WO2023092471A1 - 一种多头锡球植球喷射头 - Google Patents

一种多头锡球植球喷射头 Download PDF

Info

Publication number
WO2023092471A1
WO2023092471A1 PCT/CN2021/133585 CN2021133585W WO2023092471A1 WO 2023092471 A1 WO2023092471 A1 WO 2023092471A1 CN 2021133585 W CN2021133585 W CN 2021133585W WO 2023092471 A1 WO2023092471 A1 WO 2023092471A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
blanking
feeding
spray head
vacuum
Prior art date
Application number
PCT/CN2021/133585
Other languages
English (en)
French (fr)
Inventor
罗后勇
吴朋
Original Assignee
东莞市鸿骐电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011358933.XA external-priority patent/CN112388098A/zh
Application filed by 东莞市鸿骐电子科技有限公司 filed Critical 东莞市鸿骐电子科技有限公司
Publication of WO2023092471A1 publication Critical patent/WO2023092471A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the invention relates to the technical fields of semiconductors, electronic component packaging, and electronic mounting equipment, and in particular to a multi-head solder ball planting spray head.
  • the solder ball planting process is a process method for implanting solder ball particles on the surface of circuit boards, wafers, and chips waiting to be balled.
  • the solder ball planting process has successively experienced manual stencil planting and automated stencil planting. The three stages of the ball, and the massive transfer of the ball.
  • the principle of manual stencil ball planting is the same as that of automatic stencil ball planting. It mainly makes spherical particles of tin material and pours them into the hollowed out stencil. At the same time, a layer of flux is coated on the surface of the component to be ball planted.
  • the flatness of the steel mesh is also affected by the area; the larger the area of the steel mesh, the easier it is to deform, and it is impossible to carry out large-scale ball planting; for components with uneven surfaces ( For example, components with a curved surface structure or components that have been pre-mounted on the surface) stencil printing is not suitable; moreover, due to the gradual development of electronic products, when mounting tiny components, the diameter of the solder ball particles used is very small Smaller, the smaller the diameter of the solder ball, the larger its specific surface area, the greater the adsorption force on the surface of the solder ball, and the phenomenon of solder ball accumulation or solder ball adsorption on the steel mesh is prone to occur, resulting in missed ball planting and reducing the ball planting. At the same time, the smaller the diameter of solder ball planting, the more difficult and costly it is to process the stencil. The existing technology cannot process stencils with apertures below 0.1mm. The above problems limit the stencil planting Use of ball equipment.
  • Massive ball transfer technology uses a suction head to vacuum up the solder balls, then transfers them to the surface of the component to be balled, and uses gas to blow off the solder balls to complete the ball planting.
  • a suction cup is stuck on the head, and there are adsorption holes on the suction cup, which can suck up the number of solder balls corresponding to the adsorption holes at one time.
  • the distance between the surface of the component to be planted is very small, so this process is not suitable for components with uneven surfaces (such as components with a curved surface structure or components whose surface has been pre-mounted); the smaller the adsorption hole on the suction cup, The more difficult the processing is, the higher the processing cost is, and it cannot be applied to solder balls with a hole diameter of less than 0.1mm for ball planting; when performing ball planting on a large surface, a large number of adsorption holes need to be opened on the suction cup, which will also lead to the processing cost of the suction cup
  • the rise of the process limits the use of this process; moreover, when the diameter of the solder ball or the type of the component to be soldered changes, the suction cup or even the entire suction head needs to be replaced at the same time, thereby increasing the cost.
  • the prior art still lacks a ball planting device that is applicable to different component shapes and different solder ball particle sizes, and has high ball planting efficiency and low processing cost.
  • the object of the present invention is to provide a multi-head solder ball planting spray head, which can simultaneously eject a plurality of solder balls for ball planting, effectively improving the ball planting efficiency; Quickly move in the main body of the spray head and spray out from the nozzle one by one in an orderly manner, the solder balls can be accurately implanted on the surface of the circuit board, wafer, or chip, and the solder balls with a particle size of 0.06mm or more can be precisely controlled.
  • the ball planting efficiency, yield rate, and accuracy are high, and it is suitable for various shapes and types of component ball planting.
  • the structure is simple, the overall volume is small, the processing cost is low, and the operation stability is good.
  • a multi-head tin ball planting spray head including a spray head main body, in which several longitudinal blanking channels are respectively formed, and the vertical blanking channels are connected one by one.
  • a feeding channel connected with the feeding channel is formed on the main body of the spray head, and a nozzle connected with the longitudinal drop channel is provided on the main body of the spray head , there are several injection channels corresponding to and communicating with the longitudinal blanking channels in the nozzle; at the same time, a blanking control mechanism is arranged on the main body of the spray head, and the blanking control mechanism corresponds to the vertical blanking channel. The position where the channel communicates with the feed channel;
  • the blanking control mechanism includes several blanking control air passages corresponding to the longitudinal blanking channel, a ventilation channel, a vacuum channel, and several first electromagnetic valves corresponding to the blanking control air passage. , the blanking control air circuit, the ventilation channel and the vacuum channel are respectively connected to the corresponding first electromagnetic valve, and the blanking control air circuit is connected to the corresponding position where the feeding channel communicates with the longitudinal blanking channel,
  • the spray head body includes:
  • the longitudinal blanking channel is formed in the lower part, the feeding channel is formed at the upper end of the lower part, and the nozzle is arranged at the lower end of the lower part;
  • An upper part it is located above the lower part, and the ventilation channel, vacuum channel and feeding channel are all formed in the upper part;
  • a base block A it is located between the upper part and the lower part, and the material drop control air passage is formed on the base block A.
  • the blanking control mechanism also includes several buffer control air paths that are formed on the base block A and communicated with the feed channels one-to-one, and one-to-one correspondence with the buffer control air paths.
  • several second solenoid valves are provided, the buffer control air circuit, the vacuum channel and the ventilation channel are respectively connected to the corresponding second solenoid valves, and the second solenoid valves are arranged on the upper part.
  • the blanking control mechanism also includes at least one blowing air path formed on the base block A and communicated with the feeding channel, and at least one third solenoid valve.
  • the blowing air path It is respectively connected to the third electromagnetic valve with the ventilation channel, and the third electromagnetic valve is arranged on the upper part.
  • the blanking control air path has a first vent hole corresponding to the position where the vertical blanking channel communicates with the feeding channel;
  • the buffer control air circuit has a first ventilation hole corresponding to the feeding channel.
  • Two ventilation holes; the blanking control air path forms a first bending portion at one end close to the first ventilation hole, and the width of the first bending portion gradually decreases from the bending position to the first ventilation hole;
  • the said A second bent portion is formed at one end of the buffer control air path close to the second vent hole, and the width of the second bent portion gradually decreases from the bent point to the second vent hole.
  • a material loading accumulation groove communicated with the blowing air path is also formed on the base block A and located below the material feeding channel.
  • the ventilation channel and the vacuum channel are arranged side by side in the upper part and extend along the direction of the feed channel respectively, and several sets of transverse channel groups are formed between the ventilation channel and the vacuum channel.
  • the ventilation channel and the first horizontal vacuum channel; a feeding pipe connected with the feeding channel is also arranged on the upper part.
  • the set of transverse channels includes a first set of transverse channels and a second set of transverse ventilation pipes; on the upper part are formed a set of first socket groups for inserting the first solenoid valve; and A set of second socket groups for inserting the second electromagnetic valve, the first communication hole, and the horizontal ventilation channel and the first horizontal vacuum channel of the first horizontal channel group are respectively communicated with the first socket group, and the second The communication hole, and the transverse ventilation channel and the first transverse vacuum channel of the second transverse channel group are respectively communicated with the second insertion hole group.
  • At least one second transverse vacuum channel is formed in the upper part and between the ventilation channel and the vacuum channel, and at least one third socket group for inserting the third electromagnetic valve is formed on the upper part.
  • the third communication hole and the second transverse vacuum channel are respectively communicated with the third insertion hole group.
  • the main body of the spray head further includes a base block B, which is arranged between the base block A and the lower part, the feed channel is formed on the base block B, and a A blanking port corresponding to the longitudinal blanking channel, the first air hole communicates with the material blanking port, and the second air hole communicates with the position of the feeding channel near the material blanking port;
  • the base block B It includes an upper base block B and a lower base block B below the upper base block B, the upper material channel is formed on the upper base block B, and a lower channel below the feed channel is formed on the lower base block B, wherein , the lower channel extends along the length direction of the feed channel and communicates with the discharge port, and the width of the lower channel is smaller than the width of the feed channel.
