに結合してアルキレン基となっていることが好ましく、RおよびRは、アルキル基であることがより好ましく、RおよびRは、メチル基またはエチル基であることがさらに好ましい。
 上記一般式(2)中、RおよびRがヒドロカルビル基である場合における、上記一般式(2)で表される基の具体例としては、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基などのジアリールアミノ基;などが挙げられる。これらの中でも、ジアルキルアミノ基が好ましく、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基がより好ましい。
 上記一般式(2)中、RおよびRが、置換基としてヒドロカルビルオキシ基を有するヒドロカルビル基である場合における、上記一般式(2)で表される基の具体例としては、ジ(メトキシメチル)アミノ基、ジ(エトキシメチル)アミノ基などのジ(アルコキシアルキル)アミノ基などが挙げられる。
 上記一般式(2)中、RおよびRが、トリヒドロカルビルシリル基である場合における、上記一般式(2)で表される基の具体例としては、ビス(トリメチルシリル)アミノ基、ビス(tert-ブチルジメチルシリル)アミノ基、N-トリメチルシリル-N-メチルアミノ基などのトリアルキルシリル基含有アミノ基などが挙げられる。
 上記一般式(2)中、RとRとが互いに結合して、ヒドロカルビレン基となっている場合における、上記一般式(2)で表される基の具体例としては、1-トリメチレンイミノ基、1-ピロリジノ基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-へプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-アルキレンイミノ基などが挙げられる。
 上記一般式(2)中、RとRとが互いに結合して、窒素原子および/または酸素原子を含有するヒドロカルビレン基となっている場合における、上記一般式(2)で表される基の具体例としては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基、モルホリノ基などが挙げられる。
 上記一般式(2)で表される基としては、ジアルキルアミノ基、1-アルキレンイミノ基が好ましく、ジアルキルアミノ基がより好ましく、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基がさらに好ましい。
 上記一般式(1)中、X、XおよびXを構成し得るヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基などのアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;などが挙げられる。
 上記一般式(1)中、X、XおよびXを構成し得るヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;フェニル基、4-メチル-1-フェニル基、ベンジル基などのアリール基;などが挙げられる。
 X、XおよびXを構成し得るヒドロカルビル基が、置換基を有する場合には、置換基としてヒドロカルビルオキシ基を有するヒドロカルビル基などが挙げられ、メトキシメチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基などが挙げられる。
 上記一般式(1)中、Xが化学的な単結合であり、X、XおよびXのうち、1つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、(ジメチルアミノ)ジメチルビニルシラン、(エチルメチルアミノ)ジメチルビニルシラン、(ジ-n-プロピルアミノ)ジメチルビニルシラン、(ジイソプロピルアミノ)ジメチルビニルシラン、(ジメチルアミノ)ジエチルビニルシラン、(エチルメチルアミノ)ジエチルビニルシラン、(ジ-n-プロピルアミノ)ジエチルビニルシラン、(ジイソプロピルアミノ)ジエチルビニルシランなどの(ジアルキルアミノ)ジアルキルビニルシラン;[ビス(トリメチルシリル)アミノ]ジメチルビニルシラン、[ビス(t-ブチルジメチルシリル)アミノ]ジメチルビニルシラン、[ビス(トリメチルシリル)アミノ]ジエチルビニルシラン、[ビス(t-ブチルジメチルシリル)アミノ]ジエチルビニルシランなどの[ビス(トリアルキルシリル)アミノ]ジアルキルビニルシラン;(ジメチルアミノ)ジ(メトキシメチル)ビニルシラン、(ジメチルアミノ)ジ(メトキシエチル)ビニルシラン、(ジメチルアミノ)ジ(エトキシメチル)ビニルシラン、(ジメチルアミノ)ジ(エトキシエチル)ビニルシラン、(ジエチルアミノ)ジ(メトキシメチル)ビニルシラン、(ジエチルアミノ)ジ(メトキシエチル)ビニルシラン、(ジエチルアミノ)ジ(エトキシメチル)ビニルシラン、(ジエチルアミノ)ジ(エトキシエチル)ビニルシランなどの(ジアルキルアミノ)ジ(アルコキシアルキル)ビニルシラン;ピロリジノジメチルビニルシラン、ピペリジノジメチルビニルシラン、ヘキサメチレンイミノジメチルビニルシラン、4,5-ジヒドロイミダゾリルジメチルビニルシラン、モルホリノジメチルビニルシランなどの環状アミノジアルキルビニルシラン化合物;などが挙げられる。
 上記一般式(1)中、Xがヒドロカルビレン基であり、X、XおよびXのうち、1つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、(ジメチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジメチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジエチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジエチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジメチル-4-ビニルフェニルシラン(ジ-n-プロピルアミノ)ジメチル-3-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジメチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジメチルアミノ)ジエチル-3-ビニルフェニルシラン、(ジエチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジエチルアミノ)ジエチル-3-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジエチル-4-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジエチル-3-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジエチル-3-ビニルフェニルシランなどの(ジアルキルアミノ)ジアルキルビニルフェニルシランなどが挙げられる。
 上記一般式(1)中、Xが化学的な単結合であり、X、XおよびXのうち、2つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ-n-プロピルアミノ)メチルビニルシラン、ビス(ジ-n-ブチルアミノ)メチルビニルシラン、ビス(ジメチルアミノ)エチルビニルシラン、ビス(ジエチルアミノ)エチルビニルシラン、ビス(ジ-n-プロピルアミノ)エチルビニルシラン、ビス(ジ-n-ブチルアミノ)エチルビニルシランなどのビス(ジアルキルアミノ)アルキルビニルシラン;ビス[ビス(トリメチルシリル)アミノ]メチルビニルシラン、ビス[ビス(tert-ブチルジメチルシリル)アミノ]メチルビニルシラン、ビス[ビス(トリメチルシリル)アミノ]エチルビニルシラン、ビス[ビス(tert-ブチルジメチルシリル)アミノ]エチルビニルシランなどのビス[ビス(トリアルキルシリル)アミノ]アルキルビニルシラン;ビス(ジメチルアミノ)メトキシメチルビニルシラン、ビス(ジメチルアミノ)メトキシエチルビニルシラン、ビス(ジメチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシラン、ビス(ジエチルアミノ)メトキシメチルビニルシラン、ビス(ジエチルアミノ)メトキシエチルビニルシラン、ビス(ジエチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシランなどのビス(ジアルキルアミノ)アルコキシアルキルシラン;ビス(ピロリジノ)メチルビニルシラン、ビス(ピペリジノ)メチルビニルシラン、ビス(ヘキサメチレンイミノ)メチルビニルシラン、ビス(4,5-ジヒドロイミダゾリル)メチルビニルシラン、ビス(モルホリノ)メチルビニルシランなどのビス(環状アミノ)アルキルビニルシラン化合物;などが挙げられる。
 上記一般式(1)中、Xがヒドロカルビレン基であり、X、XおよびXのうち、2つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、ビス(ジメチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジメチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジエチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジエチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジメチルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジメチルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジエチルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジエチルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)エチル-4-ビニルフェニルシランビス(ジ-n-ブチルアミノ)エチル-3-ビニルフェニルシランなどのビス(ジアルキルアミノ)アルキルビニルフェニルシランなどが挙げられる。
 上記一般式(1)中、Xが化学的な単結合であり、X、XおよびXのうち、3つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、トリス(ジメチルアミノ)ビニルシラン、トリス(ジエチルアミノ)ビニルシラントリス(ジ-n-プロピルアミノ)ビニルシラン、トリス(ジ-n-ブチルアミノ)ビニルシランなどのトリス(ジアルキルアミノ)ビニルシランなどが挙げられる。
 上記一般式(1)中、Xがヒドロカルビレン基であり、X、XおよびXのうち、3つが置換アミノ基である場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、トリス(ジメチルアミノ)-4-ビニルフェニルシラン、トリス(ジメチルアミノ)-3-ビニルフェニルシラン、トリス(ジエチルアミノ)-4-ビニルフェニルシラン、トリス(ジエチルアミノ)-3-ビニルフェニルシラン、トリス(ジ-n-プロピルアミノ)-4-ビニルフェニルシラン、トリス(ジ-n-プロピルアミノ)-3-ビニルフェニルシラン、トリス(ジ-n-ブチルアミノ)-4-ビニルフェニルシラン、トリス(ジ-n-ブチルアミノ)-3-ビニルフェニルシランなどのトリス(ジアルキルアミノ)ビニルフェニルシランなどが挙げられる。
 上記一般式(1)中、Xが化学的な単結合であり、X、XおよびXのうち、いずれも置換アミノ基でない場合における、上記一般式(1)で表されるケイ素原子含有官能基を含有するビニル化合物の具体例としては、トリメトキシビニルシラン、トリエトキシビニルシラン、トリプロポキシビニルシランなどのトリアルコキシビニルシラン;メチルジメトキシビニルシラン、メチルジエトキシビニルシランなどのジアルコキシアルキルビニルシラン;ジ(tert-ペントキシ)フェニルビニルシラン、ジ(tert-ブトキシ)フェニルビニルシランなどのジアルコキシアリールビニルシラン;ジメチルメトキシビニルシランなどのモノアルコキシジアルキルビニルシラン;tert-ブトキシジフェニルビニルシラン、tert-ペントキシジフェニルビニルシランなどのモノアルコキシジアリールビニルシラン;tert-ブトキシメチルフェニルビニルシラン、tert-ブトキシエチルフェニルビニルシランなどのモノアルコキシアルキルアリールビニルシラン;トリス(β-メトキシエトキシ)ビニルシランなどの置換アルコキシビニルシラン化合物;などが挙げられる。
