WO2023090312A1 - 積層シートの製造方法、積層電子部品の製造方法、及び積層シート - Google Patents

積層シートの製造方法、積層電子部品の製造方法、及び積層シート Download PDF

Info

Publication number
WO2023090312A1
WO2023090312A1 PCT/JP2022/042357 JP2022042357W WO2023090312A1 WO 2023090312 A1 WO2023090312 A1 WO 2023090312A1 JP 2022042357 W JP2022042357 W JP 2022042357W WO 2023090312 A1 WO2023090312 A1 WO 2023090312A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
ceramic green
insulating paste
manufacturing
internal electrodes
Prior art date
Application number
PCT/JP2022/042357
Other languages
English (en)
French (fr)
Inventor
真史 大谷
秀彦 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280063370.2A priority Critical patent/CN117981023A/zh
Priority to KR1020247011033A priority patent/KR20240046832A/ko
Publication of WO2023090312A1 publication Critical patent/WO2023090312A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a laminated sheet manufacturing method, a laminated electronic component manufacturing method, and a laminated sheet.
  • a multilayer electronic component such as a multilayer ceramic capacitor has a structure in which external electrodes are arranged at both ends of a laminate in which ceramic green sheets with internal electrodes printed are laminated.
  • the ceramic green sheet on which the internal electrodes are printed has a step between a portion where the internal electrodes are printed and a portion where the internal electrodes are not printed.
  • An object of the present invention is to provide a method for manufacturing a laminated sheet, a method for manufacturing a laminated electronic component, and a laminated sheet that can more easily reduce non-uniformity in thickness.
  • the present invention provides a ceramic green sheet manufacturing process for manufacturing a ceramic green sheet by forming a slurry containing a ceramic powder into a sheet, and internal electrode printing for printing internal electrodes on the ceramic green sheet. and a storage elastic modulus E' of 1.0 MPa or more and 100 MPa or less at 80 ° C. and a frequency of 1 Hz in the same surface of the ceramic green sheet as the surface on which the internal electrodes are printed, where the internal electrodes are not formed.
  • an insulating paste placement step of placing a certain insulating paste; a stacking step of stacking the ceramic green sheets on which the internal electrodes are printed and the insulating paste is placed; and pressing the stacked ceramic green sheets. and a pressing step for producing the laminated sheet.
  • the present invention provides a cutting step of cutting the laminated sheet manufactured by the method of manufacturing a laminated sheet to prepare a laminated chip, and a baking step of baking the laminated chip. and an external electrode forming step of forming external electrodes on both end surfaces of the fired laminate chip.
  • the present invention is a ceramic green in which an insulating paste having a storage elastic modulus E' of 1.0 MPa or more and 100 MPa or less at 80 ° C. and a frequency of 1 Hz is arranged in an internal electrode and a region where the internal electrode is not printed.
  • an insulating paste having a storage elastic modulus E' of 1.0 MPa or more and 100 MPa or less at 80 ° C. and a frequency of 1 Hz is arranged in an internal electrode and a region where the internal electrode is not printed.
  • the present invention it is possible to provide a method for manufacturing a laminated sheet, a method for manufacturing a laminated electronic component, and a laminated sheet that can easily reduce non-uniformity in thickness.
  • FIG. 1 is a schematic perspective view of a multilayer ceramic capacitor 1;
  • FIG. 2 is a cross-sectional view of the multilayer ceramic capacitor 1 shown in FIG. 1 taken along line II-II.
  • FIG. 2 is a cross-sectional view along line III-III of the multilayer ceramic capacitor 1 shown in FIG. 1;
  • FIG. 3 is a flow chart illustrating a method for manufacturing a laminated ceramic capacitor 1 including a method for manufacturing a laminated sheet 20.
  • FIG. FIG. 3 is a perspective view illustrating the state of arrangement of insulating paste 14b on a base sheet 23, where (a) is Example 1, (b) is Example 2, (c) is Example 3, and (d) is Example 4. , (e) is Example 5.
  • FIG. 1 is a schematic perspective view of a multilayer ceramic capacitor 1
  • FIG. 2 is a cross-sectional view of the multilayer ceramic capacitor 1 shown in FIG. 1 taken along line II-II.
  • FIG. 2 is a cross-sectional view along line III-III
  • FIG. 4 is a cross-sectional view for explaining an arrangement state of an insulating paste 14b on a base sheet 23, (a) being Example 1, (b) being Example 2, and (c) being Example 3; It is the figure which showed the state after press process S5 of the lamination sheet 20.
  • FIG. 4 is a cross-sectional view for explaining an arrangement state of an insulating paste 14b on a base sheet 23, (a) being Example 1, (b) being Example 2, and (c) being Example 3; It is the figure which showed the state after press process S5 of the lamination sheet 20.
  • FIG. 1 is a schematic perspective view of a laminated ceramic capacitor 1 using a laminated sheet 20.
  • FIG. 2 is a cross-sectional view of the multilayer ceramic capacitor 1 shown in FIG. 1 along line II-II.
  • FIG. 3 is a cross-sectional view of the multilayer ceramic capacitor 1 shown in FIG. 1 taken along line III-III.
  • a multilayer ceramic capacitor 1 has a substantially rectangular parallelepiped shape and includes a laminate 2 and a pair of external electrodes 3 provided at both ends of the laminate 2 .
  • the laminate 2 includes an inner layer section 10 in which a plurality of dielectric layers 11 and a plurality of internal electrodes 12 are laminated.
  • the direction in which the pair of external electrodes 3 are provided in the multilayer ceramic capacitor 1 is defined as the length direction L as a term that indicates the orientation of the multilayer ceramic capacitor 1 .
  • a stacking direction T is a direction in which the dielectric layers 11 and the internal electrodes 12 are stacked.
  • a direction crossing both the length direction L and the stacking direction T is defined as a width direction W.
  • the width direction W is orthogonal to both the length direction L and the stacking direction T.
  • a pair of outer peripheral surfaces facing the stacking direction T is referred to as a main surface A
  • a pair of outer peripheral surfaces facing the width direction W is referred to as a side surface B
  • a long A pair of outer surfaces facing each other in the longitudinal direction L are referred to as a first end surface Ca and a second end surface Cb, and when the first end surface Ca and the second end surface Cb do not need to be specifically distinguished and described, they will be collectively described as an end surface C. .
  • the laminate 2 includes an inner layer portion 10 and an outer layer portion 7 arranged on both main surface A sides of the inner layer portion 10 .
  • the inner layer portion 10 includes a plurality of dielectric layers 11, internal electrodes 12 arranged between the plurality of dielectric layers 11, and portions between the plurality of dielectric layers 11 where the internal electrodes 12 are not arranged. and an insulator 14a.
  • the dielectric layer 11 is formed by, for example, adding a binder, a plasticizer, a dispersant, etc. to a mixture obtained by adding and mixing a ceramic powder such as BaTiO 3 , a glass component, and a sintering aid as necessary.
  • a ceramic green sheet 21 obtained by molding a slurry containing an agent and an organic solvent into a sheet is sintered.
  • the storage elastic modulus E′ at 80° C. and 1 Hz of the ceramic green sheet 21 before sintering is generally in the range of 0.5 GPa or more and 1.0 GPa or less. Note that the storage elastic modulus E' is the component of the energy generated by the external force and strain in the object that is stored inside the object.
  • the internal electrode 12 is formed by sintering an internal electrode paste containing, for example, Ni metal powder, a binder, additives such as a plasticizer and a dispersant, and an organic solvent.
  • the internal electrodes 12 include a plurality of first internal electrodes 12A and a plurality of second internal electrodes 12B. The first internal electrodes 12A and the second internal electrodes 12B are alternately arranged.
  • the first internal electrode 12A includes, in the length direction L, a first counter electrode 12Aa facing the second internal electrode 12B, and a first counter electrode 12Aa drawn out from the first counter electrode 12Aa toward the first end surface Ca. and an extraction electrode 12Ab. An end portion of the first extraction electrode 12Ab is exposed on the first end surface Ca and electrically connected to a first external electrode 3A, which will be described later.
  • the second internal electrode 12B includes, in the length direction L, a second counter electrode 12Ba facing the first internal electrode 12A, and a second counter electrode 12Ba extending from the second counter electrode 12Ba toward the second end surface Cb. and an extraction electrode 12Bb. An end portion of the second extraction electrode 12Bb is exposed on the second end face Cb and electrically connected to a second external electrode 3B, which will be described later.
  • first internal electrode 12A and the second internal electrode 12B will be collectively described as the internal electrode 12 unless it is necessary to distinguish them.
  • first counter electrode 12Aa and the second counter electrode 12Ba need not be distinguished and explained, they will be collectively explained as the counter electrode 12a.
  • extraction electrode 12b When it is not necessary to distinguish between the first extraction electrode 12Ab and the second extraction electrode 12Bb, they will be collectively described as the extraction electrode 12b.
  • the insulator 14a is composed of, for example, ceramic powder made of BaTiO 3 , a sintering aid if necessary, a binder, additives such as a plasticizer and a dispersant, and an organic solvent.
  • An insulating paste containing is sintered.
  • the storage elastic modulus E′ at 80° C. and 1 Hz of the dry coating film 14b of the insulating paste before sintering is 1.0 MPa or more and 100 MPa or less. As shown in FIG.
  • the end portion of the first counter electrode 12Aa on the side of the second end face Cb where the first lead-out electrode 12Ab is not drawn is spaced apart from the second end face Cb and is separated from the first counter electrode 12Aa.
  • An insulator 14a is filled between the second end face Cb.
  • the end portion of the second counter electrode 12Ba on the side of the first end surface Ca where the second extraction electrode 12Bb is not drawn is separated from the side of the first end surface Ca, and the second counter electrode 12Ba and the first end surface Ca Insulator 14a is filled between and.
  • both sides of the first internal electrode 12A in the width direction W are separated from the side surface B, and the space between the first internal electrode 12A and the side surface B is filled with an insulator 14a.
  • Both sides of the second internal electrode 12B in the width direction W are separated from the side surface B, and the space between the second internal electrode 12B and the side surface B is filled with an insulator 14a.
  • FIG. 4 is a flow chart illustrating a method for manufacturing the laminated ceramic capacitor 1, including a method for manufacturing the laminated sheet 20. As shown in FIG.
  • a slurry is obtained by adding additives such as a binder, a plasticizer and a dispersant, and an organic solvent to a mixture obtained by adding and mixing ceramic powder, a glass component, and optionally a sintering aid. is prepared.
  • the slurry is placed on a carrier film, squeezed into a sheet by a doctor blade, and dried to produce a ceramic green sheet 21 .
  • the storage elastic modulus E′ of the ceramic green sheet 21 at 80° C. and 1 Hz is generally in the range of 0.5 GPa or more and 1.0 GPa or less.
  • Internal electrode printing step S2 an internal electrode paste containing a metal powder, a binder, additives such as a plasticizer and a dispersant, an organic solvent, etc. is applied to the ceramic green sheets 21 so as to have a band-like pattern by screen printing, inkjet printing, It is printed in a desired shape and thickness by gravure printing or the like and dried to form the patterned internal electrodes 12 .
  • a base sheet 23 is produced by disposing an insulating paste 14b on a region where the internal electrodes 12 are not printed on the ceramic green sheet 21 on which the internal electrodes 12 are formed.
  • the insulating paste 14b contains, for example, ceramic powder made of BaTiO 3 , optionally a sintering aid, a binder, additives such as a plasticizer and a dispersant, and an organic solvent.
  • the storage elastic modulus E' at a frequency of 1 Hz is different.
  • the storage elastic modulus E′ of the ceramic green sheet 21 at 80° C.
  • the storage elastic modulus E' at 80°C and a frequency of 1 Hz is 1.0 MPa or more and 100 MPa or less.
  • the storage elastic modulus E' of the insulating paste 14b can be adjusted to 1.0 MPa or more and 100 MPa or less by adjusting a flexible binder such as PVB and a plasticizer.
  • the insulating paste 14b may be placed on the ceramic green sheet 21 by printing, or the insulating paste 14b in a semi-solid state may be placed on the ceramic green sheet 21.
  • FIG. 5 is a perspective view for explaining the state of arrangement of the insulating paste 14b on the base sheet 23.
  • (a) is Example 1
  • (b) is Example 2
  • (c) is Example 3
  • (d). is Example 4
  • (e) is Example 5.
  • 6A and 6B are cross-sectional views for explaining the arrangement state of the insulating paste 14b on the base sheet 23, where (a) is Example 1, (b) is Example 2, and (c) is Example 3.
  • FIG. 1 is Example 1
  • (b) is Example 2
  • Example 3 Example 3
  • FIG. 5(a) shows Example 1 in which the insulating paste 14b is arranged on the ceramic green sheet 21 on the entire circumference of the internal electrode 12 with no space between it and the internal electrode 12.
  • FIG. 6 is a cross-sectional view taken along line XX of FIG. 5(a); FIG.
  • Example 1 the insulating paste 14b fills the gaps extending in the length direction L and the width direction W between the internal electrodes 12 as shown in FIG. , so that the height in the stacking direction T is substantially the same as that of the internal electrodes 12 . That is, the volume of the gaps between the internal electrodes 12 in the base sheet 23 and the volume of the insulating paste 14b are substantially equal.
  • the dimensions in the length direction L and width direction W of the insulating paste 14 b do not have to strictly match the dimensions in the length direction L and width direction W of the gap between the internal electrodes 12 .
  • the dimension of the insulating paste 14b in the stacking direction T may not strictly match the dimension of the internal electrode 12 in the stacking direction T.
  • FIG. 5(b) shows Example 2 in which the insulating paste 14b is arranged all around the internal electrode 12 on the ceramic green sheet 21, but there is a gap between the internal electrode 12 and FIG. (b) is a cross-sectional view along line YY in FIG. 5(b).
  • Example 2 the insulating paste 14b is spaced apart from the internal electrodes 12 in the gaps extending in the length direction L and the width direction W between the internal electrodes 12, as shown in FIG. As shown in a), they are arranged so that the height in the stacking direction T is higher than that of the internal electrodes 12 .
  • the dimensions of the insulating paste 14b in the length direction L, width direction W, and stacking direction T are such that the total volume of the gaps between the internal electrodes 12 in the base sheet 23 is substantially equal to the total volume of the insulating paste 14b. Although it is preferable that the values are set so that the
  • FIG. 5(c) shows Example 3 in which the insulating paste 14b is arranged all around the internal electrode 12 on the ceramic green sheet 21, overlaps with the internal electrode 12, and covers the upper surface of the outer peripheral portion of the internal electrode 12.
  • FIG. 6(c) is a sectional view taken along line ZZ in FIG. 5(c).
  • the total volume of the insulating paste 14b disposed between the internal electrodes 12 and the insulating paste 14b covering the upper surfaces of the outer peripheral portions of the internal electrodes 12 is the total volume of the base sheet 23.
  • the volume is preferable to set the volume to be approximately equal to the volume of the gap between the internal electrodes 12 in , it does not have to be exactly the same.
  • Example 4 In FIG. 5(d), the insulating paste 14b is arranged partly around the internal electrodes 12, there is a gap between the internal electrodes 12, and there is a gap between the internal electrodes 12 adjacent to each other in the width direction W. , are arranged along the length direction L of the internal electrode 12 in the fourth embodiment. Also in Example 4, the dimensions of the insulating paste 14b in the length direction L, the width direction W, and the lamination direction T are such that the volume of the entire insulating paste 14b is equal to the volume of the entire gap between the internal electrodes 12 in the base sheet 23. is preferably set to be approximately equal to , but does not have to be exactly the same.
  • Example 5 (Example 5) 5(e), the insulating paste 14b is arranged partly around the internal electrodes 12, there is a gap between the internal electrodes 12, and unlike FIG. 5(d), the width between the internal electrodes 12 is
  • the gaps in the direction W or the length direction L are randomly arranged.
  • the dimensions of the insulating paste 14b in the length direction L, width direction W, and stacking direction T are such that the volume of the entire insulating paste 14b is equal to the volume of the entire gap between the internal electrodes 12 in the base sheet 23. is preferably set to be approximately equal to , but does not have to be exactly the same.
  • the insulating paste 14b arranged in the regions where the internal electrodes 12 are not printed on the ceramic green sheets 21 on which the internal electrodes 12 are formed is dried at a temperature of 30° C. or more and 70° C. or less. is preferred.
  • the insulating paste 14b maintains a certain shape on the ceramic green sheet 21 without flowing down, although it has certain fluidity.
  • the insulating paste 14b is dried at temperatures between 40.degree. C. and 60.degree.
  • (Lamination step S4) Next, using a laminating machine, a plurality of layers of the base sheet 23 are laminated to form a portion to be the inner layer portion 10, and ceramic green sheets for the outer layer portion are placed above and below the portion to be the inner layer portion 10 in the lamination direction T.
  • the lamination sheet 20 is produced by lamination.
  • the ceramic green sheets for the outer layer are made of the same material as the ceramic green sheets 21 forming the dielectric layer 11 .
  • FIG. 7 is a diagram showing the state of the laminated sheet 20 produced in the laminating step S4 after the pressing step S5 that can be extended next.
  • the plurality of base sheets 23 have the internal electrodes 12 facing the same direction of the stacking direction T, and the internal electrodes 12 are shifted by half a pitch in the length direction L between the adjacent base sheets 23. They are arranged so as to overlap in the width direction W. As shown in FIG.
  • the portion of the internal electrode 12 that becomes the counter electrode 12a is continuously laminated in the lamination direction T.
  • the portion of the internal electrode 12 that becomes the extraction electrode 12b the portion of the base sheet 23 where the internal electrode 12 exists and the portion of the base sheet 23 where the internal electrode 12 does not exist are alternately laminated. Therefore, in the laminated sheet 20, the number of stacked internal electrodes 12 in the stacking direction T in the portion to be the lead electrode 12b is half the number of stacked internal electrodes 12 in the stacking direction T in the portion to be the counter electrode 12a.
  • the internal electrodes 12 of the base sheet 23 do not exist on both sides of the portion where the internal electrodes 12 exist.
  • the insulating paste 14b is arranged in the regions of the base sheets 23 where the internal electrodes 12 are not present.
  • the pressure of the press is from 30 MPa to 150 MPa.
  • the actually implemented pressures are 50 MPa and 98 MPa.
  • the laminate sheet 20 is placed in a mold, vacuum laminated, and immersed in a hot water bath at 80° C. for 10 minutes. After that, the pressure is increased, held at about 50 MPa for 750 s, and pressurized by a hydrostatic press.
  • the insulating paste 14b has a storage elastic modulus E′ of 1.0 MPa or more and 100 MPa or less at 80° C. and a frequency of 1 Hz, and is a considerably flexible member compared to the ceramic green sheet 21 . Therefore, when pressed in the pressing step S5, the insulating paste 14b in the second, third, fourth, and fifth embodiments deforms and flows to fill the gaps between the internal electrodes 12. FIG. At this time, in Examples 4 and 5, etc., there are also gaps between the internal electrodes 12 where the insulating paste 14b is not arranged. However, due to the high fluidity of the insulating paste 14b, the insulating paste 14b also flows into these gaps, and all the gaps between the internal electrodes 12 can be filled.
  • E′ storage elastic modulus
  • Example 1 the gaps between the internal electrodes 12 are already arranged so as to fill the gaps, but since the insulating paste 14b is pressed, it is necessary to fill the slight gaps that have occurred during the arrangement. can be done. As described above, according to the embodiment, the laminated sheet 20 with few steps can be manufactured.
  • the flow of the insulating paste 14b may occur not only in the pressing step S5 but also in the lamination step S4.
  • the laminated sheet 20 is divided into cutting lines P extending in the width direction W at regular intervals in the length direction L shown in FIG. 7 and cutting lines extending in the length direction L at regular intervals in the width direction W. cut along. In FIG. 7, only cutting lines P extending in the width direction W at regular intervals in the length direction L are shown. Thereby, a plurality of laminates 2 are manufactured.
  • each laminate 2 is degreased with a desired temperature profile (about 240° C.) to remove the binder, and then sintered with a predetermined temperature profile (about 1200° C.). At this time, the insulating paste 14b is sintered to become the insulator 14a.
  • Example electrode forming step S8 an external electrode paste containing, for example, Cu as a main component, which is composed of metal powder, binder, additives (plasticizer, dispersant, etc.), organic solvent, etc., is dip-coated on the end face C of the sintered laminate 2. After drying, the external electrode paste is sintered using a belt furnace to form the external electrodes 3 . Further, a first plated film of Ni and a second plated film of Sn are formed on the outside of the external electrodes 3 by using a wet electrolytic barrel method or the like, whereby the multilayer ceramic capacitor 1 is manufactured.
  • the laminate sheet 20 in which a plurality of base sheets 23 are laminated has a portion where the total thickness of the internal electrodes 12 and the dielectric layers 11 in the lamination direction T differs due to the number of the internal electrodes 12 being different.
  • the insulating paste 14 is arranged in the portion where the internal electrode 12 does not exist or the portion where the number of internal electrodes 12 is small. Therefore, the thickness of the laminated sheet 20 in the lamination direction T can be made uniform.
  • the insulating paste 14 Since the insulating paste 14 has a storage elastic modulus E′ of 1.0 MPa or more and 100 MPa or less at 80° C. and a frequency of 1 Hz, it easily flows. Therefore, when the insulating paste 14 is placed on the portion of the ceramic green sheet 21 where the internal electrode 12 does not exist, the length direction L and width direction W of the portion where the internal electrode 12 does not exist and the internal electrode 12 It is not necessary to strictly match the dimension in the stacking direction T. Even if the insulating paste 14 does not strictly match the dimensions of the internal electrodes 12 in the stacking direction T, the insulating paste 14 flows when pressed in the pressing step S5 or the like, and fills the portions where the internal electrodes 12 do not exist. can be done. Therefore, there is no need for highly accurate thickness control and positioning when the insulating paste 14 is arranged on the ceramic green sheet 21, and the laminated sheet 20 having a uniform thickness can be easily manufactured.
  • E′ storage elastic modulus
  • the thickness in the lamination direction T is uniform, so the possibility of cracks occurring in the sintering process is reduced.
  • the insulating paste 14b has a storage elastic modulus E' of 1.0 MPa or more and 100 MPa or less at 80°C and 1 Hz of the embodiment, voids are not generated at the ends in the width direction W after sintering. Furthermore, good performance can be obtained in terms of electrical properties as well.
  • the present invention is not limited thereto.
  • a ceramic green sheet for the outer layer portion manufactured with the same material as the ceramic green sheet 21 forming the dielectric layer 11 was used, but the present invention is not limited to this.
  • Part 7 may be made of the same material as insulating paste 14b.
  • the surfaces of both main surfaces A of the laminated sheet 21 can be made smoother. That is, when the laminated sheet 21 is cut to form the laminated body 2, it is possible to prevent the laminated body 2 from becoming drum-shaped due to a decrease in the dimension of the outer peripheral side in the lamination direction T. Since the laminate 2 does not have a drum shape, folds are easily formed when the external electrodes 3 are applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

厚みの不均一性を容易に低減可能な積層シートの製造方法を提供する。本発明の積層シート20の製造方法は、セラミック粉末を含むスラリーをシート状に成形してセラミックグリーンシート21を作製するセラミックグリーンシート作製工程S1と、セラミックグリーンシート21に内部電極12を印刷する内部電極印刷工程S2と、セラミックグリーンシート21における内部電極12が印刷されている面と同一面の、内部電極12されていない領域に、80℃で周波数1Hzにおける貯蔵弾性率E'が1.0MPa以上100MPa以下である絶縁性ペースト14bを配置する絶縁性ペースト配置工程S3と、内部電極12が印刷及び絶縁性ペースト14bが配置されたセラミックグリーンシート21を積層する積層工程S4と、積層されたセラミックグリーンシート21をプレスして積層シート20を作製するプレス工程S5と、を含む。

Description

積層シートの製造方法、積層電子部品の製造方法、及び積層シート
 本発明は、積層シートの製造方法、積層電子部品の製造方法及び積層シートに関する。
 積層セラミックコンデンサ等の積層電子部品は、内部電極が印刷されたセラミックグリーンシートが積層された積層体の両端に、外部電極が配置された構造を有する。しかし、内部電極が印刷されたセラミックグリーンシートには、内部電極が印刷されている部分と印刷されていない部分との間に段差がある。このセラミックグリーンシートが積層されると、段差が累積して、積層体の積層方向において厚みに不均一性が生じ、焼成段階において、不均一な厚み部分に亀裂が生じることがある。
 このため、セラミックグリーンシート上の内部電極が形成されていない領域に、セラミックグリーンシートと同じ材料で製造された、内部電極と同じ厚みのシートを配置し、これによってセラミックグリーンシート上の段差をなくすことが提案されている(特許文献1参照)。
特開昭56-94719号公報
 しかし、セラミックグリーンシートと同じ材料で製造された、内部電極と同じ厚み且つ内部電極の隙間の寸法と等しいシートを、その隙間に配置しようとすると、高精度な厚み管理や位置合わせが必要となる。本発明は、より容易に、厚みの不均一性を低減可能な積層シートの製造方法、積層電子部品の製造方法、及び、積層シートを提供することを目的とする。
 上記課題を解決するために、本発明は、セラミック粉末を含むスラリーをシート状に成形してセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、前記セラミックグリーンシートに内部電極を印刷する内部電極印刷工程と、前記セラミックグリーンシートにおける前記内部電極が印刷されている面と同一面の、前記内部電極されていない領域に、80℃で周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下である絶縁性ペーストを配置する絶縁性ペースト配置工程と、前記内部電極が印刷及び前記絶縁性ペーストが配置された前記セラミックグリーンシートを積層する積層工程と、積層された前記セラミックグリーンシートをプレスして積層シートを作製するプレス工程と、を含む、積層シートの製造方法を提供する。
 また、上記課題を解決するために、本発明は、上記積層シートの製造方法により製造された積層シートを切断して積層体チップを作製する切断工程と、前記積層体チップを焼成する焼成工程と、焼成された前記積層体チップの両端面に外部電極を形成する外部電極形成工程と、を備える積層電子部品の製造方法を提供する。
 さらに、本発明は、内部電極と、前記内部電極が印刷されていない領域に、80℃で周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下である絶縁性ペーストが配置されたセラミックグリーンシートが複数積層された、積層シートを提供する。
 本発明によれば、厚みの不均一性を容易に低減可能な積層シートの製造方法、積層電子部品の製造方法、及び、積層シートを提供する提供することができる。
積層セラミックコンデンサ1の概略斜視図である。 図1に示す積層セラミックコンデンサ1のII-II線に沿った断面図である。 図1に示す積層セラミックコンデンサ1のIII-III線に沿った断面図である。 積層シート20の製造方法を含む、積層セラミックコンデンサ1の製造方法を説明するフローチャートである。 ベースシート23における絶縁性ペースト14bの配置状態を説明する斜視図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は実施例4、(e)は実施例5である。 ベースシート23における絶縁性ペースト14bの配置状態を説明する断面図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3である。 積層シート20のプレス工程S5後の状態を示した図である。
 以下、本発明の実施形態にかかる積層シート20の製造方法、積層シート20を用いた積層電子部品としての積層セラミックコンデンサ1の製造方法、及び積層シート20について説明する。図1は、積層シート20を用いた積層セラミックコンデンサ1の概略斜視図である。図2は、図1に示す積層セラミックコンデンサ1のII-II線に沿った断面図である。図3は、図1に示す積層セラミックコンデンサ1のIII-III線に沿った断面図である。
(積層セラミックコンデンサ1)
 積層セラミックコンデンサ1は、略直方体形状で、積層体2と、積層体2の両端に設けられた一対の外部電極3とを備える。積層体2は、複数の誘電体層11と複数の内部電極12とが積層された内層部10を含む。
 以下の説明において、積層セラミックコンデンサ1の向きを表わす用語として、積層セラミックコンデンサ1において、一対の外部電極3が設けられている方向を長さ方向Lとする。誘電体層11と内部電極12とが積層されている方向を積層方向Tとする。長さ方向L及び積層方向Tのいずれにも交差する方向を幅方向Wとする。なお、実施形態においては、幅方向Wは長さ方向L及び積層方向Tのいずれにも直交している。
 また、以下の説明において、積層体2の6つの外周面のうち、積層方向Tに相対する一対の外周面を主面Aとし、幅方向Wに相対する一対の外周面を側面Bとし、長さ方向Lに相対する一対の外表面を第1端面Caと第2端面Cbとし、第1端面Caと第2端面Cbとを特に区別して説明する必要のない場合、まとめて端面Cとして説明する。
(積層体2)
 積層体2は、内層部10と、内層部10の両方の主面A側に配置される外層部7と、を備える。
(内層部10)
 内層部10は、複数の誘電体層11と、複数の誘電体層11の間に配置された内部電極12と、複数の誘電体層11の間における内部電極12が配置されていない部分を充填する絶縁体14aと、を備える。
(誘電体層11)
 誘電体層11は、例えば、BaTiOであるセラミック粉末と、ガラス成分と、必要に応じて焼結助剤と、を添加して混合した混合物に、バインダと、可塑剤や分散剤等の添加剤と、有機溶剤と、を加えたスラリーをシート状に成形して得られたセラミックグリーンシート21が焼結されたものである。焼結前のセラミックグリーンシート21の80℃、1Hzにおける貯蔵弾性率E’は、一般的には0.5GPa以上1.0GPa以下の範囲にあるものが多い。なお、貯蔵弾性率E’とは、物体に外力とひずみにより生じたエネルギーのうち物体の内部に保存する成分である。
(内部電極12)
 内部電極12は、例えばNiである金属粉末と、バインダと、可塑剤や分散剤等の添加剤と、有機溶剤等を含む内部電極ペーストが焼結されたものである。内部電極12は、複数の第1の内部電極12Aと複数の第2の内部電極12Bとを備える。第1の内部電極12Aと第2の内部電極12Bとは、交互に配置されている。
(第1の内部電極12A)
 第1の内部電極12Aは、長さ方向Lに、第2の内部電極12Bと対向する第1の対向電極12Aaと、第1の対向電極12Aaから第1端面Ca側に引き出された第1の引出電極12Abとを備える。第1の引出電極12Abの端部は第1端面Caに露出し、後述の第1の外部電極3Aに電気的に接続されている。
(第2の内部電極12B)
 第2の内部電極12Bは、長さ方向Lに、第1の内部電極12Aと対向する第2の対向電極12Baと、第2の対向電極12Baから第2端面Cb側に引き出された第2の引出電極12Bbとを備える。第2の引出電極12Bbの端部は第2端面Cbに露出し、後述の第2の外部電極3Bに電気的に接続されている。
 以下、第1の内部電極12Aと第2の内部電極12Bとを特に区別して説明する必要のない場合、まとめて内部電極12として説明する。第1の対向電極12Aaと第2の対向電極12Baとを区別して説明する必要のない場合、まとめて対向電極12aとして説明する。第1の引出電極12Abと第2の引出電極12Bbとを区別して説明する必要のない場合、まとめて引出電極12bとして説明する。
(絶縁体14a)
 絶縁体14aは、セラミックグリーンシート21と同様に、例えば、BaTiOからなるセラミック粉末と、必要に応じて焼結助剤と、バインダと、可塑剤や分散剤等の添加剤と、有機溶剤等を含む絶縁性ペーストが焼結されたものである。
 焼結前の絶縁性ペーストの乾燥塗膜14bの80℃、1Hzにおける貯蔵弾性率E’は、1.0MPa以上100MPa以下である。
 図2に示すように、第1の対向電極12Aaの第1の引出電極12Abが引き出されていない第2端面Cb側の端部は、第2端面Cbから離間し、第1の対向電極12Aaと第2端面Cbとの間には絶縁体14aが充填されている。また、第2の対向電極12Baの第2の引出電極12Bbが引き出されていない第1端面Ca側の端部は、第1端面Ca側から離間し、第2の対向電極12Baと第1端面Caとの間には絶縁体14aが充填されている。
 図3に示すように、第1の内部電極12Aの幅方向Wの両側は、それぞれ側面Bから離間しており、第1の内部電極12Aと側面Bとの間には絶縁体14aが充填されている。また、第2の内部電極12Bの幅方向Wの両側は、それぞれ側面Bから離間しており、第2の内部電極12Bと、側面Bとの間には絶縁体14aが充填されている。
(積層シート20及び積層シート20を用いた積層セラミックコンデンサ1の製造方法)
 次に、積層シート20の製造方法及び、積層シート20を用いた積層セラミックコンデンサ1の製造方法について説明する。図4は、積層シート20の製造方法を含む、積層セラミックコンデンサ1の製造方法を説明するフローチャートである。
(セラミックグリーンシート作製工程S1)
 まず、セラミック粉末と、ガラス成分と、必要に応じて焼結助剤と、を添加して混合した混合物に、バインダ、可塑剤や分散剤等の添加剤と、有機溶剤と、を加えてスラリーが調製される。次いで、スラリーがキャリアフィルム上に配置され、ドクターブレードによりシート状にスキージングされた後、乾燥されてセラミックグリーンシート21が作製される。セラミックグリーンシート21の80℃、1Hzにおける貯蔵弾性率E’は、一般的には0.5GPa以上1.0GPa以下の範囲にあるものが多い。
(内部電極印刷工程S2)
 続いて、作製されたセラミックグリーンシート21に、金属粉末、バインダ、可塑剤や分散剤等の添加剤、有機溶剤等を含む内部電極ペーストが、帯状のパターンを有するようにスクリーン印刷、インクジェット印刷、グラビア印刷等によって所望の形状、厚みで印刷されて乾燥され、パターン状の内部電極12が形成される。
(絶縁性ペースト配置工程S3)
 内部電極12が形成されたセラミックグリーンシート21上の、内部電極12が印刷されていない領域に絶縁性ペースト14bを配置してベースシート23を作製する。
 絶縁性ペースト14bは、例えば、BaTiOからなるセラミック粉末と、必要に応じて焼結助剤と、バインダと、可塑剤や分散剤等の添加剤と、有機溶剤等を含むが、80℃、周波数1Hzにおける貯蔵弾性率E’が異なる。セラミックグリーンシート21の80℃、1Hzにおける貯蔵弾性率E’は、一般的には0.5GPa以上1.0GPa以下の範囲にあるものが多いが、絶縁性ペースト14bは、それよりもかなり低く、80℃、周波数1Hzにおける貯蔵弾性率E’は1.0MPa以上100MPa以下である。この絶縁性ペースト14bの貯蔵弾性率E’は、例えばPVBなどの柔軟なバインダと可塑剤とを調整することで1.0MPa以上100MPa以下に調整することができる。
 なお、絶縁性ペースト14bは、セラミックグリーンシート21上に印刷により配置してもよく、また、半固形状態の絶縁性ペースト14bをセラミックグリーンシート21上に配置してもよい。
 図5は、ベースシート23における絶縁性ペースト14bの配置状態を説明する斜視図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は実施例4、(e)は実施例5である。図6は、ベースシート23における絶縁性ペースト14bの配置状態を説明する断面図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3である。
(実施例1)
 図5(a)は、セラミックグリーンシート21上において、絶縁性ペースト14bが内部電極12の全周に内部電極12との間に隙間なく配置された実施例1であり、図6(a)は、図5(a)のX-X線に沿った断面図である。
 実施例1において絶縁性ペースト14bは、図5(a)に示すように、内部電極12間の長さ方向L及び幅方向Wに延びる隙間を埋めるように、また、図6(a)に示すように、積層方向Tの高さが内部電極12と略同じになるように配置されている。すなわち、ベースシート23における内部電極12間の隙間の体積と、絶縁性ペースト14bの体積とは略等しい。
 ただし、絶縁性ペースト14bの長さ方向L及び幅方向Wの寸法は、内部電極12間の隙間の長さ方向L及び幅方向Wの寸法と厳密に一致していなくてもよい。また、絶縁性ペースト14bの積層方向Tの寸法は、内部電極12の積層方向Tの寸法と厳密に一致していなくてもよい。
(実施例2)
 図5(b)は、セラミックグリーンシート21上において、絶縁性ペースト14bが内部電極12の全周に配置されているが、内部電極12との間に隙間がある実施例2であり、図6(b)は、図5(b)のY-Y線に沿った断面図である。
 実施例2において絶縁性ペースト14bは、図5(b)に示すように、内部電極12間の長さ方向L及び幅方向Wに延びる隙間に、内部電極12から離間し、また、図6(a)に示すように、積層方向Tの高さが内部電極12より高くなるように配置されている。
 この絶縁性ペースト14bの、長さ方向L、幅方向W及び積層方向Tの寸法は、ベースシート23における内部電極12間の隙間の全体の体積が、絶縁性ペースト14bの全体の体積と略等しくなるように設定されることが好ましいが、厳密に一致していなくてもよい。
(実施例3)
 図5(c)は、セラミックグリーンシート21上において、絶縁性ペースト14bが内部電極12の全周に配置され、さらに内部電極12と重なり内部電極12の外周部分の上面を覆っている実施例3であり、図6(c)は、図5(c)のZ-Z線に沿った断面図である。
 実施例3においても、内部電極12間に配置されている絶縁性ペースト14bの体積と内部電極12の外周部分の上面を覆っている絶縁性ペースト14bとの体積を合わせた体積が、ベースシート23における内部電極12間の隙間の体積と略等しくなるように設定されることが好ましいが、厳密に一致していなくてもよい。
(実施例4)
 図5(d)は、絶縁性ペースト14bが、内部電極12の周囲の一部に配置され、内部電極12との間に隙間があり、幅方向Wに互いに隣接する内部電極12間の隙間に、内部電極12の長さ方向Lに沿って配置されている実施例4である。
 実施例4においても、絶縁性ペースト14bの、長さ方向L、幅方向W及び積層方向Tの寸法は、絶縁性ペースト14b全体の体積が、ベースシート23における内部電極12間の隙間全体の体積と略等しくなるように設定されることが好ましいが、厳密に一致していなくてもよい。
(実施例5)
 図5(e)は、絶縁性ペースト14bが、内部電極12の周囲の一部に配置され、内部電極12との間に隙間があり、図5(d)と異なり、内部電極12間の幅方向Wまたは長さ方向Lの隙間に、ランダムに配置されている実施例5である。
 実施例5においても、絶縁性ペースト14bの、長さ方向L、幅方向W及び積層方向Tの寸法は、絶縁性ペースト14b全体の体積が、ベースシート23における内部電極12間の隙間全体の体積と略等しくなるように設定されることが好ましいが、厳密に一致していなくてもよい。
 このように、内部電極12が形成されたセラミックグリーンシート21上の、内部電極12が印刷されていない領域に配置された絶縁性ペースト14bは、30℃以上70℃以下の温度で乾燥されることが好ましい。この乾燥により、絶縁性ペースト14bは一定の流動性は有するものの、流れ落ちたりする程度ではなく、セラミックグリーンシート21上で一定の形状を保つ状態となる。なお、本実施形態では、絶縁性ペースト14bを40℃と60℃との温度で乾燥させた。ただし、乾燥させずに、次の積層工程S4に進んでもよい。
(積層工程S4)
 次いで、積層機を用いて、ベースシート23を複数層積層し、内層部10となる部分を作成し、さらに内層部10となる部分の積層方向Tの上下に、外層部用のセラミックグリーンシートを積層して積層シート20を作製する。外層部用のセラミックグリーンシートは、誘電体層11を形成するセラミックグリーンシート21と等しい材料で製造されている。
 図7は積層工程S4において作成された積層シート20の、次に延び得るプレス工程S5後の状態を示した図である。図7に示すように、複数のベースシート23は、内部電極12が積層方向Tの同一方向を向き、且つその内部電極12が隣り合うベースシート23間において長さ方向Lにおいて半ピッチずつずれ、幅方向Wにおいて重なる状態になるように配置される。
 このとき、内部電極12における対向電極12aとなる部分は、積層方向Tに連続して積層される。一方、内部電極12における引出電極12bとなる部分は、ベースシート23の内部電極12が存在する部分と、ベースシート23の内部電極12が存在しない部分とが交互に積層される。したがって、積層シート20において、引出電極12bとなる部分の積層方向Tにおける内部電極12の積層枚数は、対向電極12aとなる部分の積層方向Tにおける内部電極12の積層枚数の半分になる。また、幅方向Wでは、内部電極12が存在する部分の両側は、ベースシート23の内部電極12が存在しない。
 しかし、実施形態では、これらのベースシート23における内部電極12が存在しない領域に、絶縁性ペースト14bが配置されている。
(プレス工程S5)
 次に、積層シート20をプレスする。プレスの圧力は30MPaから150MPaである。実際に実施した圧力は50MPと98MPaである。積層シート20は金型に入れられ、真空ラミネートされ、80℃の温水槽に浸漬されて10分加熱される。その後、昇圧されて約50MPaで750s保持され、静水圧プレスで加圧される。
 このとき、絶縁性ペースト14bは、80℃、周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下であり、セラミックグリーンシート21と比べてかなり柔軟な部材である。
 したがって、プレス工程S5においてプレスされると、実施例2,3,4,5において絶縁性ペースト14bは変形して流動し、内部電極12間の隙間を埋めることができる。このとき、実施例4,5等においては、絶縁性ペースト14bが配置されていない内部電極12間の隙間も存在する。しかし、絶縁性ペースト14bの高い流動性により、これらの隙間にも絶縁性ペースト14bが流入し、内部電極12間の全ての隙間を充填することができる。
 なお、実施例1の場合は、すでに内部電極12間の隙間を埋めるように配置されているが、絶縁性ペースト14bが押圧されるので、配置の際に生じていた若干の隙間などを埋めることができる。
 以上のように、実施形態によると、段差が少ない積層シート20を製造することができる。
 なお、絶縁性ペースト14bの流動は、プレス工程S5だけでなく、積層工程S4において発生してもよい。
(切断工程S6)
 積層シート20は、図7に示す長さ方向Lに一定の間隔を開けて幅方向Wに延びる切断線Pと、幅方向Wに一定の間隔を開けて長さ方向Lに延びる切断線とに沿って切断される。図7においては、長さ方向Lに一定の間隔を開けて幅方向Wに延びる切断線Pのみ示す。これにより、複数の積層体2が製造される。
(焼結工程S7)
 次いで、それぞれの積層体2は、所望の温度プロファイル(240℃程度)で脱脂されてバインダが除去され、その後、所定の温度プロファイル(1200℃程度)で焼結される。このとき、絶縁性ペースト14bは焼結されて絶縁体14aとなる。
(外部電極形成工程S8)
 そして、焼結された積層体2の端面Cに、金属粉末、バインダ、添加剤(可塑剤や分散剤等)、有機溶剤等からなる、例えばCuを主成分として含む外部電極ペーストが浸漬塗布された後、乾燥され、その後、ベルト炉を用いて外部電極ペーストが焼結されて外部電極3が形成される。
 さらに、湿式電解バレル法等を用いて、外部電極3の外側に第1めっき膜としてNi、第2めっき膜としてSnが形成され、積層セラミックコンデンサ1が製造される。
 以上、実施形態においては以下の効果を有する。
 複数のベースシート23が積層された積層シート20は、内部電極12の枚数が異なることにより、内部電極12と誘電体層11とを合計した積層方向Tの厚みが異なる部分がある。
 しかし、実施形態では、内部電極12が存在しない部分または内部電極12との枚数が少ない部分に、絶縁性ペースト14が配置されている。したがって、積層シート20の積層方向Tの厚みを均一にすることができる。
 そして、絶縁性ペースト14は80℃で周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下であるので流動しやすい。したがって、セラミックグリーンシート21における内部電極12が存在しない部分に絶縁性ペースト14を配置する際に、その内部電極12が存在しない部分の長さ方向L及び幅方向Wの寸法や、内部電極12の積層方向Tの寸法と厳密に一致させる必要がない。絶縁性ペースト14は、内部電極12の積層方向Tの寸法と厳密に一致していなくても、プレス工程S5等においてプレスされる際に流動して、内部電極12が存在しない部分を充填することができる。
 ゆえに、絶縁性ペースト14をセラミックグリーンシート21上に配置する際の高精度な厚み管理や位置合わせが不要であり、厚みが均一な積層シート20を容易に製造することができる。
 積層シート20が切断された積層体2においても、積層方向Tの厚みが均一になるので、焼結工程においても、亀裂が生じる可能性が低減される。
 さらに、最終的に積層セラミックコンデンサ1として製造されたときにおいても、亀裂がないので、信頼性の高い積層セラミックコンデンサ1を提供することができる。
 また、絶縁性ペースト14bは、80℃1Hzにおける貯蔵弾性率E’が実施形態の1.0MPa以上100MPa以下であるので、焼結後の幅方向Wの端部でのボイドの発生がない。さらに、電気特性においても良好な性能を得ることができる。
 以上、本発明の好適な実施形態について説明したが、本発明はこれに限定されない。例えば、実施形態で外層部7を製造する際、誘電体層11を形成するセラミックグリーンシート21と等しい材料で製造された外層部用のセラミックグリーンシートを用いたが、これに限定されず、外層部7を、絶縁性ペースト14bと同じ材料で製造してもよい。
 この場合、積層シート21の両主面Aの表面をより平滑にすることができる。すなわち、積層シート21が切断されて積層体2となったときに積層体2において外周側の積層方向Tの寸法が小さくなって太鼓形状となることを防止できる。積層体2が太鼓形状とならないことにより、外部電極3を塗布する際の折り返しが形成しやすい。
 1  積層セラミックコンデンサ
 2  積層体
 3  外部電極
 7  外層部
 10  内層部
 11  誘電体層
 12  内部電極
 12a  対向電極
 12b  引出電極
 14a  絶縁体
 14b  絶縁性ペースト
 20  積層シート
 21  セラミックグリーンシート
 23  ベースシート

Claims (8)

  1.  セラミック粉末を含むスラリーをシート状に成形してセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、
     前記セラミックグリーンシートに内部電極を印刷する内部電極印刷工程と、
     前記セラミックグリーンシートにおける前記内部電極が印刷されている面と同一面の、前記内部電極が印刷されていない領域に、80℃で周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下である絶縁性ペーストを配置する絶縁性ペースト配置工程と、
     前記内部電極が印刷及び前記絶縁性ペーストが配置された前記セラミックグリーンシートを積層する積層工程と、
     積層された前記セラミックグリーンシートをプレスして積層シートを作製するプレス工程と、
    を含む、積層シートの製造方法。
  2.  前記絶縁性ペーストは、前記内部電極から離間して配置されている、
    る請求項1に記載の積層シートの製造方法。 
  3.  前記絶縁性ペーストは、前記内部電極と一部と重なって配置されている、
    請求項1に記載の積層シートの製造方法。
  4.  前記絶縁性ペーストは、前記内部電極の全周を囲って配置されている、
    請求項1から請求項3のいずれか1項に記載の積層シートの製造方法。 
  5.  前記絶縁性ペーストは、前記内部電極の周囲の一部を囲って配置されている、
    請求項1から請求項3のいずれか1項に記載の積層シートの製造方法。 
  6.  請求項1から請求項5のいずれか1項に記載の積層シートの製造方法により製造された積層シートを切断して積層体チップを作製する切断工程と、
     前記積層体チップを焼成する焼成工程と、
     焼成された前記積層体チップの両端面に外部電極を形成する外部電極形成工程と、
    を備える積層電子部品の製造方法。
  7.  前記積層電子部品は、積層セラミックコンデンサである、
    請求項6に記載の積層電子部品の製造方法。
  8.  内部電極と、前記内部電極が印刷されていない領域に、80℃で周波数1Hzにおける貯蔵弾性率E’が1.0MPa以上100MPa以下である絶縁性ペーストが配置されたセラミックグリーンシートが、複数積層された、積層シート。
PCT/JP2022/042357 2021-11-19 2022-11-15 積層シートの製造方法、積層電子部品の製造方法、及び積層シート WO2023090312A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280063370.2A CN117981023A (zh) 2021-11-19 2022-11-15 层叠片制造方法、层叠电子部件制造方法及层叠片
KR1020247011033A KR20240046832A (ko) 2021-11-19 2022-11-15 적층 시트의 제조 방법, 적층 전자부품의 제조 방법, 및 적층 시트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188969 2021-11-19
JP2021-188969 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090312A1 true WO2023090312A1 (ja) 2023-05-25

Family

ID=86397014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042357 WO2023090312A1 (ja) 2021-11-19 2022-11-15 積層シートの製造方法、積層電子部品の製造方法、及び積層シート

Country Status (3)

Country Link
KR (1) KR20240046832A (ja)
CN (1) CN117981023A (ja)
WO (1) WO2023090312A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165375A (ja) * 2002-11-12 2004-06-10 Kyocera Corp セラミック積層体の製法
JP2008244313A (ja) * 2007-03-28 2008-10-09 Tdk Corp 積層電子部品の製造方法
JP2010067719A (ja) * 2008-09-09 2010-03-25 Tdk Corp 積層セラミック電子部品の製造方法
WO2010035461A1 (ja) * 2008-09-29 2010-04-01 株式会社村田製作所 積層セラミック電子部品の製造方法
JP2010087370A (ja) * 2008-10-01 2010-04-15 Tdk Corp 積層セラミック電子部品の製造方法
JP2020057772A (ja) * 2018-09-27 2020-04-09 積水化学工業株式会社 段差吸収ペースト、段差吸収ペースト用樹脂微粒子及び積層セラミックコンデンサの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694719A (en) 1979-12-28 1981-07-31 Murata Manufacturing Co Method of manufacturing laminated electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165375A (ja) * 2002-11-12 2004-06-10 Kyocera Corp セラミック積層体の製法
JP2008244313A (ja) * 2007-03-28 2008-10-09 Tdk Corp 積層電子部品の製造方法
JP2010067719A (ja) * 2008-09-09 2010-03-25 Tdk Corp 積層セラミック電子部品の製造方法
WO2010035461A1 (ja) * 2008-09-29 2010-04-01 株式会社村田製作所 積層セラミック電子部品の製造方法
JP2010087370A (ja) * 2008-10-01 2010-04-15 Tdk Corp 積層セラミック電子部品の製造方法
JP2020057772A (ja) * 2018-09-27 2020-04-09 積水化学工業株式会社 段差吸収ペースト、段差吸収ペースト用樹脂微粒子及び積層セラミックコンデンサの製造方法

Also Published As

Publication number Publication date
KR20240046832A (ko) 2024-04-09
CN117981023A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP5654102B2 (ja) 積層セラミックキャパシタ及びその製造方法
US11869722B2 (en) Capacitor component having external electrodes with reduced thickness
JP5632046B2 (ja) 積層セラミックキャパシタ及びその製造方法
CN102683015B (zh) 多层陶瓷电容器及其制造方法
KR101823246B1 (ko) 적층 세라믹 전자 부품 및 그 실장 기판
JP5653886B2 (ja) 積層セラミックキャパシタ及びその製造方法
JP2012191163A (ja) 積層セラミックコンデンサ及びその製造方法
KR20160102132A (ko) 적층 콘덴서 및 그 제조방법
KR102366445B1 (ko) 적층 세라믹 전자부품
KR101939083B1 (ko) 적층형 커패시터 및 그 제조방법
JP5852321B2 (ja) 積層セラミックコンデンサ
CN113555216B (zh) 层叠陶瓷电容器
JP2021174829A (ja) 積層セラミックコンデンサ
JP2006041268A (ja) 積層型電子部品の製法および積層型電子部品
US20220059289A1 (en) Method of producing multilayer ceramic electronic component, and multilayer ceramic electronic component
CN113539681B (zh) 层叠陶瓷电容器
KR101952845B1 (ko) 적층 세라믹 전자부품 및 그 제조 방법
WO2023090312A1 (ja) 積層シートの製造方法、積層電子部品の製造方法、及び積層シート
JP2003045740A (ja) 積層型電子部品
JP2022073617A (ja) 積層セラミックコンデンサ
JPH06283375A (ja) 積層電子部品の製造方法
US11972900B2 (en) Multilayer ceramic capacitor
JP2012009766A (ja) コンデンサ
JP4548612B2 (ja) 積層セラミック電子部品の製造方法
KR102016484B1 (ko) 적층 세라믹 커패시터의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063370.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247011033

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023561595

Country of ref document: JP

Kind code of ref document: A