WO2023087546A1 - 一种水热-球磨制备Ni-HITP复合材料的方法及其应用 - Google Patents

一种水热-球磨制备Ni-HITP复合材料的方法及其应用 Download PDF

Info

Publication number
WO2023087546A1
WO2023087546A1 PCT/CN2022/074271 CN2022074271W WO2023087546A1 WO 2023087546 A1 WO2023087546 A1 WO 2023087546A1 CN 2022074271 W CN2022074271 W CN 2022074271W WO 2023087546 A1 WO2023087546 A1 WO 2023087546A1
Authority
WO
WIPO (PCT)
Prior art keywords
hitp
composite material
hydrothermal
ball milling
solution
Prior art date
Application number
PCT/CN2022/074271
Other languages
English (en)
French (fr)
Inventor
袁爱华
蔡越己
于超
孟春凤
王伟康
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to KR1020227039034A priority Critical patent/KR102588699B1/ko
Publication of WO2023087546A1 publication Critical patent/WO2023087546A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a composite electrode material and its preparation method and application, in particular to a hydrothermal-ball milling method for preparing Ni-HITP composite material and its application.
  • MOFs Metal-organic frameworks
  • the present invention aims to provide a Ni-HITP composite material prepared by hydrothermal-ball milling with high specific capacity, cycle stability and good rate performance; another purpose of the present invention is to provide a kind of Ni-HITP composite prepared by hydrothermal-ball milling The method of Ni-HITP composite material; Another object of the present invention is to provide a kind of application of hydrothermal-ball milling preparation Ni-HITP composite material.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling according to the present invention includes a sheet-like Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, and the sheet-like Ni-HITP matrix is Self-assembly forms an interwoven grid structure.
  • the method for preparing Ni-HITP composite material by said hydrothermal-ball milling comprises the following steps:
  • the concentration of hexaaminotriphenylene hydrochloride is 3.23-9.68mmol/L
  • the concentration of nickel chloride hexahydrate solution is 4.85-14.52mmol/L
  • nickel chloride hexahydrate The concentration is 1.5 times of the added hexaaminotriphenylene hydrochloride
  • the stirring reaction temperature is 55-70° C.
  • the stirring reaction time is 2-3 hours
  • the static aging time is 12-18 hours.
  • the heating temperature of the solid soaked in deionized water is 55-70°C, and the holding time is 4-12 hours; the holding temperature after re-adding deionized water is 55-70°C, and the time is 15-24 hours, the vacuum drying temperature is 45-70°C, and the drying time is 8-16 hours.
  • the grinding time is 15-30min
  • the rotating speed of the ball mill jar is 400-600rpm
  • the mass ratio of flake Ni-HITP to granular Ni-HITP is 1:(1-9).
  • Ni-HITP composite material prepared by hydrothermal-ball milling can also be used as an electrode material for a lithium ion battery.
  • the present invention prepares a Ni-HITP composite electrode material with a corn cake shape through hydrothermal and ball milling techniques.
  • This material has high electron conduction and ion penetration efficiency, special pore structure and compound state, so it is used in It exhibits extremely high lithium storage capacity and cycle stability when used as the negative electrode of lithium-ion batteries.
  • the present invention has the following significant advantages: (1) The composite material has high specific capacity, excellent cycle stability and rate performance, and Ni-HITP contains abundant lithium storage sites, pore structure and relatively High electrical conductivity can provide high mass specific capacity, stable cycle performance and rate performance during charge and discharge, and the specific capacity is stable at 1280mA h g -1 after 100 cycles; (2) The unique structure of the composite material is conducive to Electron conduction and ion permeation, Ni-HITP composites have a tortilla-shaped microscopic morphology, with a multi-level structure of two-dimensional nanosheets and nanoparticles, which is conducive to electron conduction and ion permeation, and exhibits excellent lithium storage performance.
  • Fig. 1 is the scanning electron micrograph of comparative example 1, comparative example 2 and embodiment 3 materials;
  • Fig. 2 is the long cycle performance curve of the materials of Comparative Example 1, Comparative Example 2 and Example 3 at a current density of 100mA g -1 ;