  • the beneficial effects of the multi-head solder ball planting spray head of the present invention are as follows: by setting in the main body of the spray head, multiple feed channels, several longitudinal blanking channels and feeding channels for the solder balls to move inside the main body of the spray head Each ball planting, multiple solder balls are ejected from the nozzle at the same time, effectively improving the ball planting efficiency, simple structure, small overall volume;
  • the process of falling into the longitudinal blanking channel is controlled to realize the sequential, accurate and rapid drop of solder balls one by one, so that the solder balls are sprayed out from the nozzle one by one, which is convenient to improve the accuracy and efficiency of solder ball planting; blanking In the control mechanism, the blanking control air circuit, the ventilation channel and the vacuum channel are isolated from each other, and are only connected through the first solenoid valve, so there will be no air leakage and cross-gas phenomenon, which is beneficial to the precise control of the solder ball by the blanking control mechanism; and By controlling the switching frequency of the solenoid valve, the solder balls can be quickly
  • Fig. 1 is the explosion diagram of multi-head tin ball planting spray head of the present invention
  • Fig. 2 is the structural representation of multi-head tin ball planting spray head of the present invention
  • Fig. 3 is a partial enlarged view of position D in Fig. 2;
  • Fig. 4 is a cross-sectional view of the nozzle body and the nozzle in the multi-head solder ball planting nozzle of the present invention
  • FIG. 5 is a schematic diagram of the internal structure of the upper part of the multi-head solder ball planting spray head of the present invention.
  • Fig. 6 is a bottom view of the base block A in the multi-head solder ball planting spray head of the present invention.
  • Fig. 7 is a partial enlarged view at position E in Fig. 6;
  • Fig. 8 is a structural schematic diagram of an embodiment of the part below the base block A in the multi-head solder ball planting spray head of the present invention.
  • Fig. 9 is a partial enlarged view of position F in Fig. 8;
  • Figure 10 is a sectional view along the A-A direction in Figure 8.
  • Figure 11 is a partial enlarged view of position I in Figure 10;
  • Fig. 12 is a partial enlarged view of position G in Fig. 8;
  • Fig. 13 is a partial view of base block A in the multi-head solder ball planting spray head of the present invention.
  • Fig. 14 is a top view of the main body of the spray head in the multi-head solder ball planting spray head of the present invention, and a cross-sectional view along the position B-B direction;
  • Figure 15 is a partial enlarged view of position J in Figure 14;
  • Fig. 16 is a schematic diagram of the bottom structure of the upper middle part of the multi-head solder ball planting spray head of the present invention.
  • Fig. 17 is a top view of the multi-head tin ball planting spray head of the present invention.
  • Fig. 18 is a sectional view along the C-C direction of Fig. 17;
  • Fig. 19 is a sectional view along the D-D direction of Fig. 17;
  • Fig. 20 is a schematic structural view of the base block B in the multi-head solder ball planting spray head of the present invention.
  • Figure 21 is a partial enlarged view of position K in Figure 20;
  • Fig. 22 is an exploded view of the base block B in the multi-head solder ball planting spray head of the present invention.
  • Fig. 23 is a schematic structural view of the nozzle in the multi-head solder ball planting spray head of the present invention.
  • Fig. 24 is a structural schematic diagram of another embodiment of the part below the base block A in the multi-head solder ball planting spray head of the present invention.
  • the embodiment of the present invention provides a multi-head solder ball planting spray head, including a spray head main body 1, in which several longitudinal blanking channels 2 are respectively formed, and the longitudinal blanking channels 2 one-to-one corresponding and connected several feed passages 3, and a feeding passage 4 communicated with the feed passage 3 is formed on the spray head main body 1, and the spray head main body 1 is provided with longitudinal A nozzle 5 connected to the blanking channel 2, as shown in Figure 23, is formed in the nozzle 5 with a number of spray channels 51 corresponding to and connected to the longitudinal blanking channel 2; at the same time, in the spray head
  • the main body 1 is provided with a blanking control mechanism, which corresponds to the position where the vertical blanking channel 2 communicates with the feeding channel 3;
  • It consists of several feeding passages 3, several longitudinal blanking passages 2 and feeding passages 4 to form a plurality of communication passages for solder balls to move inside the main body of the spray head. It is sprayed out at all places, effectively improving the ball planting efficiency, with simple structure and small overall volume.
  • the number of the longitudinal blanking channel 2 and the feeding channel 3 are six respectively, and six solder balls are ejected from the nozzle 5 at the same time during each ball planting.
  • the number of longitudinal blanking channels 2 and feeding channels 3 can be adaptively increased or decreased according to production needs.
  • the solder balls are fed from the feeding channel 4, and enter the feeding channel 3 in turn; then fall into the corresponding longitudinal blanking channel 2 in turn, and fall along the longitudinal blanking channel 2 to the There are 5 nozzles, and finally the 5 nozzles are sprayed and implanted on the surface of the component to be balled, which can precisely control the solder balls with a particle size of 0.06mm or more for ball planting.
  • solder ball adsorption and accumulation There is no problem of solder ball adsorption and accumulation, and it is not affected by the shape of the component , which is conducive to improving the accuracy and efficiency of ball planting.
  • the blanking control mechanism includes several blanking control air passages 61 corresponding to the longitudinal blanking passage 2, a ventilation passage 71, a Vacuum channel 72 and several first electromagnetic valves 81 corresponding to the blanking control air circuit 61, the blanking control air circuit 61, ventilation channel 71 and vacuum channel 72 are respectively connected to the corresponding first electromagnetic valves 81, the blanking control air passage 61 is connected to the position where the corresponding feeding channel 3 communicates with the longitudinal blanking channel 2, that is, the following blanking port 31;
  • the ventilation passage 71 communicates with external compressed air, and the vacuum passage 72 communicates with an external vacuum machine.
  • an inert gas is passed into the vent channel 71 , and in this embodiment, nitrogen gas is vented into the vent channel 71 .
  • the next solder ball moves to the blanking port 31; at the same time, the first electromagnetic valve 81 shuts off the communication with the air passage 71, and connects the blanking control air passage 61 and the vacuum passage 72, and passes through the vacuum passage 72. Vacuum adsorption is performed on the blanking control air path 61, so that the solder balls entering the blanking port 31 from the feed channel 3 stop falling into the vertical blanking channel 2 until the last solder ball is ejected from the nozzle 5.
  • the switching frequency of the solenoid valve can quickly pick up and blow off the solder balls, and it can also be completed quickly when performing large-scale ball planting.
  • the spray head body 1 includes:
  • Lower part 11 the longitudinal blanking channel 2 is formed in the lower part 11, the feeding channel 2 is formed at the upper end of the lower part 11, and the nozzle 5 is arranged at the lower end of the lower part 11, as shown in Figures 1 and 4;
  • An upper part 12 it is located above the lower part 11, and the ventilation channel 71, the vacuum channel 72 and the feeding channel 4 are all formed in the upper part 12, as shown in Figure 1 and Figure 5;
  • a base block A13 it is located between the upper part 12 and the lower part 11 , and the blanking control air passage 61 is formed on the base block A13 , as shown in FIG. 1 and FIG. 8 .
  • the blanking control air circuit 61, the ventilation channel 71 and the vacuum channel 72 are isolated from each other, and are only connected through the first solenoid valve 81, so that there will be no cross-gas phenomenon, which is beneficial to the precise control of the blanking control mechanism on the solder balls, so that The solder balls enter the longitudinal blanking channel 2 one by one in an orderly manner, effectively improving the accuracy of solder ball planting, low processing cost, and good equipment operation stability.
  • the blanking control mechanism also includes several buffer control gas lines formed on the base block A13 corresponding to the feed channel 3 and communicated with each other.
  • Road 62, and several second electromagnetic valves 82 corresponding to the buffer control air circuit 62, the buffer control air circuit 62, vacuum channel 72 and ventilation channel 71 are respectively connected to the corresponding second electromagnetic valves 82,
  • the second solenoid valve 82 is disposed on the upper part 12 .
  • the buffer control air circuit 62 and the vacuum channel 72 are vacuumed to vacuumize the solder balls behind the blanking port 31, so that the blanking
  • the solder ball behind the port 31 stops moving toward the blanking port 31; and when the solder ball on the blanking port 31 is blown into the longitudinal blanking channel 2, the second solenoid valve 82 shuts off the buffer control air circuit 62 and the vacuum channel 72 connection, and connect the buffer control air circuit 62 and the ventilation channel 71, so that the solder balls behind the blanking port 31 are blown off, and at the same time, the first solenoid valve 81 connects the blanking control air circuit 61 to the ventilation channel 71 It is in a state of vacuum adsorption, so that the blown-off tin balls are adsorbed to the discharge port 31. As a result, the solder balls move forward sequentially without interfering with each other, so that the entire action process is carried out in an orderly and
  • the blanking control mechanism in order to enable the solder balls on the feed channel 3 to smoothly move sequentially toward the discharge opening 31, the blanking control mechanism also includes a At least one blowing air path 63 and at least one third electromagnetic valve 83 are connected, and the blowing air path 63 and the ventilation channel 71 are respectively connected to the third electromagnetic valve 83, and the third electromagnetic valve 83 is arranged on the upper part 11 .
  • the end of the spray head body 1 close to the longitudinal blanking channel 2 can also be inclined downward at a certain angle. Roll forward under action.
  • first communication holes 121 connecting the first electromagnetic valve 81 and the blanking control air passage 61, and connecting the second electromagnetic valve 82 and the buffer control air passage 62 are respectively formed on the upper part 12.
  • the control air path 62 communicates with the ventilation channel 71 and the vacuum channel 72 respectively, and the blowing air channel communicates with the vacuum channel 72 .