 上記一般式(1)で表される化合物のなかでも、Xが化学的な単結合であるものが好ましく、Xが化学的な単結合であり、かつ、X、XおよびXのうち、2つが置換アミノ基である化合物がより好ましく、Xが化学的な単結合であり、かつ、X、XおよびXのうち、2つがジアルキルアミノ基である化合物が特に好ましい。
 上記一般式(1)で表される化合物の中でも、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ-n-ブチルアミノ)メチルビニルシランが好ましく、ビス(ジエチルアミノ)メチルビニルシランが特に好ましい。
 また、上記一般式(1)で表される化合物以外の、シリカに対して相互作用可能な官能基を含有するビニル化合物としては、4-N,N-ビス(トリメチルシリル)アミノスチレン、3-N,N-ビス(トリメチルシリル)アミノスチレンなどのビス(トリアルキルシリル)アミノスチレン;4-ビス(トリメチルシリル)アミノメチルスチレン、3-ビス(トリメチルシリル)アミノメチルスチレン、4-ビス(トリメチルシリル)アミノエチルスチレン、3-ビス(トリメチルシリル)アミノエチルスチレンなどのビス(トリアルキルシリル)アミノアルキルスチレン;ピロリジノエチルスチレンなどが挙げられ、なかでも、ピロリジノエチルスチレンが好ましい。なお、ピロリジノエチルスチレンとしては、オルト体、メタ体、パラ体のいずれであってもよいが、メタ体、パラ体が好ましく、メタ体とパラ体との混合物であることがより好ましい。
 なお、シリカに対して相互作用可能な官能基を含有するビニル化合物として、上記一般式(1)で表される化合物を用いた場合には、特定共役ジエン系ゴム中には、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位として、下記一般式(3)で表される単位が導入されることとなる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(3)中、Xは、化学的な単結合またはヒドロカルビレン基を表し、X、XおよびXは、それぞれ独立して、水酸基、置換アミノ基、ヒドロカルビルオキシ基、または置換基を有していてもよいヒドロカルビル基を表す。
 なお、上記一般式(3)で表される単位において、Xは、上記一般式(1)で表される化合物中のXに対応し、上記一般式(3)で表される単位において、X、XおよびXは、上記一般式(1)で表される化合物中のX、XおよびXにそれぞれ対応する。そのため、上記一般式(3)で表される単位において、X、X、XおよびXは、上記一般式(1)で表される化合物中のX、X、XおよびXとそれぞれ同じものとすることができる。また、上記一般式(1)で表される化合物として、X、XおよびXのうち少なくとも一つが、置換アミノ基、またはヒドロカルビルオキシ基であるものを用いた場合には、置換アミノ基、またはヒドロカルビルオキシ基が、任意の工程およびタイミングにおいて加水分解されることで、X、XおよびXのうち少なくとも一つを、水酸基とすることができる。
<含有量>
 重合体ブロック(A)中における、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位の含有量は、特に限定されず、重合体ブロック(A)を構成する全単量体単位に対する含有量が、好ましくは0.01~20質量%の範囲、より好ましくは0.02~2質量%の範囲、特に0.05~1質量%の範囲となるように調整することが好ましい。シリカに対して相互作用可能な官能基を含有するビニル化合物の単位の含有量を上記範囲とすることにより、ロールに対する付着の抑制効果、ならびに低発熱性、および操縦安定性の向上効果をより顕著なものとすることできる。
<その他の単量体単位>
 また、重合体ブロック(A)は、イソプレン単量体単位、芳香族ビニル単量体単位、およびシリカに対して相互作用可能な官能基を含有するビニル化合物の単位以外のその他の単量体単位を含有していてもよい。このようなその他の単量体単位を構成するその他の化合物としては、エチレン、プロピレン、1-ブテンなどの鎖状オレフィン化合物;シクロペンテン、2-ノルボルネンなどの環状オレフィン化合物;1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、および1,3-ヘキサジエンなどのイソプレン以外の共役ジエン化合物;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、および5-エチリデン-2-ノルボルネンなどの非共役ジエン化合物;などが挙げられる。重合体ブロック(A)中における、その他の単量体単位の含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。
〔重量平均分子量(Mw)〕
 重合体ブロック(A)の重量平均分子量(Mw)は、1,000~30,000の範囲であり、好ましくは1,500~20,000の範囲であり、より好ましくは2,000~10,000の範囲である。重合体ブロック(A)の重量平均分子量(Mw)が小さすぎると、ロールに対する付着の抑制効果、ならびに低発熱性、および操縦安定性の向上効果が得られなくなる。一方、重合体ブロック(A)の重量平均分子量(Mw)が大きすぎると、得られるゴム架橋物の低発熱性が低下してしまう。
〔Mw/Mn〕
 また、重合体ブロック(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、1.0~1.5であることが好ましく、1.0~1.3であることがより好ましい。重合体ブロック(A)の分子量分布の値(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
 なお、本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)測定によりポリスチレン換算の値として求めることができる。
[重合体ブロック(B)]
 重合体ブロック(B)は、1,3-ブタジエン単量体単位を含有するもの(好ましくは、1,3-ブタジエン単量体単位を主成分とするもの)であればよく、特に限定されず、1,3-ブタジエン単量体単位のみからなるものであってよいし、あるいは、1,3-ブタジエン単量体単位と、1,3-ブタジエン単量体単位以外の単量体単位とからなるものであってもよい。この場合における、1,3-ブタジエン単量体単位以外の単量体単位としては、芳香族ビニル単量体単位が好適に挙げられ、本発明の重合体ブロック(B)は、1,3-ブタジエン単量体単位に加えて、芳香族ビニル単量体単位をも含有するものであることが好ましい。
〔1,3-ブタジエン単量体単位含有量〕
 重合体ブロック(B)中における、1,3-ブタジエン単量体単位の含有量(1,3-ブタジエン単量体単位含有量)は、好ましくは55~65質量%であり、より好ましくは55~63質量%、さらに好ましくは55~60質量%である。重合体ブロック(B)中の1,3-ブタジエン単量体単位含有量を上記範囲とすることにより、共役ジエン系ゴムの製造がより容易となる。
〔1,3-ブタジエン単量体単位中のビニル結合含有量〕
 重合体ブロック(B)における、1,3-ブタジエン単量体単位中のビニル結合含有量は、好ましくは10~50質量%、より好ましくは15~40質量%、特に好ましくは20~35質量%である。重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量を上記範囲内とすることにより、得られるゴム架橋物を低発熱性により優れたものとすることができる。
〔芳香族ビニル単量体単位を形成するための芳香族ビニル化合物〕
 芳香族ビニル単量体単位を形成するための芳香族ビニル化合物としては、上述した重合体ブロック(A)の説明において例示したものを用いることができ、上述した芳香族ビニル化合物の中でも、スチレンが好ましい。重合体ブロック(B)の芳香族ビニル単量体単位含有量は、好ましくは35~45質量%、より好ましくは40~45質量%である。
〔シリカに対して相互作用可能な官能基を含有するビニル化合物の単位〕
 また、特定共役ジエン系ゴムは、上述した重合体ブロック(A)および重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有するものであるが、特定共役ジエン系ゴムにおいては、このようなシリカに対して相互作用可能な官能基を含有するビニル化合物の単位が、重合体ブロック(A)のみに含有される態様、重合体ブロック(B)のみに含有される態様、重合体ブロック(A)および重合体ブロック(B)の両方に含有される態様のいずれであってもよい。特定共役ジエン系ゴムは、本発明の効果がより優れる理由から、少なくとも重合体ブロック(B)がシリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有するのが好ましい。
<シリカに対して相互作用可能な官能基を含有するビニル化合物>
 シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を形成するための、シリカに対して相互作用可能な官能基を含有するビニル化合物としては、上述した重合体ブロック(A)の説明において例示したものを用いることができ、上述した重合体ブロック(A)の説明において好ましいものとして例示したものを好適に用いることができる。
<含有量>
 重合体ブロック(B)中における、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位の含有量は、特に限定されず、重合体ブロック(B)を構成する全単量体単位に対する含有量が、好ましくは0.01~20質量%の範囲、より好ましくは0.02~2質量%の範囲、特に0.05~1質量%の範囲となるように調整することが好ましい。
<その他の単量体単位>
 また、重合体ブロック(B)は、1,3-ブタジエン単量体単位、芳香族ビニル単量体単位、およびシリカに対して相互作用可能な官能基を含有するビニル化合物の単位以外のその他の単量体単位を含有していてもよい。このようなその他の単量体単位を構成するその他の化合物としては、上述した重合体ブロック(A)において例示された化合物(ただし、1,3-ブタジエンを除く)と同様のものに加え、イソプレンを用いることができる。重合体ブロック(B)中における、その他の単量体単位の含有量は、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。
[重合体ブロック(A)と重合体ブロック(B)との質量比]
 特定共役ジエン系ゴム中における重合体ブロック(A)と重合体ブロック(B)との質量比(重合体ブロック(A)、重合体ブロック(B)が複数存在する場合は、それぞれの合計質量を基準とした質量比)は、(重合体ブロック(A)の質量)/(重合体ブロック(B)の質量)で、0.001~0.2であることが好ましく、0.005~0.1であることがより好ましく、0.01~0.05であることが特に好ましい。重合体ブロック(A)と重合体ブロック(B)との質量比を上記範囲内とすることにより、得られるゴム架橋物を、ウェットグリップ性と低発熱性とのバランスが良好なものとすることができる。
[各単位の含有量]
〔1,3-ブタジエン単量体単位含有量〕
 特定共役ジエン系ゴム全体の1,3-ブタジエン単量体単位の含有量(1,3-ブタジエン単量体単位含有量)は、特に限定されず、本発明の効果がより優れる理由から、55~65質量%であることが好ましく、55~63質量%であることがより好ましく、55~60質量%であることがさらに好ましい。ここで、特定共役ジエン系ゴム全体の1,3-ブタジエン単量体単位含有量とは、特定共役ジエン系ゴムを構成する全単量体単位に対する1,3-ブタジエン単量体単位の含有量を指す。
〔芳香族ビニル単量体単位含有量〕
 上述のとおり、特定共役ジエン系ゴム全体の芳香族ビニル単量体単位の含有量(芳香族ビニル単量体単位含有量)は、30~45質量%である。ここで、特定共役ジエン系ゴム全体の芳香族ビニル単量体単位含有量とは、特定共役ジエン系ゴムを構成する全単量体単位に対する芳香族ビニル単量体単位の含有量を指す。
 特定共役ジエン系ゴム全体の芳香族ビニル単量体単位含有量は、本発明の効果がより優れる理由から、35~45質量%であることが好ましく、40~45質量%であることがより好ましい。
〔シリカに対して相互作用可能な官能基を含有するビニル化合物の単位の含有量〕
 特定共役ジエン系ゴム全体における、上述したシリカに対して相互作用可能な官能基を含有するビニル化合物の単位の含有量(例えば、ビス(ジエチルアミノ)メチルビニルシラン単量体単位含有量)は、特に制限されないが、本発明の効果がより優れる理由から、0.01~20質量%であることが好ましく、0.02~2質量%であることがより好ましく、0.05~1質量%であることがさらに好ましい。
[ビニル結合含有量]
 特定共役ジエン系ゴム全体における、共役ジエン単量体単位中(たとえば、イソプレン単量体単位および1,3-ブタジエン単量体単位)のビニル結合含有量(以下、単に「特定共役ジエン系ゴム全体のビニル結合含有量」とも言う)は、15~35質量%である。なかでも、本発明の効果がより優れる理由から、20~25質量%であることが好ましく、25~35質量%であることがより好ましい。特定共役ジエン系ゴム全体のビニル結合含有量を上記範囲内とすることにより、得られるゴム架橋物を低発熱性により優れたものとすることができる。
[シロキサン化合物による変性構造]
 上述のとおり、特定共役ジエン系ゴムは、少なくとも1つの末端にシロキサン化合物による変性構造を備える。なお、シロキサン化合物による変性構造は、その他の変性剤による変性構造を介して導入されていてもよい。
〔好適な態様〕
 シロキサン化合物としては、シロキサン構造(-Si-O-)を主鎖として有するものであればよく、特に限定されないが、側鎖に有機基を有するオルガノシロキサンが好ましく、下記一般式(4)で表されるポリオルガノシロキサンがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(4)中、R~R10は、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびX12は、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。X10は、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、X10が複数あるときは、それらは互いに同一であっても相違していてもよい。X11は、2~20のアルキレングリコールの繰返し単位を含有する基であり、X11が複数あるときは、それらは互いに同一であっても相違していてもよい。mは1~200の整数、nは0~200の整数、kは0~200の整数であり、m+n+kは1以上である。
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、上記一般式(4)中のR~R10、XおよびX12を構成し得る炭素数1~6のアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基およびシクロヘキシル基などが挙げられる。炭素数6~12のアリール基としては、たとえば、フェニル基およびメチルフェニル基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メチル基およびエチル基が好ましい。
 また、上記一般式(4)で表されるポリオルガノシロキサンにおいて、X、X10およびX12を構成し得る炭素数1~5のアルコキシ基としては、たとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基およびブトキシ基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メトキシ基およびエトキシ基が好ましい。
 さらに、上記一般式(4)で表されるポリオルガノシロキサンにおいて、X、X10およびX12を構成し得るエポキシ基を含有する炭素数4~12の基としては、たとえば、下記一般式(5)で表される基が挙げられる。
 -Z-Z-E  (5)
 上記一般式(5)中、Zは、炭素数1~10のアルキレン基、またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2~10の炭化水素基である。
 上記一般式(5)で表される基としては、Zが酸素原子であるものが好ましく、Zが酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Zが炭素数1~3のアルキレン基であり、Zが酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
 また、上記一般式(4)で表されるポリオルガノシロキサンにおいて、XおよびX12としては、上記の中でも、エポキシ基を含有する炭素数4~12の基、または、炭素数1~6のアルキル基が好ましい。また、X10としては、上記の中でも、エポキシ基を含有する炭素数4~12の基が好ましい。さらに、XおよびX12が炭素数1~6のアルキル基であり、X10がエポキシ基を含有する炭素数4~12の基であることがより好ましい。
 また、上記一般式(4)で表されるポリオルガノシロキサンにおいて、X11、すなわち2~20のアルキレングリコールの繰返し単位を含有する基としては、下記一般式(6)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(6)中、tは2~20の整数であり、X13は炭素数2~10のアルキレン基またはアルキルアリーレン基であり、R11は水素原子またはメチル基であり、X14は炭素数1~10のアルコキシ基またはアリールオキシ基である。これらの中でも、tが2~8の整数であり、X13が炭素数3のアルキレン基であり、R11が水素原子であり、かつ、X14がメトキシ基であるものが好ましい。
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、mは1~200の整数、好ましくは20~150の整数、より好ましくは30~120の整数である。mが1~200であると、上記一般式(4)で表されるポリオルガノシロキサン自体の製造がより容易になると共に、その粘度が高くなりすぎず、取り扱いもより容易となる。
 また、上記一般式(4)で表されるポリオルガノシロキサンにおいて、nは0~200の整数、好ましくは0~150の整数、より好ましくは0~120の整数である。kは0~200の整数、好ましくは0~150の整数、より好ましくは0~130の整数である。m、nおよびkの合計数は1以上であり、3~400であることが好ましく、20~300であることがより好ましく、30~250であることが特に好ましい。m、nおよびkの合計数が1以上であると、上記一般式(4)で表されるポリオルガノシロキサンと活性末端を有する共役ジエン系重合体鎖との反応が進行し易く、更に、m、nおよびkの合計数が400以下であると、上記一般式(4)で表されるポリオルガノシロキサン自体の製造が容易になると共に、その粘度が高くなりすぎず、取り扱いも容易となる。
[重量平均分子量(Mw)]
 特定共役ジエン系ゴム全体の重量平均分子量(Mw)は、50,000~5,000,000の範囲であり、好ましくは75,000~3,000,000の範囲であり、より好ましくは100,000~1,000,000の範囲である。特定共役ジエン系ゴム全体の重量平均分子量を上記範囲内とすることにより、このような共役ジエン系ゴムを含むゴム組成物へのシリカの配合が容易となり、ゴム組成物の加工性をより高めることができ、さらには、得られるゴム架橋物の低発熱性をより高めることができる。
[Mw/Mn]
 また、特定共役ジエン系ゴム全体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる全体の分子量分布は、1.1~3.0であることが好ましく、1.2~2.5であることがより好ましく、1.2~2.2であることが特に好ましい。分子量分布(Mw/Mn)を上記範囲内とすることにより、得られるゴム架橋物の低発熱性をより向上させることができる。
[ムーニー粘度]
 また、特定共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、好ましくは20~100、より好ましくは30~90、特に好ましくは35~80である。なお、共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
[ガラス転移温度(Tg)]
 特定共役ジエン系ゴムのガラス転移温度(Tg)は、特に限定されないが、好ましくは20~-110℃であり、より好ましくは10~-70℃である。特定共役ジエン系ゴムのガラス転移温度は、たとえば、共役ジエン系ゴム中の芳香族ビニル単量体単位含有量、および共役ジエン単量体単位部分におけるビニル結合含有量を調節することによって、適宜調節することができる。
[製造方法]
 特定共役ジエン系ゴムは、たとえば、不活性溶媒中で、イソプレンを含む単量体(a)を、重合開始剤により重合し、活性末端を有する重合体ブロック(A)を形成させる工程(工程A)と、
 得られた活性末端を有する重合体ブロック(A)と、1,3-ブタジエンを含む単量体(b)とを、混合して重合反応を継続させ、重合体ブロック(A)および重合体ブロック(B)を備える、活性末端を有する共役ジエン系重合体鎖を得る工程(工程B)と、
 得られた活性末端を有する共役ジエン系重合体鎖の活性末端にシロキサン化合物を反応させる工程(工程C)とを経て製造することができる。
〔活性末端を有する重合体ブロック(A)を形成させる工程(工程A)〕
<単量体(a)>
 重合体ブロック(A)を形成するための単量体(a)としては、イソプレンを含有するものであればよく、形成する重合体ブロック(A)の単量体組成(上述した単量体組成)に応じた単量体を用いればよい。たとえば、重合体ブロック(A)をイソプレン単量体単位および芳香族ビニル単量体単位からなるものとする場合には、単量体(a)としては、イソプレンおよび芳香族ビニル化合物を含有するものとすればよい。また、重合体ブロック(A)を、イソプレン単量体単位および芳香族ビニル単量体単位に加えて、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を有するものとする場合には、単量体(a)を、イソプレンおよび芳香族ビニル化合物に加えて、シリカに対して相互作用可能な官能基を含有するビニル化合物を含有するものとすればよい。
<不活性溶媒>
 重合体ブロック(A)を形成するために、イソプレンを含む単量体(a)の重合に用いられる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、プロパン、n-ブタン、イソブタン、n-ペンタンイソペンタン、n-ヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-へキセン、2-へキセン、n-へプタンなどの鎖状または分岐状脂肪族炭化水素;シクロペンタン、シクロヘキサンなどの脂環式炭化水素;ベンゼン、エチルベンゼン、トルエン、キシレンなどの芳香族炭化水素;テトラヒドロフラン、ジエチルエーテルなどのエーテル化合物;などが挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、特に限定されないが、単量体濃度が、たとえば1~80質量%となる量であり、好ましくは5~50質量%となる量である。
<重合開始剤>
 重合体ブロック(A)を形成するために用いられる重合開始剤としては、イソプレンを含む単量体(a)を重合させて、活性末端を有する重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、たとえば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウムエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、tert-オクチルリチウム、n-デシルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、ヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼン、sec-ブチルリチウムとジイソプロペニルベンゼンとの反応物、n-ブチルリチウムと1,3-ブタジエンとジビニルベンゼンとの反応物、n-ブチルリチウムとポリアセチレン化合物との反応物などの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;有機ルビジウム化合物;有機セシウム化合物などが挙げられる。その他にも、リチウム、ナトリウム及びカリウム等のアルコキサイド、スルフォネート、カーボネート、アミド等が挙げられる。また、他の有機金属化合物と併用してもよい。さらに、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている公知の有機アルカリ金属化合物も使用することができる。
