WO2023070751A1 - 光学膜片和显示装置 - Google Patents

光学膜片和显示装置 Download PDF

Info

Publication number
WO2023070751A1
WO2023070751A1 PCT/CN2021/130144 CN2021130144W WO2023070751A1 WO 2023070751 A1 WO2023070751 A1 WO 2023070751A1 CN 2021130144 W CN2021130144 W CN 2021130144W WO 2023070751 A1 WO2023070751 A1 WO 2023070751A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
refractive index
optical film
bottom wall
display device
Prior art date
Application number
PCT/CN2021/130144
Other languages
English (en)
French (fr)
Inventor
殷志远
陈黎暄
窦虎
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/618,510 priority Critical patent/US20240036239A1/en
Publication of WO2023070751A1 publication Critical patent/WO2023070751A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present application belongs to the technical field of display devices, and in particular relates to an optical film and a display device.
  • Reflectivity is an important optical specification for large-scale display devices.
  • the reflectivity refers to the amount of light that the display device can reflect back when the user looks at the display device from the front of the display device when it is turned off. Considering the user's habit of using the display device, the user generally does not want to see the reflected light from the extinguished display device, that is, the display device needs to have a low reflectivity, so as to protect the privacy of the user.
  • the optical film in the prior art usually has a poor effect on reducing the reflectivity.
  • the optical film in the prior art usually has a poor effect of reducing the reflectivity.
  • Embodiments of the present application provide an optical film and a display device to solve the problem that the optical film in the prior art usually has a poor effect of reducing reflectivity.
  • an embodiment of the present application provides an optical film applied to a display panel, the optical film is arranged on the side of the display surface of the display panel, and the optical film includes:
  • each of the optical structures is provided with a plurality of arc surfaces on the side away from the display surface, and the arc surfaces are used to reflect at least part of the ambient light, and each of the optical structures has a first refractive index ;
  • the filling part is arranged on the side of the plurality of optical structures away from the display surface, covers the plurality of optical structures, and fills between the plurality of optical structures, the filling part has a second refractive index , the second refractive index is greater than the first refractive index.
  • An embodiment of the present application further provides a display device, including a display panel and an optical film, where the optical film is the optical film described in any one of the above items.
  • the critical angle of refraction between the optical structure and the filling portion can be adjusted by adjusting the refractive index of the filling portion and the optical structure, thereby realizing total reflection of the optical structure.
  • arc surfaces capable of reflecting at least part of the ambient light are provided in the multiple optical structures, and the adjustment of the reflection angle of the ambient light can be realized by adjusting the curvature of the arc surface, so as to realize the adjustment of the reflection angle of the ambient light, so that the display The device achieves the requirement of low reflectivity through this optical film.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical film in the display device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a first cross-sectional structure of the optical film shown in FIG. 2 along the direction A-A.
  • FIG. 4 is a schematic diagram of a second cross-sectional structure of the optical film shown in FIG. 2 along the A-A direction.
  • FIG. 5 is a schematic diagram of a third cross-sectional structure of the optical film shown in FIG. 2 along the direction A-A.
  • FIG. 6 is a schematic flowchart of a method for preparing an optical film provided in an embodiment of the present application.
  • Reflectivity is an important optical specification for large-sized display devices such as LCD (Liquid Crystal Display) and OLED (Organic Light-Emitting Diode, organic light-emitting semiconductor).
  • the reflectivity refers to the amount of light that the display device can reflect back when the user looks at the display device from the front of the display device when it is turned off. Considering the user's habit of using the display device, the user generally does not want to see the reflected light from the extinguished display device, that is, the display device needs to have a low reflectivity. Low reflectivity usually means that when the display device is turned off, the display device can reflect less light, so that the user cannot realize the action of "looking in the mirror" through the screen of the display device, thereby protecting the privacy of the user and making the display device performance is better.
  • the optical film in the prior art usually has a poor effect on reducing the reflectivity.
  • an embodiment of the present application provides an optical film and a display device, which will be described below with reference to the accompanying drawings.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the embodiment of the present application provides a display device 1.
  • the display device 1 can be a mobile phone, a desktop computer, a notebook, a tablet computer, a wrist watch device, a TV set, a media player device, a computer monitor, and other devices with a display function.
  • the display device 1 may include a display panel 10 and an optical film 20 .
  • the display panel 10 can emit light.
  • the display panel 10 has a display surface and a non-display surface.
  • the display surface can be understood as a side of the display panel 10 that emits light. .
  • the optical film 20 of the embodiment of the present application can solve the problem that the low reflectivity effect of the display device 1 is not good when the display device 1 is off, and the optical film 20 can adjust the outgoing angle of the light emitted by the display panel 10 .
  • FIG. 2 is a schematic structural diagram of the optical film in the display device shown in FIG. 1, and FIG. A schematic diagram of a cross-sectional structure.
  • the embodiment of the present application provides an optical film 20 applied to the display panel 10 .
  • the optical film 20 is disposed on one side of the display surface of the display panel 10 .
  • the optical film 20 may include a plurality of optical structures 21, each optical structure 21 is provided with a plurality of arc surfaces 2142 on the side facing away from the display surface, and the arc surfaces 2142 are used to reflect at least part of ambient light, each optical structure 21 has a first a refractive index.
  • Each optical film 20 also includes a filling part 23, the filling part 23 is arranged on the side of the multiple optical structures 21 away from the display surface, covers the multiple optical structures 21, and fills between the multiple optical structures 21, filling Portion 23 has a second refractive index that is greater than the first refractive index.
  • the optical film 20 of the embodiment of the present application can adjust the critical angle of refraction between the optical structure 21 and the filling portion 23 by adjusting the refractive index of the filling portion 23 and the optical structure 21 , thereby realizing total reflection of the optical structure 21 .
  • the plurality of optical structures 21 are all provided with an arc surface 2142 capable of reflecting at least part of the ambient light, and then the adjustment of the reflection angle of the ambient light can be realized by adjusting the curvature of the arc surface 2142, so as to realize the adjustment of the reflection angle of the ambient light. Therefore, the display device 1 realizes the requirement of low reflectivity through the optical film 20 .
  • TIR Total internal reflection
  • total reflection is the first step.
  • the light of total reflection is less partially reflected to the side of the display surface, which can also be understood as After the external ambient light reaches the surface of the optical structure 21 through the filling part 23, it is reflected to the non-display surface, so that the user cannot see the reflection of the ambient light when viewing the display surface, so as to meet the requirement of low reflectivity of the optical film 20 .
  • the embodiment of the present application adjusts the reflected light by setting the arc surface 2142 , and the reflected light can be reflected to the non-display surface by adjusting the curvature of the arc surface 2142 .
  • the optical film 20 of the embodiment of the present application can also adjust the outgoing angle of the light emitted by the display panel 10 , so as to meet the requirement for a wide viewing angle of the optical film 20 .
  • the brightness performance of a large-size display device will become worse as the viewing angle becomes larger.
  • optical films are usually used in the prior art to improve the viewing angle at large angles.
  • the purpose of improving the large viewing angle performance of the display device is achieved.
  • the optical properties of the composite film will change compared with the single film, and it is necessary to re-evaluate whether its optical properties meet the requirements.