  • the blanking control air passage 61 has a first air hole corresponding to the communication position between the longitudinal blanking channel 2 and the feeding channel 3 611 ; the buffer control air path 62 has a second air hole 621 corresponding to the feed channel 3 .
  • the communication between the blanking control air passage 61 and the longitudinal blanking passage 2 and the communication between the buffer control air passage 62 and the feeding passage 3 are realized.
  • the distance between the position where the second air hole 621 acts on the feed channel 3 and the blanking port 31 is greater than the diameter of the solder ball and less than the sum of the diameters of the two tin balls, so that the first air hole 611 and the first air hole 611 are avoided.
  • the balls are hidden between the second ventilation holes 621, so as to better control the solder balls entering the vertical blanking channel 2 one by one.
  • a first bent portion 612 is formed at one end of the blanking control air passage 61 close to the first vent hole 611 , and the width of the first bent portion 612 extends from the bend to the first vent hole 611 The place gradually decreases; the blanking control air path 61 is designed into a bent shape, and the end connected to the longitudinal blanking channel 2 has a pointed structure, so that when the blanking control air path 61 communicates with the ventilation channel 71, in A stable air flow can be formed in the blanking control air passage 61.
  • the blanking control air passage 61 communicates with the vacuum passage 72, a stable vacuum state is formed; the end communicating with the longitudinal blanking passage 2 has a pointed structure, which is beneficial to improve the first
  • the strength of blowing and sucking air at the air hole 611 can effectively suck up and blow off the solder balls, thereby improving the accuracy and speed of ball planting.
  • a second bent portion 622 is formed at one end of the buffer control air passage 62 close to the second vent hole 621, and the width of the second bent portion 622 gradually decreases from the bent point to the second vent hole 621. It is beneficial to form a stable air flow or a stable vacuum state in the buffer control air circuit 62, and at the same time, increase the strength of the second air hole 621 for blowing and sucking the solder balls, so as to realize precise control of the solder balls.
  • a material loading accumulation groove ( 131 , 131 ′) communicating with the blowing air passage 63 is formed on the base block A13 and located below the material feeding channel 4 .
  • an air blowing groove 132 is also formed on the base block A13, and one end of the air blowing air path 63 is communicated with the air blowing groove 132, and the other end is connected with the upper air blowing groove 132.
  • the material storage tank 131 communicates and forms several blowing ports 133 at the upper end of the side wall of the material storage tank 131, and the lower end of the side wall and the end of the feed channel 3 surround and form several feed ports 32.
  • the storage tank 131 is located below the feeding channel 2 and has a strip structure, and the two ends of the loading storage tank 131 have an arc-shaped connection surface.
  • the side walls of the stacking tank 131 are evenly distributed, and the feed opening 32 is distributed in the middle of the side wall of the loading stacking tank 131 , and the size of the feed opening 32 allows only one solder ball to pass through at a time.
  • the solder balls are fed from the feeding channel 4, and the solder balls fall and accumulate in the feeding accumulation tank 131.
  • the blowing air path 63 blows air
  • each blowing port 133 simultaneously blows to the material accumulation tank 131
  • the arc-shaped connecting surfaces at both ends of the loading storage tank 131 also have a guiding effect on the gas, so that the gas flows along the side walls at both ends, so that an air flow is formed in the middle and both sides of the feeding storage tank 131, thereby effectively
  • the accumulated solder balls are blown away, and the solder balls are blown into the feed port 32 and enter the feed channel 3, and move rapidly to the longitudinal blanking channel 2 under the action of the air flow.
  • the solder balls are dropped into the inlet 32 one by one to avoid accumulation and clogging.
  • one end of all blowing air passages 63 is collected in one air blowing groove 132, which greatly simplifies the internal structure, and facilitates unified control of the blowing air passages 63, so that the blowing ports 133 simultaneously feed materials
  • the stacking tank 131 blows air, thereby effectively blowing away the solder balls and blowing them into the feeding channel 3 .
  • the lower end of the feeding channel 4 has a trumpet-shaped structure; There is enough loose space in the direction, which is conducive to blowing away the solder balls and smoothly entering the feeding channel 3, thereby improving the ball planting efficiency and ball planting accuracy.
  • the ventilation channel 71 and the vacuum channel 72 are arranged side by side in the upper part 11 and extend along the direction of the feed channel 3 respectively.
  • 71 and the vacuum channel 72 are formed with several groups of transverse channel groups 73, the transverse channel group 73 includes a transverse vent channel 731 communicated with the vent channel 71, and a first transverse vacuum channel 732 communicated with the vacuum channel 72, said
  • the first electromagnetic valve 81 is respectively connected to the horizontal ventilation channel 731 and the first horizontal vacuum channel 732
  • the second electromagnetic valve 82 is respectively connected to the horizontal ventilation channel 731 and the first horizontal vacuum channel 732 .
  • the transverse channel group 73 includes a first transverse channel group 73a and a second transverse channel group 73b; Valve 81 is inserted into a group of first socket groups 124, and a group of second socket groups 125 for inserting the second electromagnetic valve 82, the first communication hole 121, and the horizontal ventilation channel 731 of the first horizontal channel group 73a are connected to the The first horizontal vacuum channel 732 communicates with the first socket group 124 respectively, and the second communication hole 122 and the horizontal ventilation channel 731 and the first horizontal vacuum channel 732 of the second horizontal channel group 73b communicate with the second horizontal channel group 73b respectively. Jack set 125.
  • the blanking control air passage 61 is respectively communicated with the air passage 71 and the vacuum passage 72
  • the buffer control air passage 62 is respectively communicated with the air passage 71 and the vacuum passage 72
  • the spray head The overall structure is more compact and the volume is smaller.
  • At least one second transverse vacuum channel 74 is formed in the upper part 12 between the ventilation channel 71 and the vacuum channel 72, and at least one third insertion hole group 126 for inserting the third electromagnetic valve 82 is formed on the upper part 12.
  • the third communication hole 123 and the second transverse vacuum channel 72 are respectively communicated with the third insertion hole group 126 .
  • the blowing air passage 63 is collected in one blowing groove 132, as shown in Figure 1, Figure 2, Figure 16 and Figure 19, the number of the third socket group 126 is one set , the number of the corresponding third communication hole 123 and the third solenoid valve 83 is one, thus, a plurality of blowing air paths 63 can be controlled by one third solenoid valve 83, which greatly simplifies the injection
  • the structure of the head body 1 reduces the processing cost.
  • a feeding pipe 9 connected to the feeding channel 4 is also provided on the upper part 12 for feeding the feeding channel 4 .
  • the main body 1 of the spray head also includes a base block B14, which is arranged between the base block A13 and the lower part 11, and the feed channel 3 is formed on the base
  • a blanking port 31 corresponding to the longitudinal blanking channel 2 is formed on the feed channel 3
  • the first vent hole 611 communicates with the blanking port 31
  • the second vent hole 621 communicates with the blanking port 31.
  • the position of the feeding channel 3 close to the feeding port 31 is connected.
  • the base block B14 includes an upper base block B141 and a lower base block B142 below the upper base block B141, and the feeding channel 3 is formed on the upper base block B141.
  • a lower channel 1421 located below the feed channel 3 is formed, wherein the lower channel 1421 extends along the length direction of the feed channel 3 and communicates with the blanking port 31, and the width of the lower channel 1421 is smaller than that of the feed material.
  • Channel 3 has a small width.
  • the width of the feed channel 3 is greater than the diameter of the solder ball and less than the sum of the diameters of the two solder balls
  • the width of the lower channel 1421 is smaller than the diameter of the solder ball
  • the depth of the feed channel 3 is greater than the diameter of the solder ball. diameter and less than the sum of the diameters of the two solder balls. In this way, only one solder ball can be accommodated at each position of the feed channel 3, and the phenomenon of solder ball accumulation and blockage will not occur.
  • the lower channel 1421 When moving, the lower channel 1421 has a guiding effect on the movement of the solder balls, so that the solder balls move along a straight line in the feeding channel 3, and the outer periphery of the solder balls is filled with gas, so that the solder balls are suspended in the gas, reducing the solder ball due to The frictional force generated by contacting the feed channel 3 enables the solder balls to move forward faster and more smoothly, further reducing the time for the solder balls to move inside the spray head main body 1, and improving the efficiency of solder ball planting.
  • solder ball planting spray head disclosed in the present invention is an improvement on the specific structure, but the specific control method is not an innovation point of the present invention.
  • the solenoid valves and other parts involved in the utility model can be general standard parts or conventional parts known to those skilled in the art, and their structures, principles and control methods are known to those skilled in the art through technical manuals or through conventional The experimental method is known.
  • the above are only preferred embodiments of the present invention, and are not intended to limit the technical scope of the present invention. Therefore, other structures obtained by adopting the same or similar technical features as the above-mentioned embodiments of the present invention are included in the present invention. within the scope of protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本发明公开了一种多头锡球植球喷射头,包括一喷射头主体,在其内部分别形成有数条纵向落料通道、及与该纵向落料通道一一对应并相连通的数条进料通道,且在该喷射头主体上形成有与进料通道相连通的一上料通道;在该喷射头主体上设置有一落料控制机构,该落料控制机构对应于纵向落料通道与进料通道连通位置处。该多头锡球植球喷射头能同时喷射出多个锡球进行植球,有效提高植球效率,能控制锡球在喷射头主体内快速移动并一个个有序从喷嘴喷出,可以将锡球准确的植入到电路板、晶圆、或芯片的表面上,植球效率、良率、以及精确度高,适用于各种形状、及型号的元件植球,结构简单,整体体积小,加工成本低,且运行稳定性好。

Description

一种多头锡球植球喷射头 技术领域
本发明涉及半导体、电子元器件封装、及电子贴装设备技术领域,尤其涉及一种多头锡球植球喷射头。
背景技术
锡球植球工艺是在电路板、晶圆、芯片等待植球的元件表面上植入锡球颗粒的一种工艺方法,锡球植球工艺先后经历了手工钢网植球、自动化钢网植球、以及巨量转移植球三个阶段。
其中,手工钢网植球与自动化钢网植球原理相同,其主要是将锡料制成球状颗粒并倒入镂空的钢网上,同时,在待植球的元件表面上涂覆一层助焊剂并放置于镂空的钢网下方,然后将锡球倒在钢网上,利用刮刀刮动锡球,使锡球从钢网上的镂空处掉落在元件表面上;钢网植球的工艺在操作时,需要将钢网与元件表面的距离控制在两个锡球的直径之和以内,这就对钢网、及待植球元件表面的平整性具较高的要求,而钢网在使用过程中,受到刮刀的挤压力,容易变形和破损,经常需要更换,钢网平整性同时还受面积的影响;钢网面积越大容易变形,无法进行大面积植球;对于表面不平整的元件(例如具有曲面结构的元件或表面已经进行预先贴装的元件)钢网印刷也不适用;而且,由于电子产品逐渐向小型化发展,在对微小元件进行植球时,使用的锡球颗粒直径很小,锡球的直径越小,其比表面积越大,锡球表面的吸附力越大,容易出现锡球堆积或锡球吸附在钢网的现象,导致漏植球现象,降低了植球的良率和效率,同时,锡球植球的直径越小,钢网的加工越困难,成本越高,现有技术还无法加工孔径在0.1mm以下的钢网,上述问题均限制了钢网植球设备的使用。
巨量转移植球工艺,是使用吸头采用抽真空将锡球吸起,然后转移到待植球元件表面上,采用气体将锡球吹落完成植球,为了提高植球效率,通过 在吸头上卡入一个吸盘,该吸盘上开设有吸附孔,可以一次性吸起与吸附孔相应数量的锡球,在使用时,为了使锡球同时准确掉落在相应位置上,要求吸头与待植球元件表面的距离很小,由此,对于表面不平整的元件(例如具有曲面结构的元件或表面已经进行预先贴装的元件),该工艺也不适用;吸盘上吸附孔越小,加工难度越大,加工成本就越高,无法应用在孔径小于0.1mm以下的锡球进行植球;而在进行大面植球时,吸盘上需要开设大量的吸附孔,也会导致吸盘加工成本的升高,限制了该工艺的使用;而且,当锡球直径或待焊接元件型号改变时,需要同时更换吸盘甚至整个吸头,由此,增加了成本。
因此,现有技术还缺乏一种适用不同元件形状、不同锡球粒径使用且植球效率高、加工成本低的植球设备。
发明内容
针对上述不足,本发明的目的在于提供一种多头锡球植球喷射头,该多头锡球植球喷射头能同时喷射出多个锡球进行植球,有效提高植球效率;能控制锡球在喷射头主体内快速移动并一个个有序从喷嘴喷出,可以将锡球准确的植入到电路板、晶圆、或芯片的表面上,能精确控制粒径为0.06mm以上的锡球进行植球,植球效率、良率、以及精确度高,适用于各种形状、及型号的元件植球,结构简单,整体体积小,加工成本低,且运行稳定性好。
本发明为达到上述目的所采用的技术方案是:一种多头锡球植球喷射头,包括一喷射头主体,在其内部分别形成有数条纵向落料通道、及与该纵向落料通道一一对应并相连通的数条进料通道,且在该喷射头主体上形成有与进料通道相连通的一上料通道,在该喷射头主体上设置有与纵向落料通道相连通的一喷嘴,在所述喷嘴内形成有与纵向落料通道一一对应并相连通的数条喷射通道;同时,在该喷射头主体上设置有一落料控制机构,该落料控制机构对应于纵向落料通道与进料通道连通位置处;
所述落料控制机构包括与纵向落料通道一一对应的数条落料控制气路、一通气通道、一真空通道、及与落料控制气路一一对应设置的数个第一电磁 阀,所述落料控制气路、通气通道与真空通道分别连接于相应的第一电磁阀,所述落料控制气路连通于对应的进料通道与纵向落料通道连通位置处,
所述喷射头主体包括:
一下部:所述纵向落料通道形成于下部内,所述进料通道形成于下部的上端,所述喷嘴设置于下部下端;
一上部:其位于下部上方,所述通气通道、真空通道与上料通道均形成于上部;
一基块A:其位于上部与下部间,所述落料控制气路形成于基块A上。
作为本发明的进一步改进,所述落料控制机构还包括形成于基块A上与进料通道一一对应设置并相连通的数条缓冲控制气路、及与该缓冲控制气路一一对应设置的数个第二电磁阀,所述缓冲控制气路、真空通道与通气通道分别连接于相应的第二电磁阀,所述第二电磁设置于上部上。
作为本发明的进一步改进,所述落料控制机构还包括形成于基块A上并与上料通道相连通的至少一吹气气路、及至少一第三电磁阀,所述吹气气路与通气通道分别连接于第三电磁阀,所述第三电磁阀设置于上部上。
作为本发明的进一步改进,在上部上分别形成有连通第一电磁阀与落料控制气路的数个第一连通孔、连通第二电磁阀与缓冲控制气路的数个第二连通孔、及连通第三电磁阀与吹气气路的至少一第三连通孔。
作为本发明的进一步改进,所述落料控制气路具有对应于纵向落料通道与进料通道连通位置处的一第一通气孔;所述缓冲控制气路具有对应于进料通道的一第二通气孔;所述落料控制气路靠近第一通气孔的一端形成一第一弯折部,该第一弯折部的宽度由弯折处到第一通气孔处逐渐减小;所述缓冲控制气路靠近第二通气孔的一端形成一第二弯折部,该第二弯折部的宽度由弯折处到第二通气孔处逐渐减小。
作为本发明的进一步改进,在所述基块A上且位于上料通道下方还形成有与吹气气路连通的一上料堆积槽。
作为本发明的进一步改进,所述通气通道与真空通道并排设置于上部内并分别沿进料通道方向延伸,在通气通道与真空通道间形成有数组横向通道 组,该横向通道组包括与通气通道相连通的一横向通气通道、及与真空通道连通的一第一横向真空通道,所述第一电磁阀分别连接于横向通气通道与第一横向真空通道,所述第二电磁阀分别连接于横向通气通道与第一横向真空通道;在上部上还设置有与上料通道连接的一上料管。
作为本发明的进一步改进,所述横向通道组包括一第一的横向通道组、及一第二横向通气管道组;在上部上形成有供第一电磁阀插入的数组第一插孔组、及供第二电磁阀插入的数组第二插孔组,所述第一连通孔、及第一横向通道组的横向通气通道与第一横向真空通道分别连通于第一插孔组,所述第二连通孔、及第二横向通道组的横向通气通道与第一横向真空通道分别连通于第二插孔组。
作为本发明的进一步改进,在上部内且位于通气通道与真空通道间形成有至少一第二横向真空通道,在上部上形成有供第三电磁阀插入的至少一第三插孔组,所述第三连通孔与第二横向真空通道分别连通于该第三插孔组。
作为本发明的进一步改进,所述喷射头主体还包括一基块B,其设置于基块A与下部间,所述进料通道形成于该基块B上,在进料通道上形成有与纵向落料通道相对应的一落料口,所述第一通气孔与该落料口连通,所述第二通气孔与靠近落料口的进料通道位置处相连通;所述基块B包括一上基块B、及位该上基块B下方的一下基块B,所述上料通道形成于上基块B,在下基块B上形成有位于进料通道下方的一下通道,其中,该下通道沿进料通道长度方向延伸并与落料口连通,且该下通道的宽度比进料通道的宽度小。
本发明多头锡球植球喷射头的有益效果为:通过在喷射头主体内设置由数条进料通道、数条纵向落料通道与上料通道组成供锡球在喷射头主体内部移动的多条连通通道,每次植球时,多个锡球同时由喷嘴处喷出,有效提高植球效率,结构简单,整体体积小;同时,通过设置落料控制机构,对锡球由进料通道落入纵向落料通道这个过程进行控制,实现锡球一个个依序、准确、快速的掉落,使锡球一个一个从喷嘴处喷出,便于提高锡球植球的精度与效率;落料控制机构中,落料控制气路、通气通道与真空通道间相互隔离,仅通过第一电磁阀进行连接,不会出现漏气串气现象,利于落料控制机构对 锡球的精准控制;且可以通过控制电磁阀的切换频率,快速的对锡球进行吸起和吹落,在进行大面积植球时,也可以快速完成;可以精确控制粒径为0.06mm以上的锡球进行植球,不会出现锡球堆积而漏植球的现象,适用于各种形状、及型号的元件植球;加工成本低,设备运行稳定性好。
