CN110164717A - 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 - Google Patents

一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 Download PDF

Info

Publication number
CN110164717A
CN110164717A CN201910468620.0A CN201910468620A CN110164717A CN 110164717 A CN110164717 A CN 110164717A CN 201910468620 A CN201910468620 A CN 201910468620A CN 110164717 A CN110164717 A CN 110164717A
Authority
CN
China
Prior art keywords
hitp
mof
ito
transparent electrode
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910468620.0A
Other languages
English (en)
Other versions
CN110164717B (zh
Inventor
赵为为
陈田田
赵强
彭佳丽
王维康
金贝贝
刘淑娟
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910468620.0A priority Critical patent/CN110164717B/zh
Publication of CN110164717A publication Critical patent/CN110164717A/zh
Application granted granted Critical
Publication of CN110164717B publication Critical patent/CN110164717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种π‑d共轭Ni‑HITP MOF柔性透明电极的制备方法及储能应用,本发明中直接选择ITO/PET柔性透明材料作为结合π‑d共轭Ni‑HITP MOF导电薄膜的基底,采用低成本、低能耗、工艺简单的气液界面法来制备Ni‑HITP MOF导电薄膜,通过L‑S法将薄膜转移到基底上制备出Ni‑HITP/ITO/PET柔性透明电极,整个制备过程的步骤简便,所需条件低,操作简单,耗时短;制备除的柔性透明电极的光学透光性良好且电化学储能性质优异。

Description

一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用
技术领域
本发明涉及电容技术领域,具体是涉及一种π-d共轭2,3,6,7,10,11-六氨基三亚苯镍(II)基金属有机框架(Ni-HITP MOF)柔性透明电极的合成及其电化学储能应用。
背景技术
随着对电子设备需求的逐步多样化,便携式能源和可穿戴设备成为了衔接应用革新和技术发展的关键点。柔性、可穿戴和透明化是电子设备发展的主流方向,然而,在当前阶段,电池工业中生产的绝大多数电池都是刚性的(比如铅酸电池、软包/钢壳/18650锂离子电池),并不具备在弯曲、折叠、扭转、压缩或拉伸条件下工作的能力。在这一背景下,柔性透明电子设备的发展引人关注,该设备的发展也推动了柔性透明能源存储技术的快速进步。柔性透明电极作为柔性透明储能器件中最为核心的部分,其制备和组装直接决定了储能器件的性能水平。
电容器的性能与材料的比表面积,离子嵌入脱出的容易程度有关,因此,电极材料的选择很大程度上决定了电容器的性能。二维纳米材料具有比表面积高、电化学活性位点丰富、离子嵌入脱出快速等优点,应用在超级电容器上有诸多优势。在众多的二维纳米材料中,金属有机框架(Metal-Organic Framework,MOF)材料有着高比表面积,可以提供丰富的离子吸附/脱附表面以及电化学反应的活性位点;π-d共轭MOF具有高电导率,可以保证电子在电化学反应中的快速传导,在电化学储能应用中的作用突出。直接选择ITO/PET柔性透明材料作为结合π-d共轭MOF薄膜的基底的研究仍鲜有报道。因此,基于π-d共轭MOF的柔性透明超级电容器的研制,不但有利于柔性透明储器件的发展,同时也促进了电极材料的进步。
发明内容
本发明的目的在于提出一种新的思路,直接选择ITO/PET柔性透明材料作为结合π-d共轭Ni-HITP MOF导电薄膜的基底,采用低成本、低能耗、工艺简单的气液界面法来制备Ni-HITP MOF导电薄膜,通过L-S法将薄膜转移到基底上制备出Ni-HITP/ITO/PET柔性透明电极,该柔性透明电极的光学透光性良好、电化学储能性质优异。
本发明的技术方案为:一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,具体制备步骤为:
步骤一、Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液和NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺,反应15-20min,在气液界面处形成Ni-HITP MOF导电薄膜,之所以选择15-20min这一反应时段是因为利用该反应时段制备出的导电薄膜制备出的制备柔性透明电极在拥有优异的电化学性能的同时透光率始终能保持80%以上,反应时间过长的话透光率会降低。
步骤二、Ni-HITP/ITO/PET柔性透明电极的制备
1)将ITO/PET(规格:1cm×2cm,厚度:0.175mm,ITO层厚度:0.4nm)依次用去离子水、乙醇、丙酮、乙醇清洗;
2)通过Langmuir–transfer(L-S)法将界面处形成的Ni-HITP MOF导电薄膜转移到ITO/PET柔性透明基底上,即利用镊子紧密地固定ITO/PET,然后将其定位在水平烧杯中形成Ni3(HITP)2膜的位置。接触后,由于范德华力,氢键和/或库仑相互作用,Ni3(HITP)2膜被吸附到ITO/PET上,得到Ni-HITP/ITO/PET柔性透明电极,用H2O、乙醇清洗。
进一步地,所述Ni-HITP MOF导电薄膜的结构式为
进一步地,所述π-d共轭Ni-HITP MOF柔性透明电极可应用在电化学储能中。
本发明的有益效果为:
(1)本发明公开的π-d共轭Ni-HITP MOF导电薄膜的制备方法操作简便,常压水浴加热条件下即可完成;
(2)本发明通过L-S法将薄膜转移到基底上制备出π-d共轭Ni-HITP柔性透明电极,所需设备简易、耗时短;
(3)本发明直接选用ITO/PET柔性透明材料作为结合π-d共轭Ni-HITP MOF导电薄膜的基底,具有较高的透明度及极佳的柔性;
(4)本发明所述的Ni-HITP MOF导电薄膜活性位点高、比表面积大、导电率优异;
(5)本发明所述的Ni-HITP/ITO/PET柔性透明电极的方阻低、光学透光性良好且拥有优异的电化学储能性质。
附图说明
图1为实施例1制备的Ni-HITP-7min薄膜的SEM照片;
图2为实施例1制备的Ni-HITP-20min薄膜的SEM照片;
图3为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的平铺图,其中,左侧为Ni-HITP/ITO/PET-7min柔性透明电极的平铺图,右侧为Ni-HITP/ITO/PET-20min柔性透明电极的平铺图;
图4为实施例2制备的Ni-HITP/ITO/PET-20min柔性透明电极的弯曲图;
图5为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的紫外-可见吸收谱图;
图6为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的透光率谱图;
图7为实施例3制备的Ni-HITP/ITO/PET柔性透明电极的CV图;