  • the process of the composite membrane is also relatively cumbersome. If the composite membrane is used in mass production, it will not only increase the production cost of the diaphragm, but also increase the corresponding composite process, which will increase the production time and labor cost. Therefore, it is necessary to develop a new diaphragm to improve the above situation.
  • each optical structure 21 may include a bottom wall 212 and a plurality of side walls 214 .
  • the bottom wall 212 is disposed on a side of the side wall 214 facing the display panel 10 , and the plurality of side walls 214 may be inclined to the bottom wall 212 .
  • at least one side wall 214 is provided with a plurality of arc surfaces 2142 .
  • At least part of the light emitted from the display panel 10 enters the optical structure 21 at the first incident angle from the bottom wall 212 , and refracts out of the optical structure 21 at the first refraction angle through the curved surface 2142 .
  • the first angle of refraction is greater than the first angle of incidence.
  • At least part of the ambient light is reflected to the non-display surface of the display panel 10 through the curved surface 2142 .
  • the side wall 214 and the bottom wall 212 of the optical structure 21 are arranged obliquely, and the first refraction angle of the light emitted by the display panel 10 can be made as large as possible by adjusting the inclination angle, so as to meet the requirements of the optical film.
  • the film 20 requires a wide viewing angle.
  • the optical film 20 of the embodiment of the present application can not only meet the requirements of wide viewing angle but also meet the requirements of low reflectivity. It only needs to set the optical structure 21 into a prism shape, and set the arc surface 2142 on the optical structure 21 to realize the above two Compared with the composite membrane process of the prior art, it is simpler in terms of requirements.
  • the first refraction angle can make the optical film 20 exhibit a relatively large refraction angle by adjusting the inclination angle of the side wall 214 relative to the bottom wall 212 and the height of the optical structure 21, so that the user can view the display from various angles.
  • the device 1 achieves the same display effect, and satisfies the wide viewing angle requirement of the display device 1 .
  • the optical structure 21 can also reflect the ambient light to the non-display surface of the display panel 10 through the curved surface 2142 instead of reflecting the ambient light to the incident direction of the ambient light, which can reduce the reflectivity of the display device 1 and meet the requirements of the display device 1.
  • the requirement for low reflectivity of ambient light In the embodiment of the present application, the requirements of the display device 1 for wide viewing angle and low reflectivity can be met at the same time through an optical film 20 , and the process is simpler than the composite film in the prior art.
  • FIG. 4 is a schematic diagram of a second cross-sectional structure of the optical film shown in FIG. 2 along the A-A direction.
  • Each arc surface 2142 may be concave toward the bottom wall 212 , so that the optical structure 21 presents a structure provided with a plurality of concave arc surfaces 2142 .
  • FIG. 5 is a schematic diagram of a third cross-sectional structure of the optical film shown in FIG. 2 along the A-A direction.
  • Each arc surface 2142 can also protrude away from the bottom wall 212 , so that the optical structure 21 presents a structure of arc surfaces 2142 provided with a plurality of convex hulls. It should be noted that setting the arc surface 2142 can change the normal direction of the light so as to meet the requirement for low reflectivity of the optical film 20. Therefore, no matter whether the arc surface 2142 is concave or convex relative to the bottom wall 212, the implementation of the present application The optical structure 21 of the example can change the normal direction of the ambient light, so as to adjust the reflection angle of the ambient light, and realize the requirement for the low reflectivity of the optical film 20 .
  • the arc curvatures of each arc surface 2142 may be equal.
  • the arc surface 2142 set in this way can facilitate the fabrication of the optical structure 21 .
  • the radius of curvature of the arc may be any value within a range of 2 microns to 4 microns.
  • the radius of curvature of the arc surface 2142 may be 2.5 microns, 2.8 microns or 3 microns.
  • the two sidewalls 214 extending along the length direction of the optical structure 21 are respectively provided with a plurality of arc surfaces 2142 .
  • the inner angles formed by the two side walls 214 and the bottom wall 212 are equal to each other.
  • the optical structure 21 may extend from one end of the display panel 10 along the lengthwise or widthwise direction of the display panel 10 , and the extending direction is the lengthwise direction of the optical structure 21 .
  • a plurality of arc surfaces 2142 are respectively provided on the two sidewalls 214 in the length direction of the optical structure 21 .
  • the optical structure 21 may include a bottom wall 212 and four side walls 214, two side walls 214 extending along the length direction of the optical structure 21 among the four side walls 214 are arranged oppositely, and each side wall 214 has Each is provided with a plurality of arc surfaces 2142 .
  • the two sidewalls 214 with the curved surfaces 2142 are oppositely disposed, and the included angle between each sidewall 214 and the bottom wall 212 , that is, the inner angle formed between each sidewall 214 and the bottom wall 212 is equal.
  • the light emitted by the display panel 10 can be adjusted by adjusting the size of the inner angle between the side wall 214 and the bottom wall 212 and the height of the optical structure 21, so that the light emitted by the display panel 10 passes through the first portion of the optical film 20.
  • the refraction angle is relatively large, so as to meet the requirement for a wide viewing angle of the optical film 20 .
  • the two sidewalls 214 provided with the arc surface 2142 are arranged symmetrically.
  • the other two sidewalls 214 of the four sidewalls 214 are disposed opposite to each other in the length direction of the optical film 20 , and no arc surface 2142 is provided on these two sidewalls 214 .
  • the two sidewalls 214 without the arc surface 2142 can be flush with the end surface of the display panel 10 , and the sidewall 214 without the arc surface 2142 has a smaller area than the sidewall 214 with the arc surface 2142 .
  • the shape of the optical structure 21 may be a prism.
  • the optical structure 21 may be in the shape of a triangular prism, and two sidewalls 214 provided with arc surfaces 2142 are connected at an end away from the bottom wall 212 . It can be understood that, the two sidewalls 214 without the arc surface 2142 are triangular along the length direction of the optical structure 21 , and there are multiple arcs in the two sides.
  • the optical structure 21 may also be in the shape of a quadrangular prism.
  • the optical structure 21 may further include a top wall 216 , the top wall 216 is disposed opposite to the bottom wall 212 , and two ends of the top wall 216 are respectively connected to two side walls 214 provided with arc surfaces 2142 . It can be understood that the two sidewalls 214 without the arc surface 2142 are trapezoidal along the length direction of the optical structure 21 , and there are multiple arcs in the two waistlines of the trapezoid.
  • the filling portion 23 is disposed on the side of the plurality of optical structures 21 away from the display surface, the filling portion 23 covers the plurality of optical structures 21 and fills between the plurality of optical structures 21 between.
  • the multiple optical structures 21 may be arranged side by side on the display surface side of the display panel 10 , that is, the multiple optical structures 21 are arranged in parallel and sequentially on the display surface side of the display panel 10 .
  • There may be a preset distance between two adjacent optical structures 21 and two adjacent optical structures 21 may also be adjacent to each other. The embodiment of the present application is described by taking a preset distance between two adjacent optical structures 21 as an example.
  • a plurality of sequentially arranged optical structures 21 can be arranged along the length direction of the display panel 10 , and a plurality of sequentially arranged optical structures 21 can also be arranged along the width direction of the display panel 10 , which is not limited here.
  • the filling part 23 covers the plurality of optical structures 21 and fills between the plurality of optical structures 21 . It can be understood that when two adjacent optical structures 21 are adjacent, the filling portion 23 covers multiple optical structures 21, and the filling portion 23 fills between the multiple optical structures 21. At this time, the filling portion 23 is The bottom end in the direction of the display surface is not on the same plane as the bottom wall 212 of the optical structure 21 .
  • the filling part 23 covers the multiple optical structures 21 and is arranged on the same plane as the bottom wall 212 of the optical structure 21.
  • the filling part 23 and the multiple optical structures The structure 21 forms a flat membrane structure.