 また、有機アルカリ土類金属化合物としては、たとえば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、工業的入手の容易さ及び重合反応のコントロールの容易さの観点からn-ブチルリチウムが特に好ましく用いられる。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびへプタメチレンイミンなどの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。この有機アルカリ金属アミド化合物としては、特に限定されないが、たとえば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジヘプチルアミド、リチウムジヘキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド及びリチウムメチルフェネチルアミドなどが挙げられる。
(使用量)
 重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、イソプレンを含む単量体(a)100g当り、好ましくは4~250ミリモル、より好ましくは6~200ミリモル、特に好ましくは10~70ミリモルの範囲である。
<単量体(a)を重合する際における重合温度>
 イソプレンを含む単量体(a)を重合する際における重合温度は、好ましくは-80~+150℃、より好ましくは0~100℃、さらに好ましくは20~90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。また、重合体ブロック(A)を共重合体鎖とする場合における結合様式としては、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。
<極性化合物>
 また、単量体(a)を重合するにあたり、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量を調節するために、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。極性化合物としては、たとえば、ジブチルエーテル、テトラヒドロフラン、2,2-ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、0.01~30モルが好ましく、0.05~10モルがより好ましい。極性化合物の使用量が上記範囲内にあると、イソプレン単量体単位中のビニル結合含有量の調節が容易であり、しかも、重合開始剤の失活による不具合も発生し難い。また、上記範囲内で極性化合物の使用量を増加させることで、イソプレン単量体単位中のビニル結合含有量を増加させることができる。
〔活性末端を有する共役ジエン系重合体鎖を得る工程(工程B)〕
 次いで、イソプレンを含む単量体(a)を重合することにより得られた、活性末端を有する重合体ブロック(A)と、1,3-ブタジエンを含む単量体(b)とを、混合して重合反応を継続させることにより、重合体ブロック(B)を重合体ブロック(A)と一続きに形成することができ、これにより、重合体ブロック(A)および重合体ブロック(B)を備える、活性末端を有する共役ジエン系重合体鎖を得ることができる。なお、形成された重合体ブロック(B)は、活性末端を有するものとなり、一方、重合体ブロック(A)からは、活性末端が消失する。
<単量体(b)>
 重合体ブロック(B)を形成するための単量体(b)としては、1,3-ブタジエンを含有するものであればよく、形成する重合体ブロック(B)の単量体組成(上述した単量体組成)に応じた単量体を用いればよい。たとえば、重合体ブロック(B)を1,3-ブタジエン単量体単位および芳香族ビニル単量体単位からなるものとする場合には、単量体(b)としては、1,3-ブタジエンおよび芳香族ビニル化合物を含有するものとすればよい。また、重合体ブロック(B)を、1,3-ブタジエン単量体単位および芳香族ビニル単量体単位に加えて、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を有するものとする場合には、単量体(b)を、1,3-ブタジエンおよび芳香族ビニル化合物に加えて、シリカに対して相互作用可能な官能基を含有するビニル化合物を含有するものとすればよい。
(シリカに対して相互作用可能な官能基を含有するビニル化合物)
 なお、特定共役ジエン系ゴムは、上述した重合体ブロック(A)および重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有するものである。そのため、上記製造方法においては、重合体ブロック(A)を形成するために用いられるイソプレンを含む単量体(a)、および、重合体ブロック(B)を形成するために用いられる1,3-ブタジエンを含む単量体(b)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物を含有させればよい。
<不活性溶媒>
 重合体ブロック(B)を形成するために、1,3-ブタジエンを含む単量体(b)の重合に用いられる不活性溶媒としては、特に限定されず、上述した不活性溶媒と同様のものを用いることができる。
<活性末端を有する重合体ブロック(A)の使用量>
 重合体ブロック(B)を形成する際における、活性末端を有する重合体ブロック(A)の使用量は、目的とする分子量に応じて決定すればよいが、1,3-ブタジエンを含む単量体(b)100g当り、好ましくは0.1~5ミリモル、より好ましくは0.15~2ミリモル、さらに好ましくは0.2~1.5ミリモルの範囲である。
<重合体ブロック(A)と1,3-ブタジエンを含む単量体(b)との混合方法>
 重合体ブロック(A)と1,3-ブタジエンを含む単量体(b)との混合方法は、特に限定されず、1,3-ブタジエンを含む単量体(b)の溶液中に活性末端を有する重合体ブロック(A)を加えてもよいし、活性末端を有する重合体ブロック(A)の溶液中に1,3-ブタジエンを含む単量体(b)を加えてもよい。重合の制御の観点より、1,3-ブタジエンを含む単量体(b)の溶液中に活性末端を有する重合体ブロック(A)を加える方法が好ましい。
<重合温度、重合様式>
 1,3-ブタジエンを含む単量体(b)を重合する際における重合温度は、好ましくは-80~+150℃、より好ましくは0~100℃、さらに好ましくは20~90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。重合体ブロック(B)を共重合体鎖とする場合には、結合のランダム性を制御しやすい点で、回分式が好ましい。
<結合様式>
 重合体ブロック(B)を共重合体鎖とする場合の各単量体の結合様式は、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。これらの中でも、ランダム状が好ましい。ランダム状にすることにより、得られるゴム架橋物の低発熱性をより向上させることができる。
<極性化合物>
 また、重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量を調節するために、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量の調節時と同様に、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。ただし、重合体ブロック(A)の調製時に、不活性溶媒に、重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。ビニル結合含有量を調節するために用いられる極性化合物としては、上述した極性化合物と同様のものを用いることができる。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、好ましくは0.01~100モル、より好ましくは0.1~30モルの範囲で調節すればよい。極性化合物の使用量がこの範囲にあると、1,3-ブタジエン単量体単位中のビニル結合含有量の調節が容易で、あり、かつ、重合開始剤の失活による不具合も発生し難い。
<活性末端を有する共役ジエン系重合体鎖>
 このようにして、重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖を得ることができる。本発明においては、活性末端を有する共役ジエン系重合体鎖は、生産性の観点より、重合体ブロック(A)-重合体ブロック(B)で構成され、かつ、重合体ブロック(B)の末端が活性末端であることが好ましいが、重合体ブロック(A)を複数有するものとしてもよいし、その他の重合体ブロックを有するものとしてもよい。たとえば、重合体ブロック(A)-重合体ブロック(B)-重合体ブロック(A)などの、活性末端を有する共役ジエン系重合体鎖が挙げられる。この場合には、重合体ブロック(B)に続いて形成された重合体ブロック(A)の末端に、活性末端が形成されることとなる。共役ジエン系重合体鎖の活性末端側に重合体ブロック(A)を形成させる場合、イソプレンの使用量は、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、10~100モルであることが好ましく、15~70モルであることがより好ましく、20~35モルであることが特に好ましい。
〔活性末端を有する共役ジエン系重合体鎖の活性末端にシロキサン化合物を反応させる工程(工程C)〕
 次いで、得られた活性末端を有する共役ジエン系重合体鎖の活性末端にシロキサン化合物を反応させることで、共役ジエン系重合体鎖の末端にシロキサン化合物による変性構造が導入する。
<シロキサン化合物の使用量>
 活性末端を有する共役ジエン系重合体鎖と、シロキサン化合物とを反応させる際における、シロキサン化合物の使用量は、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、好ましくは0.01~10モル、より好ましくは0.1~5モルである。シロキサン化合物の使用量が上記範囲内にあると、得られるゴム架橋物の低発熱性をより高めることができる。なお、シロキサン構造(-Si-O-)当たりのモル数を上記範囲とすることが好ましい。
<シロキサン化合物と活性末端を有する共役ジエン系重合体鎖とを反応させる方法>
 シロキサン化合物と活性末端を有する共役ジエン系重合体鎖とを反応させる方法は、特に限定されないが、これらを、それぞれが溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した重合反応において用いる不活性溶媒として例示したものなどを用いることができる。また、この際においては、活性末端を有する共役ジエン系重合体鎖を得るための重合に用いた重合溶液に、シロキサン化合物を添加する方法が簡便であり好ましい。さらに、この際においては、シロキサン化合物は、不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50質量%の範囲とすることが好ましい。反応温度は、特に限定されないが、通常0~120℃であり、反応時間も特に限定されないが、通常1分~1時間である。
<シロキサン化合物を添加する時期>
 活性末端を有する共役ジエン系重合体鎖を含有する溶液に、シロキサン化合物を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液にシロキサン化合物を添加することが望ましい。シロキサン化合物の添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。なお、得られるゴム組成物の加工性をより高めるため、活性末端を有する共役ジエン系重合体鎖を含有する溶液に、シロキサン化合物を添加し、反応させた後に、さらに有機金属化合物を混合してもよく、これにより、得られるゴム組成物の加工性を高めることができる(コンパウンド・ムーニーを低く抑えることができる。)。また、この際においては、有機金属化合物を混合した後、シロキサン化合物をさらに追加添加し、さらに反応させてもよい。有機金属化合物としては、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、tert-オクチルリチウム、n-デシルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、ヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物、スチルベンリチウムなどの有機モノリチウム化合物などが挙げられる。
 このようにして、活性末端を有する共役ジエン系重合体鎖の活性末端に、シロキサン化合物を反応させることで、共役ジエン系重合体鎖の少なくとも1つの末端に、シロキサン化合物による変性構造を導入することができる。反応後の共役ジエン系重合体鎖は、重合体鎖末端に、シロキサン化合物による変性構造が導入されたものであるが、これ以外にも、シロキサン化合物による変性がされていない未変性の共役ジエン系重合体鎖を含むものであってもよい。
 なお、活性末端を有する共役ジエン系重合体鎖として、重合体ブロック(A)の末端が活性末端であるもの(たとえば、重合体ブロック(A)-重合体ブロック(B)-重合体ブロック(A)で表される重合体鎖)を用いて、重合体ブロック(A)の末端に、シロキサン化合物を反応させることで、重合体ブロック(A)の末端にシロキサン化合物による変性構造を導入してもよいし、あるいは、重合体ブロック(B)の末端が活性末端であるもの(たとえば、重合体ブロック(A)-重合体ブロック(B)で表される重合体鎖)を用いて、重合体ブロック(B)の末端に、シロキサン化合物を反応させることで、重合体ブロック(B)の末端にシロキサン化合物による変性構造を導入してもよい。得られるゴム架橋物の低発熱性をより高めるという観点からは、重合体ブロック(B)の末端に、シロキサン化合物を反応させることで、重合体ブロック(B)の末端にシロキサン化合物による変性構造を導入することが好ましい。
〔カップリング〕
 また、活性末端を有する共役ジエン系重合体鎖に、シロキサン化合物を反応させる前の状態のとき、あるいは、シロキサン化合物を反応させた後において、活性末端を有する共役ジエン系重合体鎖が残存している状態のときに、本発明の効果を阻害しない範囲で、活性末端を有する共役ジエン系重合体鎖の活性末端の一部を、従来から通常使用されているカップリング剤などを重合系内に添加して、カップリングを行ってもよい。
〔失活〕
 そして、活性末端を有する共役ジエン系重合体鎖に、シロキサン化合物を反応させた後は、メタノール、エタノールおよびイソプロパノールなどのアルコールまたは水などの、重合停止剤を添加して未反応の活性末端を失活させることが好ましい。
〔添加剤〕
 共役ジエン系重合体鎖の活性末端を失活させた後、シロキサン化合物による変性構造を末端に有する共役ジエン系ゴムの溶液に、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤、クラム化剤、およびスケール防止剤などを反応溶液に添加し、その後、直接乾燥またはスチームストリッピングなどにより反応溶液から重合溶媒を分離して、固形状の、シロキサン化合物による変性構造を末端に有する共役ジエン系ゴムを回収する。さらに、所望により、伸展油を配合して、共役ジエン系ゴムを油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸などが挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、共役ジエン系ゴム100質量部に対して、通常5~100質量部である。
[含有量]
 上述のとおり、ゴム成分中の特定共役ジエン系ゴムの含有量は35質量%以上である。なかでも、本発明の効果がより優れる理由から、40~85質量%であることが好ましく、45~80質量%であることがより好ましい。
[2]特定ブタジエンゴム
 上述のとおり、ゴム成分は特定ブタジエンゴムを含有する。
 上記特定ブタジエンゴムは、ガラス転移温度が-85℃以下のブタジエンゴムである。
[ガラス転移温度(Tg)]
 上述のとおり、特定ブタジエンゴムのガラス転移温度(Tg)は-85℃以下である。
 上記Tgは、本発明の効果がより優れる理由から、-90℃以下であることが好ましい。上記Tgの下限は特に制限されないが、本発明の効果がより優れる理由から、-150℃以上であることが好ましく、-120℃以上であることがより好ましい。
 なお、本明細書において、ガラス転移温度(Tg)は、示差走査熱量計(DSC)を用いて10℃/分の昇温速度で測定し、中点法にて算出したものとする。
[分子量]
 特定ブタジエンゴムの重量平均分子量(Mw)は特に制限されないが、本発明の効果がより優れる理由から、50,000~5,000,000であることが好ましく、75,000~3,000,000であることがより好ましく、100,000~1,000,000であることがさらに好ましい。
[好適な態様]
 特定ブタジエンゴムは、本発明の効果がより優れる理由から、変性されたブタジエンゴムであることが好ましく、少なくとも1つの末端にヘテロ原子を含む変性基を有する変性ブタジエンゴムであることがより好ましい。変性基は特に制限されないが、例えば、水酸基、エポキシ基、カルボキシ基、ヒドロカルビルオキシシリル基等が挙げられる。変性基の位置は主鎖(側鎖)でも末端でも構わない。
 なお、特定ブタジエンゴムのミクロ構造(シス-1,4-結合、トランス-1,4-結合、ビニル結合)は特に制限されない。
〔特定変性ブタジエンゴム〕
 特定ブタジエンゴムの1つの好適な態様として、本発明の効果がより優れる理由から、少なくとも1つの末端にヘテロ原子を含む変性基を有する変性ブタジエンゴムであるのが好ましく、シス-1,4-結合の含有量が75モル%以上のブタジエン重合体の活性末端を少なくともヒドロカルビルオキシシラン化合物により変性してなる変性ブタジエン重合体(特定変性ブタジエンゴム)が挙げられる。上記特定変性ブタジエンゴムとしては、例えば、国際公開第2018/135530号の段落[0017]~段落[0023]に記載のとおりであり、その内容は本明細書に参照として取り込まれる。
[含有量]
 上述のとおり、ゴム成分中の特定ブタジエンゴムの含有量は15質量%以上である。なかでも、本発明の効果がより優れる理由から、20質量%以上であることが好ましい。ゴム成分中の特定ブタジエンゴムの含有量の上限は、本発明の効果がより優れる理由から、65質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
[3]特定共役ジエン系ゴムと特定ブタジエンゴムとの量比
 ゴム成分中の上述した特定共役ジエン系ゴムの含有量に対する上述した特定ブタジエンゴムの含有量の割合(特定ブタジエンゴム/特定共役ジエン系ゴム)は、本発明の効果がより優れる理由から、10~60質量%であることが好ましく、20~50質量%であることがより好ましく、30~40質量%であることがさらに好ましい。
[4]その他のゴム成分
 上記ゴム成分は、上述した特定共役ジエン系ゴム及び上述した特定ブタジエンゴムのいずれにも該当しないゴム成分(その他のゴム成分)を含有してもよい。
 そのようなその他のゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、上述した特定ブタジエンゴム以外のブタジエンゴム(BR)、上述した特定共役ジエン系ゴム以外のスチレンブタジエンゴム(SBR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、本発明の効果がより優れる理由から、上述した特定共役ジエン系ゴム以外のスチレンブタジエンゴム(SBR)であることが好ましい。
[分子量]
 その他のゴム成分の重量平均分子量(Mw)は特に制限されないが、本発明の効果がより優れる理由から、50,000~5,000,000であることが好ましく、75,000~3,000,000であることがより好ましく、100,000~1,000,000であることがさらに好ましい。
[含有量]
 ゴム成分中のその他のゴム成分の含有量は特に制限されないが、本発明の効果がより優れる理由から、0~50質量%であることが好ましく、10~40質量%であることがより好ましく、20~30質量%であることがさらに好ましい。
[II]シリカ
 本発明の組成物に含有されるシリカは特に制限されないが、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシリカを用いることができる。
 シリカの具体例としては、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。なかでも、本発明の効果がより優れる理由から、湿式シリカが好ましい。上記シリカは、1種のシリカを単独で用いても、2種以上のシリカを併用してもよい。
[1]含有量
 本発明の組成物において、シリカの含有量は、上述したゴム成分100質量部に対して、50~150質量部である。なかでも、本発明の効果がより優れる理由から、60~100質量部であることが好ましい。
[2]好適な態様
 上記シリカは、本発明の効果がより優れる理由から、CTAB(セチルトリメチルアンモニウムブロマイド)吸着比表面積が190m/g以上のシリカ(特定シリカ)を20質量部以上含むのが好ましい。なかでも、本発明の効果がより優れる理由から、特定シリカを50~150質量部含むのが好ましく、60~100質量部含むのがより好ましい。
 特定シリカのCTAB吸着比表面積の上限は特に制限されないが、本発明の効果がより優れる理由から、300m/g以下であることが好ましい。
 ここで、CTAB吸着比表面積は、シリカ表面へのCTAB吸着量をJIS K6217-3:2001「第3部:比表面積の求め方-CTAB吸着法」にしたがって測定した値である。
[III]シランカップリング剤
 本発明の組成物に含有されるシランカップリング剤は、加水分解性基および有機官能基を有するシラン化合物であれば特に制限されない。
 上記加水分解性基は特に制限されないが、例えば、アルコキシ基、フェノキシ基、カルボキシル基、アルケニルオキシ基などが挙げられる。なかでも、本発明の効果がより優れる理由から、アルコキシ基であることが好ましい。加水分解性基がアルコキシ基である場合、アルコキシ基の炭素数は、本発明の効果がより優れる理由から、1~16であることが好ましく、1~4であることがより好ましい。炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。
 上記有機官能基は特に制限されないが、有機化合物と化学結合を形成し得る基であることが好ましく、例えば、エポキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基、スルフィド基、メルカプト基、ブロックメルカプト基(保護メルカプト基)(例えば、オクタノイルチオ基)などが挙げられ、なかでも、本発明の効果がより優れる理由から、スルフィド基(特に、ジスルフィド基、テトラスルフィド基)、メルカプト基、ブロックメルカプト基が好ましい。
 上記シランカップリング剤の具体例としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド、トリメトキシシリルプロピル-メルカプトベンゾチアゾールテトラスルフィド、トリエトキシシリルプロピル-メタクリレート-モノスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシラン等が挙げられ、これらのうち1種を単独で用いてもよく、2種以上を併用してもよい。
[1]好適な態様
 上記シランカップリング剤は、本発明の効果がより優れる理由から、下記一般式(S)で表される化合物であることが好ましい。
 (C2n+1O)-Si-C2m-S-CO-C2k+1   一般式(S)
 一般式(S)中、nは1~3の整数を表し、mは1~5の整数(好ましくは、2~4の整数)を表し、kは1~15の整数(好ましくは、5~10の整数)を表す。
[2]含有量
 本発明の組成物において、シランカップリング剤の含有量は、上述したシリカの含有量(特定シリカを含む全てのシリカの合計の含有量)に対して、3~30質量%である。なかでも、本発明の効果がより優れる理由から、5~20質量%であることが好ましい。
 また、本発明の組成物において、シランカップリング剤の含有量は、本発明の効果がより優れる理由から、上述したゴム成分100質量部に対して、1~30質量部であることが好ましく、2~20質量部であることがより好ましく、3~10質量部であることがさらに好ましい。
[IV]任意成分
 本発明の組成物は、必要に応じて、上述した成分以外の成分(任意成分)を含有することができる。