图8为实施例4制备的Ni-HITP/ITO/PET柔性透明电极的GCD图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1:Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液:称(0.011g,0.02mmol)HITP溶于11mL的H2O中;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液:称NiCl2·6H2O(0.0264g,0.112mmol)溶于40mL的H2O中;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液、2.5mL NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺分别反应7min和20min,在气液界面处形成Ni-HITP-7min薄膜和Ni-HITP-20min薄膜。
从图1、图2可以看出,Ni-HITP为均一的片状物质。
实施例2:Ni-HITP/ITO/PET柔性透明电极的制备
(1)通过L-S法将界面处形成的Ni-HITP-7min薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET-7min柔性透明电极;
(2)通过L-S法将界面处形成的Ni-HITP-20min薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET-20min柔性透明电极;
(3)将步骤(1)(2)得到的柔性透明电极用H2O、乙醇缓慢清洗,测试前在真空干燥箱中储存。
Ni-HITP/ITO/PET柔性透明电极的紫外-可见吸收图谱如图5所示,光谱在487nm和550nm处呈现两个独特的峰,且随着反应时间的延长,样品的吸收强度增加。
Ni-HITP/ITO/PET柔性透明电极的透光率图谱如图6所示,峰的位置与紫外吸收峰一致,随着反应时间的延长,样品的透光率降低,其中Ni-HITP/ITO/PET-7min在487nm处的透光率高达98.5%,在550nm处的透光率高达98.9%,方阻为:48.64Ω/sq;Ni-HITP/ITO/PET-20min在487nm处的透光率为85.5%,550nm处的透光率为86.7%,有良好的光学透光性,方阻为46.16Ω/sq。
实施例3:Ni-HITP/ITO/PET-7min、Ni-HITP/ITO/PET-20min柔性透明电极的循环伏安测试
(1)工作电极:Ni-HITP/ITO/PET-7min柔性透明电极(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3MKCl;CV电位窗口:-0.3V~0.3V。工作电极放入电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试循环伏安曲线。
(2)工作电极:Ni-HITP/ITO/PET-20min柔性透明电极(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3M KCl;CV电位窗口:-0.3V~0.3V。将工作电极置于电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试循环伏安曲线。
如图7所示,Ni-HITP/ITO/PET-7min柔性透明电极的面积比电容为0.43mF·cm-2,Ni-HITP/ITO/PET-20min柔性透明电极的面积比电容为3.61mF·cm-2。Ni-HITP/ITO/PET-20min柔性透明电极的电化学性能优于Ni-HITP/ITO/PET-7min柔性透明电极。随着反应时间的延长,电极的透光率降低,电化学性能提高。
实施例4:Ni-HITP/ITO/PET-7min、Ni-HITP/ITO/PET-20min柔性透明电极的恒流充放电测试
(1)工作电极:Ni-HITP/ITO/PET-7min柔性透明基底(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3MKCl;CV电位窗口:-0.3V~0.3V。工作电极放入电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试GCD曲线。
(2)工作电极:Ni-HITP/ITO/PET-20min柔性透明基底(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3M KCl;CV电位窗口:-0.3V~0.3V。将工作电极置于电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试GCD曲线。
如图8所示,Ni-HITP/ITO/PET-7min柔性透明电极的面积比电容为0.22mF·cm-2,Ni-HITP/ITO/PET-20min柔性透明电极的面积比电容为6.86mF·cm-2。Ni-HITP/ITO/PET-20min柔性透明电极的电化学性能优于Ni-HITP/ITO/PET-7min柔性透明电极。随着反应时间的延长,电极的透光率降低,电化学性能提高。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (3)

1.一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,其特征在于,具体制备步骤为:
步骤一、Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液和NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺,反应15-20min,在气液界面处形成Ni-HITP MOF导电薄膜;
步骤二、Ni-HITP/ITO/PET柔性透明电极的制备
1)将ITO/PET依次用去离子水、乙醇、丙酮、乙醇清洗;
2)通过L-S法将界面处形成的Ni-HITP MOF导电薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET柔性透明电极,并用H2O、乙醇清洗。
2.如权利要求1所述的一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,其特征在于,所述Ni-HITP MOF导电薄膜的结构式为
3.如权利要求1-2中任一项所述的一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法制备的π-d共轭Ni-HITP MOF柔性透明电极在电化学储能中的应用。
CN201910468620.0A 2019-05-31 2019-05-31 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 Active CN110164717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910468620.0A CN110164717B (zh) 2019-05-31 2019-05-31 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910468620.0A CN110164717B (zh) 2019-05-31 2019-05-31 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用

Publications (2)

Publication Number Publication Date
CN110164717A true CN110164717A (zh) 2019-08-23
CN110164717B CN110164717B (zh) 2021-09-28

Family

ID=67630847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910468620.0A Active CN110164717B (zh) 2019-05-31 2019-05-31 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用

Country Status (1)

Country Link
CN (1) CN110164717B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004402A (zh) * 2019-11-05 2020-04-14 复旦大学 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法
CN111430082A (zh) * 2020-03-25 2020-07-17 顾氏纳米科技(浙江)有限公司 一种银纳米线复合透明导电薄膜的核壳封装制备方法
CN112735859A (zh) * 2021-01-29 2021-04-30 重庆大学 一种超级电容器电极材料的制备方法
CN114280110A (zh) * 2021-12-24 2022-04-05 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN115678023A (zh) * 2022-10-17 2023-02-03 昆明学院 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池
WO2023087546A1 (zh) * 2021-11-22 2023-05-25 江苏科技大学 一种水热-球磨制备Ni-HITP复合材料的方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575301A (zh) * 2018-11-15 2019-04-05 三明学院 一种催化氧化合成导电mof的方法
CN109709160A (zh) * 2017-10-26 2019-05-03 中国科学院福建物质结构研究所 一种电子导电金属有机框架薄膜及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709160A (zh) * 2017-10-26 2019-05-03 中国科学院福建物质结构研究所 一种电子导电金属有机框架薄膜及其制备方法和用途
CN109575301A (zh) * 2018-11-15 2019-04-05 三明学院 一种催化氧化合成导电mof的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DENNIS SHEBERLA等: "Conductive MOF electrodes for stable supercapacitors with high areal capacitance", 《NATURE MATERIALS》 *
GUO HAILING等: "Fabrication of ITO glass supported Tb-MOF film for sensing organic solvent", 《INORGANIC CHEMISTRY COMMUNICATIONS》 *
GUODONG WU等: "Porous Field-Effect Transistors Based on a Semiconductive Metal-Organic Framework", 《AMERICAN CHEMICAL SOCIETY》 *
臧应: "二维导电 MOF 晶态多孔薄膜的电学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004402A (zh) * 2019-11-05 2020-04-14 复旦大学 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法
CN111004402B (zh) * 2019-11-05 2022-03-18 复旦大学 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法
CN111430082A (zh) * 2020-03-25 2020-07-17 顾氏纳米科技(浙江)有限公司 一种银纳米线复合透明导电薄膜的核壳封装制备方法
CN112735859A (zh) * 2021-01-29 2021-04-30 重庆大学 一种超级电容器电极材料的制备方法
WO2023087546A1 (zh) * 2021-11-22 2023-05-25 江苏科技大学 一种水热-球磨制备Ni-HITP复合材料的方法及其应用
CN114280110A (zh) * 2021-12-24 2022-04-05 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN114280110B (zh) * 2021-12-24 2024-01-12 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN115678023A (zh) * 2022-10-17 2023-02-03 昆明学院 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池
CN115678023B (zh) * 2022-10-17 2024-01-26 昆明学院 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池

Also Published As

Publication number Publication date
CN110164717B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN110164717A (zh) 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用
Yang et al. Ionic hydrogel for efficient and scalable moisture‐electric generation
Huang et al. High mass loading MnO2 with hierarchical nanostructures for supercapacitors
Sun et al. A single robust hydrogel film based integrated flexible supercapacitor
Zhong et al. Freestanding and sandwich MXene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries
Lee et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn–Mo mixed oxide electrodes and air-stable organic electrolyte
CN102737851B (zh) 一种柔性超级电容器及其制备方法
Xiao et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems
El-Kady et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage
Fang et al. Tactile UV‐and Solar‐Light Multi‐Sensing Rechargeable Batteries with Smart Self‐Conditioned Charge and Discharge
Ren et al. Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature
Kim et al. Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles
Verma et al. Highly stable self-charging piezoelectric (Rochelle salt) driven supercapacitor based on Ni nanowires
Zhou et al. Self-chargeable flexible solid-state supercapacitors for wearable electronics
CN103646790B (zh) 一种线状的具有光探性能的柔性超级电容器及制备方法
CN106548875A (zh) 一种全固态柔性透明超级电容器及其制备和应用
Liu et al. Design and fabrication of transparent and stretchable zinc ion batteries
CN104795252A (zh) 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法
CN105702483A (zh) 一种纸基聚吡咯复合膜及其制备方法
Zhao et al. A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide
Wang et al. A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability
Xiao et al. Highly compressible nitrogen-doped carbon foam electrode with excellent rate capability via a smart etching and catalytic process
Zhang et al. Advanced fiber-shaped aqueous zn ion battery integrated with strain sensor
Selvam et al. Effective self-charge boosting sweat electrolyte textile supercapacitors array from bio-compatible polymer metal chelates
Huang et al. Bioinspired interfacial strengthening flexible supercapacitors via hierarchically topological interlocking strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant