CN110164717A - 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 - Google Patents
一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 Download PDFInfo
- Publication number
- CN110164717A CN110164717A CN201910468620.0A CN201910468620A CN110164717A CN 110164717 A CN110164717 A CN 110164717A CN 201910468620 A CN201910468620 A CN 201910468620A CN 110164717 A CN110164717 A CN 110164717A
- Authority
- CN
- China
- Prior art keywords
- hitp
- mof
- ito
- transparent electrode
- pet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013301 2,3,6,7,10,11-hexaiminotriphenylene-based metal-organic framework Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 230000021615 conjugation Effects 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000012983 electrochemical energy storage Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 9
- 235000019441 ethanol Nutrition 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 4
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001868 water Inorganic materials 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims 1
- 229910021641 deionized water Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 229910021607 Silver chloride Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012621 metal-organic framework Substances 0.000 description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012923 MOF film Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 amino trimethylenes Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- BNQNOBYYEIRNCW-UHFFFAOYSA-N benzene;nickel(2+) Chemical compound [Ni+2].C1=CC=CC=C1 BNQNOBYYEIRNCW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000001967 indiganyl group Chemical group [H][In]([H])[*] 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Hybrid Cells (AREA)
Abstract
本发明公开了一种π‑d共轭Ni‑HITP MOF柔性透明电极的制备方法及储能应用,本发明中直接选择ITO/PET柔性透明材料作为结合π‑d共轭Ni‑HITP MOF导电薄膜的基底,采用低成本、低能耗、工艺简单的气液界面法来制备Ni‑HITP MOF导电薄膜,通过L‑S法将薄膜转移到基底上制备出Ni‑HITP/ITO/PET柔性透明电极,整个制备过程的步骤简便,所需条件低,操作简单,耗时短;制备除的柔性透明电极的光学透光性良好且电化学储能性质优异。
Description
技术领域
本发明涉及电容技术领域,具体是涉及一种π-d共轭2,3,6,7,10,11-六氨基三亚苯镍(II)基金属有机框架(Ni-HITP MOF)柔性透明电极的合成及其电化学储能应用。
背景技术
随着对电子设备需求的逐步多样化,便携式能源和可穿戴设备成为了衔接应用革新和技术发展的关键点。柔性、可穿戴和透明化是电子设备发展的主流方向,然而,在当前阶段,电池工业中生产的绝大多数电池都是刚性的(比如铅酸电池、软包/钢壳/18650锂离子电池),并不具备在弯曲、折叠、扭转、压缩或拉伸条件下工作的能力。在这一背景下,柔性透明电子设备的发展引人关注,该设备的发展也推动了柔性透明能源存储技术的快速进步。柔性透明电极作为柔性透明储能器件中最为核心的部分,其制备和组装直接决定了储能器件的性能水平。
电容器的性能与材料的比表面积,离子嵌入脱出的容易程度有关,因此,电极材料的选择很大程度上决定了电容器的性能。二维纳米材料具有比表面积高、电化学活性位点丰富、离子嵌入脱出快速等优点,应用在超级电容器上有诸多优势。在众多的二维纳米材料中,金属有机框架(Metal-Organic Framework,MOF)材料有着高比表面积,可以提供丰富的离子吸附/脱附表面以及电化学反应的活性位点;π-d共轭MOF具有高电导率,可以保证电子在电化学反应中的快速传导,在电化学储能应用中的作用突出。直接选择ITO/PET柔性透明材料作为结合π-d共轭MOF薄膜的基底的研究仍鲜有报道。因此,基于π-d共轭MOF的柔性透明超级电容器的研制,不但有利于柔性透明储器件的发展,同时也促进了电极材料的进步。
发明内容
本发明的目的在于提出一种新的思路,直接选择ITO/PET柔性透明材料作为结合π-d共轭Ni-HITP MOF导电薄膜的基底,采用低成本、低能耗、工艺简单的气液界面法来制备Ni-HITP MOF导电薄膜,通过L-S法将薄膜转移到基底上制备出Ni-HITP/ITO/PET柔性透明电极,该柔性透明电极的光学透光性良好、电化学储能性质优异。
本发明的技术方案为:一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,具体制备步骤为:
步骤一、Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液和NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺,反应15-20min,在气液界面处形成Ni-HITP MOF导电薄膜,之所以选择15-20min这一反应时段是因为利用该反应时段制备出的导电薄膜制备出的制备柔性透明电极在拥有优异的电化学性能的同时透光率始终能保持80%以上,反应时间过长的话透光率会降低。
