WO2023071354A1 - 掺杂锰系钠离子电池正极材料的制备方法 - Google Patents

掺杂锰系钠离子电池正极材料的制备方法 Download PDF

Info

Publication number
WO2023071354A1
WO2023071354A1 PCT/CN2022/109231 CN2022109231W WO2023071354A1 WO 2023071354 A1 WO2023071354 A1 WO 2023071354A1 CN 2022109231 W CN2022109231 W CN 2022109231W WO 2023071354 A1 WO2023071354 A1 WO 2023071354A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
manganese
preparation
metal salt
mixed metal
Prior art date
Application number
PCT/CN2022/109231
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022002490.9T priority Critical patent/DE112022002490T5/de
Priority to GB2315320.8A priority patent/GB2619686A/en
Publication of WO2023071354A1 publication Critical patent/WO2023071354A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a preparation method of a manganese-doped sodium ion battery cathode material.
  • Na-ion batteries have the characteristics of low raw material cost, abundant resources, and great electrochemical performance potential, so they are expected to be applied in the field of large-scale energy storage, and are one of the important research directions of next-generation battery technology.
  • Cathode material is an important factor affecting the energy density, service life and cost of batteries, and the development of high-efficiency cathode materials is crucial to promote the commercialization of sodium-ion batteries.
  • common cathode materials for sodium-ion batteries mainly include layered transition metal oxides, Prussian blue analogues, polyanionic compounds, tunnel oxides, and the like.
  • layered transition metal oxides exhibit higher specific capacity and better meet the needs of high energy density.
  • the doping of materials has the following difficulties: 1The doping stage requires extremely high process control stability; 2It is difficult to obtain a uniform doping effect in the selection of doping elements, process methods and parameter control; 3Doping technology, doping elements , doping amount and other aspects of the research is less, resulting in more difficult research and development and industrialization.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a preparation method of a cathode material for a manganese-based sodium-ion battery, which can improve the cycle performance of the cathode material for a manganese-based sodium-ion battery.
  • a kind of preparation method of doped manganese series sodium ion battery cathode material comprising the following steps:
  • the acid is one or more of tartaric acid, hydrochloric acid, concentrated sulfuric acid or concentrated nitric acid.
  • the divalent manganese salt is one or more of manganese sulfate, manganese chloride or manganese nitrate; the total concentration of metal ions in the mixed metal salt solution is 0.1-2.0mol/L; the mol ratio of doping metal and manganese in the mixed metal salt solution is (1-15):(85-99), and the doping metal is one or both of antimony or bismuth kind.
  • the alkaline oxidant solution is a sodium hydroxide solution dissolved with one or more of sodium hypochlorite, sodium chlorate or sodium permanganate.
  • Oxidant selects sodium hypochlorite, sodium chlorate, sodium permanganate to avoid the mixing of other ions and improve product purity.
  • step S2 the concentration of sodium hydroxide in the alkaline oxidant solution is 0.1-4.0 mol/L.
  • step S2 the mixed metal salt solution is added dropwise, and it is always ensured that the pH of the basic oxidant solution is ⁇ 10.5, and the oxidant in the basic oxidant solution is always sufficient.
  • the way of adding the mixed metal salt solution is to add dropwise, which can reduce the occurrence of side reactions and avoid the phenomenon that manganese dioxide precipitates alone.
  • step S2 the temperature of the reaction system is controlled to be 2-10°C. Avoid the generation of colloids by dissolving sodium hexahydroxyantimonate or sodium bismuthate.
  • step S2 the reaction ends when the addition of the mixed metal salt solution is stopped.
  • step S3 the drying temperature does not exceed 25°C.
  • the sodium source is one or more of sodium carbonate, sodium oxalate, sodium acetate, sodium hydroxide or sodium peroxide.
  • step S3 the ratio of the amount of sodium element in the sodium source to the amount of manganese element in the solid material is x:1, 0 ⁇ x ⁇ 1.
  • the sintering temperature is 650-950° C.; preferably, the sintering time is 12-24 hours.
  • the material is doped with antimony or bismuth elements, the skeleton structure of the material is enhanced, the phase transition of the material during charge and discharge is suppressed, and the specific capacity, cycle performance and rate performance of the material can be significantly improved.
  • sodium ions are introduced in advance during co-precipitation to reduce the pressure of subsequent sintering with sodium source, and only a small amount of sodium source is added according to the ratio to sinter successfully.
  • both antimony and bismuth are positive pentavalent with high valence, and their properties are extremely stable, which can prevent the occurrence of side reactions between the material interface and the electrolyte during charging and discharging.
  • FIG. 1 is a SEM image of the doped manganese-based sodium-ion battery positive electrode material prepared in Example 1 of the present invention.
  • a kind of positive electrode material of doped manganese series sodium ion battery is prepared, and the specific process is as follows:
  • preparation concentration is the sodium hydroxide of 1.0mol/L and the sodium hypochlorite mixed solution that concentration is 0.3mol/L, is alkaline oxidizing agent solution;
  • the positive electrode material of doped manganese-based sodium-ion battery is assembled into a sodium-ion half-battery, the voltage range is 2.0-3.8V at a rate of 0.8C, the initial specific capacity is as high as 135.3mAh/g, and it still has 131.2mAh/g after 100 charges and discharges The specific capacity, capacity retention rate of 96.97%.
  • a kind of positive electrode material of doped manganese series sodium ion battery is prepared, and the specific process is as follows:
  • preparation concentration is the sodium hydroxide of 2.0mol/L and the sodium hypochlorite mixed solution that concentration is 0.5mol/L, is alkaline oxidizing agent solution;
  • the positive electrode material of doped manganese-based sodium-ion battery is assembled into a sodium-ion half-battery, the voltage range is 2.0-3.8V at a rate of 0.8C, the initial specific capacity is as high as 134.6mAh/g, and it still has 131.5mAh/g after 100 charges and discharges The specific capacity, the capacity retention rate reaches 97.70%.
  • a kind of positive electrode material of doped manganese series sodium ion battery is prepared, and the specific process is as follows:
  • preparation concentration is the sodium hydroxide of 4.0mol/L and the sodium hypochlorite mixed solution that concentration is 1.0mol/L, is alkaline oxidizing agent solution;
  • the positive electrode material of doped manganese-based sodium-ion battery is assembled into a sodium-ion half-battery.
  • the voltage range is 2.0-3.8V at a rate of 0.8C, and the initial specific capacity is as high as 138.7mAh/g. After 100 charges and discharges, it still has 132.3mAh/g The specific capacity, capacity retention rate of 95.39%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种掺杂锰系钠离子电池正极材料的制备方法,包括将三氧化二锑、三氧化二铋中的一种或两种用酸溶解后,加入二价锰盐,配制成混合金属盐溶液,将混合金属盐溶液加入到碱性氧化剂溶液中进行反应,固液分离得到固体物料,固体物料经干燥后,与钠源混合后进行烧结,即得掺杂锰系钠离子电池正极材料。本发明掺杂了锑或铋元素,增强了材料的骨架结构,抑制材料在充放电过程中发生的相变,能够明显提高材料的比容量、循环性能和倍率性能,通过在过量碱性氧化剂溶液中滴加混合金属盐溶液,锰离子被氧化为二氧化锰,锑和铋则以六羟基合锑酸钠或铋酸钠的形式与二氧化锰共沉淀,保证了材料掺杂元素的均匀性,实现了元素之间的原子级混合。

