WO2023077843A1 - 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法 - Google Patents

一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法 Download PDF

Info

Publication number
WO2023077843A1
WO2023077843A1 PCT/CN2022/103299 CN2022103299W WO2023077843A1 WO 2023077843 A1 WO2023077843 A1 WO 2023077843A1 CN 2022103299 W CN2022103299 W CN 2022103299W WO 2023077843 A1 WO2023077843 A1 WO 2023077843A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
gas
liquid
unit
propylene
Prior art date
Application number
PCT/CN2022/103299
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
田洪舟
魏格林
吕文钧
李夏冰
李永强
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to EP22871088.5A priority Critical patent/EP4432292A1/en
Priority to JP2023516630A priority patent/JP2023553778A/ja
Publication of WO2023077843A1 publication Critical patent/WO2023077843A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like

Definitions

  • the invention relates to the technical field of reactors and modeling, in particular to a method for evaluating the intensification degree of the microinterface reaction of propylene hydroformylation to produce butyraldehyde.
  • the oxo reactor is the core equipment in the whole oxo process, and the Davy-Dow process uses two stirred tank reactors to react in series.
  • the raw materials of propylene hydroformylation reaction are propylene and synthesis gas
  • the catalyst is rhodium phosphine complex of ligand triphenylphosphine
  • the main reaction products are n-butyraldehyde and isobutyraldehyde.
  • the synthesis gas enters the reactor through the gas distributor, and the propylene enters the reactor through the external circulation pipeline.
  • the synthesis gas is broken into bubbles under the action of the stirring paddle, and the gas-liquid two-phase is mixed, mass-transferred and reacted.
  • the reaction temperature is 95-110° C.
  • the reaction pressure is 1.8-1.9 MPa
  • the conversion rate of propylene is about 95%
  • the yield of butyraldehyde is about 95%
  • the utilization rate of synthesis gas is more than 97%.
  • some side reactions also occur, such as the hydrogenation of propylene to propane, the further hydrogenation of butyraldehyde to butanol, and the condensation of aldehydes to form trimers and high boilers.
  • the main reasons why the original device adopts higher operating temperature and operating pressure to achieve the production capacity target are: (1) increasing the temperature can increase the intrinsic reaction rate and reduce the reaction resistance; (2) boosting the pressure can increase Reactive gas (CO and H 2 ) partial pressure and increased mass transfer driving force.
  • the macroscopic reaction rate of the system is accelerated due to the reduction of reaction resistance and the increase of mass transfer driving force.
  • the process is considered to be a reaction process affected by both mass transfer and intrinsic reaction.
  • the factors that determine the macroscopic reaction rate include: (1) intrinsic reaction rate; (2) gas partial pressure; (3) mass transfer rate.
  • Most of the existing research focuses on the influence of the first two factors on the macroscopic reaction rate, but there is little research on how to enhance the mass transfer rate.
  • micro-interface strengthening technology can greatly increase the gas-liquid interface area and mass transfer rate of multiphase reaction systems.
  • micro-interface strengthening technology is an advanced technology to realize the carbonyl synthesis of propylene, which not only increases production capacity but also reduces energy consumption and material consumption.
  • micro-interface enhanced reactor bubble scale structure-effect control model modeling method quantifies the relationship between the reactor bubble scale and the structural parameters, operating parameters and physical parameters of the reactor.
  • ventilation rate is constant
  • the purpose of the present invention is to provide a method for evaluating the strengthening degree of the microinterface reaction of propylene hydroformylation to produce butyraldehyde. To maximize the space-time yield and optimize the design and operation of the butyraldehyde synthesis reactor.
  • the micro-interface strengthening technology can greatly increase the gas-liquid phase interface area and mass transfer rate of the multiphase reaction system.
  • the micro-interface strengthening technology is an advanced technology to realize the carbonyl synthesis of propylene, which not only increases production capacity but also reduces energy consumption and material consumption.
  • the factors that determine the macroscopic reaction rate include: (1) intrinsic reaction rate; (2) gas partial pressure; (3) mass transfer rate.
  • the micro-interface strengthening is mainly reflected in two aspects, one is the increase of the gas-liquid mass transfer interface area, and the other is the enhancement of the gas-liquid mass transfer coefficient, that is, the reduction of the gas-liquid mass transfer resistance.
  • the ventilation rate is constant
  • the smaller the bubble size the larger the gas-liquid interface area, the smaller the mass transfer resistance, and the larger the macroscopic reaction rate. Therefore, when the production capacity is constant, quantifying the intensification effect of the microinterface reaction can help to optimize the design and operation of the butyraldehyde synthesis reactor, thereby maximizing the space-time yield
  • the invention can realize the economy of the micro-interface reaction strengthening technology by determining the evaluation method of the micro-interface strengthening reaction of propylene hydroformylation to produce butyraldehyde, and at the same time maximize the space-time yield.
  • the patent publication No. CN107563051A quantifies the relationship between the bubble size of the reactor and the structural parameters, operating parameters and physical parameters of the reactor.
  • This patent reconstructs the research on the system bubble diameter d 32 algorithm.
  • the present invention constructs the structure-effect control mathematical model of each reaction gas in the reaction system, and at the same time, in order to further explore the evaluation method of the reaction system, the present invention also constructs the reaction equations of each reaction , the mathematical expression of the reaction enhancement factor, etc., and through these expressions, the concentration of each reaction component in the liquid phase is calculated simultaneously. Through the calculation results, the effect of micro-interface enhanced mass transfer can be clearly evaluated, and this evaluation method is unique to the present invention.
  • the invention provides a method for evaluating the intensification degree of the microinterface reaction of propylene hydroformylation to produce butyraldehyde, which is characterized in that it comprises the following steps:
  • said step (A) comprises:
  • CH 3 CH CH 2 +H 2 ⁇ CH 3 CH 2 CH 3 (3)
  • formula (1) is main reaction equation
  • formula (2)-(3) is secondary reaction equation
  • R Bn , R Bi and R pe are the reaction formation rates of n-butyraldehyde, isobutyraldehyde and propane, respectively, in mol/(m 3 s);
  • k B and k pe are the reaction formation rates of butyraldehyde and propane, respectively Reaction rate constants, in units of m 6 /(mol 2 s) and m 3 /(mol s);
  • k 2 , a and b are reaction parameters;
  • C Pe , and C CO are the concentrations of propylene, H 2 and CO in the liquid phase, in mol/m 3 ;
  • x Lg and x Rh are the mass fractions of ligand and catalyst, respectively.
  • said step (B) includes:
  • k G CO is the CO gas film mass transfer coefficient in the bubble, the unit is m/s; P CO is the partial pressure of CO in the bubble, the unit is Pa; H co is the Henry coefficient of CO, the unit is Pa m 3 / mol; C i,CO is the molar concentration of CO in the liquid phase near the gas-liquid interface, the unit is mol/m 3 ; is the molar concentration of H 2 in the liquid phase near the gas-liquid interface, the unit is mol/m 3 ; k L, CO is the CO liquid side mass transfer coefficient, the unit is m/s; E CO is the CO reaction enhancement factor; r Pe is propylene The macroscopic reaction rate of , the unit is mol/(m 3 ⁇ s); are the mass transfer coefficients of H 2 gas film and liquid film, in m/s; a is the gas-liquid phase interface area, in m 2 /m 3 ; is the H2 reaction enhancement factor; is the partial pressure of H in the main body of the gas phase
  • x refers to the gas phase components CO and H 2
  • D Gx is the diffusion coefficient of the reactant gas side, the unit is m 2 /s
  • DLx is the diffusion coefficient of the reactant gas liquid side, the unit is m 2 /s
  • ⁇ G is the superficial gas velocity, the unit is m/s;
  • t 32 is the residence time of bubbles in s; if the operating liquid level of the reactor is H 0 , then:
  • ⁇ s is the bubble slip velocity, the unit is m/s, calculated according to formula (14):
  • ⁇ L is the superficial liquid velocity, and the unit is m/s
  • ⁇ 32 is the rising velocity of the bubble group, and the unit is m/s
  • ⁇ 32 is calculated according to formula (15):
  • Equation (15) ⁇ 0 is the rising velocity of a single bubble in an infinite stationary liquid, in m/s, which can be calculated according to Equation (16):
  • said step (C) includes:
  • Ha CO is the Hatta number of CO
  • Hatta number of H 2 is the Hatta number of H 2
  • D L,CO is the liquid phase diffusion coefficient of CO, in m 2 /s
  • D L,Pe is the diffusion coefficient of propylene in the liquid phase in m 2 /s.
  • said step (D) comprises:
  • F in, Pe F in, CO and are the molar flow rates of propylene, CO and H 2 at the reactor inlet, in mol/s
  • Q L is the liquid volume flow at the reactor outlet, in m 3 /s
  • F out CO and are the molar flows of CO and H at the reactor outlet, respectively, in mol/s
  • I represents the inert gas N 2 and methane, etc.
  • y p is the ratio of the gas phase partial pressure to the total pressure of the non-liquid volatile gas components such as reaction gas H 2 , CO, inert gas N 2 and methane
  • F I is the sum of the molar flows of I at the reactor outlet, in kmol/h
  • PT is the reaction operating pressure, in MPa;
  • the concentrations of propylene, CO and H2 in the liquid phase of the reactor can be calculated, as well as the moles of each component at the outlet flow.
  • the evaluation method of the present invention evaluates the effect of micro-interface enhanced mass transfer.
  • the micro-interface mass transfer enhancement effect is generally achieved by reducing the bubble diameter and increasing the gas-liquid contact area.
  • Micro means "micro-nano”;
  • interface means that the role of enhancing mass transfer is mainly to improve the gas-liquid contact interface.
  • the evaluation method of the present invention evaluates the strengthening degree of the micro-interface strengthening technology to the reaction system by comparing the parameters such as the macroscopic reaction rate and the mass transfer coefficient of the micro-interface and the macro-interface.
  • step (A) is by establishing the chemical reaction formula of each reaction in the reaction process, and constructs the reaction rate expression of each reaction according to each chemical reaction formula; Based on the formation rate of the reaction between aldehyde and propane, the mass transfer rate of CO and H 2 in the gas and liquid film and the reaction rate in the liquid phase are equal during the reaction process, and the macroscopic reaction rate r pe and bubble size of propane are obtained.
  • step (C) establishes the mathematical expression of the reaction enhancement factor
  • step (D) The material balance of the reaction components propylene, CO and H2 was calculated, and the corresponding expressions were obtained by using the relationship between the partial pressure of each gas and its molar flow rate.
  • the present invention also provides a micro-interface intensified reaction system for producing butyraldehyde by hydroformylation of propylene, which is designed by the above calculation method.
  • the reactor designed by the above calculation method can effectively enhance the mass transfer, thereby maximizing the space-time yield and realizing the economy of micro-interface reaction enhancement technology.
  • Patent Publication Nos. CN113061080A, CN113072438A, CN113061081A and CN113041962A have all introduced specific micro-interface strengthening reaction systems for the production of butyraldehyde by propylene hydroformylation, so the present invention will not repeat them here.
  • the invention can calculate the concentration of each reaction component in the liquid phase, thereby judging the degree of micro-interface strengthening based on the evaluation result, and explaining the effect of micro-interface strengthening according to the evaluation result.
  • the invention aims at realizing the economy of the micro-interface reaction strengthening technology, and improves the space-time yield to the greatest extent by determining the evaluation method of the micro-interface reaction strengthening of the oxidation reaction, which is beneficial to optimize the design and operation of the butyraldehyde synthesis reactor.
  • Fig. 1 is a graph showing the influence of bubble size on the gas-liquid interface area
  • Figure 2 is a graph showing the influence of bubble size on gas and liquid side volumetric mass transfer coefficients
  • Figure 3 is a graph showing the influence of bubble size on the liquid phase CO concentration
  • Fig. 4 is a graph showing the influence of bubble size on liquid phase H Concentration
  • Fig. 5 is a graph showing the influence of bubble size on the macroscopic reaction rate of propylene.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • This example is based on the evaluation method of the present invention, aiming at the stirred tank reactor and the existing operating conditions of the reaction section of propylene hydroformylation to butyraldehyde in a certain enterprise, to study the effect of the size of the bubbles in the reactor on the gas-liquid interface area, gas Effect of liquid mass transfer coefficient and macroscopic reaction rate of propylene.
  • Liquid phase flow rate Q L 2.41 ⁇ 10 -2 m 3 /s
  • CH 3 CH CH 2 +H 2 ⁇ CH 3 CH 2 CH 3 (3)
  • formula (1) is main reaction equation
  • formula (2)-(3) is secondary reaction equation
  • R Bn , R Bi and R pe are the reaction formation rates of n-butyraldehyde, isobutyraldehyde and propane, respectively, in mol/(m 3 s);
  • k B and k pe are the reaction formation rates of butyraldehyde and propane, respectively Reaction rate constants, in units of m 6 /(mol 2 s) and m 3 /(mol s);
  • k 2 , a and b are reaction parameters;
  • C Pe , and C CO are the concentrations of propylene, H 2 and CO in the liquid phase, in mol/m 3 ;
  • x Lg and x Rh are the mass fractions of ligand and catalyst, respectively.
  • k G CO is the CO gas film mass transfer coefficient in the bubble, the unit is m/s; P CO is the partial pressure of CO in the bubble, the unit is Pa; H co is the Henry coefficient of CO, the unit is Pa m 3 / mol; C i,CO is the molar concentration of CO in the liquid phase near the gas-liquid interface, the unit is mol/m 3 ; is the molar concentration of H 2 in the liquid phase near the gas-liquid interface, the unit is mol/m 3 ; k L, CO is the CO liquid side mass transfer coefficient, the unit is m/s; E CO is the CO reaction enhancement factor; r Pe is propylene The macroscopic reaction rate of , mol/(m 3 ⁇ s); are the mass transfer coefficients of H 2 gas film and liquid film, in m/s; a is the gas-liquid phase interface area, in m 2 /m 3 ; is the H2 reaction enhancement factor; is the partial pressure of H in the main body of the gas phase in the bubble
  • x refers to the gas phase components CO and H 2
  • D Gx is the diffusion coefficient of the reactant gas side, the unit is m 2 /s
  • DLx is the diffusion coefficient of the reactant gas liquid side, the unit is m 2 /s
  • ⁇ G is the superficial gas velocity, the unit is m/s;
  • t 32 is the residence time of bubbles in s; if the operating liquid level of the reactor is H 0 , then:
  • ⁇ s is the bubble slip velocity, the unit is m/s, calculated according to formula (14):
  • ⁇ L is the superficial liquid velocity, and the unit is m/s
  • ⁇ 32 is the rising velocity of the bubble group, and the unit is m/s
  • ⁇ 32 is calculated according to formula (15):
  • Equation (15) ⁇ 0 is the rising velocity of a single bubble in an infinite stationary liquid, in m/s, which can be calculated according to Equation (16):
  • Ha CO is the Hatta number of CO
  • Hatta number of H 2 is the Hatta number of H 2
  • D L,CO is the liquid phase diffusion coefficient of CO, in m 2 /s
  • D L,Pe is the diffusion coefficient of propylene in the liquid phase in m 2 /s.
  • F in, Pe F in, CO and are the molar flow rates of propylene, CO and H 2 at the reactor inlet, in mol/s
  • Q L is the liquid volume flow at the reactor outlet, in m 3 /s
  • F out CO and are the molar flows of CO and H at the reactor outlet, respectively, in mol/s
  • I represents the inert gas N 2 and methane, etc.
  • y p is the ratio of the gas phase partial pressure to the total pressure of the non-liquid volatile gas components such as reaction gas H 2 , CO, inert gas N 2 and methane
  • F I is the sum of the molar flows of I at the reactor outlet, in kmol/h
  • PT is the reaction operating pressure, in MPa;
  • the concentrations of propylene, CO and H2 in the liquid phase of the reactor can be calculated, as well as the moles of each component at the outlet flow.
  • Figure 1 shows the effect of the bubble size d 32 on the gas-liquid interface area a. It can be seen from Figure 1 that the gas-liquid interface area increases continuously with the decrease of the bubble size in the reaction system. In this example, the bubble size decreased from 3.5mm to 0.1mm, and the gas-liquid phase interface area increased from 134m 2 /m 3 to 16425m 2 /m 3 , an increase of about 123 times.
  • Figure 2 shows the effect of bubble size d 32 on gas and liquid side volumetric mass transfer coefficients. It can be seen from Figure 2 that the gas and liquid side volumetric mass transfer coefficients of components CO and H2 both increase with the decrease of bubble size.
  • Figure 3 shows the effect of bubble size d 32 on the CO concentration in the liquid phase. It can be seen from Figure 3 that the smaller the bubble size, the greater the CO concentration in the liquid phase. In this example, the bubble size decreased from 3.5 mm to 0.1 mm, and the liquid phase CO concentration increased from 4.9 mol/m 3 to 10.5 mol/m 3 , an increase of about 116.4%.
  • Figure 4 shows the effect of bubble size d32 on the concentration of H2 in the liquid phase. It can be seen from Figure 4 that the concentration of H2 in the liquid phase increases with the decrease of the bubble size. In this example, the bubble size decreased from 3.5 mm to 0.1 mm, and the liquid phase H 2 concentration increased from 40.2 mol/m 3 to 44.1 mol/m 3 , an increase of about 9.7%.
  • Figure 5 shows the effect of bubble size d 32 on the macroscopic reaction rate of propylene. It can be seen from Figure 5 that the macroscopic reaction rate increases with the decrease of bubble size.
  • the bubble size was reduced from 3.5 mm to 0.1 mm, and the macroscopic reaction rate of propylene was increased from 0.160 mol/(m 3 ⁇ s) to 0.381 mol/(m 3 ⁇ s), which was enhanced by about 137.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法,包括以下步骤:(A)建立丙烯氢甲酰化反应速率表达式;(B)构建反应气体宏观反应动力学方程;(C)建立反应增强因子的数学表达式;(D)计算液相中各反应组分的浓度。以实现微界面反应强化技术的经济性为目标,通过确定氧化反应微界面反应强化评测方法以最大程度提高时空产率,有利于优化丁醛合成反应器的设计和操作。

Description

一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法 技术领域
本发明涉及反应器、建模技术领域,具体而言,涉及一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法。
背景技术
羰基合成反应器是整个羰基合成工艺中的核心设备,Davy-Dow工艺采用两台搅拌釜式反应器串联反应。丙烯氢甲酰化反应的原料为丙烯、合成气,催化剂为配位体三苯基膦的铑膦络合物,主要反应产物为正丁醛和异丁醛。合成气通过气体分布器进入反应器,丙烯通过外循环管道进入反应器,在搅拌桨作用下合成气破碎为气泡,气液两相进行混合、传质和反应。反应温度为95~110℃,反应压力为1.8~1.9MPa,丙烯的转化率为95%左右,丁醛的收率为95%左右,合成气的利用率>97%。除了主反应外,还会发生一些副反应,如丙烯加氢生成丙烷,丁醛进一步加氢生成丁醇,以及醛醛缩合生成三聚物和高沸物等。
从宏观反应动力学角度分析,原装置采用较高操作温度和操作压力以实现产能目标的主要原因在于:(1)升温可提高本征反应速率并减小反应阻力;(2)升压可提升反应气体(CO和H 2)分压和提高传质推动力。体系宏观反应速率因反应阻力减小和传质推动力增大而加快。
由于高温、高压条件将对实际生产产生一些不利影响,故升温、升压操作并非是提高宏观反应速率的理想途径。依据铑法催化丙烯氢甲酰化制丁醛过程的特点,认为该过程是一个既受传质影响又受本征反应影响的反应过程。由宏观反应动力学理论可知,决定宏观反应速率的因素包括:(1)本征反应速率;(2)气体分压;(3)传质速率。已有研究大多关注前两个因素对宏观反应速率的影响,而对如何强化传质速率则鲜有研究。
理论研究和工业实践业已表明,微界面强化技术可使多相反应体系气液相界面积和传质速率得到大幅提升。在理论上也可证明微界面强化技术是一种实现丙烯羰基合成既提高产能又降低能耗物耗的先进技术。
微界面强化反应器气泡尺度构效调控模型建模方法(公开号:CN107563051A)量化了反应器气泡尺度与反应器的结构参数、操作参数以及物性参数之间的关系。当通气量一定时,气泡尺寸越小,气液相界面积越大,传质阻力也就越小,其宏观反应速率也就越大。因此,当生产产能一定时,如何确定氧化反应微界面反应强化评测方法,从而最大程度提 高时空产率进而实现微界面反应强化技术的经济性是一个重要的现实问题。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法,该方法以实现微界面反应强化技术的经济性为目标,通过确定氧化反应微界面反应强化评测方法以最大程度提高时空产率,进而优化丁醛合成反应器的设计和操作。
微界面强化技术可使多相反应体系气液相界面积和传质速率得到大幅提升。在理论上也可证明微界面强化技术是一种实现丙烯羰基合成既提高产能又降低能耗物耗的先进技术。实际上,由宏观反应动力学理论可知,决定宏观反应速率的因素包括:(1)本征反应速率;(2)气体分压;(3)传质速率。
目前可以确定的是,微界面强化主要体现在两个方面,一是对气液传质界面面积的增大,二是对气液传质系数的增强,即气液传质阻力的降低。一般情况下,当通气量一定时,气泡尺寸越小,气液相界面积越大,传质阻力也就越小,其宏观反应速率也就越大。因此,当生产产能一定时,将微界面反应的强化效果量化有助于优化丁醛合成反应器的设计和操作,从而最大程度提高时空产率
本发明通过确定丙烯氢甲酰化制丁醛微界面强化反应的评测方法,能够实现微界面反应强化技术的经济性,同时最大程度提高时空产率。
事实上,为了优化微界面系统的结构,公开号为CN107563051A的专利量化了反应器气泡尺度与反应器的结构参数、操作参数以及物性参数之间的关系。该专利对于重构了对于体系气泡直径d 32算法的研究。本发明以该专利所构建的d 32为基础,构建了反应体系中各反应气体的构效调控数学模型,同时,为进一步探讨该反应体系的评测方法,本发明还构建了各反应的反应方程式、反应增强因子的数学表达式等,并通过这些表达式联立计算出了液相中各反应组分的浓度,通过计算结果能够清晰的评测微界面强化传质的效果,并且这种评测方法是本发明所独有的。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法,其特征在于,包括以下步骤:
(A)建立丙烯氢甲酰化反应速率表达式;
(B)构建反应气体宏观反应动力学方程;
(C)建立反应增强因子的数学表达式;
(D)计算液相中各反应组分的浓度。
优选的,所述步骤(A)包括:
建立反应过程中各反应的化学反应式:
CH 3CH=CH 2+CO+H 2→CH 3CH 2CH 2CHO   (1)
CH 3CH=CH 2+CO+H 2→CH 3CH(CH 3)CHO     (2)
CH 3CH=CH 2+H 2→CH 3CH 2CH 3   (3)
其中,式(1)为主反应方程式,式(2)-(3)为副反应方程式;
根据所述化学反应式构建各反应的反应速率表达式:
Figure PCTCN2022103299-appb-000001
Figure PCTCN2022103299-appb-000002
Figure PCTCN2022103299-appb-000003
其中,R Bn、R Bi和R pe分别为正丁醛、异丁醛和丙烷的反应生成速率,单位为mol/(m 3·s);k B和k pe分别为丁醛和丙烷生成的反应速率常数,单位分别为m 6/(mol 2·s)和m 3/(mol·s);k 2、a和b为反应参数;C Pe
Figure PCTCN2022103299-appb-000004
和C CO分别为液相中丙烯、H 2和CO的浓度,单位为mol/m 3;x Lg和x Rh分别为配体和催化剂质量分数。
优选的,所述步骤(B)包括:
反应过程中,CO和H 2在气、液膜中的传质速率和液相中的反应速率相等,可得如下方程式:
k G,COa(P CO/H CO-C i,CO)=k L,COaE CO(C i,CO-C CO)=R Bn+R Bi   (7)
Figure PCTCN2022103299-appb-000005
化简方程式(8)得丙烯宏观反应速率方程式:
Figure PCTCN2022103299-appb-000006
其中,k G,CO为气泡内CO气膜传质系数,单位为m/s;P CO为气泡内CO分压,单位为Pa;H co为CO的亨利系数,单位为Pa·m 3/mol;C i,CO为气液界面附近液相中CO摩尔浓度,单位为mol/m 3
Figure PCTCN2022103299-appb-000007
为气液界面附近液相中H 2摩尔浓度,单位为mol/m 3;k L,CO为CO液侧 传质系数,单位为m/s;E CO为CO反应增强因子;r Pe为丙烯的宏观反应速率,单位为mol/(m 3·s);
Figure PCTCN2022103299-appb-000008
分别为H 2气膜、液膜传质系数,单位为m/s;a为气液相界面积,单位为m 2/m 3
Figure PCTCN2022103299-appb-000009
为H 2反应增强因子;
Figure PCTCN2022103299-appb-000010
为气泡内气相主体中H 2分压,单位为Pa;
Figure PCTCN2022103299-appb-000011
为H 2的亨利系数,单位为Pa·m 3/mol。
式(7)和(8)中气相组分x的气液膜中的传质系数和a均已构建相应的构效调控数学模型,它们与体系气泡直径d 32分别有如下关系:
Figure PCTCN2022103299-appb-000012
Figure PCTCN2022103299-appb-000013
Figure PCTCN2022103299-appb-000014
其中,x指气相组分CO和H 2,D Gx为反应物气体气侧的扩散系数,单位为m 2/s;D Lx为反应物气体液侧的扩散系数,单位为m 2/s;υ G为表观气速,单位为m/s;
式(10)中,t 32为气泡停留时间,单位为s;若反应器操作液位为H 0,则:
t 32=H 032   (13)
式(11)中,υ s为气泡滑移速度,单位为m/s,按式(14)计算:
Figure PCTCN2022103299-appb-000015
