WO2023083360A1 - 一种引线框架的制作方法和引线框架结构 - Google Patents

一种引线框架的制作方法和引线框架结构 Download PDF

Info

Publication number
WO2023083360A1
WO2023083360A1 PCT/CN2022/131778 CN2022131778W WO2023083360A1 WO 2023083360 A1 WO2023083360 A1 WO 2023083360A1 CN 2022131778 W CN2022131778 W CN 2022131778W WO 2023083360 A1 WO2023083360 A1 WO 2023083360A1
Authority
WO
WIPO (PCT)
Prior art keywords
boss
groove
plating layer
lead frame
cap structure
Prior art date
Application number
PCT/CN2022/131778
Other languages
English (en)
French (fr)
Inventor
邵冬冬
Original Assignee
深圳中科四合科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中科四合科技有限公司 filed Critical 深圳中科四合科技有限公司
Publication of WO2023083360A1 publication Critical patent/WO2023083360A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry

Definitions

  • the invention relates to the field of packaging technology, in particular to a method for manufacturing a lead frame and a structure of the lead frame.
  • Frames are widely used in the field of semiconductor packaging.
  • As a chip packaging carrier the electrical interconnection of chips and circuits inside and outside the package is realized by means of bonding materials.
  • the frame substrate 1 is combined with the chip carrying boss 4, mostly forming a similar inverted T-shaped structure (as shown in Figures 1-2). , abnormal plastic packaging parameters, etc.), (as shown in Figures 2 to 3) the contact surface of the azimuth-shaped frame 5 and the plastic package 3-the azimuth-shaped contact surface 51 is prone to delamination and cracking under the action of stress, thus affecting the quality of the product. rate and quality.
  • the embodiments of the present invention provide a lead frame manufacturing method and a lead frame structure, which enhance the bonding force between the lead frame and the plastic package, and reduce the probability of delamination and cracks.
  • a method for manufacturing a lead frame comprising:
  • Step A setting the first anti-plating layer on the surface of the frame substrate, and obtaining the first groove by exposing and developing the first anti-plating layer;
  • Step B Additive layering, filling the first groove by electroplating, chemical deposition or sputtering additive method to obtain the first boss;
  • Step C Set the second anti-plating layer on the first boss and the first anti-plating layer, and obtain the second groove through exposure and development of the second anti-plating layer, the second groove is located on the top of the first boss, and the second concave The part of the groove is located on the upper part of the first anti-plating layer;
  • Step D adding layers by additive method, filling the second groove by electroplating, chemical deposition or sputtering additive method, and forming a cap structure on the first boss;
  • Step E Removing the first plating resist and the second plating resist.
  • step A before step B also includes:
  • step C before step D also includes:
  • Step C Adopt dielectric barrier DBD type plasma processing, carry out surface tension improvement and hydrophilicity improvement treatment to the opening inner wall of the second groove; Dielectric barrier type plasma is processed against plating material, two kinds of resist materials (the first resist plating layer The surface tension and hydrophilicity of the corners connected with the second anti-plating layer) are improved to ensure the full penetration and exchange of electroplating or other chemicals, and ensure the quality of electroplating.
  • the strength of dielectric barrier DBD type plasma processing on the corner of the junction of the first anti-plating layer and the second anti-plating layer is more than 10% greater than that of other parts, and the processing time is longer than other parts by more than 10%.
  • step D comprises:
  • Step D Addition method, filling the second groove by electroplating, chemical deposition or sputtering addition method, forming the first metal layer of the cap structure on the first boss;
  • Step D2. Addition method, filling the second groove by electroplating, chemical deposition or sputtering addition method, forming a second metal layer with a cap structure on the first metal layer;
  • the strength and hardness of the first metal layer are greater than the strength and hardness of the second metal layer.
  • the first metal layer is a gold layer, a nickel palladium gold layer or a nickel layer, and the second metal layer is a copper layer.
  • step D comprises:
  • the thickness of the first metal layer is 3-5 ⁇ m.
  • step E includes: high-pressure cleaning and APPA atmospheric pressure plasma cleaning to remove the first anti-plating layer and the second anti-plating layer;
  • the height of the first boss is 80% to 95% of the depth of the first groove; before making the cap structure, the surface of the first boss is roughened, and the cap structure includes a vertical part and a platform part. The straight part is located directly above the first boss, and the platform part is located above the vertical part;
  • a lead frame structure comprising a frame substrate, a first boss and a cap structure, the first boss is arranged on the frame substrate, the peripheral side of the first boss is a groove, and the cap structure is arranged on the first boss , at least a part of the cap structure leaks out of the upper part of the first boss to cover the groove.
  • first bosses and cap structures there are more than two first bosses and cap structures, and one first boss corresponds to one cap structure; the first bosses are distributed in an array on the frame substrate;
  • the cap structure, the first boss and the frame base form an I-shaped structure.
  • the side walls of the first boss and the cap structure are arranged in a zigzag shape.
  • a method for manufacturing a lead frame comprising: setting a first anti-plating layer on the surface of a frame base material, and obtaining a first groove by exposing and developing the first anti-plating layer; filling the first groove by electroplating, chemical deposition or sputtering addition method A groove, the first boss is obtained; the second anti-plating layer is set on the first boss and the first anti-plating layer, and the exposure and development of the second anti-plating layer obtain the second groove, and the second groove is located on the first convex
  • the upper part of the platform, the part of the second groove is located on the upper part of the first anti-plating layer;
  • the second groove is filled by electroplating, chemical deposition or sputtering addition, and a cap structure is formed on the first boss; the first anti-plating layer is removed And the second anti-plating layer, the cap structure, the first boss and the frame substrate form an I-shaped structure, which can increase the joint surface of the lead frame and the plastic package, reduce the stress between the lead
  • the new lead frame structure has obvious advantages in product structural strength and convenience.
  • the control of the packaging process is lacking (such as conventional problems such as frame oxidation and plastic package parameter fluctuations)
  • the packaged product is actually used in extreme environments such as temperature and humidity changes or even high and low temperatures, due to the combination of the plastic package and the lead frame
  • the surface is larger, and the force is more uniform and reasonable.
  • the new structural frame can effectively enhance the strength of the contact surface between the frame and the plastic package, and improve the structural strength of the overall product.
  • High reliability performance When the new lead frame structure has micro-cracks on the interface of the product, the longer gap channel can effectively delay the occurrence of defects that lead to product failure and prolong the product life cycle.
  • FIG. 1 is a structural schematic diagram of a lead frame structure in the prior art.
  • FIG. 2 is a schematic structural diagram of a packaged lead frame structure in the prior art.
  • FIG. 3 is a partial enlarged view of A in FIG. 2 .
  • FIG. 4 is a schematic structural view of a frame base material in an embodiment of a method for manufacturing a lead frame according to the present invention.
  • FIG. 5 is a schematic structural diagram after step A of Embodiment 1 of a manufacturing method of a lead frame according to the present invention.
  • FIG. 6 is a schematic structural diagram after step B of Embodiment 1 of a method for manufacturing a lead frame according to the present invention.
  • FIG. 7 is a schematic structural diagram after step D of Embodiment 1 of a method for manufacturing a lead frame according to the present invention.
  • FIG. 8 is a schematic structural view of a packaged lead frame in Embodiment 1 of a method for manufacturing a lead frame according to the present invention.
  • FIG. 9 is an enlarged view of the partial structure at B in FIG. 8 of the present invention.
  • FIG. 10 is a schematic structural diagram after step D of Embodiment 2 of a method for manufacturing a lead frame according to the present invention.
  • FIG. 11 is an enlarged view of the local structure at point C in FIG. 10 of the present invention.
  • FIG. 12 is a schematic structural diagram after step D of Embodiment 3 of a method for manufacturing a lead frame according to the present invention.
  • FIG. 13 is an enlarged view of the partial structure at D in FIG. 12 of the present invention.
  • FIG. 14 is a schematic structural view of a packaged lead frame in yet another embodiment of a method for manufacturing a lead frame according to the present invention.
  • Fig. 15 is an enlarged view of the partial structure at E of Fig. 14 of the present invention.
  • 16A is a schematic diagram of the structure of the first anti-plating layer 21 provided by the present invention after being developed and subjected to roughness shaping of the side wall of the anti-plating material under radio frequency plasma conditions.
  • FIG. 16B is a schematic structural view of the corner where the first anti-plating layer 21 and the second anti-plating layer 22 are combined with each other provided by the present invention.
  • FIG. 16C is a schematic diagram showing the first anti-plating layer 21 provided by the present invention undergoing plasma plasma treatment after development.
  • FIG. 16D is a schematic diagram illustrating dielectric barrier (DBD) type plasma treatment after the development of the first anti-plating layer 21 and the second anti-plating layer 22 provided by the present invention.
  • DBD dielectric barrier
  • FIG. 16E is a schematic diagram of a partial structure of a lead frame after plasma-related processing according to an embodiment of the present invention.
  • FIG. 16F is a schematic diagram of a partial structure of a lead frame according to another embodiment of the present invention after plasma-related processing.
  • FIG. 16G is a schematic diagram of an atmospheric pressure plasma arc cleaning of the first plating resist 21 and the second plating resist 22 after the cap structure 14 is manufactured in a lead frame manufacturing method provided by the present invention.
  • FIG. 16H is a schematic diagram of a partial structure of a lead frame obtained after the steps shown in FIG. 16G and step E in a method for manufacturing a lead frame provided by the present invention.
  • a method for manufacturing a lead frame comprising:
  • Step A The first anti-plating layer 21 is provided on the surface of the frame substrate 1, and the first groove 11 is obtained by exposing and developing the first anti-plating layer 21;
  • Step B Additive layering, filling the first groove 11 by electroplating, chemical deposition or sputtering additive method to obtain the first boss 12;
  • Step C Set the second anti-plating layer 22 on the first boss 12 and the first anti-plating layer 21, and obtain the second groove 13 by exposing and developing the second anti-plating layer 22, and the second groove 13 is located on the first boss 12, the part of the second groove 13 is located on the top of the first anti-plating layer 21;
  • Step D Addition method, filling the second groove 13 by electroplating, chemical deposition or sputtering addition method, forming a cap structure 14 on the first boss 12;
  • Step E Removing the first plating resist 21 and the second plating resist 22 .
  • the strength of dielectric barrier DBD plasma processing on the corner of the junction of the first anti-plating layer 21 and the second anti-plating layer 22 is more than 10% greater than that of other parts, and the processing time is longer than other parts by more than 10%.
  • Embodiments of the present invention provide a method for manufacturing a lead frame and a lead frame structure, which are used to solve the problems of high stress and easy microcracks in the existing lead frame.
  • the present invention introduces the manufacturing method and structure of the lead frame in detail through the embodiments.
  • a method for manufacturing a lead frame comprising:
  • Step A The first anti-plating layer 21 is provided on the surface of the frame substrate 1, and the first groove 11 is obtained by exposing and developing the first anti-plating layer 21;
  • Step B Additive layering, filling the first groove 11 by electroplating, chemical deposition or sputtering additive method to obtain the first boss 12;
  • Step C Set the second anti-plating layer 22 on the first boss 12 and the first anti-plating layer 21, and obtain the second groove 13 by exposing and developing the second anti-plating layer 22, and the second groove 13 is located on the first boss 12, the part of the second groove 13 is located on the top of the first anti-plating layer 21;
  • Step D Addition method, filling the second groove 13 by electroplating, chemical deposition or sputtering addition method, forming a cap structure 14 on the first boss 12;
  • Step E Removing the first plating resist 21 and the second plating resist 22 .
  • step A before step B also includes:
  • step C before step D also includes:
  • Step C Using dielectric barrier DBD type plasma processing to improve the surface tension and improve the hydrophilicity of the inner wall of the opening of the second groove 13;
  • the strength of dielectric barrier DBD plasma processing on the corner of the junction of the first anti-plating layer 21 and the second anti-plating layer 22 is more than 10% greater than that of other parts, and the processing time is longer than other parts by more than 10%.