Description

掺杂锰系钠离子电池正极材料的制备方法 技术领域
本发明属于钠离子电池技术领域,具体涉及一种掺杂锰系钠离子电池正极材料的制备方法。
背景技术
钠离子电池具有原料成本低、资源丰富、电化学性能潜力大等特点,因此有望在大规模储能领域得到应用,是下一代电池技术的重要研究方向之一。
对新型能量存储体系的需求增加和钠离子电池市场的不断扩张,使得高性能钠离子电极材料研究变的日益重要。正极材料是影响电池能量密度、使用寿命、成本的重要因素,开发高效的正极材料对于推进钠离子电池商业化至关重要。
目前,常见的钠离子电池正极材料主要包括有层状过渡金属氧化物、普鲁士蓝类似物、聚阴离子化合物、隧道型氧化物等。而相比于普鲁士蓝类似物、聚阴离子化合物、隧道型氧化物等材料,层状过渡金属氧化物表现出更高的比容量,更满足高能量密度的需求。
然而,层状过渡金属氧化物循环性能较差,容量保持率低,有待进一步改善。目前的一些研究结果表明,相转变导致的材料结构不稳以及材料与电解液之间的副反应是导致材料循环性能较差的主要原因,为缓解这些问题,人们提出了元素掺杂、表面包覆以及新颖的结构设计作为提高正极材料循环性能的有效方法。其中,元素掺杂的工艺相对于其他两种方法更为简单有效,大大缩减了生产成本和时间。通过掺杂其他元素增强晶体结构稳定性来提高正极材料结构的稳定性,以进一步改善其循环性能。
但是,材料的掺杂存在以下难点:①掺杂阶段对过程控制稳定性要求极高;②掺杂元素选择、工艺方法以及参数控制难以得到均匀的掺杂效果;③掺杂技术、掺杂元素、掺杂量等方面的研究较少,造成研究开发及产业化较为困难。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种掺杂锰系钠离子电池正极材料的制备方法,能够提高锰系钠离子电池正极材料的循环性能。
根据本发明的一个方面,提出了一种掺杂锰系钠离子电池正极材料的制备方法,包括以下步骤:
S1:将三氧化二锑、三氧化二铋中的一种或两种用酸溶解后,加入二价锰盐,配制成混合金属盐溶液;
S2:将所述混合金属盐溶液加入到碱性氧化剂溶液中进行反应,反应结束后固液分离,得到固体物料;
S3:所述固体物料经干燥后,与钠源混合后进行烧结,即得所述掺杂锰系钠离子电池正极材料。
在本发明的一些实施方式中,步骤S1中,所述酸为酒石酸、盐酸、浓硫酸或浓硝酸中的一种或多种。
在本发明的一些实施方式中,步骤S1中,所述二价锰盐为硫酸锰、氯化锰或硝酸锰中的一种或多种;所述混合金属盐溶液中金属离子的总浓度为0.1-2.0mol/L;所述混合金属盐溶液中掺杂金属与锰的摩尔比为(1-15):(85-99),所述掺杂金属为锑或铋中的一种或两种。
在本发明的一些实施方式中,步骤S2中,所述碱性氧化剂溶液为溶解有次氯酸钠、氯酸钠或高锰酸钠中的一种或多种的氢氧化钠溶液。氧化剂选用次氯酸钠、氯酸钠、高锰酸钠,避免其它离子的混入,提高产品纯度。
在本发明的一些实施方式中,步骤S2中,所述碱性氧化剂溶液中氢氧化钠的浓度为0.1-4.0mol/L。
在本发明的一些实施方式中,步骤S2中,所述混合金属盐溶液的加入方式为逐滴加入,并始终保证碱性氧化剂溶液的pH≥10.5,碱性氧化剂溶液中的氧化剂始终足量。混合金属盐溶液的加入方式为逐滴加入,可减少副反应的发生,避免出现二氧化锰独自 沉淀的现象。
在本发明的一些实施方式中,步骤S2中,控制反应体系的温度为2-10℃。避免生成的六羟基合锑酸钠或铋酸钠溶解产生胶体。
在本发明的一些实施方式中,步骤S2中,停止加入所述混合金属盐溶液即为反应结束。
在本发明的一些实施方式中,步骤S3中,所述干燥的温度不超过25℃。
在本发明的一些实施方式中,步骤S3中,所述钠源为碳酸钠、草酸钠、醋酸钠、氢氧化钠或过氧化钠中的一种或多种。
在本发明的一些实施方式中,步骤S3中,所述钠源中的钠元素的物质的量与固体物料中锰元素的物质的量之比为x:1,0<x≤1。
在本发明的一些实施方式中,步骤S3中,所述烧结的温度为650-950℃;优选的,所述烧结的时间为12-24小时。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、因材料掺杂了锑或铋元素,增强了材料的骨架结构,抑制材料在充放电过程中发生的相变,能够明显提高材料的比容量、循环性能和倍率性能。
2、通过在过量碱性氧化剂溶液中滴加混合金属盐溶液,锰离子被氧化为二氧化锰,锑和铋则以六羟基合锑酸钠或铋酸钠的形式与二氧化锰共沉淀,保证了材料掺杂元素的均匀性,实现了元素之间的原子级混合。
3、利用六羟基合锑酸钠或铋酸钠不溶于水的性质,在共沉淀时提前引入钠离子,减少后续与钠源烧结的压力,仅需按配比加入少量钠源即可烧结成功。
4、烧结制得的钠离子电池正极材料中,锑和铋均为价态较高的正五价,性质极为稳定,可阻挡充放电过程中材料界面与电解液副反应的发生。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的掺杂锰系钠离子电池正极材料的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种掺杂锰系钠离子电池正极材料,具体过程为:
(1)将三氧化二锑用盐酸溶解后,加入氯化锰,配制成金属离子总浓度为0.1mol/L的混合金属盐溶液,其中锑与锰的摩尔比为5:95;
(2)配制浓度为1.0mol/L的氢氧化钠和浓度为0.3mol/L的次氯酸钠混合溶液,即为碱性氧化剂溶液;
(3)将混合金属盐溶液逐滴加入到碱性氧化剂溶液中进行反应,控制反应体系温度为2-10℃,并始终保证碱性氧化剂溶液的pH≥10.5,氧化剂始终足量,反应结束后进行固液分离,得到固体物料;
(4)固体物料经低温干燥后,按照钠元素与锰元素的物质的量之比0.39:1,与草酸钠混合后在650℃下保持24小时,反应结束后,即得化学式为Na 0.44Sb 0.05Mn 0.95O 2.15的掺杂锰系钠离子电池正极材料。
将掺杂锰系钠离子电池正极材料组装成为钠离子半电池,在0.8C倍率下电压区间2.0-3.8V,初始比容量高达135.3mAh/g,经过100次充放电后仍具有131.2mAh/g的比容量,容量保持率达96.97%。
实施例2
本实施例制备了一种掺杂锰系钠离子电池正极材料,具体过程为:
(1)将三氧化二铋用酒石酸溶解后,加入氯化锰,配制成金属离子总浓度为0.2mol/L的混合金属盐溶液,其中铋与锰的摩尔比为5:95;
(2)配制浓度为2.0mol/L的氢氧化钠和浓度为0.5mol/L的次氯酸钠混合溶液,即 为碱性氧化剂溶液;
(3)将混合金属盐溶液逐滴加入到碱性氧化剂溶液中进行反应,控制反应体系温度为2-10℃,并始终保证碱性氧化剂溶液的pH≥10.5,氧化剂始终足量,反应结束后进行固液分离,得到固体物料;
(4)固体物料经低温干燥后,按照钠原子与锰原子的物质的量之比0.39:1,与草酸钠混合后在700℃下保持20小时,反应结束后,即得化学式为Na 0.44Bi 0.05Mn 0.95O 2.15的掺杂锰系钠离子电池正极材料。
将掺杂锰系钠离子电池正极材料组装成为钠离子半电池,在0.8C倍率下电压区间2.0-3.8V,初始比容量高达134.6mAh/g,经过100次充放电后仍具有131.5mAh/g的比容量,容量保持率达97.70%。
实施例3
本实施例制备了一种掺杂锰系钠离子电池正极材料,具体过程为:
(1)将三氧化二锑和三氧化二铋用盐酸溶解后,加入氯化锰,配制成金属离子总浓度为0.3mol/L的混合金属盐溶液,其中锑、铋、锰的摩尔比为5:5:90;
(2)配制浓度为4.0mol/L的氢氧化钠和浓度为1.0mol/L的次氯酸钠混合溶液,即为碱性氧化剂溶液;
(3)将混合金属盐溶液逐滴加入到碱性氧化剂溶液中进行反应,控制反应体系温度为2-10℃,并始终保证碱性氧化剂溶液pH≥10.5,氧化剂始终足量,反应结束后进行固液分离,得到固体物料;
(4)固体物料经低温干燥后,按照钠原子与锰原子的物质的量之比0.39:1,与过氧化钠混合后在900℃下保持18小时,反应结束后,即得化学式为Na 0.44Sb 0.05Bi 0.05Mn 0.90O 2.15的掺杂锰系钠离子电池正极材料。
将掺杂锰系钠离子电池正极材料组装成为钠离子半电池,在0.8C倍率下电压区间2.0-3.8V,初始比容量高达138.7mAh/g,经过100次充放电后仍具有132.3mAh/g的比容量,容量保持率达95.39%。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种掺杂锰系钠离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    S1:将三氧化二锑、三氧化二铋中的一种或两种用酸溶解后,加入二价锰盐,配制成混合金属盐溶液;
    S2:将所述混合金属盐溶液加入到碱性氧化剂溶液中进行反应,反应结束后固液分离,得到固体物料;
    S3:所述固体物料经干燥后,与钠源混合后进行烧结,即得所述掺杂锰系钠离子电池正极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述酸为酒石酸、盐酸、浓硫酸或浓硝酸中的一种或多种。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述二价锰盐为硫酸锰、氯化锰或硝酸锰中的一种或多种;所述混合金属盐溶液中金属离子的总浓度为0.1-2.0mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述碱性氧化剂溶液为溶解有次氯酸钠、氯酸钠或高锰酸钠中的一种或多种的氢氧化钠溶液。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤S2中,所述碱性氧化剂溶液中氢氧化钠的浓度为0.1-4.0mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述混合金属盐溶液的加入方式为逐滴加入,并始终保证碱性氧化剂溶液的pH≥10.5,碱性氧化剂溶液中的氧化剂始终足量。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,控制反应体系的温度为2-10℃。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述钠源为碳酸钠、草酸钠、醋酸钠、氢氧化钠或过氧化钠中的一种或多种。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述钠源中的钠元 素的物质的量与固体物料中锰元素的物质的量之比为x:1,0<x≤1。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述烧结的温度为650-950℃;优选的,所述烧结的时间为12-24小时。
PCT/CN2022/109231 2021-10-26 2022-07-29 掺杂锰系钠离子电池正极材料的制备方法 WO2023071354A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022002490.9T DE112022002490T5 (de) 2021-10-26 2022-07-29 Herstellungsverfahren eines kathodenmaterials für eine auf dotiertem mangan basierende natriumionenbatterie
GB2315320.8A GB2619686A (en) 2021-10-26 2022-07-29 Preparation method for doped manganese-based sodium ion battery cathode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111247001.2A CN114229900B (zh) 2021-10-26 2021-10-26 掺杂锰系钠离子电池正极材料的制备方法
CN202111247001.2 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071354A1 true WO2023071354A1 (zh) 2023-05-04

Family

ID=80743226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109231 WO2023071354A1 (zh) 2021-10-26 2022-07-29 掺杂锰系钠离子电池正极材料的制备方法

Country Status (4)

Country Link
CN (1) CN114229900B (zh)
DE (1) DE112022002490T5 (zh)
GB (1) GB2619686A (zh)
WO (1) WO2023071354A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229900B (zh) * 2021-10-26 2023-12-12 广东邦普循环科技有限公司 掺杂锰系钠离子电池正极材料的制备方法
CN115472803B (zh) * 2022-10-18 2023-06-27 山东石油化工学院 一种基于TMDs的锌离子电池正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166686A1 (en) * 2015-05-26 2018-06-14 Umicore Bivalent Metal Doping for Sodium Manganese Oxide as Cathode Materials for Sodium Ion Batteries
CN108963242A (zh) * 2018-07-11 2018-12-07 合肥师范学院 一种无定型钠离子电池正极材料及其制备方法和钠离子电池
CN110112375A (zh) * 2019-03-22 2019-08-09 南京大学 钠离子电池双过渡金属锰基层状正极材料
CN111092220A (zh) * 2019-12-20 2020-05-01 华南理工大学 一种m元素体相掺杂改性隧道型钠离子电池锰基正极材料及其制备方法
CN111268746A (zh) * 2020-02-05 2020-06-12 中国科学院化学研究所 一种钠离子电池层状正极材料、制备方法及其应用
CN114229900A (zh) * 2021-10-26 2022-03-25 广东邦普循环科技有限公司 掺杂锰系钠离子电池正极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638278B (zh) * 2018-12-14 2023-08-22 桑顿新能源科技有限公司 钠离子电池正极材料及其制备方法和钠离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166686A1 (en) * 2015-05-26 2018-06-14 Umicore Bivalent Metal Doping for Sodium Manganese Oxide as Cathode Materials for Sodium Ion Batteries
CN108963242A (zh) * 2018-07-11 2018-12-07 合肥师范学院 一种无定型钠离子电池正极材料及其制备方法和钠离子电池
CN110112375A (zh) * 2019-03-22 2019-08-09 南京大学 钠离子电池双过渡金属锰基层状正极材料
CN111092220A (zh) * 2019-12-20 2020-05-01 华南理工大学 一种m元素体相掺杂改性隧道型钠离子电池锰基正极材料及其制备方法
CN111268746A (zh) * 2020-02-05 2020-06-12 中国科学院化学研究所 一种钠离子电池层状正极材料、制备方法及其应用
CN114229900A (zh) * 2021-10-26 2022-03-25 广东邦普循环科技有限公司 掺杂锰系钠离子电池正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YUANPENG ET AL.: "Preparation of Na0.67Mn0.67Ni0.33-xCoxO2 as Cathode Material for Sodium Ion Battery by Multi-metal Substitution and Electrochemical Performance", JOURNAL OF MECHANICAL ENGINEERING, vol. 56, no. 10, 31 May 2020 (2020-05-31), pages 117 - 126, XP009545266 *

Also Published As

Publication number Publication date
CN114229900B (zh) 2023-12-12
GB2619686A (en) 2023-12-13
CN114229900A (zh) 2022-03-25
DE112022002490T5 (de) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2023071354A1 (zh) 掺杂锰系钠离子电池正极材料的制备方法
CN110002465B (zh) 一种普鲁士白类似物正极材料、其制备方法和应用
US20230163290A1 (en) High-entropy positive electrode material, preparation method and application thereof
WO2023040285A1 (zh) 层状钠离子电池正极材料及其制备方法
CN106505193A (zh) 单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
CN104393285A (zh) 镍钴铝三元正极材料及其制备方法
CN113594433B (zh) 一种高镍三元电极复合材料及其制备方法和锂离子电池
US20230264975A1 (en) Doped nickel-rich ternary material and preparation method thereof
CN103560244A (zh) 一种高容量锂离子电池梯度正极材料及其制备方法
CN112289994B (zh) 一种包覆型高镍三元材料及其制备方法和应用
CN114583141B (zh) 一种三层结构的前驱体材料及其制备方法、正极材料
CN106252594A (zh) 一种具有纳米级两相共存结构的球形锂离子电池正极材料及其合成方法
CN112960703A (zh) 一种具有浓度梯度的锂离子电池正极核壳材料的制备方法
KR102174720B1 (ko) 리튬복합산화물 및 이의 제조 방법
CN111276686B (zh) 一种高镍四元锂离子电池材料Li-Ni-Co-Mn-Mo-O及其制备方法
CN112670498A (zh) 一种三元素掺杂的正极材料、其制备方法和用途
CN113782748B (zh) 一种改性无钴富锂正极材料、其制备方法及应用
CN114551863A (zh) 元素浓度梯度分布的前驱体材料及其制备方法、正极材料
CN108539167A (zh) 一种锂离子电池核壳高电压正极材料及其制备方法
CN112736240A (zh) 一种高残碱的锂离子多元正极材料及其制备方法
CN112624209A (zh) 一种Na-Ti-Mg共掺杂三元材料及制备方法和应用
CN112537801A (zh) 一种连续浓度梯度铝钛掺杂四氧化三钴及其制备方法和应用
CN114678520B (zh) 一种钠离子电池用正极材料及其制备方法
JP3079577B2 (ja) リチウム含有二酸化マンガン及びその製造方法並びにその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202315320

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220729

WWE Wipo information: entry into national phase

Ref document number: 112022002490

Country of ref document: DE