WO2023074836A1 - β-Ga2O3/β-Ga2O3積層体の製造方法 - Google Patents
β-Ga2O3/β-Ga2O3積層体の製造方法 Download PDFInfo
- Publication number
- WO2023074836A1 WO2023074836A1 PCT/JP2022/040309 JP2022040309W WO2023074836A1 WO 2023074836 A1 WO2023074836 A1 WO 2023074836A1 JP 2022040309 W JP2022040309 W JP 2022040309W WO 2023074836 A1 WO2023074836 A1 WO 2023074836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pbo
- mol
- laminate
- growth
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 67
- 239000002904 solvent Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000007791 liquid phase Substances 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 18
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims abstract 10
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 195
- 238000000034 method Methods 0.000 claims description 53
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 30
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 abstract description 21
- 230000008018 melting Effects 0.000 abstract description 21
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 35
- 239000000155 melt Substances 0.000 description 30
- 238000004943 liquid phase epitaxy Methods 0.000 description 19
- 229910052697 platinum Inorganic materials 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 239000002994 raw material Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 9
- FPHIOHCCQGUGKU-UHFFFAOYSA-L difluorolead Chemical compound F[Pb]F FPHIOHCCQGUGKU-UHFFFAOYSA-L 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 238000005231 Edge Defined Film Fed Growth Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 6
- 229910052863 mullite Inorganic materials 0.000 description 6
- 238000010587 phase diagram Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/12—Liquid-phase epitaxial-layer growth characterised by the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02414—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02625—Liquid deposition using melted materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02483—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate and the laminate obtained by the method.
- Power devices are one of the key devices for improving the efficiency of power usage for the realization of a low-carbon society. ing.
- energy loss due to resistance when current flows through the element and wasteful current generation due to the recovery process of the charge distribution in the element that occurs at the moment when the voltage applied to the element is switched cannot be avoided.
- These loss ratios vary depending on power and frequency, but generally range from several percent to ten and several percent.
- the device structure of conventional power semiconductors using Si has been devised, but Si is approaching its physical limit, and it is difficult to improve efficiency further. Therefore, SiC and GaN are being developed as power device materials to replace Si.
- SiC has a bandgap of 3.3 eV and GaN has a bandgap of 3.4 eV, which are wider bandgap materials than Si's 1.1 eV.
- a material with a wider bandgap has a higher dielectric breakdown voltage, which indicates the electric field at the limit (avalanche breakdown) that prevents charges from leaking into the semiconductor, and a device structure capable of withstanding a higher voltage can be adopted.
- ⁇ -Ga 2 O 3 is a type of oxide semiconductor, and has been applied to transparent conductive substrates for GaN-based LEDs, solar blind ultraviolet detectors, etc. In recent years, it has also attracted attention as a power device material. It is expected to realize a high-voltage and high-efficiency power semiconductor that surpasses SiC and GaN. This is because the bandgap of ⁇ -Ga 2 O 3 is expected to be 4.5 to 4.9 eV, which is wider than that of SiC and GaN. Another advantage of ⁇ -Ga 2 O 3 over SiC and GaN is that crystal growth from a melt is possible. SiC and GaN are difficult to crystallize from a melt, and there is a problem that the substrate is expensive.
- ⁇ -Ga 2 O 3 has a melting point at normal pressure and is capable of bulk crystal growth, and is being researched and developed by the EFG (Edge-Defined Film-fed Growth) method and the vertical Bridgman method.
- EFG Edge-Defined Film-fed Growth
- vertical Bridgman method For the former growth method, substrates of 2 to 4 inches are commercially available, and for the latter growth method, a 4-inch substrate is under development.
- ⁇ -Ga 2 O 3 epitaxial layer
- the thickness of the epitaxial layer is required to be several ⁇ m to 20 ⁇ m.
- the vapor phase growth method is a non-thermodynamic growth method, and has the disadvantages of low crystal quality and slow growth rate.
- Non-Patent Document 1 discloses a method of epitaxially growing ⁇ -Ga 2 O 3 on a sapphire substrate by HVPE. According to this method, since the crystal structure of the sapphire substrate and ⁇ -Ga 2 O 3 are different, a plurality of rotational domains exist and the epitaxial layer does not form a single domain. The same layer is not strictly monocrystalline and cannot be applied to power devices. In addition, the epitaxial layer obtained by the same method has a half-value width of X-ray rocking curve of 0.5 deg (1800 arcsec) and has low crystallinity.
- ⁇ -Ga 2 O 3 is epitaxially grown on a ⁇ -Ga 2 O 3 substrate by the HVPE method to form a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate (hereinafter simply (sometimes abbreviated as " ⁇ -Ga 2 O 3 laminate") is disclosed. According to this method, a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate can be obtained, but the growth rate of the epitaxial layer is as low as 2.7 to 6.0 ⁇ m/hr.
- ⁇ -Ga 2 O 3 has a high melting point of about 1970° C., and it is difficult to maintain a stable melt surface near the melting point. was difficult. Therefore, single crystal growth is performed by the EFG method or the vertical Bridgman method as described above. However, a ⁇ -Ga 2 O 3 laminate cannot be obtained by the EFG method or the vertical Bridgman method.
- the target substance is dissolved in an appropriate solvent, the temperature of the mixed solution is lowered to bring it into a supersaturated state, and the target substance grows from the melt. ), the solution pulling method and the liquid phase epitaxial growth method (LPE; Liquid Phase Epitaxy).
- Patent Document 2 discloses a method of obtaining a ⁇ -Ga 2 O 3 epitaxial layer by the LPE method. According to this method, a ⁇ -Ga 2 O 3 single crystal layer is laminated on a sapphire substrate using the LPE method . Can not. Also, the sapphire substrate has a corundum crystal structure, while ⁇ -Ga 2 O 3 has a monoclinic crystal structure, and the crystal structures are different. In addition, since the lattice constant is not matched, there is a problem of low crystal quality.
- Patent Document 2 exemplifies PbO or PbF 2 as a solvent, and either one is used. In order to establish a stable single crystal growth method with good reproducibility, it is common to keep the melt at a temperature about 100 to 200°C higher than the melting point so that the solvent and solute are uniformly mixed. . In Patent Document 2, the melt is held at 1100°C. The melting point of PbO is about 886°C and that of PbF2 is about 824°C.
- the method of vapor-phase growth of ⁇ -Ga 2 O 3 on a ⁇ -Ga 2 O 3 substrate as a method of obtaining a ⁇ -Ga 2 O 3 laminate useful as a power device has low crystal quality. , had the drawback of slow growth rate.
- the liquid phase growth method which is close to thermal equilibrium growth in principle and can be expected to have high crystallinity and growth rate, there is a problem that a ⁇ -Ga 2 O 3 laminate cannot be obtained by the conventional method.
- An object of the present invention is to solve at least one of the conventional problems. Furthermore, the present invention provides ⁇ -Ga 2 O 3 by laminating a ⁇ -Ga 2 O 3 single crystal having high crystallinity and a high growth rate on a ⁇ -Ga 2 O 3 substrate by a liquid phase epitaxial growth method. An object of the present invention is to provide a method for manufacturing a / ⁇ -Ga 2 O 3 laminate.
- the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate means that an epitaxial layer containing ⁇ -Ga 2 O 3 is laminated on a substrate containing ⁇ -Ga 2 O 3 means something
- the present invention is as follows. ⁇ 1> Ga 2 O 3 as a solute and PbO and Bi 2 O 3 as solvents are mixed and melted, and then a ⁇ -Ga 2 O 3 substrate is brought into direct contact with the resulting melt, A ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate is obtained by growing a ⁇ -Ga 2 O 3 single crystal on the ⁇ -Ga 2 O 3 substrate by a liquid phase epitaxial growth method. A method for manufacturing a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate.
- a ⁇ -Ga 2 O 3 single crystal is grown on the ⁇ -Ga 2 O 3 substrate by an epitaxial growth method to obtain a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate.
- ⁇ 5> Any one of ⁇ 1> to ⁇ 4> above, wherein the layer containing the ⁇ -Ga 2 O 3 single crystal formed by the liquid phase epitaxial growth method contains 0.01 mol % or more and 20 mol % or less of a different element.
- a method for producing a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate described in . ⁇ 6> The group consisting of Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Co, Ni, Cu, Zn, Cd, Al, In, Si, Ge, Sn and Pb
- the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate has a rocking curve half width of 5 to 100 arcsec in the layer containing three single crystals.
- the evaporation of the solvent is suppressed, stable crystal growth can be performed with little change in composition, and the consumption of furnace materials can be suppressed, and the growth furnace does not have to be a closed system, so it is low cost.
- the crystal growth method is the liquid phase growth method, the ⁇ -Ga 2 O 3 single crystal layer can be grown with high crystallinity and high growth rate.
- the ⁇ -Ga 2 O 3 laminate manufactured in this embodiment can be used for power devices using ⁇ -Ga 2 O 3 laminates, which are expected to develop in the future.
- FIG. 1 is a phase diagram of PbO—Bi 2 O 3 .
- FIG. 2 is a phase diagram of PbO—PbF 2 .
- a solute of Ga 2 O 3 and solvents of PbO and Bi 2 O 3 are mixed and melted, and then ⁇ -Ga 2 O is added to the resulting melt.
- the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate is obtained by bringing the three substrates into direct contact and growing a ⁇ -Ga 2 O 3 single crystal on the ⁇ -Ga 2 O 3 substrate by a liquid phase epitaxial growth method.
- a method for producing a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate characterized by obtaining The principle of the first embodiment of the present invention will be described below.
- PbO and Bi 2 O 3 form a eutectic system, and the melting point can be lowered by mixing the two.
- the melting point of the PbO+Bi 2 O 3 mixture can be made lower than the melting point of PbO alone or Bi 2 O 3 alone. This indicates that the evaporation amount of PbO or Bi 2 O 3 in the above PbO concentration range can be suppressed as compared with PbO or Bi 2 O 3 alone.
- PbO or Bi 2 O 3 When PbO or Bi 2 O 3 is used alone, the LPE growth temperature (the temperature during epitaxial growth) becomes high, so the mixed solvent as described above is suitable.
- the solute concentration is 14 mol % or more and 27 mol % or less. If the solute concentration is less than 5 mol %, the crystal growth rate will be slow, and if it exceeds 30 mol %, the LPE growth temperature will increase and solvent volatilization may increase. Also, the crystal growth speed increases, and the crystal quality may deteriorate.
- the growth rate of the layer containing the ⁇ -Ga 2 O 3 single crystal (epitaxial layer) formed by the liquid phase epitaxial growth method is preferably 10 to 50 ⁇ m/hr. More preferably ⁇ 30 ⁇ m/hr. If it is less than 10 ⁇ m/hr, the growth rate becomes slow and the cost may increase. Moreover, if it exceeds 50 ⁇ m/hr, the crystal quality may deteriorate.
- the growth rate can be obtained from the film thickness difference before and after the LPE growth and the growth time.
- the solute Ga 2 O 3 and the solvents PbO and PbF 2 are mixed and melted, and then ⁇ -Ga 2 is added to the resulting melt.
- a ⁇ -Ga 2 O 3 / ⁇ - Ga 2 O 3 stack is formed by directly contacting an O 3 substrate and growing a ⁇ - Ga 2 O 3 single crystal on the ⁇ -Ga 2 O 3 substrate by a liquid phase epitaxial growth method.
- Figure 2 is a phase diagram of PbO- PbF2 (Reference: C.
- PbO and PbF2 form a eutectic system, and the melting point can be lowered by mixing the two.
- the melting point of the PbO+PbF 2 mixture can be made lower than the melting point of PbO alone or PbF 2 alone. This indicates that the evaporation amount of PbO or PbF2 in the concentration range of PbO+ PbF2 can be suppressed as compared with PbO or PbF2 alone.