  • the number of the first boss 12 and the cap structure 14 is more than two, and one first boss 12 corresponds to one cap structure 14;
  • the first bosses 12 are distributed in an array on the frame substrate 1;
  • the cap structure 14 , the first boss 12 and the frame substrate 1 form an I-shaped structure 6
  • the I-shaped structure 6 makes the plastic package 3 and the frame substrate 1 form an I-shaped contact surface 61 .
  • the thickness of the first metal layer 141 is 3-5 ⁇ m.
  • step E includes: high-pressure cleaning and APPA atmospheric pressure plasma cleaning to remove the first anti-plating layer 21 and the second anti-plating layer 22;
  • step D includes:
  • Step D Additive layering, filling the second groove 13 by electroplating, chemical deposition or sputtering additive method, forming the first metal layer 141 of the cap structure on the first boss 12;
  • Step D2. Additive layering, filling the second groove 13 by electroplating, chemical deposition or sputtering additive method, forming a second metal layer 142 with a cap structure on the first metal layer 141;
  • the strength and hardness of the first metal layer 141 are greater than those of the second metal layer 142 .
  • the first metal layer 141 is a gold layer, a nickel palladium gold layer or a nickel layer, and the second metal layer is a copper layer.
  • the height of the first boss 12 is 80% to 95% of the depth of the first groove 11; before making the cap structure 14, the surface of the first boss 12 is roughened, and the cap structure 14 includes vertical Straight portion 143 and platform portion 144, the vertical portion is positioned directly above the first boss 12, and the platform portion 144 is positioned at the top of the vertical portion 143;
  • the first boss 12 is made of copper or aluminum
  • the cap structure 14 can generally adopt the same structure as the first boss 12 .
  • the first boss 12 is made of copper
  • the cap structure 14 includes a vertical portion 143 and a platform portion 144
  • the vertical portion 143 is made of transition metal, such as copper alloy, nickel alloy or Nickel-palladium-gold
  • platform part 144 adopts copper, nickel or gold correspondingly
  • vertical part 143 adopts soft gold
  • platform part 144 adopts hard gold to make, thereby guarantees the bonding force of first boss 12 and cap structure 14, also It is possible to make the cap structure 14 and the first boss 12 maintain a strong enough adaptability.
  • the joint surface of the first boss 12 and the cap structure 14 is a zigzag structure 8 .
  • the number of the first boss 12 and the cap structure 14 is more than two, and one first boss 12 corresponds to one cap structure 14;
  • the first bosses 12 are distributed in an array on the frame substrate 1;
  • the cap structure 14, the first boss 12 and the frame base material 1 form a similar I-shaped structure, the surface of the similar I-shaped structure is curved, and the side of the similar I-shaped structure is curved to reduce the I-shaped structure. Stress with the plastic package 3 , the I-shaped structure makes the plastic package 3 and the frame substrate 1 form an I-shaped contact surface.
  • FIGS. 16A to 16H The drawings of other embodiments are shown in FIGS. 16A to 16H , and the plaza process is used to process the structures in different steps.
  • a lead frame structure comprising a frame substrate 1, a first boss 12 and a cap structure 14, the first boss 12 is arranged on the frame substrate 1, the peripheral side of the first boss 12 is a groove, and the cap structure 14 Arranged on the first boss 12 , at least a part of the cap structure 14 leaks out of the upper part of the first boss 12 to cover the groove.
  • the number of the first boss 12 and the cap structure 14 is more than two, and one first boss 12 corresponds to one cap structure 14;
  • the first bosses 12 are distributed in an array on the frame substrate 1;
  • the cap structure 14 , the first boss 12 and the frame substrate 1 form an I-shaped structure 6
  • the I-shaped structure 6 makes the plastic package 3 and the frame substrate 1 form an I-shaped contact surface 61 .
  • the side walls of the first boss 12 and the cap structure 14 are arranged in a zigzag shape.
  • the technical problem to be solved by the present invention is to develop a novel lead frame structure and manufacturing method, which can be used to manufacture highly reliable frames with low cost and flexible design and wide application range:
  • Enhanced structural strength the novel lead frame structure is The advantages of product structure, strength and convenience are obvious.
  • the new structural frame can effectively strengthen the frame and The strength of the contact surface of the plastic package improves the structural strength of the overall product.
  • High reliability performance When the new lead frame structure has micro-cracks on the interface of the product, the longer gap channel can effectively delay the occurrence of defects that lead to product failure and prolong the product life cycle.
  • a method for manufacturing a lead frame comprising: setting a first anti-plating layer on the surface of a frame base material, and obtaining a first groove by exposing and developing the first anti-plating layer; filling the first groove by electroplating, chemical deposition or sputtering addition method A groove, the first boss is obtained; the second anti-plating layer is set on the first boss and the first anti-plating layer, and the exposure and development of the second anti-plating layer obtain the second groove, and the second groove is located on the first convex
  • the upper part of the platform, the part of the second groove is located on the upper part of the first anti-plating layer;
  • the second groove is filled by electroplating, chemical deposition or sputtering addition, and a cap structure is formed on the first boss; the first anti-plating layer is removed And the second anti-plating layer, the cap structure, the first boss and the frame substrate form an I-shaped structure, which can increase the joint surface of the lead frame and the plastic package, reduce the stress between the lead
  • the new lead frame structure has obvious advantages in product structural strength and convenience.
  • the control of the packaging process is lacking (such as conventional problems such as frame oxidation and plastic package parameter fluctuations)
  • the packaged product is actually used in extreme environments such as temperature and humidity changes or even high and low temperatures, due to the combination of the plastic package and the lead frame
  • the surface is larger, and the force is more uniform and reasonable.
  • the new structural frame can effectively enhance the strength of the contact surface between the frame and the plastic package, and improve the structural strength of the overall product.
  • High reliability performance When the new lead frame structure has micro-cracks on the interface of the product, the longer gap channel can effectively delay the occurrence of defects that lead to product failure and prolong the product life cycle. It can be applied in industry and can meet industrial applicability Require