  • Fig. 3 is a graph of the rate performance of the materials of Comparative Example 1, Comparative Example 2 and Example 3.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 3.23mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, forming concentration is the nickel chloride hexahydrate solution of 4.85mmol/L, adds strong ammoniacal liquor (10% of nickel chloride hexahydrate volume), is recorded as solution B; Solution A and solution B (volume ratio 3 : 2) mix and seal in the reaction bottle, heat to 55 °C, stir and react for 3 hours, then stand and age for 12 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, and crumb-like solids sink at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom separately: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 55°C, keep it warm for 4 hours, and discard it after naturally cooling to room temperature Solution, re-add deionized water and keep it warm for 15 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid at 45°C for 8 hours in vacuum to obtain a microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:1) into a planetary ball mill jar containing agate balls, and grind for 15 minutes at 400rpm , to obtain the target composite material a.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 9.68mmol/L, which is recorded as solution A; another nickel chloride hexahydrate is dissolved In deionized water, form a concentration of nickel chloride hexahydrate solution with a concentration of 14.52mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 70°C, stir and react for 3 hours, then stand and age for 18 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom separately: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 70°C, keep it warm for 12 hours, and discard it after naturally cooling to room temperature Solution, add deionized water again and keep it warm for 24 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid in vacuum at 70°C for 16 hours to obtain the microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:5) into a planetary ball mill jar containing agate balls, and grind for 15 minutes at 600rpm , to obtain the target composite material b.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 3.23mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, form a concentration of nickel chloride hexahydrate solution that is 4.85mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 65°C, stir and react for 2 hours, then stand and age for 12 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom separately: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 65°C, keep it warm for 4 hours, and discard after naturally cooling to room temperature Solution, re-add deionized water and keep it warm for 15 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid at 50°C for 12 hours in vacuum to obtain a microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:9) into a planetary ball mill jar containing agate balls, and grind for 30 minutes at 400rpm , to obtain the target composite material c.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 6.46mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, form a concentration of nickel chloride hexahydrate solution that is 9.68mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 60°C, stir and react for 2.5 hours, and then stand and age for 15 hours.
  • black translucent film-like solids can be seen floating on the surface, and crumb-like solids settle. at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom respectively: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 60°C, keep it warm for 8 hours, and discard it after naturally cooling to room temperature Solution, re-add deionized water and keep it warm for 18 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid at 60°C for 10 hours in vacuum to obtain a microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:4) into a planetary ball mill jar containing agate balls, and grind for 20 minutes at 500rpm , to obtain the target composite material d.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 6.46mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, form a concentration of nickel chloride hexahydrate solution that is 9.68mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 65°C, stir and react for 2 hours, then stand and age for 12 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom separately: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 65°C, keep it warm for 6 hours, and discard after naturally cooling to room temperature Solution, add deionized water again and keep it warm for 18 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid in vacuum at 50°C for 8 hours to obtain the microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:3) into a planetary ball mill jar containing agate balls, and grind for 30 minutes at 400rpm , to obtain the target composite material e.