- the growth rate of the layer containing the ⁇ -Ga 2 O 3 single crystal (epitaxial layer) formed by the liquid phase epitaxial growth method is preferably 10 to 50 ⁇ m/hr. More preferably ⁇ 30 ⁇ m/hr. If it is less than 10 ⁇ m/hr, the growth rate becomes slow and the cost may increase. Moreover, if it exceeds 50 ⁇ m/hr, the crystal quality may deteriorate.
- the growth rate can be obtained from the film thickness difference before and after the LPE growth and the growth time.
- the LPE growth temperature is controlled, the solvent viscosity is adjusted, and the dissimilar element
- one or two or more third components can be added to the solvent. Examples include B 2 O 3 , V 2 O 5 , P 2 O 5 , MoO 3 and WO 3 .
- Bi 2 O 3 may be added as a third component to the solvent of the second embodiment. Liquid phase epitaxial growth using a ⁇ -Ga 2 O 3 substrate is most preferable as the method for growing the ⁇ -Ga 2 O 3 laminate in the present invention.
- Ga in ⁇ -Ga 2 O 3 is a trivalent oxide and generally exhibits n-type conductivity.
- ⁇ -Ga 2 O 3 is a trivalent oxide and generally exhibits n-type conductivity.
- by doping ⁇ -Ga 2 O 3 with a different element residual electron concentration, bandgap, insulating properties, etc. can be imparted.
- MgO or ZnO as a divalent impurity
- residual electrons can be reduced.
- SiO 2 or SnO 2 as a tetravalent impurity the residual electron concentration can be increased.
- Insulation can be imparted by doping Fe 2 O 3 .
- ⁇ -Ga 2 O 3 is doped with MgO or Al 2 O 3 which has a wider band gap than ⁇ -Ga 2 O 3 and mixed crystals are formed, the band gap can be increased. Also, by doping ZnO or CdO to form a mixed crystal, the bandgap can be reduced.
- the layer containing the ⁇ -Ga 2 O 3 single crystal formed by the liquid phase epitaxial growth method contains Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Co, Ni, Cu, and Zn as heteroelements. , Cd, Al, In, Si, Ge, Sn and Pb, preferably in the range of 0.01 to 20 mol%, preferably in the range of 0.1 to 10 mol%. is more preferred. If the doping amount of the foreign element is less than 0.01 mol %, the characteristic expression may be poor, and if it exceeds 20 mol %, crystal growth may become difficult.
- FIG. 3 is a schematic diagram showing an example of a general LPE growth furnace.
- a platinum crucible 7 in which raw materials are melted and stored as a melt 8 is placed on a crucible base 9 made of mullite (compound of aluminum oxide and silicon dioxide).
- Three-stage side heaters (upper heater 1, central heater 2, lower heater 3) for heating and melting the raw material in the platinum crucible 7 are provided outside and laterally of the platinum crucible 7. .
- the outputs of the heaters are independently controlled, and the amount of heat applied to the melt 8 is adjusted independently.
- a mullite furnace core tube 11 is provided between the heater and the inner wall of the manufacturing furnace, and a mullite furnace cover 12 is provided above the furnace core tube 11 .
- a lifting mechanism is provided above the platinum crucible 7 .
- a lifting shaft 5 made of alumina is fixed to the lifting mechanism, and a substrate holder 6 and a substrate 4 fixed by the holder are provided at the tip of the shaft.
- a mechanism for rotating the shaft is provided on the upper portion of the pulling shaft 5 .
- a thermocouple 10 is provided at the bottom of the crucible.
- a third embodiment of the present invention is a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate having a layer containing a ⁇ -Ga 2 O 3 single crystal on a ⁇ -Ga 2 O 3 substrate, and the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate, wherein the rocking curve half width of the layer containing the ⁇ -Ga 2 O 3 single crystal is 5 to 100 arcsec.
- the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate of the present invention can be preferably produced by the first and second embodiments of the present invention described above.
- the rocking curve half width of the layer containing the ⁇ -Ga 2 O 3 single crystal is 5 to 100 arcsec, preferably 5 to 80 arcsec, more preferably 5 to 50 arcsec. If it exceeds 100 arcsec, the crystallinity is low, and the power device performance may deteriorate.
- the ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate of the present invention is characterized by high crystallinity.
- the method described in Examples to be described later can be adopted as a method for measuring the rocking curve half-value width.
- a ⁇ -Ga 2 O 3 epitaxial layer is formed on a ⁇ -Ga 2 O 3 substrate. how to do this.
- the present invention is by no means limited to the following examples.
- a platinum crucible 7 in which raw materials are melted and stored as a melt 8 is placed on a crucible base 9 .
- Three-stage side heaters (upper heater 1, central heater 2, lower heater 3) for heating and melting the raw material in the platinum crucible 7 are provided outside and laterally of the platinum crucible 7. .
- the outputs of the heaters are independently controlled, and the amount of heat applied to the melt 8 is adjusted independently.
- a furnace core tube 11 is provided between the heater and the inner wall of the manufacturing furnace, and a furnace lid 12 is provided above the furnace core tube 11 .
- a lifting mechanism is provided above the platinum crucible 7 .
- a lifting shaft 5 made of alumina is fixed to the lifting mechanism, and a substrate holder 6 and a substrate 4 ( ⁇ -Ga 2 O 3 substrate) fixed by the holder are provided at the tip of the shaft.
- a mechanism for rotating the shaft is provided on the upper portion of the pulling shaft 5 .
- a thermocouple 10 is provided at the bottom of the crucible.
- the temperature of the manufacturing furnace is increased until the raw material melts.
- the temperature is preferably raised to 600 to 1000° C., more preferably 700 to 900° C., and allowed to stand still for 2 to 3 hours to homogenize the raw material melt.
- a plate made of platinum may be fixed to the tip of the alumina shaft, dipped in the melt, and the shaft rotated to stir to homogenize the melt. It is desirable that the growth of the ⁇ -Ga 2 O 3 single crystal layer proceeds only directly under the substrate.
- the three-stage heater is offset so that the bottom of the crucible is several degrees higher than the surface of the melt.
- the seed crystal substrate is brought into contact with the surface of the melt.
- the temperature is kept constant or the temperature is lowered at 0.025 to 5° C./hr to form the desired ⁇ -Ga 2 O 3 single crystal layer on the surface of the seed crystal substrate. grow.
- the seed crystal substrate is rotated at 5 to 300 rpm by the rotation of the growth shaft, and is reversely rotated at regular time intervals.
- the growing shaft is pulled up to separate the grown crystal from the melt, and the growing shaft is rotated at 50 to 300 rpm to separate the melt components adhering to the surface of the grown crystal. . Thereafter, it is cooled to room temperature over 1 to 24 hours to obtain the desired ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate.
- Example 1 2661.2 g of PbO (99.999% purity), 2777.7 g of Bi 2 O 3 (99.999% purity) and Ga 2 O 3 are placed in a platinum crucible 7 having an inner diameter of 120 mm, a height of 150 mm and a thickness of 1 mm. (99.999% purity) was charged in an amount of 561.2 g.
- the platinum crucible 7 charged with raw materials was placed in the LPE furnace shown in FIG. After stirring the melt for 6 hours using a platinum plate, the temperature was lowered until the bottom temperature of the crucible reached 750° C., and ⁇ -Ga 2 O 3 with a C-plane orientation of 11 mm ⁇ 11 mm ⁇ thickness of 650 ⁇ m grown by the EFG method. The substrate was wetted. The growth was carried out at the same temperature for 3 hours while rotating the pulling shaft 5 made of alumina at 60 rpm. At this time, the shaft rotation was reversed every 5 minutes. After that, the pull-up shaft 5 was pulled up to separate from the melt, and the melt components were separated by rotating the pull-up shaft 5 at 200 rpm.
- a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate was obtained.
- the melt components that could not be completely removed were removed using hydrochloric acid.
- the average thickness of the epitaxial layer was about 90 ⁇ m.
- the average growth rate was about 30 ⁇ m/hr.
- the rocking curve half width was measured using an X-ray diffractometer (X'pert MRD manufactured by Spectris). Using the same apparatus, after adjusting 2 ⁇ , ⁇ , ⁇ and ⁇ and setting the axis so that the peak of the (002) plane of ⁇ -Ga 2 O 3 can be detected, measurement was performed at a tube voltage of 45 KV and a tube current of 40 mA. . The incident light was made monochromatic by using four crystals of Ge (220) plane. Other measurement conditions were as follows.
- ⁇ scan incidence angle scan
- ⁇ range set the angle at which the ⁇ -Ga 2 O 3 (002) plane appears for each sample
- ⁇ range 0.1 deg ⁇ step
- 0.0005deg 2 ⁇ position set the angle at which the ⁇ -Ga 2 O 3 (002) plane appears for each sample
- Collimator diameter 0.5 mm Anti-scattering slit; 1.5mm
- Example 2 ⁇ -Ga 2 O 3 / was prepared in the same manner as in Example 1 except that the charging composition was changed so as to have the composition shown in Table 1 below, and the raw material melting temperature and growth temperature were changed as shown in Table 1.
- a ⁇ -Ga 2 O 3 laminate was obtained.
- the epitaxial layer obtained in Example 2 is a mixed crystal layer of ⁇ -Ga 2 O 3 and MgO
- the epitaxial layer obtained in Example 5 is a mixed crystal layer of ⁇ -Ga 2 O 3 and Al 2 O 3 . It was a mixed crystal layer of
- the solute Ga 2 O 3 and the solvents PbO and Bi 2 O 3 are mixed and dissolved, and then the ⁇ -Ga 2 O 3 substrate is brought into direct contact with the resulting melt.
- a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate can be produced.
- the melting point of the solvent can be made lower than that of PbO or Bi 2 O 3 alone. Therefore, both the raw material dissolution temperature and the ⁇ -Ga 2 O 3 growth temperature are lower than when a single solvent is used. This means that the amount of evaporation of solvent components can be reduced.
- the present invention provides a liquid phase growth method close to thermal equilibrium growth. Therefore, as shown in Table 1 above, the growth rate is as high as 13 to 30 ⁇ m/hr, the rocking curve half width is as narrow as 15 to 28 arcsec, and the crystallinity is high. On the other hand, Comparative Examples 1 and 2 were not melted unless heat exceeding 1000° C. was applied, and the solvent was volatilized at a temperature exceeding 1000° C., so a laminate could not be produced.
- the platinum crucible 7 charged with raw materials was placed in the LPE furnace shown in FIG. After stirring the melt for 6 hours using a platinum plate, the temperature was lowered until the bottom temperature of the crucible reached 840° C., and a ⁇ -Ga 2 O 3 with a C-plane orientation of 11 mm ⁇ 11 mm ⁇ thickness of 650 ⁇ m grown by the EFG method. The substrate was wetted. The growth was carried out at the same temperature for 3 hours while rotating the pulling shaft 5 made of alumina at 60 rpm. At this time, the shaft rotation was reversed every 5 minutes. After that, the pull-up shaft 5 was pulled up to separate from the melt, and the melt components were separated by rotating the pull-up shaft 5 at 200 rpm.
- a ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminate was obtained.
- the melt components that could not be completely removed were removed using nitric acid.
- the average thickness of the epitaxial layer was about 69 ⁇ m.
- the average growth rate was about 23 ⁇ m/hr.
- Examples 10-11, Comparative Example 3 ⁇ -Ga 2 O 3 / ⁇ was prepared in the same manner as in Example 9 except that the charging composition was changed so as to have the composition shown in Table 2 below, and the raw material melting temperature and growth temperature were changed as shown in Table 2. - Ga 2 O 3 laminate was obtained.
- Example 12-13 ⁇ -Ga 2 O 3 / ⁇ was prepared in the same manner as in Example 9 except that the charging composition was changed so as to have the composition shown in Table 3 below, and the raw material melting temperature and growth temperature were changed as shown in Table 3. - Ga 2 O 3 laminate was obtained. If the concentration of Ga 2 O 3 as a solute is less than 2 mol %, it approaches the melting point of the solvent, and the solvent tends to be viscous, making stable crystal growth difficult. Also, when the solute concentration exceeds 20 mol %, the growth temperature may become high. Therefore, the concentration of the solute Ga 2 O 3 is preferably 2 to 20 mol %.
- the solute Ga 2 O 3 and the solvents PbO and PbF 2 are mixed and dissolved, and then the ⁇ -Ga 2 O 3 substrate is brought into direct contact with the obtained melt. , ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminates can be produced.
- ⁇ -Ga 2 O 3 / ⁇ -Ga 2 O 3 laminates can be produced.
- the melting point of the solvent can be made lower than that of PbO or PbF 2 alone. Therefore, both the raw material dissolution temperature and the ⁇ -Ga 2 O 3 growth temperature are lower than when a single solvent is used. This means that the amount of evaporation of solvent components can be reduced.
- the present invention provides a liquid phase growth method close to thermal equilibrium growth. Therefore, as shown in Tables 2 and 3 above, the growth rate is as high as 18 to 29 ⁇ m/hr, the rocking curve half width is as narrow as 35 to 77 arcsec, and the crystallinity is high. On the other hand, in Comparative Example 3, the laminate was not melted unless heat exceeding 1000° C. was applied, and the solvent volatilized at a temperature exceeding 1000° C., so that a laminate could not be produced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
なお、本明細書において、β-Ga2O3/β-Ga2O3積層体とは、β-Ga2O3を含む基板上に、β-Ga2O3を含むエピタキシャル層を積層したものを意味する。
<1> 溶質であるGa2O3と、溶媒であるPbOおよびBi2O3とを混合して融解させた後、得られた融液に、β-Ga2O3基板を直接接触させ、液相エピタキシャル成長法によってβ-Ga2O3単結晶を前記β-Ga2O3基板上に成長させることでβ-Ga2O3/β-Ga2O3積層体を得ることを特徴とするβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<2> 前記溶質であるGa2O3と前記溶媒であるPbOおよびBi2O3との混合比が、溶質:溶媒=5~30mol%:95~70mol%であり、前記溶媒であるPbOとBi2O3との混合比が、PbO:Bi2O3=0.1~95mol%:99.9~5mol%である、上記<1>に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<3> 溶質であるGa2O3と、溶媒であるPbOおよびPbF2とを混合して融解させた後、得られた融液に、β-Ga2O3基板を直接接触させ、液相エピタキシャル成長法によってβ-Ga2O3単結晶を前記β-Ga2O3基板上に成長させることでβ-Ga2O3/β-Ga2O3積層体を得ることを特徴とするβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<4> 前記溶質であるGa2O3と、前記溶媒であるPbOおよびPbF2との混合比が、溶質:溶媒=2~20mol%:98~80mol%であり、前記溶媒であるPbOとPbF2との混合比が、PbO:PbF2=2~80mol%:98~20mol%である、上記<3>に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<5> 液相エピタキシャル成長法によって形成された前記β-Ga2O3単結晶を含む層が、0.01mol%以上20mol%以下の異種元素を含む、上記<1>から<4>のいずれかに記載のβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<6> 前記異種元素が、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、Fe、Co、Ni、Cu、Zn、Cd、Al、In、Si、Ge、SnおよびPbからなる群より選択される1種以上である、上記<5>に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法である。
<7> β-Ga2O3基板上にβ-Ga2O3単結晶を含む層を有するβ-Ga2O3/β-Ga2O3積層体であって、前記β-Ga2O3単結晶を含む層におけるロッキングカーブ半値幅が5~100arcsecである、前記β-Ga2O3/β-Ga2O3積層体である。
以下、本発明の第一の実施形態の原理について説明する。
図1は、PbO-Bi2O3の相図である(参考文献:Temperature/combination phase diagram of the system Bi2O3-PbO J. Am. Chem. Soc. , 64 [3] 182-184 1981)。PbOとBi2O3は共晶系を形成し、両者を混合することで融点を下げることができる。PbOとBi2O3を混合し、PbO濃度が0.1~95mol%の範囲で、PbO+Bi2O3混合体の融点をPbO単独あるいはBi2O3単独の融点以下にすることができる。このことは、即ち前記PbO濃度範囲におけるPbO、又は、Bi2O3の蒸発量はPbOあるいはBi2O3単独と比較して抑制できることを示している。
溶質であるGa2O3と溶媒であるPbOおよびBi2O3との混合比は、溶質:溶媒=5~30mol%;95~70mol%であることが好ましい。より好ましくは、溶質濃度が14mol%以上27mol%以下である。溶質濃度が5mol%未満では結晶成長速度が遅く、30mol%を超えるとLPE成長温度が高くなり、溶媒揮発が増えることがある。また、結晶成長速度が速くなり、結晶品質が低下することがある。
本発明の第一の実施形態において、液相エピタキシャル成長法によって形成されたβ-Ga2O3単結晶を含む層(エピタキシャル層)の成長速度は、10~50μm/hrであることが好ましく、20~30μm/hrであることがより好ましい。10μm/hrを下回ると成長速度が遅くコスト増となることがある。また、50μm/hrを超えると結晶品質が低下することがある。ここで、成長速度の求め方としては、LPE成長前後の膜厚差と成長時間から求めることができる。
本発明の第二の実施形態の原理について説明する。
図2は、PbO-PbF2の相図である(参考文献:C. Sandonnini Atti, Accad. Naz. Licei, C1. Sci. Fis. Mat. Nat.,23[Ser.5, Pt.1] 962-964 (1914))。PbOとPbF2は共晶系を形成し、両者を混合することで融点を下げることができる。PbF2にPbOを混合し、PbF2濃度が約0.01~約86mol%の範囲で、PbO+PbF2混合体の融点をPbO単独あるいはPbF2単独の融点以下にすることができる。このことは、即ち、前記PbO+PbF2の濃度範囲におけるPbO、又は、PbF2の蒸発量は、PbOあるいはPbF2単独と比較して抑制できることを示している。
溶質であるGa2O3と溶媒であるPbOおよびPbF2との混合比は、溶質:溶媒=2~20mol%:98~80mol%であることが好ましい。より好ましくは、溶質濃度が10mol%以上20mol%以下である。溶質濃度が2mol%未満では成長速度が遅くなることがあり、20mol%を超えるとLPE成長温度が高くなり、溶媒揮発が増えることがある。また、結晶成長速度が速くなり、結晶品質が低くなることがある。
本発明の第二の実施形態において、液相エピタキシャル成長法によって形成されたβ-Ga2O3単結晶を含む層(エピタキシャル層)の成長速度は、10~50μm/hrであることが好ましく、20~30μm/hrであることがより好ましい。10μm/hrを下回ると成長速度が遅くコスト増となることがある。また、50μm/hrを超えると結晶品質が低下することがある。ここで、成長速度の求め方としては、LPE成長前後の膜厚差と成長時間から求めることができる。
本発明におけるβ-Ga2O3積層体の成長法としては、β-Ga2O3基板を用いた液相エピタキシャル成長法が最も好ましい。
上記本発明のβ-Ga2O3/β-Ga2O3積層体は、上述した本発明の第一及び第二の実施形態によって好ましく製造することができる。
本発明において、β-Ga2O3単結晶を含む層におけるロッキングカーブ半値幅は、5~100arcsecであるが、好ましくは5~80arcsecであり、より好ましくは5~50arcsecである。100arcsecを超えると結晶性が低く、パワーデバイス性能が低下する場合がある。本発明のβ-Ga2O3/β-Ga2O3積層体は、結晶性が高いという特徴を有する。本発明において、ロッキングカーブ半値幅の測定方法としては、後述する実施例に記載された方法を採用することができる。
原料を溶融し融液8として収容する白金るつぼ7が、るつぼ台9の上に載置されている。白金るつぼ7の外側にあって側方には、白金るつぼ7内の原料を加熱して溶融する3段の側部ヒーター(上部ヒーター1、中央部ヒーター2、下部ヒーター3)が設けられている。ヒーターは、それらの出力が独立に制御され、融液8に対する加熱量が独立して調整される。ヒーターと製造炉の内壁との間に炉心管11が、炉心管11上部には炉蓋12が設けられている。白金るつぼ7の上方には引上げ機構が設けられている。引上げ機構にはアルミナ製の引き上げ軸5が固定され、その先端には基板ホルダー6とホルダーで固定された基板4(β-Ga2O3基板)が設けられている。引き上げ軸5の上部には、軸を回転させる機構が設けられている。他に、るつぼ底に熱電対10が設けられている。
内径120mm、高さ150mm、厚み1mmの白金るつぼ7に、原料としてPbO(純度99.999%)を2661.2g、Bi2O3(純度99.999%)を2777.7gおよびGa2O3(純度99.999%)を561.2g仕込んだ。このときの溶質であるGa2O3と溶媒であるPbO及びBi2O3との混合比は、溶質:溶媒=14.3mol%:85.7mol%であり、溶媒であるPbOとBi2O3との混合比が、PbO:Bi2O3=67mol%:33mol%であった。原料を仕込んだ白金るつぼ7を図3のLPE炉に設置し、るつぼ底温度を約850℃として原料を溶解させた。白金製板を用いて融液を6時間撹拌した後、るつぼ底温度が750℃になるまで降温し、EFG法で育成されたC面方位、11mm×11mm×厚み650μmのβ-Ga2O3基板を接液した。アルミナ製の引上げ軸5を60rpmで回転させながら、同温度で3時間成長させた。このとき、軸回転は5分おきに反転させた。その後、引上げ軸5を引き上げることで融液から切り離し、200rpmで引上げ軸5を回転させることで融液成分を分離した。その後、室温まで冷却することで、β-Ga2O3/β-Ga2O3積層体を得た。除ききれなかった融液成分は塩酸を用いて除去した。エピタキシャル層の平均厚みは約90μmであった。平均の成長速度は約30μm/hrであった。
以下の表1の組成となる様に仕込み組成を変え、原料溶解温度及び成長温度を表1に記載したように変更したこと以外は、実施例1と同様の方法でβ-Ga2O3/β-Ga2O3積層体の作製を試みた。
ここで、実施例1で得られたβ-Ga2O3/β-Ga2O3積層体のエピタキシャル層の結晶性を(002)面のロッキングカーブ半値幅で評価した。その結果を図4に示す。(002)面のロッキングカーブ半値幅は0.0042deg(=15arcsec)となった。なお、ロッキングカーブ半値幅は、X線回折装置(スペクトリス社製 X‘pertMRD)を用い測定した。同装置を用い、2θ、ω、χおよびφを調整してβ-Ga2O3の(002)面のピークが検出できるよう軸立てを行った後、管電圧45KV、管電流40mAで測定した。なお、入射光はGe(220)面の4結晶を用い、単色化した。その他の測定条件は以下の通りとした。
光源;Cu-Kα
波長;0.15418nm
測定モード;ωスキャン(入射角スキャン)
ω範囲;β-Ga2O3(002)面が現れる角度をサンプルごとに設定
ω範囲;0.1deg
ωステップ;0.0005deg
2θ位置;β-Ga2O3(002)面が現れる角度をサンプルごとに設定
コリメータ径;0.5mm
アンチスキャッタリングスリット;1.5mm
以下の表1の組成となる様に仕込み組成を変え、原料溶解温度及び成長温度を表1に記載したように変更したこと以外は、実施例1と同様の方法でβ-Ga2O3/β-Ga2O3積層体を得た。なお、実施例2で得られたエピタキシャル層は、β-Ga2O3とMgOの混晶層であり、実施例5で得られたエピタキシャル層は、β-Ga2O3とAl2O3の混晶層であった。
内径120mm、高さ150mm、厚み1mmの白金るつぼ7に、原料としてPbO(99.999%)を1022.3g、PbF2(99%)を4503.7gおよびβ-Ga2O3を476.2g仕込んだ。このときの溶質であるGa2O3と溶媒であるPbO及びPbF2との混合比は、溶質:溶媒=10.0mol%:90mol%であり、溶媒であるPbOとPbF2との混合比は、PbO:PbF2=20mol%:80mol%であった。原料を仕込んだ白金るつぼ7を図3のLPE炉に設置し、るつぼ底温度を約940℃として原料を溶解させた。白金製板を用いて融液を6時間撹拌した後、るつぼ底温度が840℃になるまで降温し、EFG法で育成されたC面方位、11mm×11mm×厚み650μmのβ-Ga2O3基板を接液した。アルミナ製の引上げ軸5を60rpmで回転させながら、同温度で3時間成長させた。このとき、軸回転は5分おきに反転させた。その後、引上げ軸5を引き上げることで融液から切り離し、200rpmで引上げ軸5を回転させることで融液成分を分離した。その後、室温まで冷却することで、β-Ga2O3/β-Ga2O3積層体を得た。除ききれなかった融液成分は硝酸を用いて除去した。エピタキシャル層の平均厚みは約69μmであった。平均の成長速度は約23μm/hrであった。
下記表2の組成となる様に仕込み組成を変え、原料溶解温度及び成長温度を表2に記載したように変更したこと以外は、実施例9と同様の方法でβ-Ga2O3/β-Ga2O3積層体を得た。