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

本发明实施例公开了一种引线框架的制作方法,包括:在框架基材的表面设置第一抗镀层,对第一抗镀层的曝光、显影获得第一凹槽;通过电镀、化学沉积或溅射加成法填充第一凹槽,获得第一凸台;在第一凸台和第一抗镀层上设置第二抗镀层,对第二抗镀层的曝光、显影获得第二凹槽,第二凹槽位于第一凸台的上部,第二凹槽的局部位于第一抗镀层的上部;通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一凸台上形成盖帽结构;去除第一抗镀层和第二抗镀层,盖帽结构、第一凸台和框架基材构成工字型结构,能够增大引线框架与塑封体结合的结合面,降低引线框架与塑封体之间的应力,增强引线框架与塑封体的结合力,降低分层和产生裂纹的概率。

Description

一种引线框架的制作方法和引线框架结构 技术领域
本发明涉及封装技术领域,具体涉及一种引线框架的制作方法和引线框架结构。
背景技术
框架在半导体封装领域应用非常广泛,作为芯片封装载体,借助键合材料实现封装体内外芯片和电路的电气互连。
技术问题
传统框架的减法蚀刻加工技术,框架基材1与芯片承载凸台4结合,大多构成类似倒T型结构(如图1~2所示),当半导体封装加工制程控制存在缺失(比如材料表面氧化、塑封参数异常等)时,(如图2~3所示)所示的几字形框架5与塑封体3的接触面‑几字形接触面51在应力作用下容易分层开裂,从而影响产品良率及质量。
技术解决方案
本发明实施例提供了一种引线框架的制作方法和引线框架结构,增强引线框架与塑封体的结合力,降低分层和产生裂纹的概率。
有益效果
一种引线框架的制作方法,包括:
步骤A.在框架基材的表面设置第一抗镀层,对第一抗镀层的曝光、显影获得第一凹槽;
步骤B.加成法增层,通过电镀、化学沉积或溅射加成法填充第一凹槽,获得第一凸台;
步骤C.在第一凸台和第一抗镀层上设置第二抗镀层,对第二抗镀层的曝光、显影获得第二凹槽,第二凹槽位于第一凸台的上部,第二凹槽的局部位于第一抗镀层的上部;
步骤D.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一凸台上形成盖帽结构;
步骤E.去除第一抗镀层和第二抗镀层。
优选的,步骤A之后,步骤B之前还包括:
步骤A1.采用射频Plasma等离子加工,对第一凹槽的开口内壁进行处理,增大其粗糙度;控制第一凹槽的侧壁粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm。
优选的,步骤C之后,步骤D之前还包括:
步骤C1.采用介质阻挡DBD型等离子加工,对第二凹槽的开口内壁进行表面张力改善及亲水性改善处理;介质阻挡型等离子对抗镀材料进行处理,两种抗镀材料(第一抗镀层和第二抗镀层)连接的角落处表面张力改善及亲水性改善,保证电镀或其他药水充分渗透及交换,确保电镀质量。
对第一抗镀层和第二抗镀层结合处的角落进行采用介质阻挡DBD型等离子加工的强度比其它部分大10%以上,处理时间比其他部分长10%以上。
优选的,步骤D包括:
步骤D1.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一凸台上形成盖帽结构的第一金属层;
步骤D2.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一金属层上形成盖帽结构的第二金属层;
第一金属层的强度和硬度大于第二金属层的强度和硬度。
第一金属层为金层、镍钯金层或镍层,第二金属层为铜层。
优选的,步骤D包括:
控制第二凹槽的内壁的粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm;
第一金属层的厚度为3~5μm。
优选的,步骤E包括:高压清洁和APPA大气常压等离子清洁去除第一抗镀层和第二抗镀层;
引入APPA大气常压等离子清洁,利用高能量密度的等离子束直接作用于第一抗镀层和第二抗镀层结合的拐角角落处,将可能残留的抗镀材料从框架角落处分离。
优选的,第一凸台的高度为第一凹槽深度的80%~95%;制作盖帽结构前,对第一凸台的表面进行增糙处理,盖帽结构包括竖直部分和平台部分,竖直部分位于第一凸台的正上方,平台部分位于竖直部分的上部;
第一凸台与盖帽结构的结合面呈犬牙交错状。一种引线框架结构,包括框架基材、第一凸台和盖帽结构,第一凸台设置在框架基材上,第一凸台的周侧为凹槽,盖帽结构设置在第一凸台上,盖帽结构的至少一部分漏出第一凸台的上部覆盖在凹槽上。
优选的,第一凸台和盖帽结构的数量都在2个以上,一个第一凸台对应一个盖帽结构;第一凸台呈阵列分布于框架基材上;
盖帽结构、第一凸台和框架基材构成工字型结构。
优选的,第一凸台和盖帽结构的侧壁呈锯齿形设置。
从以上技术方案可以看出,本发明实施例具有以下优点:
一种引线框架的制作方法,包括:在框架基材的表面设置第一抗镀层,对第一抗镀层的曝光、显影获得第一凹槽;通过电镀、化学沉积或溅射加成法填充第一凹槽,获得第一凸台;在第一凸台和第一抗镀层上设置第二抗镀层,对第二抗镀层的曝光、显影获得第二凹槽,第二凹槽位于第一凸台的上部,第二凹槽的局部位于第一抗镀层的上部;通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一凸台上形成盖帽结构;去除第一抗镀层和第二抗镀层,盖帽结构、第一凸台和框架基材构成工字型结构,能够增大引线框架与塑封体结合的结合面,降低引线框架与塑封体之间的应力,增强引线框架与塑封体的结合力,降低分层和产生裂纹的概率。
结构强度增强:新型引线框架结构在产品结构强度方便优势明显。一方面当封装过程控制缺失(如框架氧化、塑封参数波动异常等常规问题)时,另一方面当封装产品实际应用在温湿度变化甚至高低温等极端环境下,由于塑封体与引线框架的结合面更大,受力更均匀合理,新结构框架能有效增强框架与塑封体接触面强度,提升整体产品结构强度。高可靠性表现:新型引线框架结构在产品发生界面微裂纹时,更长的间隙通道可以有效延阻导致产品失效的缺陷发生,延长产品生命周期。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的引线框架结构的结构示意图。
图2为现有技术的引线框架结构封装后的结构示意图。
图3为图2的A处的局部放大图。
图4为本发明一种引线框架的制作方法的实施例一框架基材的结构示意图。
图5为本发明一种引线框架的制作方法的实施例一的步骤A后的结构示意图。
图6为本发明一种引线框架的制作方法的实施例一的步骤B后的结构示意图。
图7为本发明一种引线框架的制作方法的实施例一的步骤D后的结构示意图。
图8为本发明一种引线框架的制作方法的实施例一的引线框架封装后的结构示意图。
图9为本发明图8的B处的局部结构放大图。
图10为本发明一种引线框架的制作方法的实施例二的步骤D后的结构示意图。
图11为本发明图10的C处的局部结构放大图。
图12为本发明一种引线框架的制作方法的实施例三的步骤D后的结构示意图。
图13为本发明图12的D处的局部结构放大图。
图14为本发明一种引线框架的制作方法的又一个实施例的引线框架封装后的结构示意图。
图15为本发明图14的E处的局部结构放大图。
图16A为本发明提供的第一抗镀层21在显影后,进行射频等离子条件下抗镀材料侧壁粗糙度塑型后的结构示意图。
图16B为本发明提供的第一抗镀层21和第二抗镀层22相互结合的角落的结构示意图。
图16C为本发明提供的第一抗镀层21在显影后,进行射plasma等离子处理时的指示示意图。
图16D为本发明提供的第一抗镀层21和第二抗镀层22在显影后,进行介质阻挡(DBD)型等离子处理的指示示意图。
图16E为本发明提供的一个实施例的引线框架在进行等离子相关工艺处理后的局部结构示意图。
图16F为本发明提供的另一个实施例的引线框架在进行等离子相关工艺处理后的局部结构示意图。
图16G为本发明提供的一种引线框架的制作方法在进行盖帽结构14的制作后,对第一抗镀层21和第二抗镀层22进行大气常压等离子体弧清洗的指示示意图。
图16H为本发明提供的一种引线框架的制作方法经过图16G所示的步骤以及步骤E之后获得的引线框架的局部结构示意图。
图中:
1‑框架基材;11‑第一凹槽;12‑第一凸台;13‑第二凹槽;14‑盖帽结构;141‑第一金属层;142‑第二金属层;143‑竖直部分;144‑平台部分;21‑第一抗镀层;22‑第二抗镀层;3‑塑封体;5‑几字形框架;51‑几字形接触面;6‑工字型结构;61‑工字型接触面;8‑犬牙交错状结构。
本发明的最佳实施方式
一种引线框架的制作方法,包括:
步骤A.在框架基材1的表面设置第一抗镀层21,对第一抗镀层21的曝光、显影获得第一凹槽11;
步骤B.加成法增层,通过电镀、化学沉积或溅射加成法填充第一凹槽11,获得第一凸台12;
步骤C.在第一凸台12和第一抗镀层21上设置第二抗镀层22,对第二抗镀层22的曝光、显影获得第二凹槽13,第二凹槽13位于第一凸台12的上部,第二凹槽13的局部位于第一抗镀层21的上部;
步骤D.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽13,在第一凸台12上形成盖帽结构14;
步骤E.去除第一抗镀层21和第二抗镀层22。
对第一抗镀层21和第二抗镀层22结合处的角落进行采用介质阻挡DBD型等离子加工的强度比其它部分大10%以上,处理时间比其他部分长10%以上。
本发明的实施方式
本发明实施例提供了一种引线框架的制作方法和引线框架结构,用于解决现有引线框架应力大、容易产生微裂纹的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅附图,本发明中通过实施例详细介绍引线框架的制作方法和引线框架结构。
实施例一
请参阅图4~9,该实施例的具体流程如下:
一种引线框架的制作方法,包括:
步骤A.在框架基材1的表面设置第一抗镀层21,对第一抗镀层21的曝光、显影获得第一凹槽11;
步骤B.加成法增层,通过电镀、化学沉积或溅射加成法填充第一凹槽11,获得第一凸台12;
步骤C.在第一凸台12和第一抗镀层21上设置第二抗镀层22,对第二抗镀层22的曝光、显影获得第二凹槽13,第二凹槽13位于第一凸台12的上部,第二凹槽13的局部位于第一抗镀层21的上部;
步骤D.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽13,在第一凸台12上形成盖帽结构14;
步骤E.去除第一抗镀层21和第二抗镀层22。
本实施例中,步骤A之后,步骤B之前还包括:
步骤A1.采用射频Plasma等离子加工,对第一凹槽11的开口内壁进行处理,增大其粗糙度;控制第一凹槽11的侧壁粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm。
本实施例中,步骤C之后,步骤D之前还包括:
步骤C1.采用介质阻挡DBD型等离子加工,对第二凹槽13的开口内壁进行表面张力改善及亲水性改善处理;
对第一抗镀层21和第二抗镀层22结合处的角落进行采用介质阻挡DBD型等离子加工的强度比其它部分大10%以上,处理时间比其他部分长10%以上。
本实施例中,第一凸台12和盖帽结构14的数量都在2个以上,一个第一凸台12对应一个盖帽结构14;
第一凸台12呈阵列分布于框架基材1上;
盖帽结构14、第一凸台12和框架基材1构成工字型结构6,工字型结构6使得塑封体3与框架基材1构成工字型接触面61。
本实施例中,步骤D包括:控制第二凹槽13的内壁的粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm;
第一金属层141的厚度为3~5μm。
本实施例中,步骤E包括:高压清洁和APPA大气常压等离子清洁去除第一抗镀层21和第二抗镀层22;
引入APPA大气常压等离子清洁,利用高能量密度的等离子束直接作用于第一抗镀层21和第二抗镀层22结合的拐角角落处,将可能残留的抗镀材料从框架角落处分离。
实施例二
请参阅图4~11,本实施例中,未介绍的部分同实施例一。
本实施例中,步骤D包括:
步骤D1.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽13,在第一凸台12上形成盖帽结构的第一金属层141;
步骤D2.加成法增层,通过电镀、化学沉积或溅射加成法填充第二凹槽13,在第一金属层141上形成盖帽结构的第二金属层142;
第一金属层141的强度和硬度大于第二金属层142的强度和硬度。
第一金属层141为金层、镍钯金层或镍层,第二金属层为铜层。
实施例三
请参阅图4~9和图12~13,本实施例中,未介绍的部分同实施例一。
本实施例中,第一凸台12的高度为第一凹槽11深度的80%~95%;制作盖帽结构14前,对第一凸台12的表面进行增糙处理,盖帽结构14包括竖直部分143和平台部分144,竖直部分位于第一凸台12的正上方,平台部分144位于竖直部分143的上部;
通常情况下,第一凸台12由铜或铝组成,盖帽结构14通常也可以采用与第一凸台12相同的结构。在本实施例中,第一凸台12由铜制成,盖帽结构14采用包括竖直部分143和平台部分144,竖直部分143采用过渡性金属制作而成,例如采用铜合金、镍合金或镍钯金,平台部分144对应的采用铜、镍或金,或竖直部分143采用软金,而平台部分144采用硬金制作,从而保证第一凸台12与盖帽结构14的结合力,也能够使得盖帽结构14与第一凸台12保持足够强的适应能力。
第一凸台12与盖帽结构14的结合面呈犬牙交错状结构8。
实施例四
请参阅附图3~9和附图14~15。本实施例中未介绍部分同实施例一。
本实施例中,第一凸台12和盖帽结构14的数量都在2个以上,一个第一凸台12对应一个盖帽结构14;
第一凸台12呈阵列分布于框架基材1上;
盖帽结构14、第一凸台12和框架基材1构成类工字型结构,类工字型结构的表面呈弧形,类工字型结构的侧面形成弧形,以减少类工字型结构与塑封体3的应力,类工字型结构使得塑封体3与框架基材1构成类工字型接触面。
其他实施例的附图如图16A~图16H所示,采用plaza工艺在不同的步骤对结构进行处理。
一种引线框架结构,包括框架基材1、第一凸台12和盖帽结构14,第一凸台12设置在框架基材1上,第一凸台12的周侧为凹槽,盖帽结构14设置在第一凸台12上,盖帽结构14的至少一部分漏出第一凸台12的上部覆盖在凹槽上。
本实施例中,第一凸台12和盖帽结构14的数量都在2个以上,一个第一凸台12对应一个盖帽结构14;
第一凸台12呈阵列分布于框架基材1上;
盖帽结构14、第一凸台12和框架基材1构成工字型结构6,工字型结构6使得塑封体3与框架基材1构成工字型接触面61。
本实施例中,第一凸台12和盖帽结构14的侧壁呈锯齿形设置。
本发明所要解决的技术问题是开发一种新型引线框架结构及制作方法,该方法可用于制作高可靠性的框架,低成本且设计灵活适用范围广:1、结构强度增强:新型引线框架结构在产品结构强度方便优势明显。一方面当封装过程控制缺失(如框架氧化、塑封参数波动异常等常规问题)时,另一方面当封装产品实际应用在温湿度变化甚至高低温等极端环境下,新结构框架能有效增强框架与塑封体接触面强度,提升整体产品结构强度。2、高可靠性表现:新型引线框架结构在产品发生界面微裂纹时,更长的间隙通道可以有效延阻导致产品失效的缺陷发生,延长产品生命周期。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
一种引线框架的制作方法,包括:在框架基材的表面设置第一抗镀层,对第一抗镀层的曝光、显影获得第一凹槽;通过电镀、化学沉积或溅射加成法填充第一凹槽,获得第一凸台;在第一凸台和第一抗镀层上设置第二抗镀层,对第二抗镀层的曝光、显影获得第二凹槽,第二凹槽位于第一凸台的上部,第二凹槽的局部位于第一抗镀层的上部;通过电镀、化学沉积或溅射加成法填充第二凹槽,在第一凸台上形成盖帽结构;去除第一抗镀层和第二抗镀层,盖帽结构、第一凸台和框架基材构成工字型结构,能够增大引线框架与塑封体结合的结合面,降低引线框架与塑封体之间的应力,增强引线框架与塑封体的结合力,降低分层和产生裂纹的概率。