  • a Ni-HITP composite material prepared by hydrothermal-ball milling including a flaky Ni-HITP matrix and granular Ni-HITP loaded on the surface of the matrix, the flaky Ni-HITP matrix self-assembles to form an interwoven grid structure. Its preparation method is as follows:
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 9.68mmol/L, which is recorded as solution A; another nickel chloride hexahydrate is dissolved In deionized water, form a concentration of nickel chloride hexahydrate solution with a concentration of 14.52mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 60°C, stir and react for 2.5 hours, then stand and age for 18 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • Step (2) purify the upper liquid containing the membrane and the solid at the bottom separately: centrifuge the upper liquid containing the membrane, then soak the solid in deionized water and heat to 60°C, keep it warm for 6 hours, and discard after naturally cooling to room temperature Solution, re-add deionized water and keep it warm for 17 hours, discard the aqueous solution after cooling, replace the deionized water with anhydrous methanol and repeat the above operation, and then dry the solid at 60°C for 10 hours in vacuum to obtain a microscopic morphology of flakes Shaped Ni-HITP;
  • the bottom liquid was centrifuged to separate the crumb solid, and the above steps were used to purify to obtain granular Ni-HITP;
  • Step (3) under the protection of nitrogen, put the purified flaky Ni-HITP and granular Ni-HITP (mass ratio 1:9) into a planetary ball mill jar containing agate balls, and grind for 30 minutes at 400rpm , to obtain the target composite material f.
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 3.23mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, form a concentration of nickel chloride hexahydrate solution that is 4.85mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 65°C, stir and react for 2 hours, then stand and age for 12 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • step (2) centrifuge the supernatant liquid containing the membrane, then soak the solid in deionized water and heat to 65°C, keep it warm for 4 hours, discard the solution after naturally cooling to room temperature, add deionized water again and keep it warm for 15 hours, After cooling, the aqueous solution was discarded, and the deionized water was replaced with anhydrous methanol and the above operation was repeated, and then the solid was vacuum-dried at 50°C for 12 hours to obtain a flaky Ni-HITP, which was referred to as Comparative Example 1.
  • Step (1) add HITP ⁇ 6HCl to the reaction flask, then add deionized water, heat and stir until it dissolves into a HITP ⁇ 6HCl solution with a concentration of 3.23mmol/L, which is recorded as solution A; take another nickel chloride hexahydrate to dissolve In deionized water, form a concentration of nickel chloride hexahydrate solution that is 4.85mmol/L, add concentrated ammonia water (10% of the volume of nickel chloride hexahydrate), and record it as solution B; put solution A and solution B in a reaction flask Mix and seal (volume ratio 3:2), heat to 65°C, stir and react for 2 hours, then stand and age for 12 hours, black translucent film-like solids can be seen floating on the surface in the reaction bottle, crumb-like solids sink at the bottom of the bottle;
  • Step (2) centrifuge the bottom liquid to separate crumb-like solids, then soak the solids in deionized water and heat to 65°C, keep warm for 4 hours, naturally cool to room temperature, discard the solution, add deionized water again and keep warm for 15 hours , After cooling, the aqueous solution was discarded, and the deionized water was replaced with anhydrous methanol and the above operation was repeated, and then the solid was vacuum-dried at 50° C. for 12 hours to obtain granular Ni-HITP, which was recorded as Comparative Example 2.
  • FIG. 3 shows that the rate performance of Example 3 has the same advantage over Comparative Example 1 and Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种水热-球磨制备Ni-HITP复合材料的方法及其应用,Ni-HITP复合材料具有形如玉米饼的微观形貌,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP;复合材料制备方法如下:(1)利用水热法制备片状和颗粒状Ni-HITP;(2)分别提纯片状Ni-HITP和颗粒状Ni-HITIP;(3)将片状Ni-HITP和颗粒状Ni-HITP同时加入玛瑙球磨罐中研磨均匀,得到目标复合材料。这种Ni-HITP复合材料具有极高的储锂性能,循环稳定性和倍率性能优异,能够作为负极材料应用在锂离子电池中,并且制备方法操作过程简单易行。