 そのような成分としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、テルペン樹脂(好ましくは、芳香族変性テルペン樹脂)、熱膨張性マイクロカプセル、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、ワックス、加工助剤、プロセスオイル、液状ポリマー、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などのゴム組成物に一般的に使用される各種添加剤などが挙げられる。
[1]カーボンブラック
 本発明の組成物は、本発明の効果がより優れる理由から、カーボンブラックを含有するのが好ましい。
 上記カーボンブラックは特に限定されず、例えば、SAF-HS、SAF、ISAF-HS、ISAF、ISAF-LS、IISAF-HS、HAF-HS、HAF、HAF-LS、FEF、GPF、SRF等の各種グレードのものを使用することができる。
 上記カーボンブラックの窒素吸着比表面積(NSA)は特に制限されないが、本発明の効果がより優れる理由から、50~200m/gであることが好ましく、70~150m/gであることがより好ましい。
 ここで、窒素吸着比表面積(N2SA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。
[含有量]
 本発明の組成物において、カーボンブラックの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したゴム成分100質量部に対して、1~100質量部であることが好ましく、2~10質量部であることがより好ましい。
[2]特定アルキルトリエトキシシラン
 本発明の組成物は、本発明の効果がより優れる理由から、下記一般式(I)で表されるアルキルトリエトキシシラン(以下、「特定アルキルトリエトキシシラン」とも言う)を含有するのが好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(I)中、Rは炭素数7~20のアルキル基を表す。Etはエチル基を表す。
 上記炭素数7~20のアルキル基としては、具体的には、例えば、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。なかでも、本発明の効果がより優れる理由から、オクチル基、ノニル基が好ましい。
[含有量]
 本発明の組成物において、特定アルキルトリエトキシシランの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したシリカの含有量(特定シリカを含む全てのシリカの合計の含有量)に対して、2.0~15.0質量%であることが好ましい。
[3]熱可塑性樹脂
 本発明の組成物は、本発明の効果がより優れる理由から、熱可塑性樹脂を含有するのが好ましい。
 熱可塑性樹脂としては、例えば、テルペン樹脂、ロジン樹脂等の天然樹脂、石油系樹脂、石炭系樹脂、フェノール系樹脂、キシレン系樹脂等の合成樹脂が挙げられる。なかでも、本発明の効果がより優れる理由から、テルペン樹脂が好ましく、テルペン樹脂としては、α-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、水添リモネン樹脂、ジペンテン樹脂、テルペンフェノール樹脂、テルペンスチレン樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂等が挙げられる。なかでも、本発明の効果がより優れる理由から、芳香族変性テルペン樹脂が好ましい。
[軟化点]
 熱可塑性樹脂(特に芳香族変性テルペン樹脂)の軟化点は、本発明の効果がより優れる理由から、50℃以上であることが好ましく、80℃以上であることがより好ましい。上記軟化点の上限は、本発明の効果がより優れる理由から、170℃以下であることが好ましく、150℃以下であることがより好ましい。
 ここで、軟化点は、JIS K2207:1996に準拠して測定された軟化点である。
[含有量]
 本発明の組成物において、熱可塑性樹脂(特に芳香族変性テルペン樹脂)の含有量は、本発明の効果がより優れる理由から、上述したゴム成分100質量部に対して、1~20質量部であることが好ましく、1~15質量部であることがより好ましく、2~15質量部であることがさらに好ましい。
[4]液状ジエン系ゴム
 本発明の組成物は、本発明の効果がより優れる理由から、液状ジエン系ゴムを含有するのが好ましい。液状ジエン系ゴムは、本発明の効果がより優れる理由から、液状SBR又は液状BRであることが好ましく、液状BRであることがより好ましい。
[好適な態様]
 上記液状ジエン系ゴムは、本発明の効果がより優れる理由から、下記一般式(II)で表されるシラン化合物に由来する官能基を有するのが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(II)中、Rは炭素数1から6の2価のアルキレン基であり、R、R及びRはそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を表す。ただし、R、R及びRの少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。
[分子量]
 上記液状ジエン系ゴムの重量平均分子量(Mw)は、本発明の効果がより優れる理由から、3,000以上100,000未満であることが好ましく、5,000以上80,000未満であることがより好ましい。
[含有量]
本発明の組成物において、液状ジエン系ゴムの含有量は、本発明の効果がより優れる理由から、上述したシリカの含有量(特定シリカを含む全てのシリカの合計の含有量)に対して、1.0~15.0質量%であることが好ましく、5.0~10.0質量%であることがより好ましい。
[B]タイヤ
 本発明のタイヤは、上述した本発明の組成物を用いて製造されたタイヤである。本発明のタイヤは、空気入りタイヤであることが好ましく、空気、窒素等の不活性ガス及びその他の気体を充填することができる。なかでも、本発明の組成物をタイヤトレッド(キャップトレッド)に用いた(配置した)空気入りタイヤであることが好ましい。
 図1に、本発明のタイヤの実施態様の一例を表すタイヤの部分断面概略図を示すが、本発明のタイヤは図1に示す態様に限定されるものではない。
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
 また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
 なお、タイヤトレッド部3は上述した本発明の組成物により形成されている。
 本発明のタイヤは、例えば、従来公知の方法に従って製造することができる。また、タイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[特定共役ジエン系ゴム1の製造]
 以下のとおり、特定共役ジエン系ゴム1を製造した。
〔工程A〕
 窒素置換された800ml容器に、シクロヘキサン140.89、およびテトラメチルエチレンジアミン3.0mmolを添加し、さらに、n-ブチルリチウム30.0mmolを添加した。次いで、イソプレン113.6g、およびスチレン9.2gをゆっくりと添加し、50℃の容器内で120分反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の、重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.10、スチレン単量体単位含有量は7.5質量%、イソプレン単量体単位含有量は92.5質量%、イソプレン単量体単位中のビニル結合含有量は7.0質量%であった。
〔工程B〕
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン6400g、テトラメチルエチレンジアミン2.95mmol、1,3-ブタジエン585g、スチレン615g、およびビス(ジエチルアミノ)メチルビニルシラン(上記一般式(1)において、X=化学的な単結合、X及びX=ジエチルアミノ基、X=メチル基である化合物)0.95gを仕込んだ後、n-ブチルリチウムを7.01mmol加え、上記活性末端を有する重合体ブロック(A)をリチウム原子含有量に換算して0.51mmol加え、40℃で重合を開始した。重合開始10分後に、1,3-ブタジエン300gを60分間かけて連続的に添加した。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認した。このようにして、重合体ブロック(A)及び重合体ブロック(B)を備える、活性末端を有する共役ジエン系重合体鎖を得た。
 ビス(ジエチルアミノ)メチルビニルシラン
Figure JPOXMLDOC01-appb-C000010
〔工程C〕
 次いで、下記式(9)で表されるポリオルガノシロキサンを、-Si-O-繰り返し単位の含有量が7.15mmolとなるように添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤としてイルガノックス1520L(BASF社製)を共役ジエン系ゴム100質量部に対して0.20質量部、及び、伸展油(商品名「アロマックスT-DAE」、JX日鉱日石エネルギー社製)を共役ジエン系ゴム100質量部に対して15.0質量部、添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。
 得られた共役ジエン系ゴムの重量平均分子量(Mw)は590,000、スチレン単量体単位含有量は41質量%、ビニル結合含有量は25質量%であった。また、得られた共役ジエン系ゴム中における、ビス(ジエチルアミノ)メチルビニルシラン単量体単位含有量は0.06質量%であった。また、得られた共役ジエン系ゴムのガラス転移温度は-26℃であった。
Figure JPOXMLDOC01-appb-C000011
 得られた共役ジエン系ゴムは、イソプレン単量体単位及びスチレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位、スチレン単量体単位及びビス(ジエチルアミノ)メチルビニルシラン単量体単位(シリカに対して相互作用可能な官能基を含有するビニル化合物の単位)を含有する重合体ブロック(B)とを備えるとともに、末端に上記式(9)で表されるポリオルガノシロキサン(シロキサン化合物)による変性構造を備える共役ジエン系ゴムである。また、重合体ブロック(A)の重量平均分子量(Mw)は1,000~30,000の範囲であり、全体の重量平均分子量(Mw)は50,000~5,000,000の範囲である。また、全体のスチレン単量体単位含有量(芳香族ビニル単量体単位含有量)は30~45質量%であり、全体のビニル結合含有量は15~35質量%である。
 したがって、得られた共役ジエン系ゴムは上述した特定共役ジエン系ゴムに該当する。
 得られた共役ジエン系ゴムを特定共役ジエン系ゴム1とも言う。
[比較共役ジエン系ゴム]
 工程Bにおいて、テトラメチルエチレンジアミンの量を0.71mmol、1,3-ブタジエンの量を763g、スチレンの量を28.7gに変更した点以外は上述した特定共役ジエン系ゴム1の製造と同様の手順に従って共役ジエン系ゴムを製造した。
 得られた共役ジエン系ゴムの重量平均分子量(Mw)は750,000、スチレン単量体単位含有量は28質量%、ビニル結合含有量は59質量%であった。また、得られた共役ジエン系ゴム中における、ビス(ジエチルアミノ)メチルビニルシラン単量体単位含有量は0.15質量%であった。また、得られた共役ジエン系ゴムのガラス転移温度は-21℃であった。
 得られた共役ジエン系ゴムは、イソプレン単量体単位及びスチレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位、スチレン単量体単位及びビス(ジエチルアミノ)メチルビニルシラン単量体単位(シリカに対して相互作用可能な官能基を含有するビニル化合物の単位)を含有する重合体ブロック(B)とを備えるとともに、末端に上記式(9)で表されるポリオルガノシロキサン(シロキサン化合物)による変性構造を備える共役ジエン系ゴムである。また、重合体ブロック(A)の重量平均分子量(Mw)は1,000~30,000の範囲であり、全体の重量平均分子量(Mw)は50,000~5,000,000の範囲である。一方、得られた共役ジエン系ゴムは、全体のスチレン単量体単位含有量(芳香族ビニル単量体単位含有量)が30~45質量%の範囲外であり、全体のビニル結合含有量が15~35質量%の範囲外であるため、上述した特定共役ジエン系ゴムに該当しない。
 得られた共役ジエン系ゴムを比較共役ジエン系ゴムとも言う。
[タイヤ用ゴム組成物の調製]
 下記表1に示す成分を、同表に示す割合(質量部)で配合した。
 具体的には、まず、下記表1に示す成分のうち硫黄及び加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて140℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄及び加硫促進剤を混合し、タイヤ用ゴム組成物を得た。
 なお、ゴム成分が油展品である場合、質量部はゴムの正味の量(オイルを除いた量)を表す。
[評価]
 得られたタイヤ用ゴム組成物について下記のとおり評価を行った。
〔転がり抵抗温度依存性〕
 得られたタイヤ用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で40分間プレス加硫して加硫ゴムシートを作製した。
 得られた加硫ゴムシートについて、JISK6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度10℃の条件でtanδを測定した(tanδ(10℃))。また、同様に、温度40℃の条件でtanδを測定した(tanδ(40℃))。そして、下記パラメータを求めた。なお、tanδ(10℃)とtanδ(40℃)が同じ値である場合、下記パラメータは1とする。
 パラメータ=(tanδ(10℃)とtanδ(40℃)のうち小さい方)/(tanδ(10℃)とtanδ(40℃)のうち大きい方)
 結果を表1に示す。なお、結果は比較例1を100とする指数で表した。指数が大きい程、tanδ(10℃)とtanδ(40℃)の差が小さく、転がり抵抗温度依存性が小さいことを意味する。100超であることが好ましい。
〔ウェット性能〕
 上述した転がり抵抗温度依存性と同様に、温度0℃の条件でtanδを測定した(tanδ(0℃))。
 結果を表1に示す。結果は比較例1を100とする指数で表した。指数が大きい程、ウェット性能に優れることを意味する。103以上であることが好ましい。
Figure JPOXMLDOC01-appb-T000012
 上記表1中の各成分の詳細は以下のとおりである。
・特定共役ジエン系ゴム1:上述のとおり製造した特定共役ジエン系ゴム1(上述のとおり、特定共役ジエン系ゴム1は上述した特定共役ジエン系ゴムに該当する)
・比較共役ジエン系ゴム:上述のとおり製造した比較共役ジエン系ゴム(上述のとおり、比較共役ジエン系ゴムは上述した特定共役ジエン系ゴムに該当しない)
・ゴム成分1:末端にポリオルガノシロキサン基を有し、イソプレンブロックを有する、溶液重合スチレンブタジエンゴム。(油展品(SBR100質量部に対して油展オイル25質量部を含む。)、スチレン単量体単位含有量:43質量%、ビニル結合含有量:30質量%、重量平均分子量:650,000、Tg:-26℃、日本ゼオン社製)(ゴム成分1は、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有しないため、上述した特定共役ジエン系ゴムに該当しない)
・BR1220:Nipol BR1220(ブタジエンゴム、重量平均分子量:46万、ガラス転移温度:-106℃、日本ゼオン社製)(BR1220はガラス転移温度が-85℃以下のブタジエンゴムであるため、上述した特定ブタジエンゴムに該当する)
・BR1261:末端にヘテロ原子を含む変性基を有する変性ブタジエンゴム(重量平均分子量:49万、ガラス転移温度:-93℃)(BR1261はガラス転移温度が-85℃以下の変性ブタジエンゴムであるため、上述した特定ブタジエンゴムに該当する)
・特定変性ブタジエンゴム1:JSR社製BR54(特定変性ブタジエンゴム1は上述した特定ブタジエンゴム及び上述した特定変性ブタジエンゴムに該当する)
・NS612:日本ゼオン社製NS612(溶液重合SBR、スチレン単量体単位含有量:15質量%、ビニル結合含有量:31質量%、重量平均分子量:440,000、Tg-61℃)(NS612は、上述した特定共役ジエン系ゴムに該当しない)
・7000GR:ULTRASIL 7000GR(シリカ、CTAB吸着比表面積:160m/g、Evonik社製)
・9100GR:ULTRASIL 9100GR(シリカ、CTAB吸着比表面積:200m/g、Evonik社製)
・N339:ショウブラックN339(カーボンブラック、キャボットジャパン社製)
・NXT:上述した一般式(S)で表されるシランカップリング剤(ここで、上述した一般式(S)中、n=2、m=3、k=7である。)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
・ステアリン酸:ビーズステアリン酸(日油社製)
・老化防止剤:オゾノン6C(精工化学社製)
・プロセスオイル:エキストラクト4号S(昭和シェル石油社製)
・アルキルシラン:オクチルトリエトキシシラン(KBE-3083、信越化学工業社製)(アルキルシランは上述した特定アルキルトリエトキシシランに該当する)
・熱可塑性樹脂:ヤスハラケミカル社製YSレジンTO125(芳香族変性テルペン樹脂、軟化点:125℃)
・変性LBR:以下のとおり製造した変性液状ジエン系ゴム
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1200g及びn-ブチルリチウム(17質量%ヘキサン溶液)22gを仕込み、50℃に昇温した後、攪拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1460gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して攪拌し、水で重合体溶液を洗浄した。攪拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ジエン系ゴムを得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系ゴム700gを仕込み、60℃で3時間攪拌しながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン1.0gと(3-メルカプトプロピル)トリメトキシシラン25gを添加し、105℃で8時間反応させて、変性液状ジエン系ゴムを得た。得られた変性液状ジエン系ゴムの重量平均分子量は55,000であった。得られた変性液状ジエン系ゴムは、上述した一般式(II)で表されるシラン化合物に由来する官能基を有する液状BRである。
・硫黄:金華印油入微粉硫黄(硫黄の含有量95.24質量%、鶴見化学工業社製)
・加硫促進剤(CZ):大内新興化学工業社製ノクセラーCZ-G
・加硫促進剤(DPG):1,3-ジフェニルグアニジン(ソクシノールD-G、住友化学工業社製)
 なお、表1中、Stはスチレン単量体単位含有量(質量%)を表し、Vnはビニル結合含有量(質量%)を表し、Mwは重量平均分子量(×10)を表し、Tgはガラス転移温度(℃)を表す。
 表1から分かるように、特定共役ジエン系ゴムと特定ブタジエンゴムとを所定の量で併用した実施例1~8は、転がり抵抗温度依存性が小さく、且つ、優れたウェット性能を示した。
 実施例1と実施例2との対比(シリカとして7000GRを使用し、特定ブタジエンゴムとしてBR1220を使用した態様同士の対比)から、ゴム成分中の特定共役ジエン系ゴムの含有量が50質量%以上である実施例1は、より優れたウェット性能を示した。
 実施例1と実施例3と実施例4との対比(シリカとして7000GRを使用し、ゴム成分中の特定共役ジエン系ゴムの含有量が75質量%である態様同士の対比)から、特定ブタジエンゴムが少なくとも1つの末端にヘテロ原子を含む変性基を有するブタジエンゴムである実施例3及び実施例4は、転がり抵抗温度依存性がより小さく、且つ、より優れたウェット性能を示した。なかでも、特定ブタジエンゴムが上述した特定変性ブタジエンゴムである実施例4は、転がり抵抗温度依存性がさらに小さかった。
 実施例4と実施例5との対比(シリカの種類のみが異なる態様同士の対比)から、シリカが上述した特定シリカを20質量部以上含む実施例5は、より優れたウェット性能を示した。
 また、実施例5と実施例6との対比(アルキルシランの有無のみが異なる態様同士の対比)から、特定アルキルトリエトキシシランを含有する実施例6は、より優れたウェット性能を示した。
 また、実施例5と実施例7との対比(変性LBRの有無のみが異なる態様同士の対比)から、液状ジエン系ゴムを含有する実施例7は、転がり抵抗温度依存性がより小さく、且つ、より優れたウェット性能を示した。
 また、実施例5と実施例8との対比(熱可塑性樹脂の有無のみが異なる態様同士の対比)から、熱可塑性樹脂を含有する実施例8は、転がり抵抗温度依存性がより小さく、且つ、より優れたウェット性能を示した。
 一方、特定共役ジエン系ゴムを含有しない比較例1、比較例3及び比較例6、特定共役ジエン系ゴムを含有するがゴム成分中の含有量が35質量%未満である比較例2、並びに、特定ブタジエンゴムを含有しない比較例4~5は、転がり抵抗温度依存性及びウェット性能の少なくとも一方が不十分であった。
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション

Claims (9)

  1.  ゴム成分と、シリカと、シランカップリング剤とを含有し、
     前記ゴム成分が、特定共役ジエン系ゴムと、特定ブタジエンゴムとを含有し、
     前記ゴム成分中、前記特定共役ジエン系ゴムの含有量が35質量%以上であり、前記特定ブタジエンゴムの含有量が15質量%以上であり、
     前記特定共役ジエン系ゴムが、
      イソプレン単量体単位を含有する重合体ブロック(A)と、1,3-ブタジエン単量体単位を含有する重合体ブロック(B)とを備えるとともに、少なくとも1つの末端にシロキサン化合物による変性構造を備える、共役ジエン系ゴムであって、
      前記重合体ブロック(A)及び前記重合体ブロック(B)の少なくとも一方に、シリカに対して相互作用可能な官能基を含有するビニル化合物の単位を含有し、
      前記重合体ブロック(A)の重量平均分子量(Mw)が1,000~30,000の範囲であり、全体の重量平均分子量(Mw)が50,000~5,000,000の範囲であり、
      全体の芳香族ビニル単量体単位含有量が、30~45質量%であり、
      全体のビニル結合含有量が、15~35質量%である、共役ジエン系ゴムであり、
     前記特定ブタジエンゴムが、ガラス転移温度が-85℃以下のブタジエンゴムであり、
     前記シリカの含有量が、前記ゴム成分100質量部に対して、50~150質量部であり、
     前記シランカップリング剤の含有量が、前記シリカの含有量に対して、3~30質量%である、タイヤ用ゴム組成物。
  2.  前記特定共役ジエン系ゴムの芳香族ビニル単量体単位含有量が、35~45質量%である、請求項1に記載のタイヤ用ゴム組成物。
  3.  前記特定ブタジエンゴムが、少なくとも1つの末端にヘテロ原子を含む変性基を有する変性ブタジエンゴムである、請求項1又は2に記載のタイヤ用ゴム組成物。
  4.  前記シリカが、CTAB吸着比表面積が190m/g以上のシリカである特定シリカを20質量部以上含む、請求項1~3のいずれか1項に記載のタイヤ用ゴム組成物。
  5.  さらに、下記一般式(I)で表されるアルキルトリエトキシシランを含有し、
     前記アルキルトリエトキシシランの含有量が、前記シリカの含有量に対して、2.0~15.0質量%である、請求項1~4のいずれか1項に記載のタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001

     一般式(I)中、Rは炭素数7~20のアルキル基を表し、Etはエチル基を表す。
  6.  さらに、重量平均分子量が3,000以上の液状ジエン系ゴムを含有し、
     前記液状ジエン系ゴムの含有量が、前記シリカの含有量に対して、1.0~15.0質量%である、請求項1~5のいずれか1項に記載のタイヤ用ゴム組成物。
  7.  前記液状ジエン系ゴムが、下記一般式(II)で表されるシラン化合物に由来する官能基を有する、請求項6に記載のタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000002

     一般式(II)中、Rは炭素数1から6の2価のアルキレン基であり、R、R及びRはそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を表す。ただし、R、R及びRの少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。
  8.  さらに、軟化点が50℃以上の熱可塑性樹脂を含有し、
     前記熱可塑性樹脂の含有量が、前記ゴム成分100質量部に対して、1~20質量部である、請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物。
  9.  請求項1~8のいずれか1項に記載のタイヤ用ゴム組成物を用いて製造された、タイヤ。
PCT/JP2021/020510 2020-05-29 2021-05-28 タイヤ用ゴム組成物及びタイヤ WO2021241755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21812966.6A EP4159475A4 (en) 2020-05-29 2021-05-28 COMPOSITION OF GUM FOR TIRE AND PNEUMATIC
CN202180039146.5A CN115698172A (zh) 2020-05-29 2021-05-28 轮胎用橡胶组合物及轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094620A JP7004025B2 (ja) 2020-05-29 2020-05-29 タイヤ用ゴム組成物及びタイヤ
JP2020-094620 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241755A1 true WO2021241755A1 (ja) 2021-12-02

Family

ID=78744808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020510 WO2021241755A1 (ja) 2020-05-29 2021-05-28 タイヤ用ゴム組成物及びタイヤ

Country Status (4)

Country Link
EP (1) EP4159475A4 (ja)
JP (1) JP7004025B2 (ja)
CN (1) CN115698172A (ja)
WO (1) WO2021241755A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322460A (zh) * 2022-09-16 2022-11-11 中策橡胶集团股份有限公司 一种高性能轮胎胎面橡胶组合物及其混炼方法和制备的轮胎
WO2023106327A1 (ja) * 2021-12-08 2023-06-15 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023106328A1 (ja) * 2021-12-08 2023-06-15 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2023085200A (ja) * 2021-12-08 2023-06-20 横浜ゴム株式会社 タイヤ用ゴム組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2241239A (en) 1990-02-08 1991-08-28 Secr Defence Olefinic polymerisation using silylether initiators
US5527753A (en) 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization
US5708092A (en) 1994-05-13 1998-01-13 Fmc Corporation Functionalized chain extended initiators for anionic polymerization
JP2016011334A (ja) * 2014-06-27 2016-01-21 日本ゼオン株式会社 変性共役ジエン系ゴムの組成物
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2016196547A (ja) * 2015-04-03 2016-11-24 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2018135530A1 (ja) 2017-01-17 2018-07-26 横浜ゴム株式会社 タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP2018172593A (ja) * 2017-03-31 2018-11-08 日本ゼオン株式会社 油展変性共役ジエン系ゴムおよびその製造方法
WO2019073828A1 (ja) 2017-10-13 2019-04-18 日本ゼオン株式会社 共役ジエン系ゴム
WO2019221179A1 (ja) * 2018-05-16 2019-11-21 横浜ゴム株式会社 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661281A (zh) * 2014-08-07 2017-05-10 横滨橡胶株式会社 橡胶组合物及使用了其的充气轮胎

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2241239A (en) 1990-02-08 1991-08-28 Secr Defence Olefinic polymerisation using silylether initiators
US5708092A (en) 1994-05-13 1998-01-13 Fmc Corporation Functionalized chain extended initiators for anionic polymerization
US5527753A (en) 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization
JP2016011334A (ja) * 2014-06-27 2016-01-21 日本ゼオン株式会社 変性共役ジエン系ゴムの組成物
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2016196547A (ja) * 2015-04-03 2016-11-24 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2018135530A1 (ja) 2017-01-17 2018-07-26 横浜ゴム株式会社 タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP2018172593A (ja) * 2017-03-31 2018-11-08 日本ゼオン株式会社 油展変性共役ジエン系ゴムおよびその製造方法
WO2019073828A1 (ja) 2017-10-13 2019-04-18 日本ゼオン株式会社 共役ジエン系ゴム
WO2019221179A1 (ja) * 2018-05-16 2019-11-21 横浜ゴム株式会社 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159475A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106327A1 (ja) * 2021-12-08 2023-06-15 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023106328A1 (ja) * 2021-12-08 2023-06-15 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2023085200A (ja) * 2021-12-08 2023-06-20 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7339580B2 (ja) 2021-12-08 2023-09-06 横浜ゴム株式会社 タイヤ用ゴム組成物
CN115322460A (zh) * 2022-09-16 2022-11-11 中策橡胶集团股份有限公司 一种高性能轮胎胎面橡胶组合物及其混炼方法和制备的轮胎

Also Published As

Publication number Publication date
CN115698172A (zh) 2023-02-03
JP2021187951A (ja) 2021-12-13
EP4159475A4 (en) 2023-11-22
JP7004025B2 (ja) 2022-01-21
EP4159475A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP7004025B2 (ja) タイヤ用ゴム組成物及びタイヤ
JP6064953B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
WO2021241746A1 (ja) タイヤ用ゴム組成物及びタイヤ
JP5845883B2 (ja) 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
US20190292289A1 (en) Method for producing for conjugated-diene-based rubber
US10703828B2 (en) Rubber composition for tires and pneumatic tire
JP6512107B2 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
US20220017729A1 (en) Rubber composition and pneumatic tire
JP6791205B2 (ja) 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
JP6791203B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791201B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6791202B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791204B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7224150B2 (ja) ゴム組成物及び空気入りタイヤ
US20210371628A1 (en) Rubber composition and pneumatic tire
JP6651787B2 (ja) タイヤ用ゴム組成物
JP7102926B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6791206B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7065671B2 (ja) 共役ジエン系重合体
JP2021187944A (ja) タイヤ用ゴム組成物及びタイヤ
JP6879263B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7106980B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2022080235A1 (ja) 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ
JP6593409B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
WO2019221180A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812966

Country of ref document: EP

Effective date: 20230102