上述是发明技术方案的概述,以下结合附图与具体实施方式,对本发明做进一步说明。
附图说明
图1为本发明多头锡球植球喷射头的爆炸图;
图2为本发明多头锡球植球喷射头的结构示意图;
图3为图2中位置D的局部放大图;
图4为本发明多头锡球植球喷射头中喷射头主体及喷嘴的剖视图;
图5为本发明多头锡球植球喷射头中上部的内部结构示意图;
图6为本发明多头锡球植球喷射头中基块A的仰视图;
图7为图6中位置E处的局部放大图;
图8为本发明多头锡球植球喷射头中基块A以下部分的一种实施方式结构示意图;
图9为图8中位置F的局部放大图;
图10为图8中沿A-A方向的剖面图;
图11为图10中位置I的局部放大图;
图12为图8中位置G的局部放大图;
图13为本发明多头锡球植球喷射头中基块A的局部视图;
图14为本发明多头锡球植球喷射头中喷射头主体的俯视图、及沿位置B-B方向的剖面图;
图15为图14中位置J的局部放大图;
图16为本发明多头锡球植球喷射头中上部的底部结构示意图;
图17为本发明多头锡球植球喷射头的俯视图;
图18为图17沿C-C方向剖面图;
图19为图17沿D-D方向的剖面图;
图20为本发明多头锡球植球喷射头中基块B的结构示意图;
图21为图20中位置K的局部放大图;
图22为本发明多头锡球植球喷射头中基块B的爆炸图;
图23为本发明多头锡球植球喷射头中喷嘴的结构示意图;
图24为本发明多头锡球植球喷射头中基块A以下部分的另一种实施方式结构示意图。
具体实施方式
为更进一步阐述本发明为达到预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式详细说明。
请参照图1至图4,本发明实施例提供一种多头锡球植球喷射头,包括一喷射头主体1,在其内部分别形成有数条纵向落料通道2、及与该纵向落料通道2一一对应并相连通的数条进料通道3,且在该喷射头主体1上形成有与进料通道3相连通的一上料通道4,在该喷射头主体1上设置有与纵向落料通道2相连通的一喷嘴5,如图23所示,在所述喷嘴5内形成有与纵向落料通道2一一对应并相连通的数条喷射通道51;同时,在该喷射头主体1上设置有一落料控制机构,该落料控制机构对应于纵向落料通道2与进料通道3连通位置处;
由数条进料通道3、数条纵向落料通道2与上料通道4组成供锡球在喷射头主体内部移动的多条连通通道,每次植球时,多个锡球同时由喷嘴5处喷出,有效提高植球效率,结构简单,整体体积小。
本实施例中,所述纵向落料通道2、进料通道3的数量分别为六条,每次植球时,有六个锡球同时由喷嘴5处喷出。在其他实施例中,可以根据生产需要适应性的增加或减少纵向落料通道2与进料通道3的数量。
具体的,锡球由上料通道4上料,并依次进入进料通道3;接着依次落入相应的纵向落料通道2中,并在自身重力作用下,沿纵向落料通道2掉落到喷嘴5处,最后由喷嘴5处喷出植入待植球元件表面,可以精确控制粒径 为0.06mm以上的锡球进行植球,不存在锡球吸附堆积问题,也不受元件形状的影响,利于提高植球的精度与效率。
在上述过程中,通过设置落料控制机构,对锡球由进料通道3落入相应的纵向落料通道2这个过程进行控制,实现锡球一个个依序、准确、快速的掉落,且可以控制每个锡球掉入纵向落料通道2的时间,使锡球一个一个从喷嘴5处喷出,便于提高锡球植球的精度与速度。具体的,如图1、图2、图5与图8所示,所述落料控制机构包括与纵向落料通道2一一对应的数条落料控制气路61、一通气通道71、一真空通道72、及与落料控制气路61一一对应设置的数个第一电磁阀81,所述落料控制气路61、通气通道71与真空通道72分别连接于相应的第一电磁阀81,所述落料控制气路61连通于对应的进料通道3与纵向落料通道2连通位置处,即下述的落料口31;
所述通气通道71与外界压缩气体连通,所述真空通道72与外界抽真空机连通。
为了防止锡球氧化,所述通气通道71中通入惰性气体,在本实施例中,所述通气通道71中通入氮气。
当第一电磁阀81接通通气通道71,而关断与真空通道72的连接时,由通气通道71向落料控制气路61通入气体,并由落料控制气路61向纵向落料通道2吹气,使得由进料通道3进入落料口31的锡球被快速、准确吹入纵向落料通道2中,相对于依靠锡球自身重量往下掉落,采用吹气的方式,明显提高了锡球掉落的速度,提高工作效率。
接着,下一个锡球移动到落料口31处;与此同时,第一电磁阀81关断与通气通道71的连通,而接通落料控制气路61与真空通道72,通过真空通道72对落料控制气路61进行真空吸附,使得由进料通道3进入落料口31的锡球停止掉落到纵向落料通道2内,直到上一个锡球由喷嘴5射出。
然后重复上述过程,由真空模式变为吹气模式,控制锡球一个个依次掉落至纵向落料通道2内,并由喷嘴5处一个个喷出,有效提高植球精确度,可以通过控制电磁阀的切换频率,快速的对锡球进行吸起和吹落,在进行大面积植球时,也可以快速完成。
本实施例中,所述喷射头主体1包括:
一下部11:所述纵向落料通道2形成于下部11内,所述进料通道2形成于下部11的上端,所述喷嘴5设置于下部11下端,如图1与4所示;
一上部12:其位于下部11上方,所述通气通道71、真空通道72与上料通4道均形成于上部12,如图1与图5所示;
一基块A13:其位于上部12与下部11间,所述落料控制气路61形成于基块A13上,如图1与图8所示。
这样,落料控制气路61、通气通道71与真空通道72间相互隔离,仅通过第一电磁阀81进行连接,不会出现串气现象,利于落料控制机构对锡球的精准控制,使锡球一个个有序进入纵向落料通道2内,有效提高锡球植球的精确度,加工成本低,设备运行稳定性好。
由上述过程可知,在纵向落料通道2与进料通道3连通位置处的锡球被抽真空吸附时,为了防止下一个锡球因过快的往前移动而撞击到被吸附的锡球,影响真空吸附,本实施例中,如图1与图8所示,所述落料控制机构还包括形成于基块A13上与进料通道3一一对应设置并相连通的数条缓冲控制气路62、及与该缓冲控制气路62一一对应设置的数个第二电磁阀82,所述缓冲控制气路62、真空通道72与通气通道71分别连接于相应的第二电磁阀82,所述第二电磁阀82设置于上部12上。当第二电磁阀82接通缓冲控制气路62与真空通道72时,通过缓冲控制气路62与真空通道72进行抽真空,对落料口31后方的锡球进行抽真空吸附,使得落料口31后方的锡球停止往落料口31移动;而当落料口31上的锡球被吹入纵向落料通道2内时,第二电磁阀82关断缓冲控制气路62与真空通道72的连接,而接通缓冲控制气路62与通气通道71,使得落料口31后方的锡球被吹落,与此同时,第一电磁阀81将落料控制气路61与通气通道71接通,处于真空吸附状态,从而将被吹落的锡球吸附到落料口31处。由此,实现一个个锡球依序往前移动,相互之间无干扰,使得整个动作过程有序稳定的进行,从而提高整个喷射植球的精确度与效率。
在本实施例中,为了使进料通道3上的锡球能够顺利的往落料口31方向 依序移动,所述落料控制机构还包括形成于基块A13上并与上料通道4相连通的至少一吹气气路63、及至少一第三电磁阀83,该吹气气路63与通气通道71分别连接于第三电磁阀83,所述第三电磁阀83设置于上部11上。
在使用时,还可以将喷射头主体1靠近纵向落料通道2的一端向下倾斜一定角度,这样,进料通道3具有一定的斜度,锡球进入进料通道3后在其自重力的作用下向前滚动。