Description

一种水热-球磨制备Ni-HITP复合材料的方法及其应用 技术领域
本发明涉及一种复合电极材料及其制备方法和应用,尤其涉及一种水热-球磨制备Ni-HITP复合材料的方法及其应用。
背景技术
继续提高锂离子电池的能量密度是当下学术界和产业界的研发热点,而开发出储锂性能优于现有商业电极的新材料是实现这一目标的途径。金属有机骨架(Metal-organic frameworks,简称MOFs)由于通常具有大比表面积、大孔隙率、高稳定性、结构多样性、富含过渡金属离子和有机官能团等,近年来在锂电池电池领域引起极大关注。虽然一些纯MOFs表现出较高的比容量,但是MOFs材料较低的电导率使这些材料的倍率性能和循环稳定性表现较差,限制了MOFs的商用前景。Ni-HITP是一种导电性较好的MOF材料(40S cm -1),而且具有丰富的储锂位点,但据文献报道,将其用于锂离子电池负极比容量仅为703mAh g -1(Applied Surface Science,2021,556,149818)。因此,如何制备比容量高、循环稳定性好且倍率性能好的MOFs材料,是将MOFs用于锂离子电池电极材料必须解决的关键科学问题之一。
发明内容
发明目的:本发明旨在提供一种具有高比容量,循环稳定性和倍率性能良好的水热-球磨制备的Ni-HITP复合材料;本发明的另一目的是提供一种水热-球磨制备Ni-HITP复合材料的方法;本发明的另一目的是提供一种水热-球磨制备Ni-HITP复合材料的应用。
技术方案:本发明所述的一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,所述片状Ni-HITP基体为自组装形成交织的网格结构。
所述的水热-球磨制备Ni-HITP复合材料的方法,包括以下步骤:
(1)六氨基三亚苯盐酸盐加入去离子水进行加热搅拌,记为溶液A;另取六水合氯化镍溶解于去离子水中,加入浓氨水,记为溶液B;将溶液A和溶液B混合并密封,加热搅拌,再静置陈化,静置后黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
(2)将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热,自然冷却至室温后弃去溶液,重新加入去离子水并保温,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体真空干燥,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯 化,得到颗粒状Ni-HITP;
(3)在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP投入球磨罐中进行研磨,得到微观形貌为玉米饼形的金属有机骨架复合材料。
优选地,所述步骤(1)中,六氨基三亚苯盐酸盐的浓度为3.23-9.68mmol/L,六水合氯化镍溶液的浓度为4.85-14.52mmol/L,且六水合氯化镍浓度为所加六氨基三亚苯盐酸盐浓度的1.5倍,搅拌反应温度为55-70℃,搅拌反应时间为2-3小时,静置陈化时间为12-18小时。
优选地,所述步骤(2)中,固体浸泡在去离子水中加热的温度为55-70℃,保温时间4-12小时;重新加入去离子水后的保温温度为55-70℃,时间为15-24小时,真空干燥温度为45-70℃,干燥时间为8-16小时。
优选地,所述步骤(3)中,研磨时间为15-30min,球磨罐的转速为400-600rpm,片状Ni-HITP和颗粒状Ni-HITP的质量比为1:(1-9)。
所述的水热-球磨制备的Ni-HITP复合材料还可以作为锂离子电池电极材料的应用。
本发明通过水热和球磨技术,制备出一种具有玉米饼形的Ni-HITP复合电极材料,这种材料具有较高的电子传导和离子渗透效率、特殊的孔道结构和化合态,因此用于锂离子电池负极时表现出极高的储锂容量和循环稳定性。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)复合材料的比容量高,循环稳定性和倍率性能优异,Ni-HITP含有丰富的储锂位点、孔道结构和较高的电导率,可在充放电中分别提供较高的质量比容量、稳定的循环性能和倍率性能,循环100圈后比容量稳定在1280mA h g -1;(2)复合材料的独特结构有利于电子传导和离子渗透,Ni-HITP复合材料具有玉米饼形微观形貌,具有二维纳米片和纳米颗粒的多级结构,利于电子传导和离子渗透,表现出极好的储锂性能。
附图说明
图1是对比例1、对比例2和实施例3材料的扫描电镜图;
图2是对比例1、对比例2和实施例3材料在100mA g -1电流密度下的长循环性能曲线;
图3是对比例1、对比例2和实施例3材料的倍率性能图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为3.23mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为4.85mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B(体积比3:2)在反应瓶中混合并密封,加热至55℃,搅拌反应3小时,再静置陈化12小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至55℃,保温4小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温15小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在45℃下真空干燥8小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:1)投入含玛瑙球的行星式球磨罐中,在400rpm转速下研磨15分钟,得到目标复合材料a。
实施例2
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为9.68mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为14.52mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至70℃,搅拌反应3小时,再静置陈化18小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至70℃,保温12小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温24小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在70℃下真空干燥16小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:5)投入含玛瑙球的行星式球磨罐中,在600rpm转速下研磨15分钟,得到目标复合材料b。
实施例3