步骤二、Ni-HITP/ITO/PET柔性透明电极的制备
1)将ITO/PET(规格:1cm×2cm,厚度:0.175mm,ITO层厚度:0.4nm)依次用去离子水、乙醇、丙酮、乙醇清洗;
2)通过Langmuir–transfer(L-S)法将界面处形成的Ni-HITP MOF导电薄膜转移到ITO/PET柔性透明基底上,即利用镊子紧密地固定ITO/PET,然后将其定位在水平烧杯中形成Ni3(HITP)2膜的位置。接触后,由于范德华力,氢键和/或库仑相互作用,Ni3(HITP)2膜被吸附到ITO/PET上,得到Ni-HITP/ITO/PET柔性透明电极,用H2O、乙醇清洗。
进一步地,所述Ni-HITP MOF导电薄膜的结构式为
进一步地,所述π-d共轭Ni-HITP MOF柔性透明电极可应用在电化学储能中。
本发明的有益效果为:
(1)本发明公开的π-d共轭Ni-HITP MOF导电薄膜的制备方法操作简便,常压水浴加热条件下即可完成;
(2)本发明通过L-S法将薄膜转移到基底上制备出π-d共轭Ni-HITP柔性透明电极,所需设备简易、耗时短;
(3)本发明直接选用ITO/PET柔性透明材料作为结合π-d共轭Ni-HITP MOF导电薄膜的基底,具有较高的透明度及极佳的柔性;
(4)本发明所述的Ni-HITP MOF导电薄膜活性位点高、比表面积大、导电率优异;
(5)本发明所述的Ni-HITP/ITO/PET柔性透明电极的方阻低、光学透光性良好且拥有优异的电化学储能性质。
附图说明
图1为实施例1制备的Ni-HITP-7min薄膜的SEM照片;
图2为实施例1制备的Ni-HITP-20min薄膜的SEM照片;
图3为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的平铺图,其中,左侧为Ni-HITP/ITO/PET-7min柔性透明电极的平铺图,右侧为Ni-HITP/ITO/PET-20min柔性透明电极的平铺图;
图4为实施例2制备的Ni-HITP/ITO/PET-20min柔性透明电极的弯曲图;
图5为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的紫外-可见吸收谱图;
图6为实施例2制备的Ni-HITP/ITO/PET柔性透明电极的透光率谱图;
图7为实施例3制备的Ni-HITP/ITO/PET柔性透明电极的CV图;
图8为实施例4制备的Ni-HITP/ITO/PET柔性透明电极的GCD图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1:Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液:称(0.011g,0.02mmol)HITP溶于11mL的H2O中;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液:称NiCl2·6H2O(0.0264g,0.112mmol)溶于40mL的H2O中;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液、2.5mL NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺分别反应7min和20min,在气液界面处形成Ni-HITP-7min薄膜和Ni-HITP-20min薄膜。
从图1、图2可以看出,Ni-HITP为均一的片状物质。
实施例2:Ni-HITP/ITO/PET柔性透明电极的制备
(1)通过L-S法将界面处形成的Ni-HITP-7min薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET-7min柔性透明电极;
(2)通过L-S法将界面处形成的Ni-HITP-20min薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET-20min柔性透明电极;
(3)将步骤(1)(2)得到的柔性透明电极用H2O、乙醇缓慢清洗,测试前在真空干燥箱中储存。
Ni-HITP/ITO/PET柔性透明电极的紫外-可见吸收图谱如图5所示,光谱在487nm和550nm处呈现两个独特的峰,且随着反应时间的延长,样品的吸收强度增加。
Ni-HITP/ITO/PET柔性透明电极的透光率图谱如图6所示,峰的位置与紫外吸收峰一致,随着反应时间的延长,样品的透光率降低,其中Ni-HITP/ITO/PET-7min在487nm处的透光率高达98.5%,在550nm处的透光率高达98.9%,方阻为:48.64Ω/sq;Ni-HITP/ITO/PET-20min在487nm处的透光率为85.5%,550nm处的透光率为86.7%,有良好的光学透光性,方阻为46.16Ω/sq。
实施例3:Ni-HITP/ITO/PET-7min、Ni-HITP/ITO/PET-20min柔性透明电极的循环伏安测试
(1)工作电极:Ni-HITP/ITO/PET-7min柔性透明电极(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3MKCl;CV电位窗口:-0.3V~0.3V。工作电极放入电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试循环伏安曲线。
(2)工作电极:Ni-HITP/ITO/PET-20min柔性透明电极(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3M KCl;CV电位窗口:-0.3V~0.3V。将工作电极置于电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试循环伏安曲线。
如图7所示,Ni-HITP/ITO/PET-7min柔性透明电极的面积比电容为0.43mF·cm-2,Ni-HITP/ITO/PET-20min柔性透明电极的面积比电容为3.61mF·cm-2。Ni-HITP/ITO/PET-20min柔性透明电极的电化学性能优于Ni-HITP/ITO/PET-7min柔性透明电极。随着反应时间的延长,电极的透光率降低,电化学性能提高。
实施例4:Ni-HITP/ITO/PET-7min、Ni-HITP/ITO/PET-20min柔性透明电极的恒流充放电测试
(1)工作电极:Ni-HITP/ITO/PET-7min柔性透明基底(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3MKCl;CV电位窗口:-0.3V~0.3V。工作电极放入电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试GCD曲线。
(2)工作电极:Ni-HITP/ITO/PET-20min柔性透明基底(原始尺寸:1.0cm×2.0cm;浸泡尺寸:1.0cm×1.0cm);参比电极:Ag/AgCl电极;对电极:Pt片(1.0cm×1.0cm);电解质:3M KCl;CV电位窗口:-0.3V~0.3V。将工作电极置于电解质中,测试前先浸泡10min,100mV/s活化至曲线完全重合后,测试GCD曲线。
如图8所示,Ni-HITP/ITO/PET-7min柔性透明电极的面积比电容为0.22mF·cm-2,Ni-HITP/ITO/PET-20min柔性透明电极的面积比电容为6.86mF·cm-2。Ni-HITP/ITO/PET-20min柔性透明电极的电化学性能优于Ni-HITP/ITO/PET-7min柔性透明电极。随着反应时间的延长,电极的透光率降低,电化学性能提高。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。
Claims (3)
1.一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,其特征在于,具体制备步骤为:
步骤一、Ni-HITP MOF导电薄膜的制备
(1)配制1.84×10-3mol/L的HITP水溶液;
(2)配制2.8×10-3mol/L的NiCl2·6H2O水溶液;
(3)在称量瓶中依次加入5mL H2O、2.5mL HITP水溶液和NiCl2·6H2O水溶液,加热至60℃,再加入50μL质量浓度为0.726~0.729g/mL的三乙胺,反应15-20min,在气液界面处形成Ni-HITP MOF导电薄膜;
步骤二、Ni-HITP/ITO/PET柔性透明电极的制备
1)将ITO/PET依次用去离子水、乙醇、丙酮、乙醇清洗;
2)通过L-S法将界面处形成的Ni-HITP MOF导电薄膜转移到ITO/PET柔性透明基底上,得到Ni-HITP/ITO/PET柔性透明电极,并用H2O、乙醇清洗。
2.如权利要求1所述的一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法,其特征在于,所述Ni-HITP MOF导电薄膜的结构式为
3.如权利要求1-2中任一项所述的一种π-d共轭Ni-HITP MOF柔性透明电极的制备方法制备的π-d共轭Ni-HITP MOF柔性透明电极在电化学储能中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910468620.0A CN110164717B (zh) | 2019-05-31 | 2019-05-31 | 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910468620.0A CN110164717B (zh) | 2019-05-31 | 2019-05-31 | 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110164717A true CN110164717A (zh) | 2019-08-23 |
CN110164717B CN110164717B (zh) | 2021-09-28 |
Family
ID=67630847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910468620.0A Active CN110164717B (zh) | 2019-05-31 | 2019-05-31 | 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110164717B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111004402A (zh) * | 2019-11-05 | 2020-04-14 | 复旦大学 | 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法 |
CN111430082A (zh) * | 2020-03-25 | 2020-07-17 | 顾氏纳米科技(浙江)有限公司 | 一种银纳米线复合透明导电薄膜的核壳封装制备方法 |
CN112735859A (zh) * | 2021-01-29 | 2021-04-30 | 重庆大学 | 一种超级电容器电极材料的制备方法 |
CN114280110A (zh) * | 2021-12-24 | 2022-04-05 | 中国科学院上海微系统与信息技术研究所 | 一种mof-聚苯乙烯微球复合材料及其制备方法和用途 |
CN115678023A (zh) * | 2022-10-17 | 2023-02-03 | 昆明学院 | 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池 |
WO2023087546A1 (zh) * | 2021-11-22 | 2023-05-25 | 江苏科技大学 | 一种水热-球磨制备Ni-HITP复合材料的方法及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109575301A (zh) * | 2018-11-15 | 2019-04-05 | 三明学院 | 一种催化氧化合成导电mof的方法 |
CN109709160A (zh) * | 2017-10-26 | 2019-05-03 | 中国科学院福建物质结构研究所 | 一种电子导电金属有机框架薄膜及其制备方法和用途 |
-
2019
- 2019-05-31 CN CN201910468620.0A patent/CN110164717B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109709160A (zh) * | 2017-10-26 | 2019-05-03 | 中国科学院福建物质结构研究所 | 一种电子导电金属有机框架薄膜及其制备方法和用途 |
CN109575301A (zh) * | 2018-11-15 | 2019-04-05 | 三明学院 | 一种催化氧化合成导电mof的方法 |
Non-Patent Citations (4)
Title |
---|
DENNIS SHEBERLA等: "Conductive MOF electrodes for stable supercapacitors with high areal capacitance", 《NATURE MATERIALS》 * |
GUO HAILING等: "Fabrication of ITO glass supported Tb-MOF film for sensing organic solvent", 《INORGANIC CHEMISTRY COMMUNICATIONS》 * |
GUODONG WU等: "Porous Field-Effect Transistors Based on a Semiconductive Metal-Organic Framework", 《AMERICAN CHEMICAL SOCIETY》 * |
臧应: "二维导电 MOF 晶态多孔薄膜的电学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111004402A (zh) * | 2019-11-05 | 2020-04-14 | 复旦大学 | 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法 |