结构强度增强:新型引线框架结构在产品结构强度方便优势明显。一方面当封装过程控制缺失(如框架氧化、塑封参数波动异常等常规问题)时,另一方面当封装产品实际应用在温湿度变化甚至高低温等极端环境下,由于塑封体与引线框架的结合面更大,受力更均匀合理,新结构框架能有效增强框架与塑封体接触面强度,提升整体产品结构强度。高可靠性表现:新型引线框架结构在产品发生界面微裂纹时,更长的间隙通道可以有效延阻导致产品失效的缺陷发生,延长产品生命周期,可以在工业上进行应用,能够满足工业应用性要求
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种引线框架的制作方法,其特征在于,包括:
    步骤A. 在框架基材(1)的表面设置第一抗镀层(21),对第一抗镀层(21)的曝光、显影获得第一凹槽(11);
    步骤B. 加成法增层,通过电镀、化学沉积或溅射加成法填充所述第一凹槽(11),获得第一凸台(12);
    步骤C. 在第一凸台(12)和第一抗镀层(21)上设置第二抗镀层(22),对第二抗镀层(22)的曝光、显影获得第二凹槽(13),第二凹槽(13)位于所述第一凸台(12)的上部,第二凹槽(13)的局部位于所述第一抗镀层(21)的上部;
    步骤D. 加成法增层,通过电镀、化学沉积或溅射加成法填充所述第二凹槽(13),在所述第一凸台(12)上形成盖帽结构(14);
    步骤E. 去除第一抗镀层(21)和第二抗镀层(22)。
  2. 如权利要求1所述引线框架的制作方法,其特征在于,所述步骤A之后,步骤B之前还包括:
    步骤A1. 采用射频Plasma等离子加工,对第一凹槽(11)的开口内壁进行处理,增大其粗糙度;
    控制第一凹槽(11)的侧壁粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm。
  3. 如权利要求1所述引线框架的制作方法,其特征在于,所述步骤C之后,步骤D之前还包括:
    步骤C1. 采用介质阻挡DBD型等离子加工,对第二凹槽(13)的开口内壁进行表面张力改善及亲水性改善处理;
    对第一抗镀层(21)和第二抗镀层(22)结合处的角落进行采用介质阻挡DBD型等离子加工的强度比其它部分大10%以上,处理时间比其他部分长10%以上。
  4. 如权利要求3所述引线框架的制作方法,其特征在于,所述步骤D包括:
    步骤D1. 加成法增层,通过电镀、化学沉积或溅射加成法填充所述第二凹槽(13),在所述第一凸台(12)上形成盖帽结构的第一金属层(141);
    步骤D2. 加成法增层,通过电镀、化学沉积或溅射加成法填充所述第二凹槽(13),在所述第一金属层(141)上形成盖帽结构的第二金属层(142);
    第一金属层(141)的强度和硬度大于第二金属层(142)的强度和硬度。
    第一金属层(141)为金层、镍钯金层或镍层,第二金属层为铜层。
  5. 如权利要求4所述引线框架的制作方法,其特征在于,所述步骤D包括:
    控制第二凹槽(13)的内壁的粗糙度范围:Rz=2~3μm,Ra=0.2~0.3μm;
    所述第一金属层(141)的厚度为3~5 μm。
  6. 如权利要求1所述引线框架的制作方法,其特征在于,所述步骤E包括:高压清洁和APPA大气常压等离子清洁去除第一抗镀层(21)和第二抗镀层(22);
    引入APPA大气常压等离子清洁,利用高能量密度的等离子束直接作用于第一抗镀层(21)和第二抗镀层(22)结合的拐角角落处,将可能残留的抗镀材料从框架角落处分离。
  7. 如权利要求1所述引线框架的制作方法,其特征在于,所述第一凸台(12)的高度为第一凹槽(11)深度的80%~95%;制作盖帽结构(14)前,对所述第一凸台(12)的表面进行增糙处理,盖帽结构(14)包括竖直部分(143)和平台部分(144),竖直部分位于第一凸台(12)的正上方,平台部分(144)位于竖直部分(143)的上部;
    所述第一凸台(12)与盖帽结构(14)的结合面呈犬牙交错状。
  8. 一种引线框架结构,其特征在于,包括框架基材(1)、第一凸台(12)和盖帽结构(14),所述第一凸台(12)设置在所述框架基材(1)上,所述第一凸台(12)的周侧为凹槽,所述盖帽结构(14)设置在第一凸台(12)上,所述盖帽结构(14)的至少一部分漏出所述第一凸台(12)的上部覆盖在所述凹槽上。
  9. 如权利要求8所述引线框架结构,其特征在于,所述第一凸台(12)和盖帽结构(14)的数量都在2个以上,一个第一凸台(12)对应一个盖帽结构(14);
    所述第一凸台(12)呈阵列分布于所述框架基材(1)上;
    所述盖帽结构(14)、第一凸台(12)和框架基材(1)构成工字型结构(6)。
  10. 如权利要求9所述引线框架结构,其特征在于,所述第一凸台(12)和盖帽结构(14)的侧壁呈锯齿形设置。
PCT/CN2022/131778 2021-11-12 2022-11-14 一种引线框架的制作方法和引线框架结构 WO2023083360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111339289.6 2021-11-12
CN202111339289.6A CN113782453B (zh) 2021-11-12 2021-11-12 一种引线框架的制作方法

Publications (1)

Publication Number Publication Date
WO2023083360A1 true WO2023083360A1 (zh) 2023-05-19

Family

ID=78873860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131778 WO2023083360A1 (zh) 2021-11-12 2022-11-14 一种引线框架的制作方法和引线框架结构

Country Status (2)

Country Link
CN (1) CN113782453B (zh)
WO (1) WO2023083360A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782453B (zh) * 2021-11-12 2022-02-08 深圳中科四合科技有限公司 一种引线框架的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024147A1 (en) * 2000-01-05 2002-02-28 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
CN201838582U (zh) * 2010-09-30 2011-05-18 江苏长电科技股份有限公司 集成电路或分立器件金属脚上大下小引线框结构
CN108551725A (zh) * 2018-06-29 2018-09-18 珠海杰赛科技有限公司 一种印制电路板线路电镀镍金的方法及其印制电路板线路
CN112133640A (zh) * 2020-11-24 2020-12-25 宁波康强电子股份有限公司 一种具有粗糙侧壁的引线框架的制备方法
CN113113319A (zh) * 2021-03-23 2021-07-13 江西慧光微电子有限公司 引线框架及其制作方法
CN113782453A (zh) * 2021-11-12 2021-12-10 深圳中科四合科技有限公司 一种引线框架的制作方法和引线框架结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857594B2 (ja) * 2005-04-26 2012-01-18 大日本印刷株式会社 回路部材、及び回路部材の製造方法
KR101647587B1 (ko) * 2015-03-03 2016-08-10 앰코 테크놀로지 코리아 주식회사 반도체 패키지
US10211131B1 (en) * 2017-10-06 2019-02-19 Microchip Technology Incorporated Systems and methods for improved adhesion between a leadframe and molding compound in a semiconductor device
JP6741356B1 (ja) * 2019-03-22 2020-08-19 大口マテリアル株式会社 リードフレーム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024147A1 (en) * 2000-01-05 2002-02-28 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof
CN201838582U (zh) * 2010-09-30 2011-05-18 江苏长电科技股份有限公司 集成电路或分立器件金属脚上大下小引线框结构
CN108551725A (zh) * 2018-06-29 2018-09-18 珠海杰赛科技有限公司 一种印制电路板线路电镀镍金的方法及其印制电路板线路
CN112133640A (zh) * 2020-11-24 2020-12-25 宁波康强电子股份有限公司 一种具有粗糙侧壁的引线框架的制备方法
CN113113319A (zh) * 2021-03-23 2021-07-13 江西慧光微电子有限公司 引线框架及其制作方法
CN113782453A (zh) * 2021-11-12 2021-12-10 深圳中科四合科技有限公司 一种引线框架的制作方法和引线框架结构

Also Published As

Publication number Publication date
CN113782453A (zh) 2021-12-10
CN113782453B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN106169458B (zh) 半导体元件安装用引线框架与半导体装置及其制造方法
WO2023083360A1 (zh) 一种引线框架的制作方法和引线框架结构
JP6741356B1 (ja) リードフレーム
KR102633614B1 (ko) 반도체 소자 탑재용 부품, 리드 프레임 및 반도체 소자 탑재용 기판
WO2000046920A1 (fr) Dispositif d'ondes acoustiques de surface et son procede de fabrication
TWI445099B (zh) 引腳框架封裝結構及其製作方法
WO2014148484A1 (ja) 半導体素子搭載用リードフレーム及びその製造方法
KR101628785B1 (ko) 리드 프레임 및 그 제조방법
CN105006437B (zh) 一种高密度凸块结构的制造方法
JPH10163401A (ja) リードフレーム、半導体パッケージ及び半導体パッケージの製造方法
TWI811532B (zh) 導線架
TWI820313B (zh) 導線架
JP5034913B2 (ja) 半導体装置製造用基板とその製造方法
JP5991712B2 (ja) 半導体素子搭載用基板及びその製造方法
TWI667221B (zh) 一種降低雙面銅鍍層與氮化鋁基板之界面應力累積的方法
JP2020161564A (ja) 半導体素子搭載用基板
JP2007088211A (ja) リードフレーム及びその製造方法
KR100585586B1 (ko) 반도체 리이드프레임의 제조방법
JP5846655B2 (ja) 半導体装置の製造方法
JP2008205269A (ja) 半導体パッケージの製造方法、半導体パッケージ用基板、半導体パッケージ及び電子機器
TWI831499B (zh) 引線框結構的形成方法
JP6901201B2 (ja) 半導体素子搭載用基板及びその製造方法
US11978698B2 (en) Method for forming a semiconductor package structure
JP6736716B1 (ja) リードフレーム
TW201824487A (zh) 導線框

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892153

Country of ref document: EP

Kind code of ref document: A1