  • the optical film 20 may further include a base layer 25 disposed on a side of the plurality of optical structures 21 facing the display panel 10 .
  • the optical film 20 can be a layer structure including a base layer 25, a plurality of optical structures 21 and a filling part 23, the base layer 25 is located at the bottom, and the multiple optical structures 21 are arranged side by side on the base layer 25, and the filling part 23 Covering the multiple optical structures 21 and filling between the multiple optical structures 21 .
  • the optical film 20 may be composed of three kinds of materials, that is, the base layer 25 , the filling part 23 and the optical structure 21 are respectively made of different materials.
  • the base layer 25 may have a third refractive index, and the third refractive index may be greater than the first refractive index and smaller than the second refractive index, that is, the second refractive index of the filling portion 23 is greater than the third refractive index of the base layer 25 , and the third refractive index of the base layer 25 is greater than the first refractive index of the optical structure 21 . It should be noted that to achieve total reflection of ambient light, it is necessary to go from an optically denser medium to an optically rarer medium.
  • the second refractive index of the filling portion 23 is greater than the first refractive index of the optical structure 21 .
  • the light emitted by the display panel 10 needs to be refracted from the base layer 25 to the optical structure 21 , and then refracted from the optical structure 21 to the outside through the filling portion 23 , and the first refraction angle to the outside needs to be as large as possible.
  • the angle of refraction is smaller than the angle of incidence; .
  • the second refractive index of the filling part 23 can be set higher than the third refractive index of the base layer 25, and then the third refractive index of the base layer 25 can be set higher than the first refractive index of the optical structure 21. , so that the light emitted by the display panel 10 is firstly refracted to the optical structure 21 at a relatively small refraction angle, and then refracted out of the optical film 20 at a relatively large first refraction angle, thereby realizing the wide viewing angle requirement of the optical film 20 .
  • the materials of the optical structure 21, the filling part 23 and the base layer 25 can all be resin materials, and among the resin materials, three materials with different refractive indices are selected to be applied to the optical structure 21, the filling part 23 and the base layer 25 respectively.
  • the refractive index of the resin material can be in the range of 1.4 to 1.7
  • the first refractive index of the optical structure 21, the second refractive index of the filling part 23 and the third refractive index of the base layer 25 can be 1.4, 1.6, 1.7 respectively.
  • the material can achieve the adjustment of the outgoing light, and then the optical structure 21 can realize the divergence of the incident light at a small viewing angle to the outgoing light at a large viewing angle, so as to achieve the goal of improving the viewing angle or widening the viewing angle.
  • the total reflection of the arc surface 2142 can be realized, thereby reducing the surface light reflection of the display device 1 Rate.
  • the inner angle between the side wall 214 and the bottom wall 212 may range from 50° to 80°, and the height of the optical structure 21 may range from 10 ⁇ m to 30 ⁇ m.
  • the setting parameters for each part of the optical film 20 in the embodiment of the present application may be: the inner angle between the side wall 214 and the bottom wall 212 is 60°.
  • the height of the optical structure 21 may be 20 microns.
  • the first refractive index of the optical structure 21 , the second refractive index of the filling part 23 and the third refractive index of the base layer 25 may be 1.4, 1.6, 1.7 respectively.
  • the arc curvature radius of the arc surface 2142 structure may be 2.5 microns.
  • the above parameter settings for each part of the optical film 20 can meet the requirements for low reflectivity and wide viewing angle of the optical film 20 .
  • the setting of parameters for each part of the optical film 20 is not limited to the above-mentioned situation, and no examples will be given here.
  • the arrangement of the optical film 20 in the embodiment of the present application can reduce the reflectivity of the surface of the display device 1 while improving the viewing angle of the display device 1, and does not require the compounding of films to realize multiple functions.
  • the process is simple and suitable for Mass production.
  • FIG. 6 is a schematic flowchart of a method for preparing an optical film provided in an embodiment of the present application.
  • the embodiment of the present application also provides a method for preparing an optical film, wherein, the structure and working principle of the optical film 20 can refer to FIG. 1 to FIG. 5 and the above description, and will not be repeated here.
  • the optical film 20 is applied to the display panel 10 , and the optical film 20 is disposed on one side of the display surface of the display panel 10 .
  • the preparation method of optical film comprises:
  • a flat substrate is required to place multiple optical structures 21 .
  • multiple optical structures 21 can be directly formed on the substrate, and the substrate is etched away after the optical structures 21 are formed to obtain the multiple optical structures 21 .
  • the base layer 25 and the plurality of optical structures 21 that are formed last only need to be separated from the substrate.
  • each optical structure is provided with a plurality of curved surfaces on the side facing away from the display surface, the curved surfaces are used to reflect at least part of ambient light, and each optical structure has a first refractive index.
  • a substrate layer of a plurality of optical structures 21 arranged at equal intervals or adjacently arranged can be fabricated on the substrate first.
  • the substrate layer can be in the shape of a triangular prism, and the bottom wall of the substrate layer is in contact with the substrate.
  • the arc surface 2142 structure is formed on the substrate layer using a forming process, thereby forming the forming of the optical structure 21 .
  • the forming process may be a Roll to Roll (roll-to-roll) process, and of course, the forming process may also be other thermoplastic forming processes.
  • the optical structure 21 can also be directly formed on the packaging material (such as TFE (Thin Film Encapsulation, film encapsulation)), and directly used after the production is completed.
  • a filling material may be injected outside the optical structure 21 to form a flat outer surface, thereby forming the structure of the filling portion 23 .
  • the filling part 23 covers the plurality of optical structures 21 , and the filling part 23 fills between the plurality of optical structures 21 .
  • the base layer 25 when the base layer 25 is disposed on the substrate, the base layer 25 , the plurality of optical structures 21 and the filling portion 23 jointly constitute the optical film 20 after molding.
  • the optical film 20 of the embodiment of the present application can be disposed on the light emitting side of the display panel 10 for use. At least part of the light emitted from the display panel 10 enters the optical structure 21 at the first incident angle from the bottom wall 212 , and refracts out of the optical structure 21 at the first refraction angle through the curved surface 2142 . The first angle of refraction is greater than the first angle of incidence. At least part of the ambient light is reflected to the non-display surface of the display panel 10 through the curved surface 2142 .
  • the critical angle of refraction between the optical structure 21 and the filling portion 23 can be adjusted by adjusting the refractive index of the filling portion 23 and the optical structure 21 , thereby realizing total reflection of the optical structure 21 .
  • the plurality of optical structures 21 are all provided with an arc surface 2142 capable of reflecting at least part of the ambient light, and then the adjustment of the reflection angle of the ambient light can be realized by adjusting the curvature of the arc surface 2142, so as to realize the adjustment of the reflection angle of the ambient light. Therefore, the display device 1 realizes the requirement of low reflectivity through the optical film 20 .
  • the first refraction angle of the light emitted by the display panel 10 can be as large as possible by adjusting the inclination angle, so as to meet the requirement of the optical film 20 for a wide viewing angle.
  • the optical film 20 of the embodiment of the present application can not only meet the requirements of wide viewing angle but also meet the requirements of low reflectivity. It only needs to set the optical structure 21 into a prism shape, and set the arc surface 2142 on the optical structure 21 to realize the above two Compared with the composite membrane process of the prior art, it is simpler in terms of requirements.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more features.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光学膜片(20)和显示装置,光学膜片(20)包括:多个光学结构(21),每一光学结构(21)背离显示面的一侧均设置有多个弧面(2142),弧面(2142)用于反射至少部分环境光线,每一光学结构(21)具有第一折射率;填充部(23),填充于多个光学结构(21)之间,填充部(23)具有大于第一折射率的第二折射率;调整弧面(2142)的曲率可以实现对环境光线反射角度的调整。

Description

光学膜片和显示装置 技术领域
本申请属于显示装置技术领域,尤其涉及一种光学膜片和显示装置。
背景技术
反射率是大尺寸显示装置的重要光学规格。反射率是指用户从显示装置的正面观看熄灭的显示装置时,显示装置能反射回的光线的多少。考虑用户使用显示装置的习惯,用户通常不希望能从熄灭的显示装置中看到反射的光线,也即需要显示装置具有较低的反射率,以此来保护用户的隐私。
然而,现有技术中的光学膜片通常降低反射率的效果不好。
技术问题
现有技术中的光学膜片通常降低反射率的效果不好。
技术解决方案
本申请实施例提供一种光学膜片和显示装置,以解决现有技术中的光学膜片通常降低反射率的效果不好的问题。
第一方面,本申请实施例提供一种光学膜片,应用于显示面板,所述光学膜片设置于所述显示面板的显示面一侧,所述光学膜片包括:
多个光学结构,每一所述光学结构背离所述显示面的一侧均设置有多个弧面,所述弧面用于反射至少部分环境光线,每一所述光学结构具有第一折射率;
填充部,设置于所述多个光学结构背离所述显示面的一侧,且覆盖住所述多个光学结构,并填充于所述多个光学结构之间,所述填充部具有第二折射率,所述第二折射率大于所述第一折射率。
本申请实施例还提供一种显示装置,包括显示面板和光学膜片,所述光学膜片如上任一项所述的光学膜片。
有益效果
本申请实施例的光学膜片和显示装置中,可以通过调整填充部与光学结构的折射率大小来调整光学结构与填充部之间的折射临界角,进而实现光学结构的全反射。且多个光学结构中均设置有能够反射至少部分环境光线的弧面,进而可以通过调整弧面的曲率来实现对环境光线反射角度的调整,以实现对环境光线反射角度的调整,从而使显示装置通过此光学膜片实现低反射率的要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对本领域技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行说明。其中,在下面的描述中相同的附图标号表示相同部分。
图1为本申请实施例提供的显示装置的结构示意图。
图2为图1所示的显示装置中光学膜片的结构示意图。
图3为图2所示的光学膜片沿A-A方向的第一种剖面结构示意图。
图4为图2所示的光学膜片沿A-A方向的第二种剖面结构示意图。
图5为图2所示的光学膜片沿A-A方向的第三种剖面结构示意图。
图6为本申请实施例提供的光学膜片的制备方法流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
反射率是LCD(Liquid Crystal Display,液晶显示器)和OLED(Organic Light-Emitting Diode,有机发光半导体)等大尺寸显示装置的重要光学规格。反射率是指用户从显示装置的正面观看熄灭的显示装置时,显示装置能反射回的光线的多少。考虑用户使用显示装置的习惯,用户通常不希望能从熄灭的显示装置中看到反射的光线,也即需要显示装置具有较低的反射率。低反射率通常是指:在显示装置熄灭状态下,显示装置可以反射的光线较少,以致于用户不能通过显示装置的屏幕实现“照镜子”的动作,从而可以保护用户的隐私,使得显示装置的性能更优。
然而,现有技术中的光学膜片通常降低反射率的效果不好。
为解决上述问题,本申请实施例提供一种光学膜片和显示装置,以下将结合附图进行说明。
示例性的,请参阅图1,图1为本申请实施例提供的显示装置的结构示意图。本申请实施例提供一种显示装置1,显示装置1可以为手机、台式电脑、笔记本、平板电脑、腕表设备、电视机、媒体播放设备、计算机监视器等具有显示功能的装置。显示装置1可以包括显示面板10和光学膜片20。显示面板10可以发出光线,显示面板10具有显示面和非显示面,显示面可以理解为显示面板10显示发出光线的一侧面,非显示面也即与显示面对应设置的不发光的一侧面。本申请实施例的光学膜片20可以改善显示装置1熄灭状态下的低反射率效果不好的问题,且光学膜片20可以调整显示面板10发出的光线的出射角度。
为了更清楚的说明本申请实施例的光学膜片20的作用原理及结构组成,以下将结合附图对光学膜片20的结构组成和作用原理进行说明。
示例性的,请结合图1并参阅图2和图3,图2为图1所示的显示装置中光学膜片的结构示意图,图3为图2所示的光学膜片沿A-A方向的第一种剖面结构示意图。本申请实施例提供一种光学膜片20,应用于显示面板10。光学膜片20设置于显示面板10的显示面一侧。光学膜片20可以包括多个光学结构21,每一光学结构21背离显示面的一侧均设置有多个弧面2142,弧面2142用于反射至少部分环境光线,每一光学结构21具有第一折射率。每一光学膜片20还包括填充部23,填充部23设置于多个光学结构21背离显示面的一侧,且覆盖住多个光学结构21,并填充于多个光学结构21之间,填充部23具有第二折射率,第二折射率大于第一折射率。
本申请实施例的光学膜片20可以通过调整填充部23与光学结构21的折射率大小来调整光学结构21与填充部23之间的折射临界角,进而实现光学结构21的全反射。且多个光学结构21中均设置有能够反射至少部分环境光线的弧面2142,进而可以通过调整弧面2142的曲率来实现对环境光线反射角度的调整,以实现对环境光线反射角度的调整,从而使显示装置1通过此光学膜片20实现低反射率的要求。
需要说明的是,要实现光学膜片20对于低反射率的要求,首先,光学膜片20需要满足全反射的要求。全反射(total internal reflection,TIR)是一种光学现象。当光线从较高折射率的介质进入到较低折射率的介质时,如果入射角大于某一临界角(光线远离法线)时,折射光线将会消失,所有的入射光线将被反射而不进入低折射率的介质。因此,将填充部23的第二折射率设置于大于光学结构21的第一折射率,从而实现环境光线经过填充部23到光学结构21的全反射。
对于光学膜片20低反射率的实现,全反射是第一步,要实现光学膜片20的低反射率,也即全反射的光线较少部分反射到显示面的一侧,也可以理解为外部环境光线经填充部23到达光学结构21的表面后,再反射到非显示面,使得用户观看显示面时看不到环境光线的反射,以此实现光学膜片20低反射率的要求。为实现上述光学反射,本申请实施例通过设置弧面2142来调整反射光线,可以通过调整弧面2142的曲率来实现将反射的光线反射至非显示面。