CN111004402B (zh) * | 2019-11-05 | 2022-03-18 | 复旦大学 | 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法 |
CN111430082A (zh) * | 2020-03-25 | 2020-07-17 | 顾氏纳米科技(浙江)有限公司 | 一种银纳米线复合透明导电薄膜的核壳封装制备方法 |
CN112735859A (zh) * | 2021-01-29 | 2021-04-30 | 重庆大学 | 一种超级电容器电极材料的制备方法 |
WO2023087546A1 (zh) * | 2021-11-22 | 2023-05-25 | 江苏科技大学 | 一种水热-球磨制备Ni-HITP复合材料的方法及其应用 |
CN114280110A (zh) * | 2021-12-24 | 2022-04-05 | 中国科学院上海微系统与信息技术研究所 | 一种mof-聚苯乙烯微球复合材料及其制备方法和用途 |
CN114280110B (zh) * | 2021-12-24 | 2024-01-12 | 中国科学院上海微系统与信息技术研究所 | 一种mof-聚苯乙烯微球复合材料及其制备方法和用途 |
CN115678023A (zh) * | 2022-10-17 | 2023-02-03 | 昆明学院 | 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池 |
CN115678023B (zh) * | 2022-10-17 | 2024-01-26 | 昆明学院 | 导电金属有机骨架材料及其制备方法和应用、锗空气电池阳极、锗空气电池 |
Also Published As
Publication number | Publication date |
---|---|
CN110164717B (zh) | 2021-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110164717A (zh) | 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用 | |
Yang et al. | Ionic hydrogel for efficient and scalable moisture‐electric generation | |
Huang et al. | High mass loading MnO2 with hierarchical nanostructures for supercapacitors | |
Sun et al. | A single robust hydrogel film based integrated flexible supercapacitor | |
Zhong et al. | Freestanding and sandwich MXene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries | |
Lee et al. | Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn–Mo mixed oxide electrodes and air-stable organic electrolyte | |
CN102737851B (zh) | 一种柔性超级电容器及其制备方法 | |
Xiao et al. | Fiber-based all-solid-state flexible supercapacitors for self-powered systems | |
El-Kady et al. | Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage | |
Fang et al. | Tactile UV‐and Solar‐Light Multi‐Sensing Rechargeable Batteries with Smart Self‐Conditioned Charge and Discharge | |
Ren et al. | Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature | |
Kim et al. | Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles | |
Verma et al. | Highly stable self-charging piezoelectric (Rochelle salt) driven supercapacitor based on Ni nanowires | |
Zhou et al. | Self-chargeable flexible solid-state supercapacitors for wearable electronics | |
CN103646790B (zh) | 一种线状的具有光探性能的柔性超级电容器及制备方法 | |
CN106548875A (zh) | 一种全固态柔性透明超级电容器及其制备和应用 | |
Liu et al. | Design and fabrication of transparent and stretchable zinc ion batteries | |
CN104795252A (zh) | 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法 | |
CN105702483A (zh) | 一种纸基聚吡咯复合膜及其制备方法 | |
Zhao et al. | A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide | |
Wang et al. | A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability | |
Xiao et al. | Highly compressible nitrogen-doped carbon foam electrode with excellent rate capability via a smart etching and catalytic process | |
Zhang et al. | Advanced fiber-shaped aqueous zn ion battery integrated with strain sensor | |
Selvam et al. | Effective self-charge boosting sweat electrolyte textile supercapacitors array from bio-compatible polymer metal chelates | |
Huang et al. | Bioinspired interfacial strengthening flexible supercapacitors via hierarchically topological interlocking strategy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |