WO2023071890A1 - 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒 - Google Patents

胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒 Download PDF

Info

Publication number
WO2023071890A1
WO2023071890A1 PCT/CN2022/126214 CN2022126214W WO2023071890A1 WO 2023071890 A1 WO2023071890 A1 WO 2023071890A1 CN 2022126214 W CN2022126214 W CN 2022126214W WO 2023071890 A1 WO2023071890 A1 WO 2023071890A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
combination
dna methylation
dna
lymph node
Prior art date
Application number
PCT/CN2022/126214
Other languages
English (en)
French (fr)
Inventor
阮微媚
王军
陈志伟
Original Assignee
广州市基准医疗有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市基准医疗有限责任公司 filed Critical 广州市基准医疗有限责任公司
Publication of WO2023071890A1 publication Critical patent/WO2023071890A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the invention belongs to the field of biotechnology, and in particular relates to a methylation biomarker related to lymph node metastasis of gastric cancer, a combination thereof and a detection kit.
  • Gastric cancer is a common malignant tumor in the world.
  • the new cases of gastric cancer in the world ranked fifth in the incidence of malignant tumors and the third in its mortality rate.
  • China is a country with a high incidence of gastric cancer and a serious disease burden, which is the focus of cancer prevention and treatment.
  • Lymph node metastasis is an important factor affecting the prognosis of gastric cancer, and it is also the main basis for determining the scope of surgical resection. Studies have shown that the 5-year survival rates of gastric cancer with or without lymph node metastasis are significantly different, 20.4% and 51.9%, respectively. Radical gastrectomy for complete resection of perigastric lymph nodes is an important link to improve the treatment rate.
  • the occurrence of lymph node metastasis can be accurately judged at the level of biomolecules, and it is of great significance for formulating the best preoperative treatment strategy for gastric cancer patients.
  • Significance of diagnosis and treatment The detection based on the degree of co-methylation of multiple DNA methylation regions overcomes the problem of low single DNA methylation signal, and improves the sensitivity and specificity of detection.
  • the detection based on DNA methylation is simple and easy, and the interpretation is objective, which avoids the subjectivity of observation and interpretation results involved in imaging examinations, and improves the accuracy rate.
  • the test is combined with endoscopic biopsy, without taking another biological sample, which improves patient compliance.
  • One of the objectives of the present invention is to provide a set of methylation biomarkers and combinations thereof that can be used to determine the occurrence of gastric cancer lymph node metastasis. Compared with the degree of methylation in gastric cancer without lymph node metastasis, there is a significant difference between the degree of methylation in gastric cancer and adjacent tissues, and the degree of co-methylation in these methylated regions can more sensitively and specifically reflect the degree of lymph node metastasis in gastric cancer. occur.
  • the technical solution for realizing the above purpose includes the following.
  • a DNA methylation molecular marker or a combination thereof that can be used for the detection of gastric cancer lymph node metastasis includes a sequence selected from SEQ ID NO.1 to SEQ ID NO.13 or its complete complement Any one or a combination of two or more of the sequences.
  • Another object of the present invention is to provide the application of the above-mentioned DNA methylation molecular markers or combinations thereof and/or detection-related reagents in the preparation of a kit for detecting lymph node metastasis of gastric cancer.
  • Another object of the present invention is to provide a kit for detecting lymph node metastasis of gastric cancer.
  • kits for detecting lymph node metastasis of gastric cancer includes reagents for detecting the methylation levels of the above-mentioned DNA methylation molecular markers or combinations thereof.
  • the kit includes PCR amplification method, fluorescent quantitative PCR method, digital PCR method, methylation-specific PCR, DNA methylation chip, targeted DNA methylation sequencing, liquid phase Reagents used in chip method, generation sequencing method, third generation sequencing method, next generation sequencing method, pyrosequencing method, bisulfite conversion sequencing method, methylation chip method, simplified bisulfite sequencing technology or their combination.
  • Another object of the present invention is to provide a detection method for the above-mentioned DNA methylation molecular marker or a combination thereof.
  • the detection method of the above-mentioned DNA methylation molecular marker or its combination comprises the following steps:
  • Genomic DNA is extracted from the sample to be tested
  • Genomic DNA is extracted from the sample to be tested
  • the present invention also provides a method for detection or diagnosis or prediction, treatment monitoring, prognosis or other evaluation of gastric cancer lymph node metastasis, comprising the following steps,
  • the methylation profile of the methylation marker combination is compared with the profile decision threshold obtained from the mathematical modeling based on the data set to determine the presence of gastric cancer lymph node metastasis in the biological sample.
  • the present invention provides specific methylation biomarkers (SEQ ID NO.1-SEQ ID NO.60) related to lymph node metastasis of gastric cancer including SEQ ID NO.1-SEQ ID NO.13, and specific Corresponding primers and probes for methylation detection of methylated biomarkers.
  • the degree of co-methylation of the methylated regions identified by these markers is better than or comparable to the performance of existing imaging diagnosis (CT) in predicting lymph node metastasis of gastric cancer, especially SEQ ID NO.1-SEQ ID NO.13 is the first methylation biomarker found to be associated with lymph node metastasis of gastric cancer, and has a good prospect as a target for judging lymph node metastasis of gastric cancer. Together with other 47 methylation biomarkers, it can further reflect the occurrence of gastric cancer lymph node metastasis more sensitively and specifically, avoiding the subjectivity of observation and interpretation results involved in imaging examinations, and improving the accuracy rate.
  • CT imaging diagnosis
  • the invention also provides a fluorescence quantitative PCR method detection kit for detecting the co-methylation degree of the target methylation region.
  • the designed primer pair, probe and its combination play a key role in the simultaneous parallel detection of the degree of co-methylation of multiple methylated regions, and the primers overcome the detection mismatch of a single methylated site The disadvantage of causing false positives and taking into account interactions between primer and probe pair combinations for multiple methylation biomarkers.
  • the multiplex fluorescent quantitative PCR reaction system of this kit optimizes the reaction components, so that the two target fragments can have high amplification efficiency at the same time with low template input, which improves the sensitivity of the detection method.
  • Figure 1 Heat map of co-methylation differences in multiple DNA methylation regions between cancer and paracancerous tissues with lymph node metastasis and non-lymph node metastatic cancer and paracancerous tissues of gastric cancer.
  • Figure 2 ROC curve for the judgment and prediction of gastric cancer lymph node metastasis by 60 DNA methylation regions.
  • Figure 3 Significant differences in the risk score of lymph node metastasis in gastric cancer based on DNA co-methylation combinations between people with lymph node metastasis and those without lymph node metastasis.
  • complementarity refers to nucleotides (eg, 1 nucleotide) or polynucleotides (eg, a sequence of nucleotides) related to base pairing rules.
  • sequence 5'-A-G-T-3' is complementary to the sequence 3'-T-C-A-5'.
  • Complementarity can be "partial,” wherein only some of the nucleic acid bases match according to the base pairing rules. Alternatively, there may be “complete” or “total” complementarity between nucleic acids. The degree of complementarity between nucleic acid strands affects the efficiency and strength of hybridization between nucleic acid strands. This is especially important in amplification reactions and detection methods that rely on binding between nucleic acids.
  • polymerase chain reaction is used to amplify a target sequence, and the method consists of the steps of introducing a large excess of two oligonucleotide primers into a DNA mixture containing the desired target sequence, followed by subsequent reaction in the presence of DNA polymerase The precise sequence of thermal cycling is performed. Both primers are complementary to the corresponding strands of the double-stranded target sequence. For amplification, the mixture is denatured and the primers anneal to their complementary sequences within the target molecule. After annealing, the primers are amplified with a polymerase to form a new pair of complementary strands.
  • the steps of denaturation, primer annealing, and polymerase extension can be repeated multiple times (ie, denaturation, annealing, and extension constitute one "cycle”; there can be many "cycles") to obtain high concentrations of amplified fragments of the desired target sequence.
  • the length of the amplified fragment of the desired target sequence is determined by the relative positions of the primers with respect to each other and thus is a controllable parameter. Due to the repetitive aspect of the method, the method is called “polymerase chain reaction” ("PCR"). Since the desired amplified fragment of the target sequence becomes the predominant sequence (in terms of concentration) in the mixture, it is said to be “PCR amplified", a "PCR product” or "amplicon”.
  • nucleic acid detection refers to any method of determining the nucleotide composition of a target nucleic acid. Nucleic acid detection assays include, but are not limited to, DNA sequencing methods, probe hybridization methods.
  • amplifiable nucleic acid refers to a nucleic acid that can be amplified by any amplification method. It is expected that an "amplifiable nucleic acid” will generally comprise a “sample template”.
  • sample template refers to a nucleic acid derived from a sample that is analyzed for the presence of a "target” (defined below).
  • background template is used to refer to nucleic acid other than sample template, which may or may not be present in the sample. Background templates are often unintentional. This may be the result of carryover, or it may be due to the presence of nucleic acid contaminants that were attempted to be purified from the sample. For example, nucleic acids other than those to be detected from the organism may be present as background in the test sample.
  • primer refers to an oligonucleotide, naturally occurring or synthetically produced in a purified restriction digest, when subjected to conditions in which synthesis of a primer extension product complementary to a nucleic acid strand is induced (e.g., between nucleotides and In the presence of an inducing agent such as DNA polymerase and at the appropriate temperature and pH), it can serve as the starting point for synthesis.
  • Primers are preferably single-stranded for maximum efficiency of amplification, but may also be double-stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products.
  • the primers are oligodeoxyribonucleotides. Primers must be long enough to prime the synthesis of extension products in the presence of an inducing agent. The exact length of primers will depend on many factors including temperature, source of primers, and method used.
  • probe refers to an oligonucleotide (e.g., a nucleotide sequence) naturally occurring in a purified restriction digest or produced synthetically, recombinantly, or by PCR amplification that is capable of interacting with another sensing target. Oligonucleotide hybridization. Probes can be single-stranded or double-stranded. Probes can be used for the detection, identification and isolation of specific gene sequences (eg, "capture probes"). It is contemplated that in some embodiments, any probe used in the invention may be labeled with any "reporter molecule" such that it is detectable in any detection system.
  • methylation refers to methylation of cytosine at position C5 or N4 of cytosine, position N6 of adenine or other types of nucleic acid methylation.
  • In vitro amplified DNA is usually unmethylated because in general in vitro DNA amplification methods do not preserve the methylation pattern of the amplified template.
  • unmethylated DNA or “methylated DNA” may also refer to amplified DNA in which the original template is unmethylated or methylated, respectively.
  • methylated nucleotide or “methylated nucleotide base” refers to the presence of a methyl moiety on a nucleotide base that is not present on the recognized typical nucleus. in nucleotide bases.
  • cytosine does not contain a methyl moiety on its pyrimidine ring, but 5-methylcytosine contains a methyl moiety at the 5-position of its pyrimidine ring. Therefore, cytosine is not a methylated nucleotide, 5-methylcytosine is a methylated nucleotide.