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为3.23mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为4.85mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至65℃,搅拌反应2小时,再静置陈化12小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至65℃,保温4小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温15小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在50℃下真空干燥12小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:9)投入含玛瑙球的行星式球磨罐中,在400rpm转速下研磨30分钟,得到目标复合材料c。
实施例4
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为6.46mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为9.68mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至60℃,搅拌反应2.5小时,再静置陈化15小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至60℃,保温8小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温18小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在60℃下真空干燥10小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:4)投入含玛瑙球的行星式球磨罐中,在500rpm转速下研磨20分钟,得到目标复合材 料d。
实施例5
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为6.46mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为9.68mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至65℃,搅拌反应2小时,再静置陈化12小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至65℃,保温6小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温18小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在50℃下真空干燥8小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:3)投入含玛瑙球的行星式球磨罐中,在400rpm转速下研磨30分钟,得到目标复合材料e。
实施例6
一种水热-球磨制备的Ni-HITP复合材料,包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,片状Ni-HITP基体自组装形成交织的网格结构。其制法如下:
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为9.68mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为14.52mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至60℃,搅拌反应2.5小时,再静置陈化18小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至60℃,保温6小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温17小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在60℃下真空干燥10小时,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
步骤(3),在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP(质量比1:9)投入含玛瑙球的行星式球磨罐中,在400rpm转速下研磨30分钟,得到目标复合材料f。
对比例1
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为3.23mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为4.85mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至65℃,搅拌反应2小时,再静置陈化12小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热至65℃,保温4小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温15小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在50℃下真空干燥12小时,得到微观形貌为片状的Ni-HITP,记为对比例1。
对比例2
步骤(1),在反应瓶中加入HITP·6HCl,再加入去离子水,加热搅拌至溶解为浓度为3.23mmol/L的HITP·6HCl溶液,记为溶液A;另取六水合氯化镍溶解于去离子水中,形成浓度为4.85mmol/L的六水合氯化镍溶液,加入浓氨水(六水合氯化镍体积的10%),记为溶液B;将溶液A和溶液B在反应瓶中混合并密封(体积比3:2),加热至65℃,搅拌反应2小时,再静置陈化12小时,反应瓶中可看到黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
步骤(2),将底部液体离心分离出屑状固体,然后将固体浸泡在去离子水中加热至65℃,保温4小时,自然冷却至室温后弃去溶液,重新加入去离子水并保温15小时,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体在50℃下真空干燥12小时,得到颗粒状Ni-HITP,记为对比例2。
应用实施例
分别将实施例3所得玉米饼形Ni-HITP复合材料、对比例1所得片状Ni-HITP和对比例2所得颗粒状Ni-HITP作为活性物质,与炭黑和聚偏氟乙烯按照7:2:1的质量比充分研磨,加入适量N-甲基吡咯烷酮搅拌,然后涂布在铜箔上,110℃烘干6小时后切片。以锂片作为对电极,1.0mol L -1LiPF 6的碳酸乙烯酯及碳酸二甲酯(体积比=1:2)溶液为电解液,在充满氩气的手套箱中组装纽扣电池,在100mA g -1,0.01~3.0V区间进行恒流充放电循环测试。
实验结果:图1显示了对比例1(片状Ni-HITP)、对比例2(颗粒状Ni-HITP)和实施例3所得玉米饼形Ni-HITP的微观形貌图,从中可见,片状Ni-HITP自组装为交织的网格结构;颗粒状Ni-HITP粒径约几十纳米,形状不规整。将片状Ni-HITP和颗粒状Ni-HITP球磨之后所得样品显示出形如玉米饼的微观形貌。电化学测试中,实施例3是最佳实验方案。图2表明,实施例3在循环100圈后比容量稳定在1280mA h g -1,而对比例1和对比例2分别为497mAh g -1和105mAh g -1。图3显示了实施例3的倍率性能相比对比例1和对比例2具有同样的优势。

Claims (10)

  1. 一种水热-球磨制备的Ni-HITP复合材料,其特征在于:包括片状Ni-HITP基体和负载在基体表面的颗粒状Ni-HITP,所述片状Ni-HITP基体为自组装形成交织的网格结构。
  2. 一种权利要求1所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于,包括以下步骤:
    (1)六氨基三亚苯盐酸盐加入去离子水进行加热搅拌,记为溶液A;另取六水合氯化镍溶解于去离子水中,加入浓氨水,记为溶液B;将溶液A和溶液B混合并密封,加热搅拌,再静置陈化,静置后黑色半透明的膜状固体浮在表面,屑状固体沉在瓶底;
    (2)将含膜的上层液体和底部固体分别提纯:将含有膜的上层液进行离心,然后将固体浸泡在去离子水中加热,自然冷却至室温后弃去溶液,重新加入去离子水并保温,冷却后弃去水溶液,再以无水甲醇替换去离子水并重复上述操作,然后将固体真空干燥,得到微观形貌为片状的Ni-HITP;另将底部液体离心分离出屑状固体,利用上述步骤纯化,得到颗粒状Ni-HITP;
    (3)在氮气保护下,将纯化后的片状Ni-HITP和颗粒状Ni-HITP投入球磨罐中进行研磨,得到微观形貌为玉米饼形的金属有机骨架复合材料。
  3. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(1)中,六氨基三亚苯盐酸盐的浓度为3.23-9.68mmol/L。
  4. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(1)中,六水合氯化镍溶液的浓度为4.85-14.52mmol/L,且六水合氯化镍浓度为所加六氨基三亚苯盐酸盐浓度的1.5倍。
  5. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(1)中,搅拌反应温度为55-70℃,搅拌反应时间为2-3小时,静置陈化时间为12-18小时。
  6. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(2)中,固体浸泡在去离子水中加热的温度为55-70℃,保温时间4-12小时;重新加入去离子水后的保温温度为55-70℃,时间为15-24小时。
  7. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(2)中,真空干燥温度为45-70℃,干燥时间为8-16小时。
  8. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(3)中,研磨时间为15-30min,球磨罐的转速为400-600rpm。
  9. 根据权利要求2所述的水热-球磨制备Ni-HITP复合材料的方法,其特征在于:所述步骤(3)中,片状Ni-HITP和颗粒状Ni-HITP的质量比为1:(1-9)。
  10. 一种权利要求1所述的水热-球磨制备的Ni-HITP复合材料作为锂离子电池电极材料的应用。
PCT/CN2022/074271 2021-11-22 2022-01-27 一种水热-球磨制备Ni-HITP复合材料的方法及其应用 WO2023087546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227039034A KR102588699B1 (ko) 2021-11-22 2022-01-27 열수-볼 밀링에 의한 Ni-HITP 복합 재료와 이의 제조 방법 및 이를 이용한 리튬 이온 배터리 전극 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385401.X 2021-11-22
CN202111385401.XA CN113937274B (zh) 2021-11-22 2021-11-22 一种水热-球磨制备Ni-HITP复合材料的方法及其应用

Publications (1)

Publication Number Publication Date
WO2023087546A1 true WO2023087546A1 (zh) 2023-05-25

Family

ID=79287188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074271 WO2023087546A1 (zh) 2021-11-22 2022-01-27 一种水热-球磨制备Ni-HITP复合材料的方法及其应用

Country Status (3)

Country Link
KR (1) KR102588699B1 (zh)
CN (1) CN113937274B (zh)
WO (1) WO2023087546A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937274B (zh) * 2021-11-22 2022-10-14 江苏科技大学 一种水热-球磨制备Ni-HITP复合材料的方法及其应用
CN115425237A (zh) * 2022-08-15 2022-12-02 南开大学 一种锂-氧气电池双金属有机框架正极催化剂及制备方法
CN115651320B (zh) * 2022-09-08 2024-01-26 宝瑞龙高分子材料(天津)股份有限公司 一种导电热塑性弹性材料及其制备方法
CN115678023B (zh) * 2022-10-17 2024-01-26 昆明学院 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380256A1 (en) * 2014-02-28 2016-12-29 Andreas Stein Composite material having domains of lithium oxometallates in a matrix
CN110164717A (zh) * 2019-05-31 2019-08-23 南京邮电大学 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用
CN113937274A (zh) * 2021-11-22 2022-01-14 江苏科技大学 一种金属有机骨架复合材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400905B (zh) * 2018-11-26 2021-05-18 重庆文理学院 一种金属有机骨架Mn-BTC及制备方法和应用
CN109585825A (zh) * 2018-11-28 2019-04-05 成都理工大学 双金属MOF前驱体合成的Ni/NiFe2O4锂离子电池负极材料及其制备方法
CN110247041B (zh) * 2019-06-26 2021-07-23 浙江大学 一种ZnNiO/C复合纳米材料及其制备方法
CN111253759B (zh) * 2020-03-27 2022-02-22 西安交通大学 一种基于金属有机框架与碳纳米管的复合材料的制备方法及器件的制备方法
CN112053861B (zh) * 2020-08-25 2022-08-23 浙江工业大学 一种三维导电MOF@MXene复合电极的原位制备方法
CN112708143A (zh) * 2020-11-30 2021-04-27 广东微电新能源有限公司 一种新型MOFs锂电池负极材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380256A1 (en) * 2014-02-28 2016-12-29 Andreas Stein Composite material having domains of lithium oxometallates in a matrix
CN110164717A (zh) * 2019-05-31 2019-08-23 南京邮电大学 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用
CN113937274A (zh) * 2021-11-22 2022-01-14 江苏科技大学 一种金属有机骨架复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAI YUEJI, WANG WEIKANG, CAO XUANXUAN, WEI LINGFEI, YE CAICHAO, MENG CHUNFENG, YUAN AIHUA, PANG HUAN, YU CHAO: "Synthesis of Tostadas‐Shaped Metal‐Organic Frameworks for Remitting Capacity Fading of Li‐Ion Batteries", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 32, no. 14, 1 April 2022 (2022-04-01), DE , pages 2109927, XP093068444, ISSN: 1616-301X, DOI: 10.1002/adfm.202109927 *
ELISE M. MINER, TOMOHIRO FUKUSHIMA, DENNIS SHEBERLA, LEI SUN, YOGESH SURENDRANATH, MIRCEA DINCă: "Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2", NATURE COMMUNICATIONS, vol. 7, no. 1, 1 April 2016 (2016-04-01), XP055704270, DOI: 10.1038/ncomms10942 *

Also Published As

Publication number Publication date
KR20230076120A (ko) 2023-05-31
CN113937274B (zh) 2022-10-14
CN113937274A (zh) 2022-01-14
KR102588699B1 (ko) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2023087546A1 (zh) 一种水热-球磨制备Ni-HITP复合材料的方法及其应用
Jin et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries
CN104638219B (zh) 一种锂硒电池用复合隔膜及其制备方法
CN109286009B (zh) 一种纳米片自组装三维纳米花硫化锡/石墨化氮化碳锂离子电池负极材料的制备方法
CN103337631B (zh) 提高钛酸锂高倍率放电性能并抑制产气的碳氮共包覆方法
CN107170968B (zh) 一种二次镁电池正极材料及其制备方法
CN109360971B (zh) 一种微球状硒化锰/碳复合材料的制备方法
CN104733695A (zh) 一种锂硫电池正极用碳/硫复合材料及制备方法和应用
CN103500822B (zh) 炭改性纳米Li4Ti5O12与多孔石墨烯复合电极材料的制备方法
CN109400905B (zh) 一种金属有机骨架Mn-BTC及制备方法和应用
CN111082047A (zh) 二维碳化物晶体基Zif-67衍生氧化钴材料的制备方法及应用
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
CN108232171A (zh) 一种高载硫锂硫电池正极材料及其制备方法和应用
CN104916823A (zh) 一种用于锂电池的硅/氧化石墨烯负极材料及其制备方法
CN106252628A (zh) 一种氧化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN105883940A (zh) 一种块状NiS2的制备方法及其在钠离子电池中的应用
CN107863522A (zh) 锡/还原氧化石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106058182B (zh) 一种倍率性能良好的钛酸锂/聚苯胺复合材料的制备方法
Xia et al. Co3O4@ MWCNT modified separators for Li–S batteries with improved cycling performance
CN108321378A (zh) 一种具有异质结界面效应的金属氧化物@金属复合物/石墨烯核壳半导体材料的制备方法
CN112864371A (zh) 一种三氧化二钒与氮掺杂多孔碳复合负极材料的制备方法
Gong et al. Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery
CN104577126A (zh) 一种形貌均匀的MWCNT@a-C@Co9S8复合电极材料的制备方法及在锂电中的应用
CN108987704A (zh) 一种具有多孔结构的锂离子电池硅碳复合负极材料的制备方法及其应用
CN107026263A (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894094

Country of ref document: EP

Kind code of ref document: A1