下記表3の組成となる様に仕込み組成を変え、原料溶解温度及び成長温度を表3に記載したように変更したこと以外は、実施例9と同様の方法でβ-Ga2O3/β-Ga2O3積層体を得た。溶質であるGa2O3の濃度が2mol%を下回ると、溶媒の融点に近くなり、溶媒粘度があり安定的な結晶成長が困難となることがある。また、溶質の濃度が20mol%を超えると、成長温度が高くなることがある。よって、溶質であるGa2O3の濃度は2~20mol%が好適である。
2 中央部ヒーター
3 下部ヒーター
4 基板
5 引上げ軸(アルミナ製)
6 基板ホルダー
7 白金るつぼ
8 るつぼ内融液
9 るつぼ台(ムライト製)
10 るつぼ底熱電対
11 炉心管(ムライト製)
12 炉蓋(ムライト製)
Claims (7)
- 溶質であるGa2O3と、溶媒であるPbOおよびBi2O3とを混合して融解させた後、得られた融液に、β-Ga2O3基板を直接接触させ、液相エピタキシャル成長法によってβ-Ga2O3単結晶を前記β-Ga2O3基板上に成長させることでβ-Ga2O3/β-Ga2O3積層体を得ることを特徴とするβ-Ga2O3/β-Ga2O3積層体の製造方法。
- 前記溶質であるGa2O3と前記溶媒であるPbOおよびBi2O3との混合比が、溶質:溶媒=5~30mol%:95~70mol%であり、前記溶媒であるPbOとBi2O3との混合比が、PbO:Bi2O3=0.1~95mol%:99.9~5mol%である、請求項1に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法。
- 溶質であるGa2O3と、溶媒であるPbOおよびPbF2とを混合して融解させた後、得られた融液に、β-Ga2O3基板を直接接触させ、液相エピタキシャル成長法によってβ-Ga2O3単結晶を前記β-Ga2O3基板上に成長させることでβ-Ga2O3/β-Ga2O3積層体を得ることを特徴とするβ-Ga2O3/β-Ga2O3積層体の製造方法。
- 前記溶質であるGa2O3と、前記溶媒であるPbOおよびPbF2との混合比が、溶質:溶媒=2~20mol%:98~80mol%であり、前記溶媒であるPbOとPbF2との混合比が、PbO:PbF2=2~80mol%:98~20mol%である、請求項3に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法。
- 液相エピタキシャル成長法によって形成された前記β-Ga2O3単結晶を含む層が、0.01mol%以上20mol%以下の異種元素を含む、請求項1から4のいずれかに記載のβ-Ga2O3/β-Ga2O3積層体の製造方法。
- 前記異種元素が、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、Fe、Co、Ni、Cu、Zn、Cd、Al、In、Si、Ge、SnおよびPbからなる群より選択される1種以上である、請求項5に記載のβ-Ga2O3/β-Ga2O3積層体の製造方法。
- β-Ga2O3基板上にβ-Ga2O3単結晶を含む層を有するβ-Ga2O3/β-Ga2O3積層体であって、前記β-Ga2O3単結晶を含む層におけるロッキングカーブ半値幅が5~100arcsecである、前記β-Ga2O3/β-Ga2O3積層体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247008343A KR20240045295A (ko) | 2021-11-01 | 2022-10-28 | β-Ga2O3/β-Ga2O3 적층체의 제조 방법 |
CN202280071198.5A CN118159694A (zh) | 2021-11-01 | 2022-10-28 | β-Ga₂O₃/β-Ga₂O₃层叠体的制造方法 |
JP2023512692A JP7380948B2 (ja) | 2021-11-01 | 2022-10-28 | β-Ga2O3/β-Ga2O3積層体の製造方法 |
EP22887161.2A EP4411028A1 (en) | 2021-11-01 | 2022-10-28 | Method for producing beta-ga2o3/beta-ga2o3 multilayer body |
JP2023110746A JP2023134567A (ja) | 2021-11-01 | 2023-07-05 | β-Ga2O3/β-Ga2O3積層体の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021178650 | 2021-11-01 | ||
JP2021-178650 | 2021-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074836A1 true WO2023074836A1 (ja) | 2023-05-04 |
Family
ID=86159992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040309 WO2023074836A1 (ja) | 2021-11-01 | 2022-10-28 | β-Ga2O3/β-Ga2O3積層体の製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4411028A1 (ja) |
JP (2) | JP7380948B2 (ja) |
KR (1) | KR20240045295A (ja) |
CN (1) | CN118159694A (ja) |
TW (1) | TW202328516A (ja) |
WO (1) | WO2023074836A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010280533A (ja) * | 2009-06-04 | 2010-12-16 | Mitsubishi Gas Chemical Co Inc | 液相エピタキシャル成長法による励起子発光型ZnOシンチレータの製造方法 |
JP5794955B2 (ja) | 2012-07-11 | 2015-10-14 | 信越化学工業株式会社 | β−Ga2O3単結晶膜付基板の製造方法 |
JP2019182744A (ja) * | 2019-07-31 | 2019-10-24 | 株式会社タムラ製作所 | Ga2O3系単結晶基板 |
JP6744523B2 (ja) | 2015-12-16 | 2020-08-19 | 株式会社タムラ製作所 | 半導体基板、並びにエピタキシャルウエハ及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794955U (ja) | 1980-12-01 | 1982-06-11 | ||
JPH0674523A (ja) | 1992-08-28 | 1994-03-15 | Toshiba Corp | 空気調和機の自動運転制御方法 |
-
2022
- 2022-10-28 JP JP2023512692A patent/JP7380948B2/ja active Active
- 2022-10-28 WO PCT/JP2022/040309 patent/WO2023074836A1/ja active Application Filing
- 2022-10-28 KR KR1020247008343A patent/KR20240045295A/ko not_active Application Discontinuation
- 2022-10-28 EP EP22887161.2A patent/EP4411028A1/en active Pending
- 2022-10-28 CN CN202280071198.5A patent/CN118159694A/zh active Pending
- 2022-10-31 TW TW111141303A patent/TW202328516A/zh unknown
-
2023
- 2023-07-05 JP JP2023110746A patent/JP2023134567A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010280533A (ja) * | 2009-06-04 | 2010-12-16 | Mitsubishi Gas Chemical Co Inc | 液相エピタキシャル成長法による励起子発光型ZnOシンチレータの製造方法 |
JP5794955B2 (ja) | 2012-07-11 | 2015-10-14 | 信越化学工業株式会社 | β−Ga2O3単結晶膜付基板の製造方法 |
JP6744523B2 (ja) | 2015-12-16 | 2020-08-19 | 株式会社タムラ製作所 | 半導体基板、並びにエピタキシャルウエハ及びその製造方法 |
JP2019182744A (ja) * | 2019-07-31 | 2019-10-24 | 株式会社タムラ製作所 | Ga2O3系単結晶基板 |
Non-Patent Citations (4)
Title |
---|
C. SANDONNINI ATTI: "Accad. Naz. Licei", SCI. FIS. MAT. NAT., vol. 23, 1914, pages 962 - 964 |
J. AM. CHEM. SOC., vol. 64, no. 3, 1981, pages 182 - 184 |
JOURNAL OF THE JAPANESE ASSOCIATION FOR CRYSTAL GROWTH, vol. 42, no. 2, 2015, pages 141 - 147 |
YOKOYAMA, MITSUNORI: "Study of Crystal Growth Methods for Zirconia-, Hafnia-, and Titania-Based Oxides", PH.D. THESIS, HOKKAIDO UNIVERSITY, 25 March 1993 (1993-03-25), pages 8 - 14, XP009545267, DOI: 10.11501/3093008 * |
Also Published As
Publication number | Publication date |
---|---|
JP2023134567A (ja) | 2023-09-27 |
JP7380948B2 (ja) | 2023-11-15 |
KR20240045295A (ko) | 2024-04-05 |
JPWO2023074836A1 (ja) | 2023-05-04 |
EP4411028A1 (en) | 2024-08-07 |
TW202328516A (zh) | 2023-07-16 |
CN118159694A (zh) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI404841B (zh) | 依液相成長法之ZnO單結晶之製造方法 | |
Dang et al. | Recent progress in the synthesis of hybrid halide perovskite single crystals | |
CN103781947B (zh) | 晶体层叠结构体 | |
JP5304793B2 (ja) | 炭化珪素単結晶の製造方法 | |
CN107287578B (zh) | 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法 | |
JP5260881B2 (ja) | Mg含有ZnO系混晶単結晶、その積層体およびそれらの製造方法 | |
CN103562149A (zh) | 用于金属-非金属化合物的表面活性剂晶体生长的方法 | |
WO2023074836A1 (ja) | β-Ga2O3/β-Ga2O3積層体の製造方法 | |
WO2014136903A1 (ja) | 炭化珪素単結晶の製造方法 | |
Goodilin et al. | Solubility of neodymium in copper-rich oxide melts in air and growth of Nd1+ xBa2− xCu3Oz solid solution single crystals | |
JP3087065B1 (ja) | 単結晶SiCの液相育成方法 | |
WO2024225207A1 (ja) | β-Ga2O3/β-Ga2O3積層体の製造方法及び該製造方法によって得られた積層体 | |
WO2009119411A1 (ja) | ZnO単結晶の製造方法、それによって得られた自立ZnO単結晶ウエファー、並びに自立Mg含有ZnO系混晶単結晶ウエファーおよびそれに用いるMg含有ZnO系混晶単結晶の製造方法 | |
JPH11268998A (ja) | GaAs単結晶インゴットおよびその製造方法ならびにそれを用いたGaAs単結晶ウエハ | |
JP2007320814A (ja) | バルク結晶の成長方法 | |
JP2004203721A (ja) | 単結晶成長装置および成長方法 | |
JP3548910B2 (ja) | ZnO単結晶の製造方法 | |
JP2008063204A (ja) | 酸化亜鉛結晶の成長方法 | |
WO2024078704A1 (en) | MELT-GROWN BULK ß-(AlxGa1-x)2O3 SINGLE CRYSTALS AND METHOD FOR PRODUCING BULK ß-(AlxGA1-x)2O3 SINGLE CRYSTALS | |
JP3906359B2 (ja) | P形半導体SrCu2O2単結晶の製造方法 | |
JP6452510B2 (ja) | 炭化珪素単結晶の製造方法 | |
JP2000154096A (ja) | SiC結晶の液相エピタキシャル成長方法 | |
JPH0788270B2 (ja) | 単結晶薄膜の育成方法 | |
JP2019009178A (ja) | 圧電材料、その製造方法、圧電素子および燃焼圧センサ | |
JP2013173673A (ja) | 自立Mg含有ZnO系混晶単結晶ウエファーおよびそれに用いるMg含有ZnO系混晶単結晶の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023512692 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887161 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18703762 Country of ref document: US Ref document number: 202280071198.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022887161 Country of ref document: EP Effective date: 20240502 |