如图16至19所示,在上部12上分别形成有连通第一电磁阀81与落料控制气路61的数个第一连通孔121、及连通第二电磁阀82与缓冲控制气路62数个第二连通孔122、及连通第三电磁阀83与吹气气路63的至少一第三连通孔123,从而实现落料控制气路61分别连通于通气通道71与真空通道72,缓冲控制气路62分别连通于通气通道71与真空通道72,以及吹气气路连通于真空通道72。
本实施例中,如图6、图7、图10与图11所示,所述落料控制气路61具有对应于纵向落料通道2与进料通道3连通位置处的一第一通气孔611;所述缓冲控制气路62具有对应于进料通道3的一第二通气孔621。由此,实现落料控制气路61与纵向落料通道2连通,以及缓冲控制气路62与进料通道3连通。
同时,所述第二通气孔621作用于进料通道3的位置与落料口31间的距离大于锡球的直径且小于两个锡球的直径之和,这样,避免第一通气孔611与第二通气孔621间藏球,更好的控制锡球一个一个进入纵向落料通道2中。
如图13所示,所述落料控制气路61靠近第一通气孔611的一端形成一第一弯折部612,该第一弯折部612的宽度由弯折处到第一通气孔611处逐渐减小;将落料控制气路61设计成弯折形状,并且与纵向落料通道2连接的一端具有尖嘴结构,这样,当落料控制气路61与通气通道71相连通时,在落料控制气路61内能形成稳定的气流,当落料控制气路61与真空通道72连通时,则形成稳定的真空状态;与纵向落料通道2连通的一端具有尖嘴结构,利于提高第一通气孔611处吹气与吸气的强度,有效对锡球进行吸起与吹落,从而提高植球的精确度与速度。
同理,所述缓冲控制气路62靠近第二通气孔621的一端形成一第二弯折部622,该第二弯折部622的宽度由弯折处到第二通气孔621处逐渐减小;利于缓冲控制气路62内形成稳定的气流或具有稳定的真空状态,同时,增大第二通气孔621对锡球吹气与吸气的强度,实现对锡球的精确控制。
如图8与图24所示,在所述基块A13上且位于上料通道4下方还形成有与吹气气路63连通的一上料堆积槽(131,131')。
本实施例中,如图8、图12所示,在所述基块A13上还形成有一吹气槽132,所述吹气气路63一端均与该吹气槽132连通,另一端与上料堆积槽131连通并在上料堆积槽131一侧壁的上端形成数个吹气口133,该侧壁的下端与进料通道3端部围合形成数个进料口32,所述上料堆积槽131位于上料通道2下方并具有条状结构,且上料堆积槽131的两端具有弧形连接面,上料堆积槽131上料堆积槽131其中,所述吹气口133沿上料堆积槽131的侧壁均匀分布,所述进料口32分布于上料堆积槽131侧壁的中部位置,且进料口32的大小一次仅允许一个锡球通过。
将锡球由上料通道4上料,锡球掉落并堆积在上料堆积槽131内,当吹气气路63进行吹气时,由各个吹气口133同时向上料堆积槽131进行吹气,同时,上料堆积槽131两端的弧形连接面对气体也有导向作用,使气体沿两端侧壁流动,这样,在上料堆积槽131的中部、及两侧边均形成气流,从而有效的将堆积的锡球吹散,锡球被吹入进料口32进入进料通道3内,并在气流作用下向纵向落料通道2快速移动,同时,通过控制进料口32的大小,使锡球一个一个落入进料32口内,避免出现堆积堵塞现象。本实施例中,所有的吹气气路63一端均汇集于一个吹气槽132,极大的简化了内部结构,且便于对吹气气路63进行统一控制,使吹气口133同时对上料堆积槽131进行吹气,从而有效的将锡球吹散并吹入进料通道3内。
本实施例中,如图14与图15所示,所述上料通道4下端具有喇叭状结构;当吹气气路63向上料堆积槽131内进行吹气时,堆积的锡球在竖直方向上有足够的松动空间,利于将锡球吹散并顺利进入进料通道3内,从而提高植球效率、及植球精确度。
为了提高单头植球设备结构的紧凑性,降低制造成本,如图5所示,所述通气通道71与真空通道72并排设置于上部11内并分别沿进料通道3方向延伸,在通气通道71与真空通道72间形成有数组横向通道组73,该横向通道组73包括与通气通道71相连通的一横向通气通道731、及与真空通道72连通的一第一横向真空通道732,所述第一电磁阀81分别连接于横向通气通道731与第一横向真空通道732,所述第二电磁阀82分别连接于横向通气通道731与第一横向真空通道732。
本实施例中,如图1与图5所示,所述横向通道组73包括一第一横向通道组73a、及一第二横向通道组73b;同时,在上部12上形成有供第一电磁阀81插入的数组第一插孔组124、及供第二电磁阀82插入的数组第二插孔组125,所述第一连通孔121、及第一横向通道组73a的横向通气通道731与第一横线真空通道732分别连通于第一插孔组124,所述第二连通孔122、及第二横向通道组73b的横向通气通道731与第一横线真空通道732分别连通于第二插孔组125。由此,通过上部12与基块A13配合,实现落料控制气路61分别连通于通气通道71与真空通道72,以及缓冲控制气路62分别连通于通气通道71与真空通道72,且喷射头整体结构更紧凑,体积更小。
在上部12内且位于通气通道71与真空通道72间形成有至少一第二横向真空通道74,在上部12上形成有供第三电磁阀82插入的至少一第三插孔组126,所述第三连通孔123与第二横向真空通道72分别连通于该第三插孔组126。
本实施例中,由于吹气气路63汇集于一个吹气槽132内,因此,如图1、图2、图16与图19所示,所述第三插孔组126的数量为一组,相应的第三连通孔123、及第三电磁阀83的数量均为一个,由此,通过一个第三电磁阀83即可实现对多条吹气气路63进行控制,极大简化了喷射头主体1的结构,降低加工成本。
如图1与图2所示,在上部12上还设置有与上料通道4连接的一上料管9,用于对上料通道4上料。
如图1、图20与图21所示,为了方便加工,所述喷射头主体1还包括 一基块B14,其设置于基块A13与下部11间,所述进料通道3形成于该基块B14上,在进料通道3上形成有与纵向落料通道2相对应的一落料口31,所述第一通气孔611与该落料口31连通,所述第二通气孔621与靠近落料口31的进料通道3位置处相连通。由此,实现落料控制气路61与纵向落料通道2连通,及缓冲控制气路62与进料通道3连通。
本实施例中,如图22所示,所述基块B14包括一上基块B141、及位该上基块B141下方的一下基块B142,所述上料通道3形成于上基块B141,在下基块B142上形成有位于进料通道3下方的一下通道1421,其中,该下通道1421沿进料通道3长度方向延伸并与落料口31连通,且该下通道1421的宽度比进料通道3的宽度小。具体的,所述进料通道3的宽度大于锡球的直径且小于两个锡球的直径之和,下通道1421的宽度小于锡球的直径,同时,进料通道3的深度大于锡球的直径且小于两个锡球的直径之和。这样,进料通道3的每个位置上仅能容纳一个锡球,不会发生锡球堆积而堵塞的现象,同时,当吹气气路63进行吹气,吹动锡球沿进料通道3移动时,下通道1421对锡球的移动具有导向作用,使锡球在进料通道3内沿直线移动,而且,在锡球的外周充满气体,使锡球悬浮在气体中,降低锡球因接触进料通道3而产生的摩擦力,由此锡球能更快更顺畅的向前移动,进一步减小锡球在喷射头主体1内部移动的时间,提高锡球植球效率。
在此需要说明的是,本发明公开的锡球植球喷射头,是对具体结构进行改进,而对于具体的控制方式,并不是本发明的创新点。对于本实用新型中涉及到的电磁阀及其他部件,可以为通用标准件或本领域技术人员知晓的常规部件,其结构、原理及控制方式均为本领域技术人员通过技术手册得知或通过常规实验方法获知。以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故采用与本发明上述实施例相同或近似的技术特征,而得到的其他结构,均在本发明的保护范围之内。

Claims (10)

  1. 一种多头锡球植球喷射头,包括一喷射头主体,在其内部分别形成有数条纵向落料通道、及与该纵向落料通道一一对应并相连通的数条进料通道,且在该喷射头主体上形成有与进料通道相连通的一上料通道,在该喷射头主体上设置有与纵向落料通道相连通的一喷嘴,在所述喷嘴内形成有与纵向落料通道一一对应并相连通的数条喷射通道;同时,在该喷射头主体上设置有一落料控制机构,该落料控制机构对应于纵向落料通道与进料通道连通位置处;
    所述落料控制机构包括与纵向落料通道一一对应的数条落料控制气路、一通气通道、一真空通道、及与落料控制气路一一对应设置的数个第一电磁阀,所述落料控制气路、通气通道与真空通道分别连接于相应的第一电磁阀,所述落料控制气路连通于对应的进料通道与纵向落料通道连通位置处,其特征在于,
    所述喷射头主体包括:
    一下部:所述纵向落料通道形成于下部内,所述进料通道形成于下部的上端,所述喷嘴设置于下部下端;
    一上部:其位于下部上方,所述通气通道、真空通道与上料通道均形成于上部;
    一基块A:其位于上部与下部间,所述落料控制气路形成于基块A上。
  2. 根据权利要求1所述的多头锡球植球喷射头,其特征在于,所述落料控制机构还包括形成于基块A上与进料通道一一对应设置并相连通的数条缓冲控制气路、及与该缓冲控制气路一一对应设置的数个第二电磁阀,所述缓冲控制气路、真空通道与通气通道分别连接于相应的第二电磁阀,所述第二电磁设置于上部上。
  3. 根据权利要求2所述的多头锡球植球喷射头,其特征在于,所述落料控制机构还包括形成于基块A上并与上料通道相连通的至少一吹气气路、及至少一第三电磁阀,所述吹气气路与通气通道分别连接于第三电磁阀,所述 第三电磁阀设置于上部上。
  4. 根据权利要求3所述的多头锡球植球喷射头,其特征在于,在上部上分别形成有连通第一电磁阀与落料控制气路的数个第一连通孔、连通第二电磁阀与缓冲控制气路的数个第二连通孔、及连通第三电磁阀与吹气气路的至少一第三连通孔。
  5. 根据权利要求2所述的多头锡球植球喷射头,其特征在于,所述落料控制气路具有对应于纵向落料通道与进料通道连通位置处的一第一通气孔;所述缓冲控制气路具有对应于进料通道的一第二通气孔;所述落料控制气路靠近第一通气孔的一端形成一第一弯折部,该第一弯折部的宽度由弯折处到第一通气孔处逐渐减小;所述缓冲控制气路靠近第二通气孔的一端形成一第二弯折部,该第二弯折部的宽度由弯折处到第二通气孔处逐渐减小。
  6. 根据权利要求3所述的多头锡球植球喷射头,其特征在于,在所述基块A上且位于上料通道下方还形成有与吹气气路连通的一上料堆积槽。
  7. 根据权利要求2所述的多头锡球植球喷射头,其特征在于,所述通气通道与真空通道并排设置于上部内并分别沿进料通道方向延伸,在通气通道与真空通道间形成有数组横向通道组,该横向通道组包括与通气通道相连通的一横向通气通道、及与真空通道连通的一第一横向真空通道,所述第一电磁阀分别连接于横向通气通道与第一横向真空通道,所述第二电磁阀分别连接于横向通气通道与第一横向真空通道;在上部上还设置有与上料通道连接的一上料管。
  8. 根据权利要求7所述的多头锡球植球喷射头,其特征在于,所述横向通道组包括一第一的横向通道组、及一第二横向通气管道组;在上部上形成有供第一电磁阀插入的数组第一插孔组、及供第二电磁阀插入的数组第二插孔组,所述第一连通孔、及第一横向通道组的横向通气通道与第一横向真空通道分别连通于第一插孔组,所述第二连通孔、及第二横向通道组的横向通气通道与第一横向真空通道分别连通于第二插孔组。
  9. 根据权利要求5所述的多头锡球植球喷射头,其特征在于,在上部内且位于通气通道与真空通道间形成有至少一第二横向真空通道,在上部上形 成有供第三电磁阀插入的至少一第三插孔组,所述第三连通孔与第二横向真空通道分别连通于该第三插孔组。
  10. 根据权利要求4所述的多头锡球植球喷射头,其特征在于,所述喷射头主体还包括一基块B,其设置于基块A与下部间,所述进料通道形成于该基块B上,在进料通道上形成有与纵向落料通道相对应的一落料口,所述第一通气孔与该落料口连通,所述第二通气孔与靠近落料口的进料通道位置处相连通;所述基块B包括一上基块B、及位该上基块B下方的一下基块B,所述上料通道形成于上基块B,在下基块B上形成有位于进料通道下方的一下通道,其中,该下通道沿进料通道长度方向延伸并与落料口连通,且该下通道的宽度比进料通道的宽度小。
PCT/CN2021/133585 2020-11-27 2021-11-26 一种多头锡球植球喷射头 WO2023092471A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011358933.XA CN112388098A (zh) 2020-11-27 2020-11-27 一种锡球激光喷射装置
CN202111181157 2021-10-11
CN202111395032.2A CN114559123A (zh) 2020-11-27 2021-11-23 一种多头锡球植球喷射头
CN202111395032.2 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023092471A1 true WO2023092471A1 (zh) 2023-06-01

Family

ID=81712561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133585 WO2023092471A1 (zh) 2020-11-27 2021-11-26 一种多头锡球植球喷射头

Country Status (2)

Country Link
CN (1) CN114559123A (zh)
WO (1) WO2023092471A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007420A (zh) * 2023-10-08 2023-11-07 苏州锐杰微科技集团有限公司 一种芯片植球用推拉力测试机及工作方法
CN118053796A (zh) * 2024-04-16 2024-05-17 四川遂芯微电子股份有限公司 一种光伏整流器芯片植球装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093844A (ja) * 2000-09-20 2002-03-29 Ueno Seiki Kk 金属球の搭載装置および搭載方法
CN103427309A (zh) * 2013-08-20 2013-12-04 歌尔声学股份有限公司 极细同轴线焊接设备及工艺
CN203459791U (zh) * 2013-08-20 2014-03-05 歌尔声学股份有限公司 自动植入锡球装置
CN105108264A (zh) * 2015-09-23 2015-12-02 武汉凌云光电科技有限责任公司 一种用于激光锡焊的锡球泵头
CN213857521U (zh) * 2020-11-27 2021-08-03 东莞市鸿骐电子科技有限公司 一种锡球喷射头
CN213857522U (zh) * 2020-11-27 2021-08-03 东莞市鸿骐电子科技有限公司 一种锡球激光喷射装置
CN214350137U (zh) * 2020-12-01 2021-10-08 东莞迈邦焊接技术开发有限公司 锡球焊接供球结构及锡球焊接装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286543A (ja) * 1999-03-30 2000-10-13 Nec Eng Ltd はんだボール搭載方法およびこれを利用するはんだボール搭載装置
JP2011115819A (ja) * 2009-12-02 2011-06-16 Hitachi Global Storage Technologies Netherlands Bv ヘッド・ジンバル・アセンブリの製造方法及びヘッド・ジンバル・アセンブリの接続パッドを相互接続する装置
CN105855659B (zh) * 2016-06-27 2017-12-19 上海嘉强自动化技术有限公司 一种微型锡球焊接的送料装置
CN112388098A (zh) * 2020-11-27 2021-02-23 东莞市鸿骐电子科技有限公司 一种锡球激光喷射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093844A (ja) * 2000-09-20 2002-03-29 Ueno Seiki Kk 金属球の搭載装置および搭載方法
CN103427309A (zh) * 2013-08-20 2013-12-04 歌尔声学股份有限公司 极细同轴线焊接设备及工艺
CN203459791U (zh) * 2013-08-20 2014-03-05 歌尔声学股份有限公司 自动植入锡球装置
CN105108264A (zh) * 2015-09-23 2015-12-02 武汉凌云光电科技有限责任公司 一种用于激光锡焊的锡球泵头
CN213857521U (zh) * 2020-11-27 2021-08-03 东莞市鸿骐电子科技有限公司 一种锡球喷射头
CN213857522U (zh) * 2020-11-27 2021-08-03 东莞市鸿骐电子科技有限公司 一种锡球激光喷射装置
CN214350137U (zh) * 2020-12-01 2021-10-08 东莞迈邦焊接技术开发有限公司 锡球焊接供球结构及锡球焊接装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007420A (zh) * 2023-10-08 2023-11-07 苏州锐杰微科技集团有限公司 一种芯片植球用推拉力测试机及工作方法
CN117007420B (zh) * 2023-10-08 2024-01-05 苏州锐杰微科技集团有限公司 一种芯片植球用推拉力测试机及工作方法
CN118053796A (zh) * 2024-04-16 2024-05-17 四川遂芯微电子股份有限公司 一种光伏整流器芯片植球装置

Also Published As

Publication number Publication date
CN114559123A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2023092471A1 (zh) 一种多头锡球植球喷射头
US5626277A (en) Mounting apparatus of solder-balls
WO2023092470A1 (zh) 一种单头锡球植球喷射头
US20130108409A1 (en) Thin substrate, mass-transfer bernoulli end-effector
CN102610535B (zh) 植球装置、焊球拾取方法以及焊球安装方法
CN213857522U (zh) 一种锡球激光喷射装置
CN213857521U (zh) 一种锡球喷射头
CN112388098A (zh) 一种锡球激光喷射装置
JP2018120938A (ja) 半導体製造装置および半導体装置の製造方法
CN206074992U (zh) 一种全自动一体曝光生产线
JP4960191B2 (ja) 電子部品の実装方法及び装置
WO2023092472A1 (zh) 一种激光焊接用单头喷射头
KR101322922B1 (ko) 기판 부상 스테이지용 에어홀 구조, 에어홀 유닛, 및 이를 구비한 기판 부상 스테이지 및 기판 부상 장치
JP7421412B2 (ja) 吸着装置の状態判定装置
CN208378994U (zh) 一种旋转式连续镀膜设备
CN216700508U (zh) 一种拾取组件
CN207986073U (zh) 一种瓶盖提升整理装置
CN220282797U (zh) 一种防彼此干扰的伯努利吸盘
CN219019522U (zh) 四合一集成伺服高速取种机构
CN116344434B (zh) 一种激光解键合后的快速除尘和转移方法以及取片机械手
JP3430933B2 (ja) 導電性ボールの搭載装置および搭載方法
CN216638118U (zh) 一种吸嘴、吸料装置及固晶机
CN221047760U (zh) 一种溢流阀装配设备
KR100477372B1 (ko) 액정 주입장치
US20020066765A1 (en) Die bonder and/or wire bonder with a device for holding down a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965205

Country of ref document: EP

Kind code of ref document: A1