方程(12)~(14)中,υ L为表观液速,单位为m/s;υ 32为气泡群上升速度,单位为m/s,υ 32按式(15)计算:
Figure PCTCN2022103299-appb-000016
方程(15)中,υ 0为无限大静止液体中单个气泡的上升速度,单位为m/s,可按式(16)计算:
Figure PCTCN2022103299-appb-000017
其中,方程(16)中Mo为Morton数,Mo=gμ L 4/(ρ Lσ L 3);de为无量纲气泡直径,d e=d 32Lg/σ L) 1/2;K b为与体系物性相关的常数,K b=K b0Mo -0.038,对于有机溶剂或混合物,K b0=10.2,若K b<12,则按K b=12计算;常数c和n也与体系物性相关,可依据实际体系的特征取相应经验值;σ L为反应液的表面张力,单位为N/m;g为重力加速度,单位为 m/s 2;ρ L为反应液的密度,单位为kg/m 3;μ L为反应液的动力粘度,单位为Pa·s。
优选的,所述步骤(C)包括:
对于丙烯氢甲酰化反应体系,CO和H 2反应的Ha数可分别用式(17)和(18)表达:
Figure PCTCN2022103299-appb-000018
Figure PCTCN2022103299-appb-000019
气体组分x对应的E 可用式(19)表示:
Figure PCTCN2022103299-appb-000020
则气体反应组分x对应的反应增强因子E x的表达式为:
Figure PCTCN2022103299-appb-000021
其中,Ha CO为CO的八田数;
Figure PCTCN2022103299-appb-000022
为H 2的八田数;D L,CO为CO的液相扩散系数,单位为m 2/s;
Figure PCTCN2022103299-appb-000023
为H 2的液相扩散系数,单位为m 2/s;D L,Pe为丙烯在液相中的扩散系数,单位为m 2/s。
优选的,所述步骤(D)包括:
假定反应器为全混流反应器,对反应组分丙烯、CO和H 2进行物料衡算,可得式(21)~(23):
F in,Pe-Q LC Pe=R Bn+R Bi+R Pe    (21)
F in,CO-F out,CO=R Bn+R Bi   (22)
Figure PCTCN2022103299-appb-000024
式(21)~(23)中,F in,Pe、F in,CO
Figure PCTCN2022103299-appb-000025
分别为反应器入口处丙烯、CO和H 2的摩尔流量,单位为mol/s;Q L为反应器出口处液体体积流量,单位为m 3/s;F out,CO
Figure PCTCN2022103299-appb-000026
分别为反应器出口处CO和H 2的摩尔流量,单位为mol/s;
假设反应气体H 2和CO与惰性气体N 2和甲烷等所占分压比例总和不变为y p,同时根据气相中H 2、CO和惰性气体N 2和甲烷等的分压与其摩尔流量的关系可得式(24)和式(25):
Figure PCTCN2022103299-appb-000027
Figure PCTCN2022103299-appb-000028
其中,I代表惰性气体N 2和甲烷等,y p为反应气体H 2、CO、惰性气体N 2和甲烷等非液相挥发性气体组分所占的气相分压与总压之比;F I为反应器出口处I的摩尔流量之和,单位为kmol/h;P T为反应操作压力,单位为MPa;
依据入口处丙烯、CO和H 2的摩尔流量,联立方程(4)~(25),便可求出反应器液相中丙烯、CO和H 2的浓度,以及出口处各组分的摩尔流量。
在本发明的评测方法中,先通过构建反应气体的宏观动力学方程,然后通过后续的反应加强因子E x数学表达式的建立和液相反应物浓度计算方法的建立,从而对液相中反应组分浓度、宏观反应速率进行计算,进而评测反应强化效果。
本发明的评测方法,评测的是微界面强化传质的效果。实际生产时,一般是通过减小气泡直径,增大气液接触面积达到微界面传质强化效果的。“微”就是“微纳”;“界面”是指增强传质的作用主要在于提高气液接触界面。本发明的评测方法通过对比微界面和宏界面的宏观反应速率、传质系数等参数,评测微界面强化技术对该反应体系的强化程度。
其中,步骤(A)通过建立反应过程中各反应的化学反应式,并根据各化学反应式构建了各反应的反应速率表达式;步骤(B)以第一步得到的正丁醛、异丁醛和丙烷反应生成速率为基础,利用反应过程中CO和H 2在气、液膜中的传质速率和液相中的反应速率相等为条件,得到了丙烷的宏观反应速率r pe和气泡尺度d 32间的关系方程,并得到了气相组分x的气液膜中的传质系数和a的构效调控数学模型;步骤(C)建立了反应增强因子的数学表达式;步骤(D)对反应组分丙烯、CO和H 2进行了物料衡算,并利用各气体分压与其摩尔流量关系得到了相应表达式,通过将各步骤中的各表达式联立即可得到反应器液相中丙烯、CO和H 2的浓度,以及出口处各组分的摩尔流量。
本发明还提供了一种丙烯氢甲酰化制丁醛的微界面强化反应系统,该系统上述计算方法设计得到。通过上述计算方法设计得到的反应器能有效地增强传质,从而最大程度提高时空产率进而实现微界面反应强化技术的经济性。
专利公开号为CN113061080A、CN113072438A、CN113061081A和CN113041962A等专利均已介绍了具体的丙烯氢甲酰化制丁醛的微界面强化反应系统,因此,本发明不再过多赘述。本发明能够计算出液相中各反应组分的浓度,从而可基于该评测结果判断微界面强化的程度,并根据该评测结果说明微界面强化的效果。
与现有技术相比,本发明的有益效果在于:
本发明以实现微界面反应强化技术的经济性为目标,通过确定氧化反应微界面反应强化评测方法以最大程度提高时空产率,有利于优化丁醛合成反应器的设计和操作。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为气泡尺寸对气液相界面积的影响关系曲线图;
图2为气泡尺寸对气、液侧体积传质系数的影响关系曲线图;
图3为气泡尺寸对液相CO浓度的影响关系曲线图;
图4为气泡尺寸对液相H 2浓度的影响关系曲线图;
图5为气泡尺寸对丙烯宏观反应速率的影响关系曲线图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
本实施例基于本发明的评测方法,针对某企业丙烯氢甲酰化制丁醛反应工段的搅拌釜式反应器及现有操作工况,研究反应器内气泡大小对气液相界面积、气液传质系数和丙烯宏观反应速率的影响。
计算条件如下:
反应器操作参数:
原反应器操作液位高度H 0=9.5m;反应器横截面积S 0=18.85m 2
液相密度ρ L=730kg/m 3;粘度μ L=0.195mPa·s;表面张力σ L=14.7mN/m;
操作压力P T=1.9MPa;操作温度T=362.65K;
液相流量Q L=2.41×10 -2m 3/s;
丙烯摩尔流量F Pe=530.13kmol/h;CO摩尔流量F CO=400.38kmol/h;H 2摩尔流量
Figure PCTCN2022103299-appb-000029
=434.32kmol/h;
本发明实施例的丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法,具体包括以下步骤:
(A)建立丙烯氢甲酰化反应速率表达式;
建立反应过程中各反应的化学反应式:
CH 3CH=CH 2+CO+H 2→CH 3CH 2CH 2CHO   (1)
CH 3CH=CH 2+CO+H 2→CH 3CH(CH 3)CHO   (2)
CH 3CH=CH 2+H 2→CH 3CH 2CH 3     (3)
其中,式(1)为主反应方程式,式(2)-(3)为副反应方程式;
根据所述化学反应式构建各反应的反应速率表达式:
Figure PCTCN2022103299-appb-000030
Figure PCTCN2022103299-appb-000031
Figure PCTCN2022103299-appb-000032
其中,R Bn、R Bi和R pe分别为正丁醛、异丁醛和丙烷的反应生成速率,单位为mol/(m 3·s);k B和k pe分别为丁醛和丙烷生成的反应速率常数,单位分别为m 6/(mol 2·s)和m 3/(mol·s);k 2、a和b为反应参数;C Pe
Figure PCTCN2022103299-appb-000033
和C CO分别为液相中丙烯、H 2和CO的浓度,单位为mol/m 3;x Lg和x Rh分别为配体和催化剂质量分数。
(B)构建反应气体宏观反应动力学方程;
反应过程中,CO和H 2在气、液膜中的传质速率和液相中的反应速率相等,可得如下方程式:
k G,COa(P CO/H CO-C i,CO)=k L,COaE CO(C i,CO-C CO)=R Bn+R Bi     (7)
Figure PCTCN2022103299-appb-000034
化简方程式(8)得丙烯宏观反应速率方程式:
Figure PCTCN2022103299-appb-000035
其中,k G,CO为气泡内CO气膜传质系数,单位为m/s;P CO为气泡内CO分压,单位为Pa;H co为CO的亨利系数,单位为Pa·m 3/mol;C i,CO为气液界面附近液相中CO摩尔浓度,单位为mol/m 3
Figure PCTCN2022103299-appb-000036
为气液界面附近液相中H 2摩尔浓度,单位为mol/m 3;k L,CO为CO液侧传质系数,单位为m/s;E CO为CO反应增强因子;r Pe为丙烯的宏观反应速率,mol/(m 3·s);
Figure PCTCN2022103299-appb-000037
分别为H 2气膜、液膜传质系数,单位为m/s;a为气液相界面积,单位为m 2/m 3
Figure PCTCN2022103299-appb-000038
为H 2反应增强因子;
Figure PCTCN2022103299-appb-000039
为气泡内气相主体中H 2分压,单位为Pa;
Figure PCTCN2022103299-appb-000040
为H 2的亨利系数,单位为Pa·m 3/mol。
式(7)和(8)中气相组分x的气液膜中的传质系数和a均已构建相应的构效调控数学模型,它们与体系气泡直径d 32分别有如下关系:
Figure PCTCN2022103299-appb-000041
Figure PCTCN2022103299-appb-000042
Figure PCTCN2022103299-appb-000043
其中,x指气相组分CO和H 2,D Gx为反应物气体气侧的扩散系数,单位为m 2/s;D Lx为反应物气体液侧的扩散系数,单位为m 2/s;υ G为表观气速,单位为m/s;
式(10)中,t 32为气泡停留时间,单位为s;若反应器操作液位为H 0,则:
t 32=H 032     (13)
式(11)中,υ s为气泡滑移速度,单位为m/s,按式(14)计算:
Figure PCTCN2022103299-appb-000044
方程(12)~(14)中,υ L为表观液速,单位为m/s;υ 32为气泡群上升速度,单位为m/s,υ 32按式(15)计算:
Figure PCTCN2022103299-appb-000045
方程(15)中,υ 0为无限大静止液体中单个气泡的上升速度,单位为m/s,可按式(16)计算:
Figure PCTCN2022103299-appb-000046
其中,方程(16)中Mo为Morton数,Mo=gμ L 4/(ρ Lσ L 3);de为无量纲气泡直径,d e=d 32Lg/σ L) 1/2;K b为与体系物性相关的常数,K b=K b0Mo -0.038,对于有机溶剂或混合物,K b0=10.2,若K b<12,则按K b=12计算;常数c和n也与体系物性相关,可依据实际体系的特征取相应经验值;σ L为反应液的表面张力,单位为N/m;g为重力加速度,单位为m/s 2;ρ L为反应液的密度,单位为kg/m 3;μ L为反应液的动力粘度,单位为Pa·s。
(C)建立反应增强因子的数学表达式;
对于丙烯氢甲酰化反应体系,CO和H 2反应的Ha数可分别用式(17)和(18)表达:
Figure PCTCN2022103299-appb-000047
Figure PCTCN2022103299-appb-000048
气体组分x对应的E 可用式(19)表示:
Figure PCTCN2022103299-appb-000049
则气体反应组分x对应的反应增强因子E x的表达式为:
Figure PCTCN2022103299-appb-000050
其中,Ha CO为CO的八田数;
Figure PCTCN2022103299-appb-000051
为H 2的八田数;D L,CO为CO的液相扩散系数,单位为m 2/s;
Figure PCTCN2022103299-appb-000052
为H 2的液相扩散系数,单位为m 2/s;D L,Pe为丙烯在液相中的扩散系数,单位为m 2/s。
(D)计算液相中各反应组分的浓度。
假定反应器为全混流反应器,对反应组分丙烯、CO和H 2进行物料衡算,可得式(21)~(23):
F in,Pe-Q LC Pe=R Bn+R Bi+R Pe    (21)
F in,CO-F out,CO=R Bn+R Bi    (22)
Figure PCTCN2022103299-appb-000053
式(21)~(23)中,F in,Pe、F in,CO
Figure PCTCN2022103299-appb-000054
分别为反应器入口处丙烯、CO和H 2的摩尔流量,单位为mol/s;Q L为反应器出口处液体体积流量,单位为m 3/s;F out,CO
Figure PCTCN2022103299-appb-000055
分别为反应器出口处CO和H 2的摩尔流量,单位为mol/s;
假设反应气体H 2和CO与惰性气体N 2和甲烷等所占分压比例总和不变为y p,同时根据气相中H 2、CO和惰性气体N 2和甲烷等的分压与其摩尔流量的关系可得式(24)和式(25):
Figure PCTCN2022103299-appb-000056
Figure PCTCN2022103299-appb-000057
其中,I代表惰性气体N 2和甲烷等,y p为反应气体H 2、CO、惰性气体N 2和甲烷等非液相挥发性气体组分所占的气相分压与总压之比;F I为反应器出口处I的摩尔流量之和,单位为kmol/h;P T为反应操作压力,单位为MPa;
依据入口处丙烯、CO和H 2的摩尔流量,联立方程(4)~(25),便可求出反应器液相中丙烯、CO和H 2的浓度,以及出口处各组分的摩尔流量。
除了宏观反应速率和液相中CO和H 2浓度随气泡尺寸的变化关系外,气液相界面积,气、液侧体积传质系数随气泡尺寸的变化关系也可获取。具体变化关系如图1~图5所示。
图1为气泡尺寸d 32对气液相界面积a的影响,由图1可知,随着反应体系气泡尺寸的减小,气液相界面积不断增大。该实施例中,气泡尺寸由3.5mm减小至0.1mm,气液相界面积从134m 2/m 3增大至16425m 2/m 3,增大了约123倍。
图2为气泡尺寸d 32对气、液侧体积传质系数的影响,由图2可知,组分CO和H 2的气、液侧体积传质系数均随气泡尺寸的减小而增大。
图3为气泡尺寸d 32对液相中CO浓度的影响。由图3可知,气泡尺寸越小,液相中CO浓度越大。该实施例中,气泡尺寸由3.5mm减小至0.1mm,液相CO浓度从4.9mol/m 3增至10.5mol/m 3,提高了约116.4%。
图4为气泡尺寸d 32对液相中H 2浓度的影响。由图4可知,液相中H 2浓度随气泡尺寸减小而增大。该实施例中,气泡尺寸由3.5mm减小至0.1mm,液相H 2浓度从40.2mol/m 3增至44.1mol/m 3,提高了约9.7%。
图5为气泡尺寸d 32对丙烯宏观反应速率的影响。由图5可知,宏观反应速率随气泡尺寸的减小而增大。本实施例中,气泡尺寸从3.5mm减至0.1mm,丙烯宏观反应速率从0.160mol/(m 3·s)增大至0.381mol/(m 3·s),增强了约137.5%。
由图1-5可以看出,当气泡尺寸d 32减小时,气液相界面积不断增大,液相中CO和H 2浓度增大,气、液侧体积传质系数增大,丙烯宏观反应速率也随之增大。可见,气泡尺寸的减小有利于提高丙烯氢甲酰化制丁醛的反应效率。
上述各个参数即使未在计算公式中明确列出,但是通过已得到结果参数情况下通过简单计算也是可以得到的。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (6)

  1. 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法,其特征在于,包括以下步骤:
    (A)建立丙烯氢甲酰化反应速率表达式;
    (B)构建反应气体宏观反应动力学方程;
    (C)建立反应增强因子的数学表达式;
    (D)计算液相中各反应组分的浓度。
  2. 根据权利要求1所述的评测方法,其特征在于,所述步骤(A)包括:
    建立反应过程中各反应的化学反应式:
    CH 3CH=CH 2+CO+H 2→CH 3CH 2CH 2CHO  (1)
    CH 3CH=CH 2+CO+H 2→CH 3CH(CH 3)CHO  (2)
    CH 3CH=CH 2+H 2→CH 3CH 2CH 3  (3)
    其中,式(1)为主反应方程式,式(2)-(3)为副反应方程式;
    根据所述化学反应式构建各反应的反应速率表达式:
    Figure PCTCN2022103299-appb-100001
    Figure PCTCN2022103299-appb-100002
    Figure PCTCN2022103299-appb-100003
    其中,R Bn、R Bi和R pe分别为正丁醛、异丁醛和丙烷的反应生成速率,单位为mol/(m 3·s);k B和k pe分别为丁醛和丙烷生成的反应速率常数,单位分别为m 6/(mol 2·s)和m 3/(mol·s);k 2、a和b为反应参数;C Pe
    Figure PCTCN2022103299-appb-100004
    和C CO分别为液相中丙烯、H 2和CO的浓度,单位为mol/m 3;x Lg和x Rh分别为配体和催化剂质量分数。
  3. 根据权利要求1所述的评测方法,其特征在于,所述步骤(B)包括:
    反应过程中,CO和H 2在气、液膜中的传质速率和液相中的反应速率相等,可得如下方程式:
    k G,COa(P CO/H CO-C i,CO)=k L,COaE CO(C i,CO-C CO)=R Bn+R Bi  (7)
    Figure PCTCN2022103299-appb-100005
    化简方程式(8)得丙烯宏观反应速率方程式:
    Figure PCTCN2022103299-appb-100006
    其中,k G,CO为气泡内CO气膜传质系数,单位为m/s;P CO为气泡内CO分压,单位为Pa;H co为CO的亨利系数,单位为Pa·m 3/mol;C i,CO为气液界面附近液相中CO摩尔浓度,单位为mol/m 3
    Figure PCTCN2022103299-appb-100007
    为气液界面附近液相中H 2摩尔浓度,单位为mol/m 3;k L,CO为CO液侧传质系数,单位为m/s;E CO为CO反应增强因子;r Pe为丙烯的宏观反应速率,单位为mol/(m 3·s);
    Figure PCTCN2022103299-appb-100008
    分别为H 2气膜、液膜传质系数,单位为m/s;a为气液相界面积,单位为m 2/m 3
    Figure PCTCN2022103299-appb-100009
    为H 2反应增强因子;
    Figure PCTCN2022103299-appb-100010
    为气泡内气相主体中H 2分压,单位为Pa;
    Figure PCTCN2022103299-appb-100011
    为H 2的亨利系数,单位为Pa·m 3/mol。
    式(7)和(8)中气相组分x的气液膜中的传质系数和a均已构建相应的构效调控数学模型,它们与体系气泡直径d 32分别有如下关系:
    Figure PCTCN2022103299-appb-100012
    Figure PCTCN2022103299-appb-100013
    Figure PCTCN2022103299-appb-100014
    其中,x指气相组分CO和H 2,D Gx为反应物气体气侧的扩散系数,单位为m 2/s;D Lx为反应物气体液侧的扩散系数,单位为m 2/s;υ G为表观气速,单位为m/s;
    式(10)中,t 32为气泡停留时间,单位为s;若反应器操作液位为H 0,则:
    t 32=H 032  (13)
    式(11)中,υ s为气泡滑移速度,单位为m/s,按式(14)计算:
    Figure PCTCN2022103299-appb-100015
    方程(12)~(14)中,υ L为表观液速,单位为m/s;υ 32为气泡群上升速度,单位为m/s,υ 32按式(15)计算:
    Figure PCTCN2022103299-appb-100016
    方程(15)中,υ 0为无限大静止液体中单个气泡的上升速度,单位为m/s,可按式(16)计算:
    Figure PCTCN2022103299-appb-100017
    其中,方程(16)中Mo为Morton数,Mo=gμ L 4/(ρ Lσ L 3);de为无量纲气泡直径,d e=d 32Lg/σ L) 1/2;K b为与体系物性相关的常数,K b=K b0Mo -0.038,对于有机溶剂或混合物,K b0=10.2,若K b<12,则按K b=12计算;常数c和n也与体系物性相关,可依据实际体系的特征取相应经验值;σ L为反应液的表面张力,单位为N/m;g为重力加速度,单位为m/s 2;ρ L为反应液的密度,单位为kg/m 3;μ L为反应液的动力粘度,单位为Pa·s。
  4. 根据权利要求3所述的评测方法,其特征在于,所述步骤(C)包括:
    对于丙烯氢甲酰化反应体系,CO和H 2反应的Ha数可分别用式(17)和(18)表达:
    Figure PCTCN2022103299-appb-100018
    Figure PCTCN2022103299-appb-100019
    气体组分x对应的E 可用式(19)表示:
    Figure PCTCN2022103299-appb-100020
    则气体反应组分x对应的反应增强因子Ex的表达式为:
    Figure PCTCN2022103299-appb-100021
    其中,Ha CO为CO的八田数;
    Figure PCTCN2022103299-appb-100022
    为H 2的八田数;D L,CO为CO的液相扩散系数,单位为m 2/s;
    Figure PCTCN2022103299-appb-100023
    为H 2的液相扩散系数,单位为m 2/s;D L,Pe为丙烯在液相中的扩散系数,单位为m 2/s。
  5. 根据权利要求1所述的评测方法,其特征在于,所述步骤(D)包括:
    假定反应器为全混流反应器,对反应组分丙烯、CO和H 2进行物料衡算,可得式(21)~(23):
    F in,Pe-Q LC Pe=R Bn+R Bi+R Pe  (21)
    F in,CO-F out,CO=R Bn+R Bi  (22)
    Figure PCTCN2022103299-appb-100024
    式(21)~(23)中,F in,Pe、F in,CO
    Figure PCTCN2022103299-appb-100025
    分别为反应器入口处丙烯、CO和H 2的摩尔流量,单位为mol/s;Q L为反应器出口处液体体积流量,单位为m 3/s;F out,CO
    Figure PCTCN2022103299-appb-100026
    分别 为反应器出口处CO和H 2的摩尔流量,单位为mol/s;
    假设反应气体H 2和CO与惰性气体N 2和甲烷等所占分压比例总和不变为y p,同时根据气相中H 2、CO和惰性气体N 2和甲烷等的分压与其摩尔流量的关系可得式(24)和式(25):
    Figure PCTCN2022103299-appb-100027
    Figure PCTCN2022103299-appb-100028
    其中,I代表惰性气体N 2和甲烷等,y p为反应气体H 2、CO、惰性气体N 2和甲烷等非液相挥发性气体组分所占的气相分压与总压之比;F I为反应器出口处I的摩尔流量之和,单位为kmol/h;P T为反应操作压力,单位为MPa;
    依据入口处丙烯、CO和H 2的摩尔流量,联立方程(4)~(25),便可求出反应器液相中丙烯、CO和H 2的浓度,以及出口处各组分的摩尔流量。
  6. 一种丙烯氢甲酰化制丁醛的微界面强化反应系统,其特征在于,采用权利要求1所述评测方法设计得到。
PCT/CN2022/103299 2021-11-08 2022-07-01 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法 WO2023077843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22871088.5A EP4432292A1 (en) 2021-11-08 2022-07-01 Method for evaluating enhancement degree of micro-interface reaction for preparing butyraldehyde by means of hydroformylation of propylene
JP2023516630A JP2023553778A (ja) 2021-11-08 2022-07-01 プロピレンのヒドロホルミル化によるブチルアルデヒド製造のマイクロ界面反応強化の度合いの評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111323701.5A CN113971988B (zh) 2021-11-08 2021-11-08 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法
CN202111323701.5 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023077843A1 true WO2023077843A1 (zh) 2023-05-11

Family

ID=79589487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103299 WO2023077843A1 (zh) 2021-11-08 2022-07-01 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法

Country Status (4)

Country Link
EP (1) EP4432292A1 (zh)
JP (1) JP2023553778A (zh)
CN (1) CN113971988B (zh)
WO (1) WO2023077843A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113971988B (zh) * 2021-11-08 2023-05-05 南京延长反应技术研究院有限公司 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528404A (en) * 1983-03-16 1985-07-09 Exxon Research And Engineering Co. High temperature hydroformylation in the presence of triarylphosphine rhodium carbonyl hydride complex catalyst systems
CN102826967A (zh) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种烯烃氢甲酰化反应制备醛的方法
CN107563051A (zh) 2017-08-30 2018-01-09 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN111302917A (zh) * 2020-03-27 2020-06-19 中国海洋石油集团有限公司 一种烯烃氢甲酰化装置及方法
CN113041962A (zh) 2021-04-01 2021-06-29 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的反应系统及方法
CN113061081A (zh) 2021-04-01 2021-07-02 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的微界面强化反应系统及方法
CN113061080A (zh) 2021-04-01 2021-07-02 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的微界面反应系统及方法
CN113075091A (zh) * 2021-02-24 2021-07-06 南京延长反应技术研究院有限公司 一种确定px氧化制ta体系中气泡大小的方法
CN113072438A (zh) 2021-04-01 2021-07-06 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的智能微界面反应系统及方法
CN113971988A (zh) * 2021-11-08 2022-01-25 南京延长反应技术研究院有限公司 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法
CN114019107A (zh) * 2021-11-08 2022-02-08 南京延长反应技术研究院有限公司 一种蒽醌法制双氧水体系中微气泡强化的评测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826974B (zh) * 2011-06-17 2015-11-25 中国石油化工股份有限公司 一种丙烯氢甲酰化反应制备丁醛的方法
CN107346378B (zh) * 2017-08-30 2020-09-04 南京大学 微界面强化反应器传质速率构效调控模型建模方法
CN112479815A (zh) * 2019-09-12 2021-03-12 南京延长反应技术研究院有限公司 一种基于微界面强化的丙烯羰基化制备丁辛醇的反应系统及工艺
CN112479840A (zh) * 2019-09-12 2021-03-12 南京延长反应技术研究院有限公司 一种丙烯羰基化制备丁辛醇的智能控制反应系统及工艺
CN113058517B (zh) * 2021-03-23 2023-05-05 南京延长反应技术研究院有限公司 一种丁辛醇的微界面制备装置及方法
CN113223627B (zh) * 2021-04-07 2023-10-31 南京延长反应技术研究院有限公司 一种微界面强化加氢反应的宏观反应速率计算方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528404A (en) * 1983-03-16 1985-07-09 Exxon Research And Engineering Co. High temperature hydroformylation in the presence of triarylphosphine rhodium carbonyl hydride complex catalyst systems
CN102826967A (zh) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种烯烃氢甲酰化反应制备醛的方法
CN107563051A (zh) 2017-08-30 2018-01-09 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN111302917A (zh) * 2020-03-27 2020-06-19 中国海洋石油集团有限公司 一种烯烃氢甲酰化装置及方法
CN113075091A (zh) * 2021-02-24 2021-07-06 南京延长反应技术研究院有限公司 一种确定px氧化制ta体系中气泡大小的方法
CN113041962A (zh) 2021-04-01 2021-06-29 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的反应系统及方法
CN113061081A (zh) 2021-04-01 2021-07-02 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的微界面强化反应系统及方法
CN113061080A (zh) 2021-04-01 2021-07-02 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的微界面反应系统及方法
CN113072438A (zh) 2021-04-01 2021-07-06 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的智能微界面反应系统及方法
CN113971988A (zh) * 2021-11-08 2022-01-25 南京延长反应技术研究院有限公司 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法
CN114019107A (zh) * 2021-11-08 2022-02-08 南京延长反应技术研究院有限公司 一种蒽醌法制双氧水体系中微气泡强化的评测方法

Also Published As

Publication number Publication date
CN113971988B (zh) 2023-05-05
JP2023553778A (ja) 2023-12-26
EP4432292A1 (en) 2024-09-18
CN113971988A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2023077843A1 (zh) 一种丙烯氢甲酰化制丁醛微界面反应强化程度的评测方法
Bayat et al. Methanol synthesis via sorption-enhanced reaction process: Modeling and multi-objective optimization
CN106536745A (zh) 化合物的制造方法和前述制造方法中使用的化合物的制造系统
CN110385094B (zh) 一种液体水合物快速连续化制备装置
US20190062245A1 (en) Method for preparing phenol
Cybulski et al. Monolithic reactors for fine chemicals industries: a comparative analysis of a monolithic reactor and a mechanically agitated slurry reactor
JP2021020969A (ja) Pxでptaを製造するための、マイクロインターフェースユニット内蔵型強化反応システム及びプロセス
Park et al. Flow and oxygen-transfer characteristics in an aeration system using an annular nozzle ejector
CN106237966A (zh) 用于甲苯类物质氧化生产芳香醛的反应器
CN104478701A (zh) 连续流微通道反应器中醇酮油硝酸氧化合成己二酸的方法
CN106397106A (zh) 一种利用微通道反应器进行烯烃加成反应的方法
CN104478702B (zh) 一种采用微通道反应器合成己二酸的方法
CN200974017Y (zh) 一种共沉淀法制备催化剂的反应釜
Zhang et al. Liquid–gas jet pump: A review
WO2023077844A1 (zh) 一种蒽醌法制双氧水体系中微气泡强化的评测方法
CN104159663B (zh) 多流路设备的运转方法以及多流路设备
CN113075091B (zh) 一种确定px氧化制ta体系中气泡大小的方法
CN206492493U (zh) 自振荡反应器
CN111151205A (zh) 丙醛连续化生产方法及反应系统
CN110026134A (zh) 一种串联合成塔以及使用其制备甲醇的方法
JP2014514252A5 (zh)
CN109603706A (zh) 一种连续流板式化学反应器
CN113257367A (zh) 一种基于苯酚废水的湿式氧化构效调控模型的建模方法
Gandhi et al. Unified correlation for overall gas hold‐up in bubble column reactors for various gas–liquid systems using hybrid genetic algorithm‐support vector regression technique
Nanda Reactors and fundamentals of reactors design for chemical reaction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023516630

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2023108282

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871088

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871088

Country of ref document: EP

Effective date: 20240610