WO2023082670A1 - 以三异丙醇氧钒为钒源直接制备vo2的方法 - Google Patents

以三异丙醇氧钒为钒源直接制备vo2的方法 Download PDF

Info

Publication number
WO2023082670A1
WO2023082670A1 PCT/CN2022/103832 CN2022103832W WO2023082670A1 WO 2023082670 A1 WO2023082670 A1 WO 2023082670A1 CN 2022103832 W CN2022103832 W CN 2022103832W WO 2023082670 A1 WO2023082670 A1 WO 2023082670A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
powder
triisopropoxide oxide
present
triisopropoxide
Prior art date
Application number
PCT/CN2022/103832
Other languages
English (en)
French (fr)
Inventor
文俊维
刘波
辛亚男
杨亚东
Original Assignee
成都先进金属材料产业技术研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都先进金属材料产业技术研究院股份有限公司 filed Critical 成都先进金属材料产业技术研究院股份有限公司
Priority to AU2022386411A priority Critical patent/AU2022386411A1/en
Publication of WO2023082670A1 publication Critical patent/WO2023082670A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for preparing VO2 , in particular to a method for directly preparing VO2 by using vanadyl triisopropoxide as a vanadium source.
  • thermochromic smart windows which can sense the temperature changes of the environment in real time and realize the dynamic adjustment of infrared light transmittance, so as to achieve the effect of adjusting the indoor temperature.
  • thermochromic materials As one of the most widely studied thermochromic materials, VO 2 has been widely recognized in the field of smart windows.
  • the reported preparation methods of VO2 mainly include hydrothermal (solvo) thermal method, chemical precipitation method, sol-gel method, thermal decomposition method, vapor phase deposition method and so on.
  • hydrothermal (solvo) thermal method the quality of the sample prepared at one time by the gas phase method is limited, and the cost of the reactor is high; the VO2 nanoparticles obtained by the chemical precipitation method are seriously agglomerated, and it is difficult to control the particle size of the powder in the reaction; although the water (solvent) thermal method The operation is relatively simple, but the reaction cycle is long.
  • the technical problem to be solved by the present invention is to provide a kind of vanadyl triisopropoxide as vanadium source to directly prepare VO2 powder with high purity, uniform appearance and small particle size.
  • the technical scheme that the present invention solves its technical problem adopts is: take vanadyl triisopropoxide as the vanadium source to directly prepare VO
  • the method comprises the steps:
  • the solvent is at least one of isopropanol, propanol, ethanol, methanol or pure water.
  • the reducing atmosphere is hydrogen, ammonia or carbon monoxide gas.
  • the present invention does not add other reducing reagents, directly thermally decomposes and reduces vanadyl triisopropoxide, and ensures the preparation of high-purity VO2 nanometer powder.
  • the decomposition and crystal phase transformation of the method used in the present invention can be realized in one step.
  • the prepared VO 2 powder not only has a uniform appearance, but also can effectively avoid powder agglomeration.
  • Fig. 1 is the X-ray diffraction pattern (XRD pattern) of the VO2 (M) powder prepared by the method of the present invention
  • Fig. 2 is a scanning electron microscope image (SEM image) of VO 2 (M) powder prepared by the method of the present invention.
  • the method for directly preparing VO with vanadyl triisopropoxide as a vanadium source comprises the following steps: a, dissolving vanadyl triisopropoxide in a solvent, and ultrasonically dispersing to form a vanadyl triisopropoxide dispersion liquid with a concentration of 0.01- 2mol/L; b. Ultrasonic atomization of the vanadyl triisopropoxide dispersion to form droplets, and then thermally decompose it in a reducing atmosphere at a temperature of 500-800°C for 1-5 hours; c. The end of the reaction Finally, the collected samples are filtered, washed, and dried to obtain the M-phase VO 2 powder.
  • the present invention uses vanadyl triisopropoxide as a vanadium source to directly prepare VO2 nano-powders, which belongs to the technical field of inorganic chemistry and functional material preparation, and specifically uses vanadyl triisopropoxide solution by ultrasonic spraying to form The droplets are then thermally decomposed in reducing gas, collected and dried in vacuum to obtain VO2 powder.
  • the process of the invention has short reaction period and simple operation, and the prepared VO2 nanometer powder has high purity, uniform appearance and small particle size, and can be used for preparing intelligent temperature-control films.
  • the solvent is at least one of isopropanol, propanol, ethanol, methanol or pure water.
  • the reducing atmosphere is hydrogen, ammonia or carbon monoxide gas.
  • Adopting the process of the present invention has a short reaction cycle and simple operation. It can be seen from Fig. 1 and Fig. 2 that the obtained VO2 nanometer powder has high purity, uniform appearance and small particle size. Its technical advantages are very obvious and the market promotion prospect is broad.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及VO 2的制备方法,尤其是一种以三异丙醇氧钒为钒源直接制备VO 2的方法,包括如下步骤:a、溶解三异丙醇氧钒于溶剂中,超声分散形成三异丙醇氧钒分散液,浓度为0.01~2mol/L;b、将三异丙醇氧钒分散液进行超声雾化形成雾滴,再在还原性气氛下进行热分解,温度为500~800℃,时间为1~5h;c、反应结束后,收集到的样品经过滤、洗涤、干燥后,即得到M相VO 2粉体。本发明不添加其他还原试剂,直接热分解还原三异丙醇氧钒,确保制得高纯度VO 2纳米粉体。其次,相对于传统的水热法和化学沉淀法,本发明使用的方法分解、晶相转化可一步实现。采用超声喷雾法,制得的VO 2粉体不仅形貌均一,且能够有效避免粉体团聚。

Description

以三异丙醇氧钒为钒源直接制备VO 2的方法 技术领域
本发明涉及VO 2的制备方法,尤其是一种以三异丙醇氧钒为钒源直接制备VO 2的方法。
背景技术
据统计,我国的建筑能耗约占社会总能耗的30%,降低建筑能耗对实现节能减排意义重大。随着当今社会对建筑美观和采光度的要求,玻璃门窗在建筑物结构中所占的比例很大。而玻璃门窗是建筑物与外界进行热量交换的主要渠道,因而,研究门窗玻璃节能技术是降低建筑能耗的关键。为此,科学家们提出了热致变色智能窗的概念,能够实时感应环境的温度变化,实现对红外光透过率的动态调整,从而达到调节室内温度的作用。VO 2作为目前研究最为广泛的一种热致变色材料,已经在智能窗领域得到广泛认可。
当前,报道的VO 2制备方法主要有水(溶剂)热法、化学沉淀法、溶胶-凝胶法、热分解法、气相沉积法等。其中,气相法一次性制备的样品质量有限,且反应器成本较高;化学沉淀法得到的VO 2纳米颗粒团聚严重,且反应中难以控制粉体的粒径大小;水(溶剂)热法虽然操作较为简单,但反应周期长。
发明内容
本发明所要解决的技术问题是提供一种以三异丙醇氧钒为钒源,直接制得纯度高、形貌均一、粒度小的VO 2粉体。
本发明解决其技术问题所采用的技术方案是:以三异丙醇氧钒为钒源直接制备VO 2的方法,包括如下步骤:
a、溶解三异丙醇氧钒于溶剂中,超声分散形成三异丙醇氧钒分散液,浓度为0.01~2mol/L;
b、将三异丙醇氧钒分散液进行超声雾化形成雾滴,再在还原性气氛下进行热分解,温度为500~800℃,时间为1~5h;
c、反应结束后,收集到的样品经过滤、洗涤、干燥后,即得到M相VO 2粉体。
进一步的是,步骤a中,溶剂为异丙醇、丙醇、乙醇、甲醇或纯水中至少一种。
进一步的是,步骤b中,还原性气氛为氢气、氨气或一氧化碳气体。
本发明的有益效果是:本发明不添加其他还原试剂,直接热分解还原三异丙醇氧钒,确保制得高纯度VO 2纳米粉体。其次,相对于传统的水热法和化学沉淀法,本发明使用的方法分解、晶相转化可一步实现。采用超声喷雾法,制得的VO 2粉体不仅形貌均一,且能够有效避免粉体团聚。
附图说明
图1为本发明方法制备的VO 2(M)粉体的X射线衍射图(XRD图);
图2为本发明方法制备的VO 2(M)粉体的扫描电镜图(SEM图)。
具体实施方式
以三异丙醇氧钒为钒源直接制备VO 2的方法,包括如下步骤:a、溶解三异丙醇氧钒于溶剂中,超声分散形成三异丙醇氧钒分散液,浓度为0.01~2mol/L;b、将三异丙醇氧钒分散液进行超声雾化形成雾滴,再在还原性气氛下进行热分解,温度为500~800℃,时间为1~5h;c、反应结束后,收集到的样品经过滤、洗涤、干燥后,即得到M相VO 2粉体。
本发明以三异丙醇氧钒为钒源直接制备VO 2纳米粉体的方法,属于无机化学和功能材料制备技术领域,具体是将三异丙醇氧钒溶液,通过超声喷雾的方法,形成雾滴,然后在还原性气体中进行热分解,收集、真空干燥即可得到VO 2粉体。本发明工艺反应周期短、操作简单,制得的VO 2纳米粉体,纯度高、形貌均一、粒度小,可用于制备智能温控薄膜。
为了获得更优的VO 2纳米粉体的品质,优选这样的方案:步骤a中,溶剂为异丙醇、丙醇、乙醇、甲醇或纯水中至少一种。同时的,优选步骤b中,还原性气氛为氢气、氨气或一氧化碳气体。
实施例
实施例一
配置0.3mol/L三异丙醇氧钒溶液1000ml,溶剂为异丙醇,超声分散1h,得到前驱体溶液;将前驱体溶液置于超声频率为3MHz超声雾化器中雾化产生雾滴,通入载气氨气,将所述小液滴通过加热温度550℃的管式炉中,在管式炉尾端用高压静电收集器进行收集,反应2h,将收集到的粉体进行过滤洗涤,60℃真空干燥后,即得到蓝黑色M相二氧化钒纳米粉体,平均粒径50nm。
实施例二
配置0.3mol/L三异丙醇氧钒溶液1000ml,溶剂为异丙醇,超声分散1h,得到前驱体溶液;将前驱体溶液置于超声频率为3MHz超声雾化器中雾化产生雾滴,通入载气一氧化碳气体,将所述小液滴通过加热温度600℃的管式炉中,在管式炉尾端用高压静电收集器进行收集,反应3h,将收集到的粉体进行过滤洗涤,60℃真空干燥后,即得到蓝黑色M相二氧化钒纳米粉体,平均粒径60nm。
实施例三
配置0.5mol/L三异丙醇氧钒溶液1000ml,溶剂为异丙醇,超声分散1h,得到前驱体溶液;将前驱体溶液置于超声频率为3MHz超声雾化器中雾化产生雾滴,通入载气一氧化碳气体,将所述小液滴通过加热温度650℃的管式炉中,在管式炉尾端用高压静电收集器进行收集,反应5h,将收集到的粉体进行过滤洗涤,60℃真空干燥后,即得到蓝黑色M相二氧化钒纳米粉体,平均粒径100nm。
采用本发明工艺反应周期短、操作简单,由图1、图2可知,制得的VO 2纳米粉体,纯度高、形貌均一、粒度小,其技术优势十分明显,市场推广前景广阔。

Claims (3)

  1. 以三异丙醇氧钒为钒源直接制备VO 2的方法,其特征在于,包括如下步骤:
    a、溶解三异丙醇氧钒于溶剂中,超声分散形成三异丙醇氧钒分散液,浓度为0.01~2mol/L;
    b、将三异丙醇氧钒分散液进行超声雾化形成雾滴,再在还原性气氛下进行热分解,温度为500~800℃,时间为1~5h;
    c、反应结束后,收集到的样品经过滤、洗涤、干燥后,即得到M相VO 2粉体。
  2. 如权利要求1所述的以三异丙醇氧钒为钒源直接制备VO 2的方法,其特征在于:步骤a中,溶剂为异丙醇、丙醇、乙醇、甲醇或纯水中至少一种。
  3. 如权利要求1所述的以三异丙醇氧钒为钒源直接制备VO 2的方法,其特征在于:步骤b中,还原性气氛为氢气、氨气或一氧化碳气体。
PCT/CN2022/103832 2021-11-09 2022-07-05 以三异丙醇氧钒为钒源直接制备vo2的方法 WO2023082670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022386411A AU2022386411A1 (en) 2021-11-09 2022-07-05 Method for directly preparing vo2 by using vanadium triisopropoxide oxide as vanadium source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111318671.9A CN113880138A (zh) 2021-11-09 2021-11-09 以三异丙醇氧钒为钒源直接制备vo2的方法
CN202111318671.9 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023082670A1 true WO2023082670A1 (zh) 2023-05-19

Family

ID=79017579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103832 WO2023082670A1 (zh) 2021-11-09 2022-07-05 以三异丙醇氧钒为钒源直接制备vo2的方法

Country Status (3)

Country Link
CN (1) CN113880138A (zh)
AU (1) AU2022386411A1 (zh)
WO (1) WO2023082670A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880138A (zh) * 2021-11-09 2022-01-04 成都先进金属材料产业技术研究院股份有限公司 以三异丙醇氧钒为钒源直接制备vo2的方法
CN114393214A (zh) * 2022-01-20 2022-04-26 宁波江丰电子材料股份有限公司 一种超高纯球形钨粉及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427763A (en) * 1994-04-15 1995-06-27 Mcdonnel Douglas Corp. Method for making vanadium dioxide powders
CN104060241A (zh) * 2014-07-09 2014-09-24 安徽建筑大学 一种高取向二氧化钒薄膜的液相制备方法
CN112125337A (zh) * 2020-10-16 2020-12-25 成都先进金属材料产业技术研究院有限公司 以五价钒醇盐为原料制备纳米二氧化钒的方法
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112209442A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 盐辅助超声热解法制备m相二氧化钒纳米粉体的方法
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置
CN113880138A (zh) * 2021-11-09 2022-01-04 成都先进金属材料产业技术研究院股份有限公司 以三异丙醇氧钒为钒源直接制备vo2的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427763A (en) * 1994-04-15 1995-06-27 Mcdonnel Douglas Corp. Method for making vanadium dioxide powders
CN104060241A (zh) * 2014-07-09 2014-09-24 安徽建筑大学 一种高取向二氧化钒薄膜的液相制备方法
CN112125337A (zh) * 2020-10-16 2020-12-25 成都先进金属材料产业技术研究院有限公司 以五价钒醇盐为原料制备纳米二氧化钒的方法
CN112174207A (zh) * 2020-10-16 2021-01-05 成都先进金属材料产业技术研究院有限公司 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法
CN112209442A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 盐辅助超声热解法制备m相二氧化钒纳米粉体的方法
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置
CN113880138A (zh) * 2021-11-09 2022-01-04 成都先进金属材料产业技术研究院股份有限公司 以三异丙醇氧钒为钒源直接制备vo2的方法

Also Published As

Publication number Publication date
CN113880138A (zh) 2022-01-04
AU2022386411A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2023082670A1 (zh) 以三异丙醇氧钒为钒源直接制备vo2的方法
CN100445209C (zh) 一种纳米二氧化钛粉体制备方法
CN101429348A (zh) 一种纳米二氧化钛-氧化锌复合粉体的制备方法
CN101412505A (zh) 一种高纯度二硒化锡纳米片的制备方法
CN103113767B (zh) 具有光催化活性的罩光清漆的制备方法
CN105819508A (zh) 一种喷雾热解法制备vo2(m)纳米粉体及薄膜的方法
CN109399711A (zh) 一种金红石相二氧化钒纳米粉体的制备方法
CN102452684B (zh) 自调控溶剂热一步合成单分散钛酸钡纳米晶的方法
CN107311227A (zh) 一种混合晶型的二氧化钛纳米片的制备方法及产物
CN102139911B (zh) 一种制备纳米氧化锌的反应装置和方法
Arunmetha et al. Effect of processing methods on physicochemical properties of titania nanoparticles produced from natural rutile sand
CN104772136A (zh) 一种钒酸铋及其制备方法与应用
CN102219255B (zh) 一种制备高稳定性混晶型纳米二氧化钛混悬液的方法
CN1776013A (zh) 一种五氧化二钒薄膜的制备方法-超声喷雾法
CN101857267B (zh) 一种具有核壳结构的二氧化钛纳米材料的制备方法
CN110342572B (zh) 一种锐钛矿型纳米二氧化钛的制备方法
CN102716742B (zh) 一种用于印染废水处理的可见光降解剂及其制备方法
CN1283555C (zh) 一种金红石相纳米二氧化钛的制备方法
CN109502639B (zh) 一种制备二氧化钛与五氧化三钛的复合混晶粉体的方法
CN103623800B (zh) 一种二氧化钛球的制备方法及所得产品
CN110142038A (zh) 利用氯化法中间体制备锡掺杂纳米非晶二氧化钛的方法
CN113912116A (zh) 微波沉淀法合成超细m相二氧化钒纳米粉体的方法
CN101805017A (zh) 一种金红石型二氧化钛纳米粒子的制备方法
CN109455763B (zh) 一种钨青铜型材料的制备方法
CN108439455B (zh) 一种高产率制备超细氧化亚铜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022386411

Country of ref document: AU

Ref document number: AU2022386411

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022386411

Country of ref document: AU

Date of ref document: 20220705

Kind code of ref document: A