  • thymine contains a methyl moiety at position 5 of its pyrimidine ring; however, for the purposes of this article, thymine is not considered a methylated nucleotide when present in DNA because thymine is a DNA typical nucleotide bases.
  • Methylation status can optionally be represented or indicated by a "methylation value” (eg, indicating methylation frequency, score, ratio, percentage, etc.). Methylation values can be used, for example, to quantify the amount of intact nucleic acid present after restriction digestion with a methylation-dependent restriction enzyme, or by comparing amplification profiles following a bisulfite reaction, or by comparing bisulfite treatment and Sequences of unprocessed nucleic acids are generated. Thus, a value such as a methylation value represents methylation status and can thus be used as a quantitative indicator of methylation status in multiple copies of a locus.
  • the degree of co-methylation is represented or indicated by the methylation status of more than one methylation site. In a methylated region, when the methylation status of more than one methylation site is methylation defined as co-methylation.
  • bisulfite reagent refers to a reagent comprising, in some embodiments, bisulfite, disulfite, hydrogen sulfite, or combinations thereof.
  • DNA treated with bisulfite reagents unmethylated cytosine nucleotides will be converted to uracil, while methylated cytosine and other bases remain unchanged, thus distinguishing, for example, CpG dinuclear Methylated and unmethylated cytidines in the nucleotide sequence.
  • methylation assay or “methylation level detection” refers to any assay for determining the methylation status of one or more CpG dinucleotide sequences within a nucleic acid sequence.
  • a new set of specific methylation biomarkers (SEQ ID NO.1-13) related to gastric cancer lymph node metastasis and other specific methylation biomarkers related to gastric cancer lymph node metastasis are provided.
  • the markers (SEQ ID NO.14-60) and the detection of the methylation status of these biomarkers can be used to judge the lymph node metastasis of gastric cancer in patients.
  • the DNA methylation molecular marker combination includes the sequences shown in SEQ ID NO.1 and SEQ ID NO.2 or their complete complementary sequences.
  • the DNA The combination of methylated molecular markers also includes at least one of the sequences shown in SEQ ID NO.5 to SEQ ID NO.8 or their complete complementary sequences.
  • the DNA methylation molecular marker combination also includes at least one of the sequences shown in SEQ ID NO.9 to SEQ ID NO.10 or their complete complementary sequences.
  • the DNA methylation molecular marker combination also includes at least one of the sequences shown in SEQ ID NO.11 to SEQ ID NO.20 or their complete complementary sequences.
  • the DNA methylation molecular marker combination also includes at least one of the sequences shown in SEQ ID NO.21 to SEQ ID NO.30 or their complete complements.
  • the DNA methylation molecular marker combination further includes at least one of the sequences shown in SEQ ID NO.31 to SEQ ID NO.40 or their complete complements.
  • the DNA methylation molecular marker combination further includes at least one of the sequences shown in SEQ ID NO.41 to SEQ ID NO.60 or their complete complements.
  • the combination of DNA methylation molecular markers is a combination of the sequences shown in SEQ ID NO.1-SEQ ID NO.60 or their complete complements.
  • the DNA methylation molecular marker combination includes a combination of sequences shown in SEQ ID NO.1 to SEQ ID NO.13 or their complete complements.
  • the DNA methylation molecular marker combination includes sequences shown in SEQ ID NO.1 to SEQ ID NO.13 or their complete complementary sequences, and also includes sequences selected from SEQ ID NO.14-SEQ A combination of at least one of the sequence shown in ID NO.60 or its complete complementary sequence.
  • the combination of DNA methylation molecular markers is a combination of sequences shown in SEQ ID NO.1 to SEQ ID NO.60 or their complete complements.
  • Some implementations of the present invention relate to the application of the above-mentioned DNA methylation molecular markers or combinations thereof and/or detection-related reagents in the preparation of kits for detecting lymph node metastasis of gastric cancer.
  • kits for detecting lymph node metastasis of gastric cancer comprising a reagent for detecting the methylation level of the above-mentioned DNA methylation molecular markers or a combination thereof.
  • the kit includes PCR amplification method, fluorescent quantitative PCR method, digital PCR method, methylation-specific PCR, DNA methylation chip, targeted DNA methylation sequencing, liquid phase Reagents used in chip method, generation sequencing method, third generation sequencing method, next generation sequencing method, pyrosequencing method, bisulfite conversion sequencing method, methylation chip method, simplified bisulfite sequencing technology or their combination.
  • the reagents include primers and probes for fluorescent quantitative PCR detection of DNA methylation molecular markers, and the primers and probes are respectively:
  • primers and probes having at least 70%, 80%, 90%, 95% or 99% sequence identity with the above sequence for multiple contiguous nucleotides.
  • primers and probes for fluorescent quantitative PCR detection of internal reference genes are also included: primers shown in SEQ ID NO.122 and SEQ ID NO.183, and probes shown in SEQ ID NO.61.
  • the method can be used to detect the specific methylation biomarkers associated with lymph node metastasis of gastric cancer and the combined methylation program, including the following main steps:
  • the co-methylation detection method includes: MSP (methylation specific PCR), DNA methylation chip, targeted DNA methylation sequencing, digital PCR quantitative and fluorescent quantitative PCR.
  • MSP methylation specific PCR
  • DNA methylation chip DNA methylation chip
  • targeted DNA methylation sequencing digital PCR quantitative and fluorescent quantitative PCR.
  • the specific method is as follows.
  • the main steps of the MSP detection method include:
  • the main steps of the DNA methylation chip detection method include:
  • the main steps of targeted DNA methylation sequencing include:
  • the main steps of the digital PCR method include:
  • the methylation rate of the region is calculated.
  • the subject sample is blood, plasma, saliva, serum, gastric lavage fluid, urine or tissue, preferably, the tissue includes gastric cancer tissue and/or gastric paracancerous tissue.
  • the invention also provides a detection kit for detecting the methylation degree of the target methylated region.
  • the design of primer pairs and probes and their combination design play a key role in the simultaneous and parallel detection of the co-methylation degree of multiple methylated regions.
  • the primer pair combination of this kit overcomes the single Methylation sites detect mismatches, which have the disadvantage of false positives and account for interactions between primer pair combinations for multiple methylated biomarkers.
  • the multiplex PCR reaction system of this kit optimizes the reaction components, and can amplify up to 60 target fragments at the same time under the premise of ensuring the amplification efficiency of the target fragments.
  • the multiplex fluorescent quantitative PCR reaction solution of this kit can realize the detection of the co-methylation degree of up to 3-4 target regions.
  • the invention provides a detection method for measuring the co-methylation degree of a target methylated region by using the detection kit.
  • the detection method can detect the degree of co-methylation of up to 60 methylated regions in parallel, and process multiple samples at the same time, which has the advantages of high throughput and simplicity.
  • the detection method comprises the following steps:
  • the present invention provides a method for judging lymph node metastasis of gastric cancer based on the degree of co-methylation in the methylated region.
  • the logistic regression equation was fitted, and the risk score of gastric cancer lymph node metastasis was calculated through the fitted logistic regression equation.
  • the method for judging lymph node metastasis of gastric cancer in the present invention is completely based on the detection of biomolecules, using statistical mathematical formulas, avoiding any subjectivity involved in human judgment results in imaging and biopsy pathology, making the interpretation more accurate, stable and reliable .
  • the co-methylation of the methylated region for the diagnosis of gastric cancer lymph node metastasis including the co-methylation of multiple methylation sites indicated by [CG] in the nucleic acid sequences listed in Table 1.1 and the co-methylation of multiple methylation sites indicated by [CG] in Table 1.1 [CG]
  • the indicated nucleic acid is co-methylated at multiple methylation sites of a nucleic acid that is complementary in sequence.
  • a test kit for co-methylation of multiple methylated regions for the diagnosis of gastric cancer lymph node metastasis including specific primer pairs and probes for co-methylation of multiple methylated regions, as shown in Table 2.1:
  • the primers and probes of the present invention were purchased from Thermo Fisher or Jinweizhi Biotechnology Co., Ltd. or Sangon Bioengineering Co., Ltd., the multiple PCR reaction reagents were purchased from NEB Company, and the multiplex fluorescent quantitative PCR reagents were purchased from NEB Company or TAKARA Company or Nuo Wei Zan Company.
  • the extraction kit was purchased from QIAGEN, and was carried out according to the instructions of the kit.
  • the DNA bisulfite conversion kit was purchased from Zymo, and was carried out according to the instructions of the kit.
  • primer pairs for 60 methylated regions SEQ ID NO.1-60
  • multiplex PCR was carried out in one reaction well (see Table 2.1 for the primer sequence), and the target sequence containing the target region was amplified, and the product size was in About 70-130bp.
  • PCR reaction program 98°C for 30 seconds; 98°C for 15 seconds, 60°C for 15 seconds, 72°C for 15 seconds, 20 cycles; 72°C for 5 minutes; 4°C for later use
  • Fluorescent quantitative PCR reaction program 5 minutes at 95°C; 20 seconds at 95°C, 60 seconds at 62°C, fluorescence signal collection at 62°C, 40 cycles.
  • the degree of co-methylation of 60 methylated regions with commercial fully methylated (positive control) and non-methylated (negative control) standards is in accordance with Table 4 and the mixing method shown in Table 3.2 (combination AZ) Perform multiple fluorescent quantitative PCR assays, and compare with the CT values of single methylation fluorescent quantitative PCR assays (single quantification) of 60 methylated regions, where the negative control was not detected in all combinations and single quantification, and the positive control
  • the C T value of is shown in Table 3.4:
  • Example 4 Detection of co-methylation of 60 methylated regions of gastric cancer with lymph node metastasis and adjacent cancer tissues and non-lymph node metastasis cancer and adjacent tissues.
  • Co-methylation detection of 60 methylated regions was performed on cancer and paracancerous tissues with lymph node metastasis and non-lymph node metastatic cancer and paracancerous tissues using the detection method described in Example 3 to verify these methylation Application of region in the diagnosis of lymph node metastasis in gastric cancer.
  • the co-methylation detection of 60 methylated regions was performed on the above 99 cases of tissue DNA.
  • the heat map of the differential distribution of the co-methylation levels of the 60 methylated regions in the detected 99 tissue DNA samples between the non-lymph node metastasis population and the lymph node metastasis population is shown in Figure 1.
  • the judgment performance ROC curve of each methylation region relative to the diagnosis of lymph node metastasis after standard surgery is shown in Figure 2, and its predictive performance AUC is shown in Table 4.2.
  • the 13 regions of SEQ ID No. 1-13 are all found for the first time that there are differences between gastric cancer lymph node metastasis and non-metastatic populations, which can be used as a prediction of gastric cancer lymph node metastasis Identify specific biomarkers.
  • the detection method described in this example can be used for the parallel detection of 2-60 methylated regions according to the combination scheme in Example 3, and the detection method is flexible, simple and easy for the combination of methylated regions.
  • the extraction kit was purchased from QIAGEN, and was carried out according to the instructions of the kit.
  • the DNA bisulfite conversion kit was purchased from Zymo, and was carried out according to the instructions of the kit.
  • Fluorescent quantitative PCR reaction program 5 minutes at 95°C; 15 seconds at 95°C, 40 seconds at 62°C, and collect fluorescence signals at 62°C, 60 cycles.
  • Example 3 Taking the detection of positive control, methylated region primer-probe combination scheme A and B (embodiment 3) as example, the detection method of contrast embodiment 3, the relative cycle number dC T value of the methylated region obtained and implementation The comparison in Example 3 is like 5.2.
  • the detection method described in this embodiment can reduce the steps of multiplex PCR pre-amplification of the target fragment, so that less than Parallel detection of 4 methylated regions is more convenient and faster.
  • the co-methylation relative cycle number dC T value of the 60 methylation regions (SEQ ID NO.1-60) of the 99 cases of tissue DNA samples obtained in Example 4 is carried out the mathematical modeling of methylation region combination
  • the analysis was conducted to explore the application of 60 methylated regions as a combination of biomarkers for the judgment and prediction of gastric cancer lymph node metastasis, and to compare the superiority of using a single methylated region as a marker.
  • Example 4 comparing the diagnostic information of lymph node metastasis after standard surgery in 99 tissue samples, according to the relative cycle number dC T
  • the ROC curve of a diagnostic model for distinguishing lymph node metastasis from a single methylated region was established, and the AUC value and the judgment threshold for dividing the region were calculated according to the ROC curve.
  • the discrimination sensitivity, specificity and Youden index of the methylated region were calculated according to the threshold value compared with the standard diagnosis.
  • 2-60 methylation biomarkers are selected according to the relative cycle number dC T value of co-methylation in 60 methylated regions for exhaustive threshold combination or logistic regression or random forest model fitting, the fitting equation is available It is used to calculate the lymph node metastasis risk score of each sample, which is used to judge the occurrence of lymph node metastasis.
  • multiple models and equations for judging occurrence of gastric cancer lymph node metastasis can be generated.
  • the sensitivity, specificity, AUC and Youden index of the combination of methylated regions were obtained by comparing the gastric cancer lymph node metastasis risk score calculated by these equations with the standard diagnosis.
  • Table 6.1 lists the performance parameters of some combined models for the occurrence of gastric cancer lymph node metastasis compared with a single methylated region.
  • Figure 3 lists the distribution of risk scores using the combined model of 3 of the 60 methylated regions (SEQ ID NO.1-3) in gastric cancer lymph node metastasis and non-metastasis populations.
  • the gastric cancer lymph node metastasis risk score obtained by using the three methylation region combination discriminant models can clearly distinguish the lymph node metastasis population from the non-metastasis population, which again shows that the combination of these methylation regions can be used as Combination of biomarkers for judging the occurrence of lymph node metastasis in gastric cancer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了一种可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,所述DNA甲基化分子标记物包括选自SEQ ID NO.1~SEQ ID NO.13所示序列或其完全互补序列中的任意一种或两种以上的组合。本发明还提供了上述甲基化分子标记物或其组合的检测试剂盒,以及检测方法。

Description

胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒
本发明要求于2021年10月25日提交中国专利局、申请号为2021112411387的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明属于生物技术领域,具体涉及胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒。
背景技术
胃癌是全球常见的恶性肿瘤,2012年全球胃癌新发病例位列恶性肿瘤发病率第5位、其死亡率为第3位。中国是胃癌的高发国家,疾病负担严重,是癌症防治的重点。而淋巴结转移是影响胃癌预后的重要因素,也是决定手术切除范围的主要依据。研究表明,有或无淋巴结转移的胃癌术后5年生存率明显不同,分别为20.4%和51.9%,胃癌根治术彻底切除胃周禺淋巴结是提高治禽率的一个重要环节。然而,目前尚缺乏在术中或术前对肿大的淋巴结有无转移作出正确的判断的共识和规范,因此常导致手术范围过大或过小而直接影响患者的预后。据统计,胃癌初发病例伴有淋巴结转时,胃癌的复发达到70%一80%。淋巴结转移状况与原发肿瘤大小、浸润深度及分化类型密切相关。
目前,胃癌的术前淋巴结转移判断一般使用超声、增强CT、磁共振或PET-CT等影响学检查。然而,现有的影像学检查手段对于淋巴结转移判断的准确率仅有40%-70%,未能对淋巴结的转移与否作出准确判断。而进一步的术前内镜及内镜下活检作为目前诊断胃癌的金标准,其活检病理对于淋巴结转移的判断,仍与术后病理对淋巴结的判断存在较大分歧。因此需要建立高准确率的术前淋巴结转移诊断方法。
通过寻找胃癌淋巴结转移特异性DNA甲基化生物标记物的组合,可以从生物分子水平的层面上对淋巴结转移的发生与否进行准确判断,进而对胃癌患者制定术前最佳治疗策略有重大的诊疗意义。通过进行基于多个DNA甲基化区域共甲基化程度的检测克服了单个DNA甲基化信号低的问题,提高了检测的灵敏度及特异性。同时,基于DNA甲基化的检测简单易行、判读客观,避免了影像学检查中涉及的观测判读结果的主观性,提高了准确率。同时该检测联合内镜活检查,无需另取生物样本,提高患者依随性。
发明内容
本发明的目的之一在于提供了一组可用于判断个体胃癌淋巴结转移发生甲基化生物标记物及其组合,这些生物标记物在有胃癌淋巴结转移的癌和癌旁组织DNA中的共甲基化程度,相较于胃癌没有发生淋巴结转移的癌和癌旁组织中甲基化程度之间存在显著差异,这些甲基化区域的共甲基化程度可以较灵敏及特异地反映胃癌淋巴结转移的发生。
实现上述目的技术方案包括如下。
一种可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,所述DNA甲基化分 子标记物包括选自SEQ ID NO.1~SEQ ID NO.13所示序列或其完全互补序列中的任意一种或两种以上的组合。
本发明的另一目的提供上述DNA甲基化分子标记物或其组合和/或检测相关试剂在制备检测胃癌淋巴结转移的试剂盒中的应用。
本发明的另一目的提供一种用于检测胃癌淋巴结转移的试剂盒。
一种用于检测胃癌淋巴结转移的试剂盒,所述试剂盒包含检测上述的DNA甲基化分子标记物或其组合的甲基化水平的试剂。
在其中一些实施例中,所述试剂盒包括采用PCR扩增法、荧光定量PCR法、数字PCR法、甲基化特异性PCR、DNA甲基化芯片、靶向DNA甲基化测序、液相芯片法、代测序法、三代测序法二代测序法、焦磷酸测序法、重亚硫酸盐转化测序法、甲基化芯片法、简化亚硫酸氢盐测序技术或它们的组合所使用的试剂。
本发明的另一目的是提供上述的DNA甲基化分子标记物或其组合的检测方法。
实现上述目的的技术方案如下。
上述的DNA甲基化分子标记物或其组合的检测方法,包括以下步骤:
(1)从待测样本中提取基因组DNA;
(2)对提取获得的基因组DNA进行亚硫酸氢盐处理,得到转化后的DNA;
(3)用针对上述的DNA甲基化分子标记物的扩增引物对转化后的DNA进行多重PCR扩增,得到多重PCR扩增产物;
(4)以多重PCR扩增产物为模板,以用针对上述的DNA甲基化分子标记物的扩增引物和探针进行多重荧光定量PCR扩增或荧光定量PCR扩增,收集荧光信号,并进行分析。
上述DNA甲基化分子标记物或其组合的检测方法,包括以下步骤:
(1)从待测样本中提取基因组DNA;
(2)对提取获得的基因组DNA进行亚硫酸氢盐处理,得到转化后的DNA;
(3)以转化后的DNA为模板,以用针对上述的DNA甲基化分子标记物的扩增引物和探针进行多重荧光定量PCR扩增或荧光定量PCR扩增,收集荧光信号,并进行分析。
本发明还提供一种检测或诊断或预测、治疗监测、预后或其它评价胃癌淋巴结转移的方法,包括以下步骤,
提取将待测的生物样品基因组DNA和/或游离DNA;
对所述DNA进行亚硫酸氢盐转化;
对所述经过亚硫酸氢盐转化的DNA和对照进行如权利要求1-13任一项所述DNA甲基化标记物组合的共甲基化检测,得到甲基化图谱;
将甲基化标记物组合的甲基化图谱与从基于数据集数学建模得到的图谱判定阈值进行比较,判断生物样品中胃癌淋巴结转移的存在。
本发明提供了包括SEQ ID NO.1-SEQ ID NO.13在内的胃癌淋巴结转移相关的特异性甲基化生物标记物(SEQ ID NO.1-SEQ ID NO.60),以及针对上述甲基化生物标记物的甲基化检测的相应引物和探针。这些标记物所标识的甲基化区域的共甲基化程度在预测胃癌淋巴结转移中的性能优于或与现有影像学诊断(CT)的性能相当,特别是SEQ ID NO.1-SEQ  ID NO.13均为首次发现的与胃癌淋巴结转移相关的甲基化生物标记物,具有作为判断胃癌淋巴结转移目标的良好前景。在与其他47种甲基化生物标记物一起,可以进一步地能够较灵敏及特异地反映胃癌淋巴结转移的发生,避免了影像学检查中涉及的观测判读结果的主观性,提高了准确率。
本发明还提供了检测目标甲基化区域共甲基化程度的一种荧光定量PCR法检测试剂盒。该试剂盒中,所设计的引物对及探针及其组合对于同时并行检测多个甲基化区域的共甲基化程度起关键作用,所述引物克服了单个甲基化位点检测错配造成假阳性的缺点,并考虑了多个甲基化生物标记物引物及探针对组合之间的相互作用。本试剂盒的多重荧光定量PCR反应体系对反应组分作出了优化,使两个靶向片段在低模板投入量的情况下,同时具备较高的扩增效率,提高了检测方法的灵敏度。
附图说明
图1:胃癌有淋巴结转移的癌及癌旁组织与非淋巴结转移的癌及癌旁组织的多个DNA甲基化区域的共甲基化差异热图。
图2:60个DNA甲基化区域对于胃癌淋巴结转移的判断预测ROC曲线。
图3:基于DNA共甲基化组合的胃癌淋巴结转移风险得分在有淋巴结转移人群和非淋巴结转移人群中的显著差异。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明公开内容的理解更加透彻全面。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。实施例中所用到的各种常用化学试剂,均为市售产品。
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不用于限制本发明。本发明所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
定义为了便于理解本技术,下面定义了一些术语和短语。
术语“互补”和“互补性”是指与碱基配对规则相关的核苷酸(例如,1个核苷酸)或多核苷酸(例如核苷酸的序列)。例如,序列5′-A-G-T-3′与序列3′-T-C-A-5′互补。互补可以是“部分的”,其中仅一些核酸碱基根据碱基配对规则进行匹配。或者,核酸之间可能存在“完全”或“总”互补。核酸链之间的互补程度影响核酸链之间杂交的效率和强度。这在扩增反应和依赖核酸之 间的结合的检测方法中尤其重要。
术语“聚合酶链式反应”用于扩增靶序列,该方法由以下步骤组成:将大量过量的两种寡核苷酸引物引入到含有期望靶序列的DNA混合物中,随后在DNA聚合酶存在下进行精确的热循环顺序。两种引物与双链靶序列的相应链互补。为了进行扩增,将混合物变性,然后引物与靶分子内的其互补序列退火。退火后,用聚合酶扩增引物,形成一对新的互补链。变性、引物退火和聚合酶延伸的步骤可以重复多次(即,变性、退火和延伸构成一个“循环”;可以有许多“循环”)以获得高浓度的期望靶序列的扩增片段。期望靶序列的扩增片段的长度由引物相对于彼此的相对位置确定,因此该长度是可控参数。由于该方法的重复方面,该方法被称为“聚合酶链式反应”(“PCR”)。由于靶序列的期望扩增片段成为混合物中的主要序列(以浓度计),所以称其被“PCR扩增”,是“PCR产物”或“扩增子”。
如本发明所用,术语“核酸检测”是指确定目标核酸的核苷酸组成的任何方法。核酸检测测定包括但不限于DNA测序方法、探针杂交方法。
术语“可扩增核酸”是指可以通过任何扩增方法扩增的核酸。预期“可扩增核酸”通常将包含“样品模板”。
术语“样品模板”是指来源于样品的用于分析“靶”(下文定义)的存在的核酸。相比之下,“背景模板”用于指样品模板以外的核酸,其可能存在或可能不存在于样品中。背景模板通常是无意的。这可能是遗留的结果,或者可能是由于试图从样品中纯化走的核酸污染物的存在。例如,来自生物体的待检测核酸以外的核酸可以作为测试样品的背景存在。
术语“引物”是指在纯化的限制性消化物中天然存在的或合成产生的寡核苷酸,当处于其中诱导与核酸链互补的引物延伸产物合成的条件下(例如,在核苷酸和诱导剂如DNA聚合酶的存在下并且在合适的温度和pH下)时,其能够作为合成的起点。引物优选是单链的,用于扩增的最大效率,但也可以是双链的。如果是双链,则在用于制备延伸产物之前首先处理引物以分离其链。优选地,引物是寡脱氧核糖核苷酸。引物必须足够长以在诱导剂的存在下引发延伸产物的合成。引物的确切长度将取决于许多因素,包括温度、引物来源以及方法的使用。
术语“探针”是指在纯化的限制性消化物中天然存在的或者合成、重组或通过PCR扩增产生的寡核苷酸(例如,核苷酸序列),其能够与另一种感目标寡核苷酸杂交。探针可以是单链或双链的。探针可用于特定基因序列的检测、鉴定和分离(例如,“捕获探针”)。预期在一些实施方案中,本发明中使用的任何探针可以用任何“报道分子”进行标记,使得在任何检测系统中可检测。
如本文所用,“甲基化”是指胞嘧啶位置C5或N4的胞嘧啶甲基化,腺嘌呤的N6位点或其他类型的核酸甲基化。体外扩增的DNA通常是未甲基化的,因为通常体外DNA扩增方法不能保留扩增模板的甲基化模式。然而,“未甲基化DNA”或“甲基化DNA”也可以分别指原始模板未甲基化或甲基化的扩增DNA。
因此,如本文所用,“甲基化核苷酸”或“甲基化核苷酸碱基”是指在核苷酸碱基上存在甲基部分,其中甲基部分不存在于公认的典型核苷酸碱基中。例如,胞嘧啶在其嘧啶环上不包含甲基部分,但是5-甲基胞嘧啶在其嘧啶环的5位包含甲基部分。因此,胞嘧啶不是甲基化核苷酸,5-甲基胞嘧啶是甲基化核苷酸。在另一个实例中,胸腺嘧啶在其嘧啶环的5位含有甲基部分;然而,为了本文的目的,当存在于DNA中时不认为胸腺嘧啶是甲基化核苷酸,因为胸腺嘧啶是DNA的典型核苷酸碱基。
甲基化状态可任选地由“甲基化值”表示或指示(例如,表示甲基化频率、分数、比例、百分比等)。甲基化值可以例如在用甲基化依赖性限制酶限制性消化之后定量存在的完整核酸的量,或者通过比较亚硫酸氢盐反应后的扩增谱,或者通过比较亚硫酸氢盐处理和未处理的核酸的序列来产生。因此,诸如甲基化值的值代表甲基化状态,因此可用作基因座的多个拷贝中甲基化状态的定量指标。共甲基化程度由多于一个甲基化位点的甲基化状态表示或指示,在一段甲基化区域内,当多于一个甲基化位点的甲基化状态均为甲基化时定义为共甲基化。
如本文所用,术语“亚硫酸氢盐试剂”是指在一些实施方案中包含亚硫酸氢盐(bisulfite)、亚硫酸氢盐(disulfite)、亚硫酸氢盐(hydrogen sulfite)或其组合的试剂,经过亚硫酸氢盐试剂处理的DNA,其未经过甲基化的胞嘧啶核苷酸将转化为尿嘧啶,而甲基化的胞嘧啶及其他碱基维持不变,因此可以区分例如CpG二核苷酸序列中的甲基化和未甲基化胞苷。
术语“甲基化测定”或“甲基化水平检测”是指用于确定核酸序列内的一个或多个CpG二核苷酸序列的甲基化状态的任何测定。
本发明的实施例中,提供了一组新的与胃癌淋巴结转移相关的特异性甲基化生物标记物(SEQ ID NO.1-13),以及其他胃癌淋巴结转移相关的特异性甲基化生物标记物(SEQ ID NO.14-60)与通过检测这些生物标记物的甲基化状态,可以用于患者的判断胃癌淋巴结转移情况。
在其中一些实施例中,所述DNA甲基化分子标记物组合包括SEQ ID NO.1和SEQ ID NO.2所示序列或其完全互补序列。
在其中一些实施例中,在包括SEQ ID NO.1和SEQ ID NO.2所示序列或其完全互补序列的基础上,还包括有SEQ ID NO.3所示序列或其完全互补序列,
在其中一些实施例中,在包括SEQ ID NO.1和SEQ ID NO.2或在SEQ ID NO.1至SEQ ID  NO.3的基础上,还包括有SEQ ID NO.4所示序列或其完全互补序列。
在其中一些实施例中,在包括SEQ ID NO.1和SEQ ID NO.2或在SEQ ID NO.1至SEQ ID NO.3或SEQ ID NO.1至SEQ ID NO4的基础上,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.5~SEQ ID NO.8所示序列或其完全互补序列中的至少一种。
在上述基础上,在其中一些实施例中,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.9~SEQ ID NO.10所示序列或其完全互补序列中的至少一种。
在上述基础上,在其中一些实施例中,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.11~SEQ ID NO.20所示序列或其完全互补序列中的至少一种。
在上述基础上,在其中一些实施例中,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.21~SEQ ID NO.30所示序列或其完全互补序列中的至少一种。
在上述基础上,在其中一些实施例中,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.31~SEQ ID NO.40所示序列或其完全互补序列中的至少一种。
在上述基础上,在其中一些实施例中,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.41~SEQ ID NO.60所示序列或其完全互补序列中的至少一种。
在其中一些实施例中,所述DNA甲基化分子标记物组合为SEQ ID NO.1-SEQ ID NO.60所示序列或其完全互补序列的组合。
在其中一些实施例中,所述DNA甲基化分子标记物组合包括SEQ ID NO.1至SEQ ID NO.13所示序列或其完全互补序列的组合。
在其中一些实施例中,所述DNA甲基化分子标记物组合包括为SEQ ID NO.1至SEQ ID NO.13所示序列或其完全互补序列,还包括选自SEQ ID NO.14-SEQ ID NO.60所示序列或其完全互补序列中的至少一种的组合。
在其中一些实施例中,所述DNA甲基化分子标记物组合为SEQ ID NO.1~SEQ ID NO.60所示序列或其完全互补序列的组合。
本发明一些实施中,涉及上述DNA甲基化分子标记物或其组合和/或检测相关试剂在制备检测胃癌淋巴结转移的试剂盒中的应用。
本发明一些实施中,涉及一种用于检测胃癌淋巴结转移的试剂盒,所述试剂盒包含检测上述的DNA甲基化分子标记物或其组合的甲基化水平的试剂。
在其中一些实施例中,所述试剂盒包括采用PCR扩增法、荧光定量PCR法、数字PCR法、甲基化特异性PCR、DNA甲基化芯片、靶向DNA甲基化测序、液相芯片法、代测序法、三代测序法二代测序法、焦磷酸测序法、重亚硫酸盐转化测序法、甲基化芯片法、简化亚硫酸氢盐测序技术或它们的组合所使用的试剂。
在其中一些实施例中,所述试剂包括针对DNA甲基化分子标记物的荧光定量PCR检测的引物和探针,所述引物和探针分别为:
针对SEQ ID NO.1的SEQ ID NO.62和SEQ ID NO.123,以及SEQ ID NO.184;
和/或针对SEQ ID NO.2的SEQ ID NO.63和SEQ ID NO.124,以及SEQ ID NO.185;
和/或针对SEQ ID NO.3的SEQ ID NO.64和SEQ ID NO.125,以及SEQ ID NO.186;
和/或针对SEQ ID NO.4的SEQ ID NO.65和SEQ ID NO.126,以及SEQ ID NO.187;
和/或针对SEQ ID NO.5的SEQ ID NO.66和SEQ ID NO.127,以及SEQ ID NO.188;
和/或针对SEQ ID NO.6的SEQ ID NO.67和SEQ ID NO.128,以及SEQ ID NO.189;
和/或针对SEQ ID NO.7的SEQ ID NO.68和SEQ ID NO.129,以及SEQ ID NO.190;
和/或针对SEQ ID NO.8的SEQ ID NO.69和SEQ ID NO.130,以及SEQ ID NO.191;
和/或针对SEQ ID NO.9的SEQ ID NO.70和SEQ ID NO.131,以及SEQ ID NO.192;
和/或针对SEQ ID NO.10的SEQ ID NO.71和SEQ ID NO.132,以及SEQ ID NO.193;
和/或针对SEQ ID NO.11的SEQ ID NO.72和SEQ ID NO.133,以及SEQ ID NO.194;
和/或针对SEQ ID NO.12的SEQ ID NO.73和SEQ ID NO.134,以及SEQ ID NO.195;
和/或针对SEQ ID NO.13的SEQ ID NO.74和SEQ ID NO.135,以及SEQ ID NO.196;
和/或针对SEQ ID NO.14的SEQ ID NO.75和SEQ ID NO.136,以及SEQ ID NO.197;
和/或针对SEQ ID NO.15的SEQ ID NO.76和SEQ ID NO.137,以及SEQ ID NO.198;
和/或针对SEQ ID NO.16的SEQ ID NO.77和SEQ ID NO.138,以及SEQ ID NO.199;
和/或针对SEQ ID NO.17的SEQ ID NO.78和SEQ ID NO.139,以及SEQ ID NO.200;
和/或针对SEQ ID NO.18的SEQ ID NO.79和SEQ ID NO.140,以及SEQ ID NO.201;
和/或针对SEQ ID NO.19的SEQ ID NO.80和SEQ ID NO.141,以及SEQ ID NO.202;
和/或针对SEQ ID NO.20的SEQ ID NO.81和SEQ ID NO.142,以及SEQ ID NO.203;
和/或针对SEQ ID NO.21的SEQ ID NO.82和SEQ ID NO.143,以及SEQ ID NO.204;
和/或针对SEQ ID NO.22的SEQ ID NO.83和SEQ ID NO.144,以及SEQ ID NO.205;
和/或针对SEQ ID NO.23的SEQ ID NO.84和SEQ ID NO.145,以及SEQ ID NO.206;
和/或针对SEQ ID NO.24的SEQ ID NO.85和SEQ ID NO.146,以及SEQ ID NO.207;
和/或针对SEQ ID NO.25的SEQ ID NO.86和SEQ ID NO.147,以及SEQ ID NO.208;
和/或针对SEQ ID NO.26的SEQ ID NO.87和SEQ ID NO.148,以及SEQ ID NO.209;
和/或针对SEQ ID NO.27的SEQ ID NO.88和SEQ ID NO.149,以及SEQ ID NO.210;
和/或针对SEQ ID NO.28的SEQ ID NO.89和SEQ ID NO.150,以及SEQ ID NO.211;
和/或针对SEQ ID NO.29的SEQ ID NO.90和SEQ ID NO.151,以及SEQ ID NO.212;
和/或针对SEQ ID NO.30的SEQ ID NO.91和SEQ ID NO.152,以及SEQ ID NO.213;
和/或针对SEQ ID NO.31的SEQ ID NO.92和SEQ ID NO.153,以及SEQ ID NO.214;
和/或针对SEQ ID NO.32的SEQ ID NO.93和SEQ ID NO.154,以及SEQ ID NO.215;
和/或针对SEQ ID NO.33的SEQ ID NO.94和SEQ ID NO.155,以及SEQ ID NO.216;
和/或针对SEQ ID NO.34的SEQ ID NO.95和SEQ ID NO.156,以及SEQ ID NO.217;
和/或针对SEQ ID NO.35的SEQ ID NO.96和SEQ ID NO.157,以及SEQ ID NO.218;
和/或针对SEQ ID NO.36的SEQ ID NO.97和SEQ ID NO.158,以及SEQ ID NO.219;
和/或针对SEQ ID NO.37的SEQ ID NO.98和SEQ ID NO.159,以及SEQ ID NO.220;
和/或针对SEQ ID NO.38的SEQ ID NO.99和SEQ ID NO.160,以及SEQ ID NO.221;
和/或针对SEQ ID NO.39的SEQ ID NO.100和SEQ ID NO.161,以及SEQ ID NO.222;
和/或针对SEQ ID NO.40的SEQ ID NO.101和SEQ ID NO.162,以及SEQ ID NO.223;
和/或针对SEQ ID NO.41的SEQ ID NO.102和SEQ ID NO.163,以及SEQ ID NO.224;
和/或针对SEQ ID NO.42的SEQ ID NO.103和SEQ ID NO.164,以及SEQ ID NO.225;
和/或针对SEQ ID NO.43的SEQ ID NO.104和SEQ ID NO.165,以及SEQ ID NO.226;
和/或针对SEQ ID NO.44的SEQ ID NO.105和SEQ ID NO.166,以及SEQ ID NO.227;
和/或针对SEQ ID NO.45的SEQ ID NO.106和SEQ ID NO.167,以及SEQ ID NO.228;
和/或针对SEQ ID NO.46的SEQ ID NO.107和SEQ ID NO.168,以及SEQ ID NO.229;
和/或针对SEQ ID NO.47的SEQ ID NO.108和SEQ ID NO.169,以及SEQ ID NO.230;
和/或针对SEQ ID NO.48的SEQ ID NO.109和SEQ ID NO.170,以及SEQ ID NO.231;
和/或针对SEQ ID NO.49的SEQ ID NO.110和SEQ ID NO.171,以及SEQ ID NO.232;
和/或针对SEQ ID NO.50的SEQ ID NO.111和SEQ ID NO.172,以及SEQ ID NO.233;
和/或针对SEQ ID NO.51的SEQ ID NO.112和SEQ ID NO.173,以及SEQ ID NO.234;
和/或针对SEQ ID NO.52的SEQ ID NO.113和SEQ ID NO.174,以及SEQ ID NO.235;
和/或针对SEQ ID NO.53的SEQ ID NO.114和SEQ ID NO.175,以及SEQ ID NO.236;
和/或针对SEQ ID NO.54的SEQ ID NO.115和SEQ ID NO.176,以及SEQ ID NO.237;
和/或针对SEQ ID NO.55的SEQ ID NO.116和SEQ ID NO.177,以及SEQ ID NO.238;
和/或针对SEQ ID NO.56的SEQ ID NO.117和SEQ ID NO.178,以及SEQ ID NO.239;
和/或针对SEQ ID NO.57的SEQ ID NO.118和SEQ ID NO.179,以及SEQ ID NO.240;
和/或针对SEQ ID NO.58的SEQ ID NO.119和SEQ ID NO.180,以及SEQ ID NO.241;
和/或针对SEQ ID NO.59的SEQ ID NO.120和SEQ ID NO.181,以及SEQ ID NO.242;
和/或针对SEQ ID NO.60的SEQ ID NO.121和SEQ ID NO.182,以及SEQ ID NO.243;
或选自与上述序列具有多个连续核苷酸至少70%、80%、90%、95%或99%的序列同一性的引物和探针。
在其中一些实施例中,还包括针对内参基因的荧光定量PCR检测的引物和探针:SEQ ID NO.122和SEQ ID NO.183所示引物,以及SEQ ID NO.61所示探针。
可以通过以方法检测所述与胃癌淋巴结转移相关的特异性甲基化生物标记物及其组合的甲基化程序,包括如下主要步骤:
一、采用DNA提取试剂盒,提取待测者样本的基因组DNA;
二、对所述全基因组DNA进行亚硫酸氢盐转化;
三、对所述经过转化的DNA进行多个甲基化区域的共甲基化检测。
所述共甲基化检测方法包括:MSP(甲基化特异性PCR)、DNA甲基化芯片、靶向DNA甲基化测序、数字PCR定量及荧光定量PCR。具体方法如下。
1、MSP检测方法的主要步骤包括:
1)利用特异性引物对SEQ ID NO.62-121,123-182对经过转化的DNA分别进行选定目的区域共甲基化片段的扩增;
2)利用特异性引物对对经过转化的DNA分别进行选定目的区域非甲基化片段的扩增;
3)对所述1)和2)的扩增产品进行琼脂凝胶电泳分析;
4)根据电泳结果条带的有无及密度判断选定目的区域的共甲基化程度。
2、DNA甲基化芯片检测方法的主要步骤包括:
1)对经过转化的DNA进行全基因组的扩增;
2)使用SEQ ID NO.1至60或其在序列上互补的核酸序列作为目标区域在芯片上合成共甲基化及非甲基化的捕获探针;
3)对所述2)中的扩增产物在芯片中进行靶向捕获,并进行带有标记的单碱基延伸反应;
4)根据荧光染色反应将捕获的序列信号进行放大及读取,计算目的区域的共甲基化程度。
3、靶向DNA甲基化测序的主要步骤包括:
1)对经过转化的DNA进行全基因组的扩增;
2)对所述1)中的扩增产物进行接头连接;
3)对所述2)中的建库产物进行靶向捕获,其中所用捕获探针为包含SEQ ID NO.1-60或与其反向互补配对序列的经过转化的DNA序列;
4)对所述3)的捕获产物进行测序;
5)根据测序结果计算选定目的区域的共甲基化程度。
4、数字PCR法的主要步骤包括:
1)利用特异性引物及探针SEQ ID NO.62-121,123-182,184-243对经过转化的DNA分别进行选定目的区域共甲基化程度的绝对定量;
2)利用特异性引物及探针对经过转化的DNA分别进行选定目的区域的非甲基化程度的绝对定量;
3)根据每个区域的非甲基化程度及共甲基化程度的绝对定量计算该区域的甲基化率。
所述待测者样本为血液、血浆、唾液、血清、胃部灌洗液、尿液或组织,优选地,所述组织包括胃癌组织和/或胃癌旁组织。
本发明还提供了检测目标甲基化区域甲基化程度的检测试剂盒。试剂盒中,引物对及探针的设计及其组合设计对于同时并行检测多个甲基化区域的共甲基化程度起关键作用,本试剂盒的引物对组合在引物序列设计上克服了单个甲基化位点检测错配造成假阳性的缺点,并考虑了多个甲基化生物标记物引物对组合之间的相互作用。本试剂盒的多重PCR反应体系对反应组分作出了优化,在保证目标片段扩增效率的前提下,可同时扩增最多60个目标片段。本试剂盒的多重荧光定量PCR反应液,可实现最多3-4个目标区域共甲基化程度的检测。
本发明提供了使用所述检测试剂盒进行目标甲基化区域共甲基化程度测定的检测方法。该检测方法可并行检测多至60个甲基化区域的共甲基化程度,同时处理多个样本,具有高通量、简单易行的优势。
所述检测方法包括以下步骤:
1)选用多对PCR引物对亚硫酸氢盐转化后的全基因组DNA或游离DNA进行靶向PCR扩增,得到PCR扩增产物
2)对应的PCR引物及探针对PCR扩增产物进行荧光定量PCR反应,所得Ct值通过内参校正后,用于衡量目标区域的共甲基化程度,根据逻辑回归计算胃癌淋巴结转移风险得分。
本发明提供了一种基于上述甲基化区域共甲基化程度判断胃癌淋巴结转移的方法。根据胃癌有淋巴结转移人群及胃癌无淋巴结转移人群的多个甲基化区域的共甲基化程度进行逻辑回归方程拟合,通过拟合的逻辑回归方程算出胃癌淋巴结转移的风险得分,该得分在胃癌淋巴结转移人群和非淋巴结转移人群中存在显著的差异(图3),可明显将淋巴结转移人群从非淋 巴结转移人群中检出。本发明判断胃癌淋巴结转移的方法完全基于生物分子水平的检测,采用统计学的数学公式,避免了任何在影像学及活检病理中涉及人为判定结果的主观性,使得判读上更准确、稳定、可靠。
以下通过具体实施例对本申请做进一步的阐述,但不用于限制本发明的保护范围。
实施例1
用于胃癌淋巴结转移诊断的甲基化区域的共甲基化,包括表1.1所列核酸序列中由[CG]指示的多个甲基化位点的共甲基化以及与表1.1中的由[CG]指示的核酸在序列上互补的核酸的多个甲基化位点的共甲基化。
表1 DNA甲基化区域的共甲基化组成.
Figure PCTCN2022126214-appb-000001
Figure PCTCN2022126214-appb-000002
Figure PCTCN2022126214-appb-000003
Figure PCTCN2022126214-appb-000004
Figure PCTCN2022126214-appb-000005
实施例2
一种用于胃癌淋巴结转移诊断的多个甲基化区域的共甲基化测试试剂盒,包括多个甲基化区域共甲基化的特异性引物对及探针,如表2.1所示:
表2.1 60个甲基化区域共甲基化检测的引物及探针序列组合
Figure PCTCN2022126214-appb-000006
Figure PCTCN2022126214-appb-000007
Figure PCTCN2022126214-appb-000008
Figure PCTCN2022126214-appb-000009
Figure PCTCN2022126214-appb-000010
Figure PCTCN2022126214-appb-000011
内参引物和探针如表2.2所示:
Figure PCTCN2022126214-appb-000012
本发明所述引物探针购于Thermo Fisher或金唯智生物科技有限公司或生工生物工程股份有限公司,多重PCR反应试剂购于NEB公司,多重荧光定量PCR试剂购于NEB公司或TAKARA公司或诺唯赞公司。
实施例3多重荧光定量PCR对于2-3个甲基化区域的共甲基化检测
使用商业化的完全甲基化(阳性对照)及非甲基化(阴性对照)标准品(购自QIAGEN公司)对60个甲基化区域(SEQ ID NO.1-60)进行每2-3个甲基化区域的共甲基化检测。具体流程如下:
1、DNA提取
提取试剂盒购自QIAGEN公司,按照试剂盒说明书进行。
2、DNA亚硫酸氢盐转化
DNA亚硫酸氢盐转化试剂盒购于Zymo公司,按照试剂盒说明书进行。
3、多重PCR扩增
采用60个甲基化区域(SEQ ID NO.1-60)的引物对,在1个反应孔(引物序列见表2.1)中进行多重PCR,扩增出含目标区域的目标序列,产物大小在70-130bp左右。
1)配置单个引物浓度为5μM(每个引物)PCR引物混合物,里面包含多重反应里每个甲基化区域的正向和反向引物,共1个反应孔。
2)PCR混合液配置:根据表3.1配制PCR混合液,DNA不要加在其中。
表3.1 PCR混合液配置方案
试剂 终浓度 体积(μL)
DEPC水 / 18.0
5 x PCR Buffer 1X 10.0
25mM MgCl 2 0.25mM 0.5
25mM dNTP混合物 250μM 0.5
5μM Primer混合物 0.5μM 5.0
5U/μl PCR酶 5Unit 1.0
体积[μl] / 35.0
3)加入DNA样本:加35μL PCR混合液到PCR反应孔,向其中加入转化后的DNA,DNA转化前上样量25ng,PCR反应总体积50μL。涡旋震荡和离心。
4)PCR反应程序:98℃30秒;98℃15秒,60℃15秒,72℃15秒,20个循环;72℃5分钟;4℃保存备用
4、多重荧光定量PCR测定
1)60个甲基化区域的引物及探针(序列见表2.1),及内参的引物及探针中的每个甲基化区域按照每个引物浓度10μM,每个探针浓度5μM的终浓度配制成一套混合液,60个甲基化区域的60套混合液可等比进行每2-3个甲基化区域的混合。其中列举的一些3个甲基化区域组合如表3.2所示:
表3.2 60个甲基化区域(SEQ ID NO.1-60)的引物探针混合液组合方案(组合内的3个甲基化区域可选任意2-3个进行组合)
Figure PCTCN2022126214-appb-000013
Figure PCTCN2022126214-appb-000014
2)多重qPCR反应液配置:根据表3.2的组合方案将选定的2-3个甲基化区域的引物探针混合液等比混合配制PCR混合液,DNA不要加在其中。
表3.3 PCR混合液配置方案
试剂 体积(μL)
DEPC水 1.5-2
2 X PCR Master Mix 5.00
2种或3种标记物的引物和探针 0.5(每套)
体积[μl] 8.00
3)加入DNA样本:加8μL PCR混合液到PCR反应孔,向其中加入2μL经过两倍稀释的多重PCR产物。PCR反应总体积10μL。涡旋震荡和离心。
4)荧光定量PCR反应程序:95℃5分钟;95℃20秒,62℃60秒,于62℃收集荧光信号, 40个循环。
5、数据分析
以商业化的完全甲基化(阳性对照)及非甲基化(阴性对照)标准品对60个甲基化区域的共甲基化程度按照表格4按照表3.2所示混合方式(组合A-Z)进行多重荧光定量PCR测定,与60个甲基化区域的单个甲基化荧光定量PCR测定(单个定量)的C T值比较,其中阴性对照在所有组合及单个定量中均无检出,阳性对照的C T值如表3.4所示:
表3.4阳性对照在2-4个甲基化区域组合方案的多重荧光定量PCR与单个甲基化区域荧光定量PCR测定的C T值比较
Figure PCTCN2022126214-appb-000015
Figure PCTCN2022126214-appb-000016
Figure PCTCN2022126214-appb-000017
Figure PCTCN2022126214-appb-000018
表3.4的结果显示,按照这些组合方案中的组合内任意2-3个甲基化区域的引物探针混合物进行混合所进行的多重荧光定量PCR所得的C T值与单个区域定量的C T值相近,没有显著差异,由此判断多重荧光定量的组合方案中的60个甲基化区域的扩增效率没有相互干扰,定量性能与单个区域定量等同,可实现2-3个甲基化区域的同时定量检测。
实施例4对胃癌有淋巴结转移的癌和癌旁组织及非淋巴结转移的癌和癌旁组织60个甲基化区域的共甲基化检测。
使用实施例3中所述的检测方法对有淋巴结转移的癌和癌旁组织及非淋巴结转移的癌和癌旁组织进行60个甲基化区域的共甲基化检测,以验证这些甲基化区域在胃癌淋巴结转移诊断中的应用。其中,胃癌有淋巴结转移人群的癌和癌旁样本共40例;无淋巴结转移人群的癌和癌旁样本共59例;所有样本的病理及临床信息组成如表4.1所示。
表4.1组织DNA样本病理及临床组成信息
Figure PCTCN2022126214-appb-000019
使用实施例3中所述的检测方法对上述99例组织DNA进行60个甲基化区域的共甲基化检测。其中,检测所得每个甲基化区域的C T值通过内参C T值进行校正,得到目标区域的相 对循环数d-C T=C T(目标区域)-C T(内参);若目标区域未检出,则赋予目标区域的相对循环数d-C T=35。
检测所得的99例组织DNA样本的60个甲基化区域的共甲基化程度在非淋巴结转移人群及有淋巴结转移人群中的差异性分布热图如图1所示。每个甲基化区域相对于标准手术后淋巴结转移诊断的判断性能ROC曲线如图2所示,其预测性能AUC如表4.2所示。
表4.2 60个甲基化区域对于99例临床组织样本中淋巴结转移的预测性能
Figure PCTCN2022126214-appb-000020
图1的结果表明,非胃癌淋巴结转移人群相较于胃癌淋巴结转移人群在60个甲基化区域中存在明显差异。而现有影像学诊断(CT)在99例临床样本中的根据ROC曲线得到的预测性能AUC为0.61。根据图2及表4.2显示,每个甲基化区域与现有影像学诊断淋巴结转移的预测性能相比,60个甲基化区域大部分的预测性能优于现有影像学诊断性能,或与现有影像学诊断性能类似。因此,这些甲基化区域可以作为诊断胃癌淋巴结转移的特异性甲基化标记物。
此外,本发明中的60个甲基化区域,其中的SEQ ID No.1-13这13个区域均为首次发现在胃癌淋巴结转移及非转移人群中存在差异性,可作为胃癌淋巴结转移的预测判断特异性生物标记物。
同时,该实施例描述的检测方法按照实施例3的组合方案,可用于2-60个甲基化区域的 并行检测,检测方法对于甲基化区域的组合搭配灵活、简单易行。
实施例5 60个甲基化区域中任意1-3个甲基化区域的共甲基化并行检测
当目标甲基化区域的共甲基化并行检测为60个甲基化区域的任意1-3个时,使用实施例3表3.2中的组合方案,可以采用以下的检测方法。具体检测流程如下:
1、DNA提取
提取试剂盒购自QIAGEN公司,按照试剂盒说明书进行。
2、DNA亚硫酸氢盐转化
DNA亚硫酸氢盐转化试剂盒购于Zymo公司,按照试剂盒说明书进行。
3、荧光定量PCR测定
选用1-3个甲基化区域的引物及探针及内参的引物及探针,在1个反应孔进行测定(引物探针序列见实施例2表2.1,甲基化区域的组合方案见实施例3表3.2)
1)qPCR反应液配置:根据表5.1配制PCR混合液,DNA不要加在其中。
表5.1 PCR混合液配置方案
Figure PCTCN2022126214-appb-000021
2)加入DNA样本:加15μL PCR混合液到PCR反应孔,向其中加入转化后的DNA,DNA转化前上样量25ng,转化产物作为一个PCR反应孔。PCR反应总体积20μL。涡旋震荡和离心。
3)荧光定量PCR反应程序:95℃5分钟;95℃15秒,62℃40秒,于62℃收集荧光信号,60个循环。
4、数据处理与分析
将目标区域的检测所得每个甲基化区域的C T值通过内参C T值进行校正,得到目标区域的相对循环数d-C T=C T(目标区域)-C T(内参);若目标区域未检出,则赋予目标区域的相对循环数d-C T=35。
以阳性对照、甲基化区域引物探针组合方案A和B(实施例3)的检测为例,对照实施例3的检测方法,所得到的甲基化区域的相对循环数d-C T值与实施例3中的对比如5.2。
表5.2阳性对照任意1-3个甲基化区域的共甲基化并行检测与60个甲基化区域检测方法的d-C T值比较
  1-4个区域并行检测法d-C T 60个区域检测法d-C T
SEQ ID NO.1 4.86 3.97
SEQ ID NO.2 6.9 4.9
SEQ ID NO.3 5.27 4.21
SEQ ID NO.4 0.31 1.57
表5.2的结果表明,使用该实施例所述检测方法检测所得的d-C T值与检测60个甲基化区域所述检测方法(实施例3)得到的d-C T值高度一致,对这些区域两种检测方法的d-C T值做相关性分析,其相关系数为R=0.999(Pearson R),因此可以判定这两种检测方法在检测同一个甲基化区域的共甲基化程度上没有差别。
当目标甲基化区域的共甲基化并行检测为60个甲基化区域的任意1-3个时,本实施例所述检测方法可以减少多重PCR预扩增目标片段的步骤,使少于4个甲基化区域的并行检测更为方便快捷。
实施例6
对实施例4中得到的99例组织DNA样本的60个甲基化区域(SEQ ID NO.1-60)的共甲基化相对循环数数d-C T值进行甲基化区域组合的数学建模分析,以探讨60个甲基化区域作为生物标记物组合对于胃癌淋巴结转移判断预测的应用,对比使用单个甲基化区域作为标记物的判断性能优越性。
首先,如实施例4所述,对比99例组织样本标准手术后淋巴结转移的诊断信息,根据60个甲基化区域共甲基化在淋巴结非转移人群及淋巴结转移人群中的相对循环数d-C T值建立单个甲基化区域判别淋巴结转移发生的诊断模型ROC曲线,并根据ROC曲线计算AUC值及划分该区域的判定阈值。根据阈值对比标准诊断计算该甲基化区域的判别灵敏度、特异性及Youden指数。同时,根据60个甲基化区域共甲基化的相对循环数d-C T值选择2-60个甲基化生物标记物进行穷举阈值组合或逻辑回归或随机森林模型拟合,拟合方程可用于计算每个样本的淋巴结转移风险得分,用于判断淋巴结转移的发生。根据不同的2-60个甲基化区域的组合,可以产生多个用于判断胃癌淋巴结转移发生的模型及方程。使用这些方程计算的胃癌淋巴结转移风险得分对比标准诊断得到该甲基化区域组合的判别灵敏度、特异性、AUC及Youden指数。列举其中的一些组合的模型对于胃癌淋巴结转移的发生的判定性能参数对比单个甲基化区域如表6.1所示。
另外,图3列举了使用60个甲基化区域中的其中3个(SEQ ID NO.1-3)组合模型的风险得分在胃癌淋巴结转移及非转移人群中的分布。
如图3所示,采用3个甲基化区域组合判别模型得到的胃癌淋巴结转移风险得分可以将淋巴结转移人群及非转移人群作出明显的区分,再次说明这些甲基化区域的组合可以作为用于判断胃癌淋巴结转移发生的生物标记物组合。
根据表6.1的诊断效能比较可以看出,使用单个甲基化区域作为诊断模型,虽然对比现有影像学(CT),对于淋巴结转移有较优越的诊断性能,但对比多个甲基化区域组合模型诊断性能较低,2-60个甲基化区域的组合在判别淋巴结转移的发生上有更高的灵敏度或特异性,反映灵敏度及特异性的总体性能参数Youden指数明显高于单个甲基化区域的判别,更优越的判别优势,对于胃癌的诊疗及手术治疗方案均具有更精确的指导意义。
表6.1单个甲基化区域的模型与多个甲基化区域的模型对于诊断胃癌淋巴结转移的比较
Figure PCTCN2022126214-appb-000022
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物包括选自SEQ ID NO.1~SEQ ID NO.13所示序列或其完全互补序列中的任意一种或两种以上的组合。
  2. 根据权利要求1所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合包括SEQ ID NO.1和SEQ ID NO.2所示序列或其完全互补序列。
  3. 根据权利要求2所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括SEQ ID NO.3~SEQ ID NO.60所示序列或其完全互补序列中的至少一种。
  4. 根据权利要求2所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.3所示序列或其完全互补序列。
  5. 根据权利要求2或4所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.4所示序列或其完全互补序列。
  6. 根据权利要求2或4或5所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.5~SEQ ID NO.8所示序列或其完全互补序列中的至少一种。
  7. 根据权利要求6所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.9~SEQ ID NO.10所示序列或其完全互补序列中的至少一种。
  8. 根据权利要求7所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.11~SEQ ID NO.20所示序列或其完全互补序列中的至少一种。
  9. 根据权利要求8所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.21~-SEQ ID NO.30所示序列或其完全互补序列中的至少一种。
  10. 根据权利要求9所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.31~SEQ ID NO.40所示序列或其完全互补序列中的至少一种。
  11. 根据权利要求10所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合还包括有SEQ ID NO.41~SEQ ID NO.60所示序列或其完全互补序列中的至少一种。
  12. 根据权利要求1所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合包括SEQ ID NO.1至SEQ ID NO.13所示序列或其完全互补序列的组合。
  13. 根据权利要求12所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合包括为SEQ ID NO.1至SEQ ID NO.13所示 序列或其完全互补序列,还包括选自SEQ ID NO.14-SEQ ID NO.60所示序列或其完全互补序列中的至少一种的组合。
  14. 根据权利要求13所述的可用于胃癌淋巴结转移检测的DNA甲基化分子标记物或其组合,其特征在于,所述DNA甲基化分子标记物组合为SEQ ID NO.1~SEQ ID NO.60所示序列或其完全互补序列的组合。
  15. 权利要求1~14任一项所述DNA甲基化分子标记物或其组合和/或检测试剂在制备检测胃癌淋巴结转移的试剂盒中的应用。
  16. 一种用于检测胃癌淋巴结转移的试剂盒,其特征在于,所述试剂盒包含检测权利要求1~14任一项所述的DNA甲基化分子标记物或其组合的甲基化水平的试剂。
  17. 根据权利要求16所述的用于检测胃癌淋巴结转移的试剂盒,其特征在于,所述试剂盒包括采用PCR扩增法、荧光定量PCR法、数字PCR法、甲基化特异性PCR、DNA甲基化芯片、靶向DNA甲基化测序、液相芯片法、一代测序法、三代测序法二代测序法、焦磷酸测序法、重亚硫酸盐转化测序法、甲基化芯片法、简化亚硫酸氢盐测序技术或它们的组合所使用的试剂。
  18. 根据权利要求17所述的用于检测胃癌淋巴结转移的试剂盒,其特征在于,所述试剂包括针对DNA甲基化分子标记物的荧光定量PCR检测的引物和探针,所述引物和探针分别为:
    针对SEQ ID NO.1的SEQ ID NO.62和SEQ ID NO.123,以及SEQ ID NO.184;
    和/或针对SEQ ID NO.2的SEQ ID NO.63和SEQ ID NO.124,以及SEQ ID NO.185;
    和/或针对SEQ ID NO.3的SEQ ID NO.64和SEQ ID NO.125,以及SEQ ID NO.186;
    和/或针对SEQ ID NO.4的SEQ ID NO.65和SEQ ID NO.126,以及SEQ ID NO.187;
    和/或针对SEQ ID NO.5的SEQ ID NO.66和SEQ ID NO.127,以及SEQ ID NO.188;
    和/或针对SEQ ID NO.6的SEQ ID NO.67和SEQ ID NO.128,以及SEQ ID NO.189;
    和/或针对SEQ ID NO.7的SEQ ID NO.68和SEQ ID NO.129,以及SEQ ID NO.190;
    和/或针对SEQ ID NO.8的SEQ ID NO.69和SEQ ID NO.130,以及SEQ ID NO.191;
    和/或针对SEQ ID NO.9的SEQ ID NO.70和SEQ ID NO.131,以及SEQ ID NO.192;
    和/或针对SEQ ID NO.10的SEQ ID NO.71和SEQ ID NO.132,以及SEQ ID NO.193;
    和/或针对SEQ ID NO.11的SEQ ID NO.72和SEQ ID NO.133,以及SEQ ID NO.194;
    和/或针对SEQ ID NO.12的SEQ ID NO.73和SEQ ID NO.134,以及SEQ ID NO.195;
    和/或针对SEQ ID NO.13的SEQ ID NO.74和SEQ ID NO.135,以及SEQ ID NO.196;
    和/或针对SEQ ID NO.14的SEQ ID NO.75和SEQ ID NO.136,以及SEQ ID NO.197;
    和/或针对SEQ ID NO.15的SEQ ID NO.76和SEQ ID NO.137,以及SEQ ID NO.198;
    和/或针对SEQ ID NO.16的SEQ ID NO.77和SEQ ID NO.138,以及SEQ ID NO.199;
    和/或针对SEQ ID NO.17的SEQ ID NO.78和SEQ ID NO.139,以及SEQ ID NO.200;
    和/或针对SEQ ID NO.18的SEQ ID NO.79和SEQ ID NO.140,以及SEQ ID NO.201;
    和/或针对SEQ ID NO.19的SEQ ID NO.80和SEQ ID NO.141,以及SEQ ID NO.202;
    和/或针对SEQ ID NO.20的SEQ ID NO.81和SEQ ID NO.142,以及SEQ ID NO.203;
    和/或针对SEQ ID NO.21的SEQ ID NO.82和SEQ ID NO.143,以及SEQ ID NO.204;
    和/或针对SEQ ID NO.22的SEQ ID NO.83和SEQ ID NO.144,以及SEQ ID NO.205;
    和/或针对SEQ ID NO.23的SEQ ID NO.84和SEQ ID NO.145,以及SEQ ID NO.206;
    和/或针对SEQ ID NO.24的SEQ ID NO.85和SEQ ID NO.146,以及SEQ ID NO.207;
    和/或针对SEQ ID NO.25的SEQ ID NO.86和SEQ ID NO.147,以及SEQ ID NO.208;
    和/或针对SEQ ID NO.26的SEQ ID NO.87和SEQ ID NO.148,以及SEQ ID NO.209;
    和/或针对SEQ ID NO.27的SEQ ID NO.88和SEQ ID NO.149,以及SEQ ID NO.210;
    和/或针对SEQ ID NO.28的SEQ ID NO.89和SEQ ID NO.150,以及SEQ ID NO.211;
    和/或针对SEQ ID NO.29的SEQ ID NO.90和SEQ ID NO.151,以及SEQ ID NO.212;
    和/或针对SEQ ID NO.30的SEQ ID NO.91和SEQ ID NO.152,以及SEQ ID NO.213;
    和/或针对SEQ ID NO.31的SEQ ID NO.92和SEQ ID NO.153,以及SEQ ID NO.214;
    和/或针对SEQ ID NO.32的SEQ ID NO.93和SEQ ID NO.154,以及SEQ ID NO.215;
    和/或针对SEQ ID NO.33的SEQ ID NO.94和SEQ ID NO.155,以及SEQ ID NO.216;
    和/或针对SEQ ID NO.34的SEQ ID NO.95和SEQ ID NO.156,以及SEQ ID NO.217;
    和/或针对SEQ ID NO.35的SEQ ID NO.96和SEQ ID NO.157,以及SEQ ID NO.218;
    和/或针对SEQ ID NO.36的SEQ ID NO.97和SEQ ID NO.158,以及SEQ ID NO.219;
    和/或针对SEQ ID NO.37的SEQ ID NO.98和SEQ ID NO.159,以及SEQ ID NO.220;
    和/或针对SEQ ID NO.38的SEQ ID NO.99和SEQ ID NO.160,以及SEQ ID NO.221;
    和/或针对SEQ ID NO.39的SEQ ID NO.100和SEQ ID NO.161,以及SEQ ID NO.222;
    和/或针对SEQ ID NO.40的SEQ ID NO.101和SEQ ID NO.162,以及SEQ ID NO.223;
    和/或针对SEQ ID NO.41的SEQ ID NO.102和SEQ ID NO.163,以及SEQ ID NO.224;
    和/或针对SEQ ID NO.42的SEQ ID NO.103和SEQ ID NO.164,以及SEQ ID NO.225;
    和/或针对SEQ ID NO.43的SEQ ID NO.104和SEQ ID NO.165,以及SEQ ID NO.226;
    和/或针对SEQ ID NO.44的SEQ ID NO.105和SEQ ID NO.166,以及SEQ ID NO.227;
    和/或针对SEQ ID NO.45的SEQ ID NO.106和SEQ ID NO.167,以及SEQ ID NO.228;
    和/或针对SEQ ID NO.46的SEQ ID NO.107和SEQ ID NO.168,以及SEQ ID NO.229;
    和/或针对SEQ ID NO.47的SEQ ID NO.108和SEQ ID NO.169,以及SEQ ID NO.230;
    和/或针对SEQ ID NO.48的SEQ ID NO.109和SEQ ID NO.170,以及SEQ ID NO.231;
    和/或针对SEQ ID NO.49的SEQ ID NO.110和SEQ ID NO.171,以及SEQ ID NO.232;
    和/或针对SEQ ID NO.50的SEQ ID NO.111和SEQ ID NO.172,以及SEQ ID NO.233;
    和/或针对SEQ ID NO.51的SEQ ID NO.112和SEQ ID NO.173,以及SEQ ID NO.234;
    和/或针对SEQ ID NO.52的SEQ ID NO.113和SEQ ID NO.174,以及SEQ ID NO.235;
    和/或针对SEQ ID NO.53的SEQ ID NO.114和SEQ ID NO.175,以及SEQ ID NO.236;
    和/或针对SEQ ID NO.54的SEQ ID NO.115和SEQ ID NO.176,以及SEQ ID NO.237;
    和/或针对SEQ ID NO.55的SEQ ID NO.116和SEQ ID NO.177,以及SEQ ID NO.238;
    和/或针对SEQ ID NO.56的SEQ ID NO.117和SEQ ID NO.178,以及SEQ ID NO.239;
    和/或针对SEQ ID NO.57的SEQ ID NO.118和SEQ ID NO.179,以及SEQ ID NO.240;
    和/或针对SEQ ID NO.58的SEQ ID NO.119和SEQ ID NO.180,以及SEQ ID NO.241;
    和/或针对SEQ ID NO.59的SEQ ID NO.120和SEQ ID NO.181,以及SEQ ID NO.242;
    和/或针对SEQ ID NO.60的SEQ ID NO.121和SEQ ID NO.182,以及SEQ ID NO.243;
    或选自与上述序列具有多个连续核苷酸至少70%、80%、90%、95%或99%的序列同一性的引物和探针。
  19. 根据权利要求17所述的用于检测胃癌淋巴结转移的试剂盒,其特征在于,还包括针对内参基因的荧光定量PCR检测的引物和探针:SEQ ID NO.122和SEQ ID NO.183所示引物,以及SEQ ID NO.61所示探针。
  20. 一种对权利要求1~14任一项所述的DNA甲基化分子标记物或其组合的检测方法,其特征在于,包括以下步骤:
    (1)从待测样本中提取基因组DNA和/或游离DNA;
    (2)对提取获得的基因组DNA进行亚硫酸氢盐处理,得到转化后的DNA;
    (3)用针对权利要求1~14任一项所述的DNA甲基化分子标记物的扩增引物对转化后的DNA进行多重PCR扩增,得到多重PCR扩增产物;
    (4)以多重PCR扩增产物为模板,以用针对权利要求1~14任一项所述的DNA甲基化分子标记物的扩增引物和探针进行多重荧光定量PCR扩增或荧光定量PCR扩增,收集荧光信号。
  21. 一种权利要求1~14任一项所述的DNA甲基化分子标记物或其组合的检测方法,其特征在于,包括以下步骤:
    (1)从待测样本中提取基因组DNA和/或游离DNA;
    (2)对提取获得的基因组DNA进行亚硫酸氢盐处理,得到转化后的DNA;
    (3)以转化后的DNA为模板,以用针对权利要求1~14任一项所述的DNA甲基化分子标记物的扩增引物和探针进行多重荧光定量PCR扩增或荧光定量PCR扩增,收集荧光信号,并进行分析。
  22. 根据权利要求20或21所述的检测方法,其特征在于,所述针对权利要求1~14任一项所述的DNA甲基化分子标记物的扩增引物和探针如权利要求18所述。
  23. 一种检测或诊断或预测、治疗监测、预后或其它评价胃癌淋巴结转移的方法,其特征在于,包括以下步骤,
    提取将待测的生物样品基因组DNA和/或游离DNA;
    对所述DNA进行亚硫酸氢盐转化;
    对所述经过亚硫酸氢盐转化的DNA进行如权利要求1-14任一项所述DNA甲基化标记物组合的共甲基化检测,得到甲基化图谱;
    将甲基化标记物组合的甲基化图谱与从基于数据集数学建模得到的图谱判定阈值进行比较,判断生物样品中胃癌淋巴结转移的存在。
  24. 根据权利要求20~23任一项所述的方法,其特征在于,所述生物样品为血液、血浆、唾液、血清、胃部灌洗液、尿液或组织,优选地,所述组织包括胃癌组织和/或胃癌旁组织。
PCT/CN2022/126214 2021-10-25 2022-10-19 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒 WO2023071890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241138.7A CN114277135B (zh) 2021-10-25 2021-10-25 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒
CN202111241138.7 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071890A1 true WO2023071890A1 (zh) 2023-05-04

Family

ID=80869001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126214 WO2023071890A1 (zh) 2021-10-25 2022-10-19 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒

Country Status (2)

Country Link
CN (1) CN114277135B (zh)
WO (1) WO2023071890A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277135B (zh) * 2021-10-25 2022-09-20 广州市基准医疗有限责任公司 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒
CN115851923A (zh) * 2022-05-25 2023-03-28 广州市基准医疗有限责任公司 用于检测结直肠癌淋巴结转移的甲基化生物标记物及其应用
CN115896281B (zh) * 2022-05-25 2023-09-29 广州市基准医疗有限责任公司 甲基化生物标记物、试剂盒及用途
CN117343992A (zh) * 2022-06-29 2024-01-05 广州市基准医疗有限责任公司 一种多基因合并荧光通道检测的方法
CN117344010B (zh) * 2022-06-29 2024-04-26 广州市基准医疗有限责任公司 用于诊断胃癌的dna甲基化生物标记物、试剂盒及用途
CN116064806B (zh) * 2022-10-19 2023-09-22 常州国药医学检验实验室有限公司 一种评估早期胃癌淋巴结转移风险的组合物及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029342A (zh) * 2006-03-01 2007-09-05 维里德克斯有限责任公司 对胃癌淋巴结转移的检测
CN105624279A (zh) * 2015-01-22 2016-06-01 香港中文大学深圳研究院 胃癌标记物、其表达和甲基化检测方法、试剂盒及应用
CN110295230A (zh) * 2018-03-23 2019-10-01 中山大学 分子标志物inhba和spp1及其应用
CN114277135A (zh) * 2021-10-25 2022-04-05 广州市基准医疗有限责任公司 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569498B1 (ko) * 2012-11-07 2015-11-16 (주)지노믹트리 위용종 및 위암 특이적 메틸화 마커 유전자를 이용한 위용종 및 위암의 검출방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029342A (zh) * 2006-03-01 2007-09-05 维里德克斯有限责任公司 对胃癌淋巴结转移的检测
US20070207467A1 (en) * 2006-03-01 2007-09-06 Ming Xu Detection of lymph node metastasis from gastric carcinoma
CN105624279A (zh) * 2015-01-22 2016-06-01 香港中文大学深圳研究院 胃癌标记物、其表达和甲基化检测方法、试剂盒及应用
CN110295230A (zh) * 2018-03-23 2019-10-01 中山大学 分子标志物inhba和spp1及其应用
CN114277135A (zh) * 2021-10-25 2022-04-05 广州市基准医疗有限责任公司 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG PENG, CHANG XIAO-JING, GAO ZI-MING, XU XIAO-YANG, SUN AN-QI, LI KAI, DAI DONG-QIU: "Downregulation and DNA methylation of ECRG4 in gastric cancer", ONCOTARGETS AND THERAPY, vol. 1, 1 July 2018 (2018-07-01), pages 4019 - 4028, XP093061141, DOI: 10.2147/OTT.S161200 *

Also Published As

Publication number Publication date
CN114277135A (zh) 2022-04-05
CN114277135B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2021128519A1 (zh) Dna甲基化生物标志物组合、检测方法和试剂盒
WO2023071890A1 (zh) 胃癌淋巴结转移相关的甲基化生物标记物及其组合和检测试剂盒
WO2020063902A1 (zh) Hoxa7甲基化检测试剂
WO2024060775A1 (zh) 新型的肿瘤检测标志物TAGMe及其应用
WO2023226938A1 (zh) 甲基化生物标记物、试剂盒及用途
US20240084398A1 (en) Combinations, detection methods and kits of dna methylation biomarker
CN117431321A (zh) 一种用于前列腺癌或癌前病变检测的核酸组合物、试剂盒及应用
EP4083232A1 (en) Combination of dna methylation biomarkers, and detection method therefor and kit thereof
WO2005021743A1 (ja) 核酸増幅用プライマー及びこれを用いた大腸癌の検査方法
WO2024002165A1 (zh) 用于诊断胃癌的dna甲基化生物标记物、试剂盒及用途
WO2024002166A1 (zh) 一种多基因合并荧光通道检测的方法
JP2020014415A (ja) がんの診断用バイオマーカー
WO2024001668A1 (zh) 用于检测肺结节良恶性的甲基化分子标记物及其应用
WO2024125308A1 (zh) 检测分子标志物甲基化水平的试剂及尿路上皮癌检测试剂盒
WO2024027041A1 (zh) 乳腺癌早期筛查的多重基因甲基化检测荧光定量pcr试剂盒
CN117431315A (zh) 大肠癌淋巴结转移检测甲基化生物标记物及检测试剂盒
CN116751863A (zh) 一种用于检测咽部恶性肿瘤分子标志物甲基化水平的试剂盒及应用
CN113755584A (zh) Dna甲基化生物标志物组合及其应用
WO2023083348A1 (zh) 用于食管癌诊断的甲基化检测试剂及试剂盒
CN117778582A (zh) 用于检测胃癌的核酸组合、试剂盒及应用
CN118109589A (zh) 用于检测胰腺癌分子标志物甲基化水平的试剂、试剂盒及应用
JP2023521799A (ja) GLRB遺伝子のCpGメチル化の変化を利用した結腸癌、直腸癌、又は大腸腺腫診断用組成物、及びその使用
CN116694763A (zh) 一种用于肝细胞癌检测的核酸产品、试剂盒及应用
CN117187388A (zh) Grik2基因作为标志物在制备肺癌检测试剂盒中的应用
CN118166097A (zh) 用于结直肠癌及癌前病变诊断的dna甲基化水平检测试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885768

Country of ref document: EP

Kind code of ref document: A1