其中,本申请实施例的光学膜片20还可以实现调整显示面板10发出的光线的出射角度,从而实现对光学膜片20的广视角的要求。
需要说明的是,大尺寸显示装置的亮度表现会随视角变大而变得越来越差。为解决这一问题,现有技术中通常使用光学膜片来改善大角度的视角问题,通过在显示装置上增加具有不同微结构的膜片,达到改善显示装置大视角表现的目的。同时,为了兼顾显示装置表面较低的外部光反射率,要同时在显示面板上贴附偏光片或者减反膜来降低表面反射率。因此,要兼顾显示装置的广视角规格和低反射率规格,需要将两种或者多种功能的膜片进行复合。
然而,多层膜片复合后,复合膜的光学性质相对于单一膜会发生改变,需要重新评估其光学性能是否符合要求。并且,复合膜的工艺也较为繁琐。若在量产中使用复合膜,既增加了膜片的生产成本,还要增加相应的复合工序,提升了生产的时间和人力成本。因此,需要开发一种新的膜片来改善上述情况。
示例性的,每一光学结构21可以包括底壁212和多个侧壁214。底壁212设置于侧壁214朝向显示面板10的一侧,多个侧壁214可以与底壁212倾斜设置。其中,至少一个侧壁214上设置有多个弧面2142。显示面板10发出的至少部分光线自底壁212呈第一入射角入射光学结构21,并经弧面2142呈第一折射角折射出光学结构21。第一折射角大于第一入射角。至少部分环境光线经弧面2142反射至显示面板10的非显示面。
本申请实施例的光学膜片20中,光学结构21的侧壁214与底壁212倾斜设置,可以通过调整倾斜角度使得显示面板10发出光线的第一折射角尽可能的大,从而满足光学膜片20对于广视角的要求。本申请实施例的光学膜片20既可以满足广视角要求又能满足低反射率的要求,仅需要将光学结构21设置为棱柱形,且在光学结构21上设置弧面2142即可实现上述两方面的需求,相比于现有技术的复合膜工艺简单。
需要说明的是,第一折射角可以通过调整侧壁214相对于底壁212的倾斜角度以及光学结构21的高度而使光学膜片20呈现比较大折射角度,从而使用户可以从各个角度观看显示装置1实现相同的显示效果,满足了显示装置1的广视角要求。光学结构21还可以使环境光线经过弧面2142反射至显示面板10的非显示面,而非使环境光线反射至环境光线的入射方向,可以减小显示装置1的反射率,满足了显示装置1的对环境光线的低反射率的要求。本申请实施例通过一个光学膜片20可以同时满足显示装置1对广视角和低反射率的要求,且相比于现有技术的复合膜工艺简单。
其中,请结合图1至图3并参阅图4,图4为图2所示的光学膜片沿A-A方向的第二种剖面结构示意图。每一弧面2142可以朝向底壁212凹陷,使得光学结构21呈现设置有多个凹陷的弧面2142的结构。在一些实施例中,请结合图1和图2并参阅图5,图5为图2所示的光学膜片沿A-A方向的第三种剖面结构示意图。每一弧面2142还可以远离底壁212凸起,使得光学结构21呈现设置有多个凸包的弧面2142的结构。需要说明的是,设置弧面2142可以改变光线的法线方向,从而实现对于光学膜片20低反射率的要求,因此,无论弧面2142相对于底壁212是凹陷还是凸起,本申请实施例的光学结构21均可以改变环境光线的法线方向,从而调整环境光线的反射角度,实现对于光学膜片20低反射率的要求。
示例性的,每一弧面2142的圆弧曲率可以相等。这样设置的弧面2142可以方便制作光学结构21。示例性的,圆弧曲率半径可以为2微米至4微米范围内的任意值。比如,弧面2142的圆弧曲率半径可以为2.5微米、2.8微米或者3微米。通过选择弧面2142的圆弧曲率,可以调整环境光线的反射角度来实现光学膜片20的低反射率要求。
示例性的,沿光学结构21的长度方向延伸的两个侧壁214分别设置有多个弧面2142。两个侧壁214分别与底壁212形成的内角相等。需要说明的是,光学结构21可以自显示面板10的一端部、沿显示面板10的长度方向或者宽度方向延伸,此延伸方向即为光学结构21的长度方向。在光学结构21的长度方向上的两个侧壁214上分别设置有多个弧面2142。可以理解的是,光学结构21可以包括底壁212和四个侧壁214,四个侧壁214中沿光学结构21的长度方向延伸的两个侧壁214相对设置,且每一侧壁214上均设置有多个弧面2142。设置有弧面2142的两个侧壁214相对设置,且每一侧壁214与底壁212之间的夹角,也即每一侧壁214与底壁212之间夹设形成的内角相等。其中,可以通过调整侧壁214与底壁212之间的内角的大小以及光学结构21的高度来对显示面板10发出的光线进行调整,以使得显示面板10发出光线经过光学膜片20的第一折射角较大,从而实现对于光学膜片20广视角的要求。其中,设置有弧面2142的两个侧壁214对称设置。四个侧壁214中的另两个侧壁214在光学膜片20长度方向相对设置,这两个侧壁214上不设置弧面2142。不设置弧面2142的两个侧壁214可以与显示面板10的端面齐平,且不设置弧面2142的侧壁214相比于设置弧面2142的侧壁214面积小。
其中,光学结构21的形状可以为棱柱形。比如,如图3所示,光学结构21可以为三棱柱形,设置有弧面2142的两个侧壁214远离底壁212的一端连接。可以理解的是,未设置弧面2142的两个侧壁214沿光学结构21的长度方向为三角形,且其中两个边线中具有多个弧线。再比如,如图4和图5所示,光学结构21还可以为四棱柱形。光学结构21还可以包括顶壁216,顶壁216与底壁212相对设置,且顶壁216的两端分别连接设置有弧面2142的两个侧壁214。可以理解的是,未设置弧面2142的两个侧壁214沿光学结构21的长度方向为梯形,且梯形的两腰线中具有多个弧线。
示例性的,请继续参阅图1至图3,填充部23设置于多个光学结构21背离显示面的一侧,填充部23覆盖住多个光学结构21,并填充于多个光学结构21之间。需要说明的是,多个光学结构21可以并排设置于显示面板10的显示面一侧,也即多个光学结构21平行依次排布于显示面板10的显示面一侧。相邻两个光学结构21之间可以间隔有预设距离,相邻两个光学结构21也可以邻接在一起。本申请实施例以相邻两个光学结构21之间间隔有预设距离为例进行说明。多个依次排布的光学结构21可以设置沿显示面板10的长度方向排布,多个依次排布的光学结构21也可以沿显示面板10的宽度方向排布,这里不作限制。填充部23覆盖住多个光学结构21,并填充于多个光学结构21之间。可以理解的是,当相邻两个光学结构21之间邻接时,填充部23覆盖住多个光学结构21,且填充部23填充于多个光学结构21之间,此时,填充部23在显示面方向的最底端与光学结构21的底壁212不在同一平面上。当相邻两个光学结构21之间有预设距离时,填充部23覆盖住多个光学结构21,并设置于与光学结构21的底壁212在同一平面上,填充部23与多个光学结构21构成平整的膜片结构。
示例性的,光学膜片20还可以包括基底层25,基底层25设置于多个光学结构21朝向显示面板10一侧。可以理解的是,光学膜片20可以为包括基底层25、多个光学结构21和填充部23的层结构,基底层25位于底部,多个光学结构21并排设置于基底层25,填充部23覆盖住多个光学结构21并填充于多个光学结构21之间。
其中,光学膜片20可以由三种材料构成,也即基底层25、填充部23和光学结构21分别使用不同的材料制作而成。示例性的,基底层25可以具有第三折射率,第三折射率可以大于第一折射率且小于第二折射率,也即填充部23的第二折射率大于基底层25的第三折射率,且基底层25的第三折射率大于光学结构21的第一折射率。需要说明的是,要实现环境光线的全反射,需要从光密介质到光疏介质,因此,填充部23的第二折射率大于光学结构21的第一折射率。显示面板10发出的光线需要经基底层25到光学结构21折射出,再从光学结构21经填充部23折射到外界,且折射到外界的第一折射角需要尽可能的大。由于光由光速大(折射率大)的介质中进入光速小(折射率小)的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。因此,在设置时,可以将填充部23的第二折射率设置于大于基底层25的第三折射率,再可以将基底层25的第三折射率设置于大于光学结构21的第一折射率,使得显示面板10发出的光线先以较小的折射角折射到光学结构21,再以较大的第一折射角折射出光学膜片20,从而实现对光学膜片20的广视角要求。示例性的,对于光学结构21、填充部23和基底层25的材料可以均采用树脂材料,在树脂材料中选择三种不同折射率的材料分别应用于光学结构21、填充部23和基底层25。比如,树脂材料的折射率可以为1.4至1.7范围内,光学结构21的第一折射率、填充部23的第二折射率和基底层25的第三折射率可以分别为1.4、1.6、1.7,以使得光学膜片20既可以实现广视角的要求,又可以实现低反射率的要求。
需要说明的是,通过调整光学结构21的设置有弧面2142侧壁214与底壁212之间的内角、光学结构21的高度以及对基底层25、填充部23和光学结构21更换折射率不同的材料,可以实现出射光的调整,进而可以通过光学结构21实现小视角入射光线发散到大视角出射光线,以实现视角改善或者说广视角的目标。此外,通过调整弧面2142结构的圆弧曲率、对基底层25、填充部23和光学结构21更换折射率的调整与配合,可以实现弧面2142的全反射,从而降低显示装置1的表面光反射率。
示例性的,对于侧壁214与底壁212之间的内角可以为50°至80°范围内的值,光学结构21的高度可以为10微米至30微米范围内的值。比如,对于本申请实施例的光学膜片20中各部分的设置参数可以为:侧壁214与底壁212之间的内角为60°。光学结构21的高度可以为20微米。光学结构21的第一折射率、填充部23的第二折射率和基底层25的第三折射率可以分别为1.4、1.6、1.7。弧面2142结构的圆弧曲率半径可以为2.5微米。上述对于光学膜片20中各部分的参数设置可以满足对于光学膜片20的低反射率和广视角的要求。当然,对于光学膜片20的各部分参数设置并不限于上述情况,这里不再一一举例。
需要说明的是,本申请实施例的光学膜片20的设置,可以在提升显示装置1视角的同时降低显示装置1表面的反射率,不需要实现多种功能的膜片复合,工艺简单,适合量产。
示例性的,请参阅图6,图6为本申请实施例提供的光学膜片的制备方法流程示意图。本申请实施例还提供一种光学膜片的制备方法,其中,光学膜片20的结构和作用原理可以参照图1至图5及上述说明,这里不再赘述。光学膜片20应用于显示面板10,光学膜片20设置于显示面板10的显示面一侧。光学膜片的制备方法包括:
101、提供一基板。
示例性的,在制作光学结构21之前,需要一平整的基板来放置多个光学结构21。在制作时,可以直接在基板上形成多个光学结构21,在光学结构21成型之后刻蚀掉基板以得到多个光学结构21。也可以在基板上先制作一层基底层25,随后再形成多个光学结构21。最后成型的基底层25和多个光学结构21从基板上脱离即可。
102、在基板上形成多个光学结构,每一光学结构背离显示面的一侧均设置有多个弧面,弧面用于反射至少部分环境光线,每一光学结构具有第一折射率。
示例性的,可以在基板上先制作出等间隔排布或者邻接排布的多个光学结构21的基材层,比如,基材层可以呈三棱柱形,基材层的底壁与基板接触。随后使用成型工艺在基材层上进行弧面2142结构的成型,进而形成光学结构21的成型。其中,成型工艺可以为Roll to Roll(卷对卷)工艺,当然,成型工艺也可以为其他热塑成型的工艺。比如,光学结构21也可以直接采用光刻工艺在封装材料(如TFE(Thin Film Encapsulation,薄膜封装))中成型,制作完成后直接进行使用。
103、在多个光学结构背离显示面的一侧形成填充部,且覆盖住多个光学结构,并填充于多个光学结构之间,填充部具有第二折射率,第二折射率大于第一折射率。
在光学结构21成型之后,可以在光学结构21的外侧注入填充材料,以形成平整的外表面,从而形成填充部23的结构。填充部23覆盖住多个光学结构21,且填充部23填充于多个光学结构21之间。
在一些实施例中,在基板上设置有基底层25时,基底层25、多个光学结构21和填充部23成型后共同构成光学膜片20。
本申请实施例的光学膜片20可以设置于显示面板10的出光侧进行使用。显示面板10发出的至少部分光线自底壁212呈第一入射角入射光学结构21,并经弧面2142呈第一折射角折射出光学结构21。第一折射角大于第一入射角。至少部分环境光线经弧面2142反射至显示面板10的非显示面。本申请实施例的光学膜片20中,可以通过调整填充部23与光学结构21的折射率大小来调整光学结构21与填充部23之间的折射临界角,进而实现光学结构21的全反射。且多个光学结构21中均设置有能够反射至少部分环境光线的弧面2142,进而可以通过调整弧面2142的曲率来实现对环境光线反射角度的调整,以实现对环境光线反射角度的调整,从而使显示装置1通过此光学膜片20实现低反射率的要求。可以通过调整倾斜角度使得显示面板10发出光线的第一折射角尽可能的大,从而满足光学膜片20对于广视角的要求。本申请实施例的光学膜片20既可以满足广视角要求又能满足低反射率的要求,仅需要将光学结构21设置为棱柱形,且在光学结构21上设置弧面2142即可实现上述两方面的需求,相比于现有技术的复合膜工艺简单。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
以上对本申请实施例所提供的光学膜片和显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种光学膜片,应用于显示面板,其中,所述光学膜片设置于所述显示面板的显示面一侧,所述光学膜片包括:
    多个光学结构,每一所述光学结构背离所述显示面的一侧均设置有多个弧面,所述弧面用于反射至少部分环境光线,每一所述光学结构具有第一折射率;
    填充部,设置于所述多个光学结构背离所述显示面的一侧,且覆盖住所述多个光学结构,并填充于所述多个光学结构之间,所述填充部具有第二折射率,所述第二折射率大于所述第一折射率。
  2. 根据权利要求1所述的光学膜片,其中,每一所述光学结构包括底壁和多个侧壁,所述底壁设置于所述侧壁朝向所述显示面板的一侧,多个所述侧壁与所述底壁倾斜设置。
  3. 根据权利要求2所述的光学膜片,其中,至少一个所述侧壁上设置有多个所述弧面。
  4. 根据权利要求3所述的光学膜片,其中,所述显示面板发出的至少部分光线自所述底壁呈第一入射角入射所述光学结构,并经所述侧壁呈第一折射角折射出所述光学结构,所述第一折射角大于所述第一入射角;
    至少部分环境光线经所述弧面反射至所述显示面板的非显示面。
  5. 根据权利要求3所述的光学膜片,其中,每一所述弧面朝向所述底壁凹陷或者远离所述底壁凸起。
  6. 根据权利要求3所述的光学膜片,其中,沿所述光学结构的长度方向延伸的两个所述侧壁分别设置有多个弧面,两个所述侧壁分别与所述底壁形成的内角相等。
  7. 根据权利要求6所述的光学膜片,其中,两个所述侧壁远离所述底壁的一端连接。
  8. 根据权利要求6所述的光学膜片,其中,所述光学结构还包括顶壁,所述顶壁与所述底壁相对设置,且所述顶壁连接两个所述侧壁。
  9. 根据权利要求2所述的光学膜片,其中,所述光学膜片还包括基底层,所述基底层设置于所述多个光学结构朝向所述显示面板一侧。
  10. 根据权利要求9所述的光学膜片,其中,所述基底层具有第三折射率,所述第三折射率大于所述第一折射率且小于所述第二折射率。
  11. 一种显示装置,其中,包括显示面板和光学膜片,所述光学膜片设置于所述显示面板的显示面一侧,所述光学膜片包括:
    多个光学结构,每一所述光学结构背离所述显示面的一侧均设置有多个弧面,所述弧面用于反射至少部分环境光线,每一所述光学结构具有第一折射率;
    填充部,设置于所述多个光学结构背离所述显示面的一侧,且覆盖住所述多个光学结构,并填充于所述多个光学结构之间,所述填充部具有第二折射率,所述第二折射率大于所述第一折射率。
  12. 根据权利要求11所述的显示装置,其中,每一所述光学结构包括底壁和多个侧壁,所述底壁设置于所述侧壁朝向所述显示面板的一侧,多个所述侧壁与所述底壁倾斜设置。
  13. 根据权利要求12所述的显示装置,其中,至少一个所述侧壁上设置有多个所述弧面。
  14. 根据权利要求13所述的显示装置,其中,所述显示面板发出的至少部分光线自所述底壁呈第一入射角入射所述光学结构,并经所述侧壁呈第一折射角折射出所述光学结构,所述第一折射角大于所述第一入射角;
    至少部分环境光线经所述弧面反射至所述显示面板的非显示面。
  15. 根据权利要求13所述的显示装置,其中,每一所述弧面朝向所述底壁凹陷或者远离所述底壁凸起。
  16. 根据权利要求13所述的显示装置,其中,沿所述光学结构的长度方向延伸的两个所述侧壁分别设置有多个弧面,两个所述侧壁分别与所述底壁形成的内角相等。
  17. 根据权利要求16所述的显示装置,其中,两个所述侧壁远离所述底壁的一端连接。
  18. 根据权利要求16所述的显示装置,其中,所述光学结构还包括顶壁,所述顶壁与所述底壁相对设置,且所述顶壁连接两个所述侧壁。
  19. 根据权利要求12所述的显示装置,其中,所述光学膜片还包括基底层,所述基底层设置于所述多个光学结构朝向所述显示面板一侧。
  20. 根据权利要求19所述的显示装置,其中,所述基底层具有第三折射率,所述第三折射率大于所述第一折射率且小于所述第二折射率。
PCT/CN2021/130144 2021-11-01 2021-11-11 光学膜片和显示装置 WO2023070751A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/618,510 US20240036239A1 (en) 2021-11-01 2021-11-11 Optical film and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111283626.4 2021-11-01
CN202111283626.4A CN114002879B (zh) 2021-11-01 2021-11-01 光学膜片和显示装置

Publications (1)

Publication Number Publication Date
WO2023070751A1 true WO2023070751A1 (zh) 2023-05-04

Family

ID=79926199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130144 WO2023070751A1 (zh) 2021-11-01 2021-11-11 光学膜片和显示装置

Country Status (3)

Country Link
US (1) US20240036239A1 (zh)
CN (1) CN114002879B (zh)
WO (1) WO2023070751A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755459A (zh) * 2022-11-09 2023-03-07 Tcl华星光电技术有限公司 显示面板、显示面板的制作方法和光罩

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866536A (zh) * 2011-07-05 2013-01-09 奇美实业股份有限公司 液晶显示器
CN106918855A (zh) * 2017-04-07 2017-07-04 京东方科技集团股份有限公司 一种反射型显示装置
CN109143445A (zh) * 2018-09-30 2019-01-04 惠科股份有限公司 偏光板、显示面板及显示装置
US20200033665A1 (en) * 2018-07-27 2020-01-30 Samsung Electronics Co., Ltd. Display apparatus
CN211123564U (zh) * 2019-03-11 2020-07-28 深圳阜时科技有限公司 一种光学膜层结构、背光模组、显示装置及电子设备
CN111796348A (zh) * 2020-07-02 2020-10-20 Tcl华星光电技术有限公司 视角扩散膜片及显示面板
CN113514983A (zh) * 2021-06-30 2021-10-19 惠科股份有限公司 背光模组和显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995701A (en) * 1989-03-06 1991-02-26 Qantix Corporation Anti-glare filter with improved viewing area
DE102009027537A1 (de) * 2008-07-18 2010-02-04 Samsung Corning Precision Glass Co., Ltd., Gumi Berührungseingabe detektierendes Anzeigefilter und Anzeigevorrichtung mit demselben
JP5715343B2 (ja) * 2010-01-28 2015-05-07 株式会社翔栄 タッチパネル
JP2012073487A (ja) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd 反射防止物品および表示装置
KR102070410B1 (ko) * 2013-06-04 2020-01-28 삼성전자주식회사 색 변화 저감용 광학 필름 및 이를 채용한 유기 발광 표시 장치
JP6364867B2 (ja) * 2014-03-27 2018-08-01 大日本印刷株式会社 反射防止物品、及び画像表示装置
CN104696876B (zh) * 2015-04-02 2017-07-04 江苏双星彩塑新材料股份有限公司 视角扩宽膜片和具有该膜片的背光模组及液晶显示器
US10408989B2 (en) * 2015-04-29 2019-09-10 Samsung Sdi Co., Ltd. Optical film for improving contrast ratio, polarizing plate including same, and liquid crystal display device including same
CN205485177U (zh) * 2015-12-04 2016-08-17 江苏日久光电股份有限公司 一种高透过型光学组合薄膜
CN107664871B (zh) * 2016-07-27 2020-03-31 京东方科技集团股份有限公司 一种背光模组及显示装置
CN109709738B (zh) * 2017-10-20 2019-11-22 京东方科技集团股份有限公司 防窥装置及其制造方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866536A (zh) * 2011-07-05 2013-01-09 奇美实业股份有限公司 液晶显示器
CN106918855A (zh) * 2017-04-07 2017-07-04 京东方科技集团股份有限公司 一种反射型显示装置
US20200033665A1 (en) * 2018-07-27 2020-01-30 Samsung Electronics Co., Ltd. Display apparatus
CN109143445A (zh) * 2018-09-30 2019-01-04 惠科股份有限公司 偏光板、显示面板及显示装置
CN211123564U (zh) * 2019-03-11 2020-07-28 深圳阜时科技有限公司 一种光学膜层结构、背光模组、显示装置及电子设备
CN111796348A (zh) * 2020-07-02 2020-10-20 Tcl华星光电技术有限公司 视角扩散膜片及显示面板
CN113514983A (zh) * 2021-06-30 2021-10-19 惠科股份有限公司 背光模组和显示装置

Also Published As

Publication number Publication date
CN114002879B (zh) 2023-06-30
CN114002879A (zh) 2022-02-01
US20240036239A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US6950155B2 (en) Liquid-crystal display device
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
US20110051046A1 (en) Optical sheet, backlight unit and liquid crystal display device having the same and method of fabricating optical sheet
US10818695B2 (en) Anti-reflective substrate and method for preparing the same, array substrate and display device
US7695152B2 (en) Prism sheet and liquid crystal display device using the same
CN211979374U (zh) 调光组件、背光模组及液晶显示装置
TWI459088B (zh) 具導光板稜柱結構的背光模組及其製造方法
TW201915982A (zh) 拼接顯示裝置
US10788618B2 (en) Backlight module as well as display panel and electronic device comprising the same
WO2020187105A1 (zh) 反射式液晶显示装置及其制备方法
WO2023070751A1 (zh) 光学膜片和显示装置
WO2020057295A1 (zh) 背光模组及其制作方法、显示装置
WO2023155527A1 (zh) 背光模组及显示装置
TW201939080A (zh) 顯示裝置
JP2001167625A (ja) 面光源装置及び液晶表示装置
JP2000147429A (ja) 偏光面光源装置及び液晶表示装置
CN115685618B (zh) 一种显示面板及其制备方法
CN112285971A (zh) 偏光结构及液晶显示装置
CN107144916A (zh) 一种背光模组及其控制方法、显示装置
TWM602646U (zh) 導光板及光源模組
US20240045257A1 (en) Viewing angle diffusion film and display device
JP2002006143A (ja) 導光板、面光源装置及び反射型液晶表示装置
WO2023028828A1 (zh) 光学叠层结构、显示模组、终端及相关制备方法
WO2022199006A1 (zh) 一种背光模组及显示装置
JPH11218760A (ja) 偏光面光源装置及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17618510

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962097

Country of ref document: EP

Kind code of ref document: A1