WO2020057295A1 - 背光模组及其制作方法、显示装置 - Google Patents

背光模组及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020057295A1
WO2020057295A1 PCT/CN2019/100374 CN2019100374W WO2020057295A1 WO 2020057295 A1 WO2020057295 A1 WO 2020057295A1 CN 2019100374 W CN2019100374 W CN 2019100374W WO 2020057295 A1 WO2020057295 A1 WO 2020057295A1
Authority
WO
WIPO (PCT)
Prior art keywords
microprisms
substrate
microprism
light guide
guide layer
Prior art date
Application number
PCT/CN2019/100374
Other languages
English (en)
French (fr)
Inventor
张树柏
孙海威
翟明
浩育涛
程鹏飞
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/641,123 priority Critical patent/US11112554B2/en
Publication of WO2020057295A1 publication Critical patent/WO2020057295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a backlight module, a manufacturing method thereof, and a display device.
  • Thin film transistor-liquid crystal display is a type of flat-panel display device, and because of its small size, low power consumption, no radiation, and relatively low production costs, it is becoming increasingly popular. More and more are used in the field of high performance display.
  • a TFT-LCD usually includes a backlight module (BLU) for providing a backlight to a display panel.
  • BLU backlight module
  • the backlight module includes a plurality of stacked optical films. Therefore, in the state of use, testing, or transportation of the display device, some optical films may undergo relative displacement, which may cause wrinkles, and cause undesirable phenomena such as Newton rings and moiré patterns in the displayed image.
  • a backlight module includes a composite layer.
  • the composite layer includes: a light guide layer and a first substrate opposite to each other, wherein the light guide layer includes a light exit surface facing the first substrate; and a plurality of light guide layers on the light exit surface of the light guide layer.
  • a first microprism wherein each first microprism extends along a first direction parallel to the light exit surface of the light guide layer and the plurality of first microprisms along the light exit surface parallel to the light guide layer
  • a second direction of the first direction is arranged in sequence, the second direction and the first direction intersect each other; and a plurality of second microprisms on a surface of the first substrate facing the light guide layer, each of which The second microprisms extend parallel to the second direction, and the plurality of second microprisms are sequentially arranged along the first direction.
  • the first microprism and the second microprism are fixedly connected.
  • the composite layer further includes: a second substrate between the plurality of first microprisms and the plurality of second microprisms, Wherein, a surface of the second substrate facing the first substrate is connected to the plurality of second microprisms, and a surface of the second substrate facing the light guide layer is in contact with the plurality of first microprisms. Microprism connection.
  • the composite layer further includes: a plurality of first microprisms and a plurality of second microprisms are stacked and connected to each other A third substrate and a fourth substrate. Further, a surface of the third substrate facing the first substrate is connected to the plurality of second microprisms, and a surface of the fourth substrate facing the light guiding layer is in contact with the plurality of first microprisms. A microprism connection.
  • the plurality of first microprisms are in direct contact with the plurality of second microprisms and form an integrated structure.
  • the composite layer further includes: one at a position where the plurality of first microprisms and the plurality of second microprisms are in contact with each other. Or multiple grooves. Specifically, each groove is located in a first microprism and is configured to receive a portion of a corresponding second microprism. Alternatively, each groove is located in a second microprism and is configured to receive a portion of a corresponding first microprism.
  • At least one of the plurality of first microprisms includes a first triangular prism, and the first triangular prism includes a first side surface and a second side surface. And a third side, wherein the first side of the first triangular prism is in contact with the light guide layer, and the angle between the second side and the third side is 60 ° -120 °.
  • At least one of the plurality of second microprisms includes a second triangular prism, the second triangular prism includes a first side surface, a second side surface, and a third side surface, wherein the second triangular prism The first side of the contact with the first substrate, and the angle between the second and third sides is 60 ° -120 °.
  • the second side and the third side of the first triangular prism are connected by an arc surface.
  • the second side and the third side of the second triangular prism are connected by an arc surface.
  • the composite layer further includes: a plurality of dot structure on a surface of the light guide layer away from the first substrate.
  • a thickness of the composite layer is 250 ⁇ m to 600 ⁇ m in a direction perpendicular to a light emitting surface of the light guide layer.
  • the backlight module provided by the embodiment of the present disclosure further includes a first reflection layer, and the first reflection layer is located on a side of the light guide layer away from the first substrate.
  • a display device includes: a display panel; and the backlight module according to any one of the preceding embodiments.
  • the display panel includes an array substrate and a box substrate opposite to each other; and the backlight module is located at a position where the array substrate is far from the box substrate.
  • the first substrate faces the array substrate, and the light guide layer is far from the array substrate.
  • the display panel includes an array substrate and a box substrate opposite to each other, and a second substrate located on a side of the array substrate away from the box substrate.
  • Reflective layer located on a side of the pair of box substrates away from the array substrate, wherein the first substrate faces the pair of box substrates, and the light guide layer is far from the array substrate.
  • the plurality of first microprisms are in direct contact with the plurality of second microprisms; at least one of the plurality of first microprisms is A microprism includes at least one groove configured to receive a portion of at least one second microprism of the plurality of second microprisms in direct contact with the at least one first microprism;
  • the display device includes a plurality of sub-pixels located in a display area and arranged in an array in the first direction and the second direction, wherein the number of the sub-pixels in the first direction is greater than the number of the sub-pixels The number of sub-pixels in the second direction.
  • the plurality of first microprisms are in direct contact with the plurality of second microprisms; at least one of the plurality of second microprisms is The two microprisms include at least one groove configured to receive a part of at least one first microprism among the plurality of first microprisms in direct contact with the at least one second microprism;
  • the display device comprises a plurality of sub-pixels located in a display area and arranged in an array in the first direction and the second direction, wherein the number of the sub-pixels in the first direction is smaller than the number of the sub-pixels The number of sub-pixels in the second direction.
  • a viewing angle of the display device is between 0 ° and ⁇ 30 °; and in a direction perpendicular to a light exit surface of the light guide layer, A ratio S of the depth of the groove to the height of the first microprism or the second microprism where the groove is located satisfies 0 ⁇ S ⁇ 1/5.
  • a viewing angle of the display device is between 0 ° and ⁇ 60 °; and in a direction perpendicular to a light exit surface of the light guide layer, A ratio S of the depth of the groove to the height of the first microprism or the second microprism in which the groove is located satisfies 0 ⁇ S ⁇ 3/5.
  • a manufacturing method for the backlight module includes the steps of: forming the plurality of first microprisms on a light emitting surface of the light guide layer through a patterning process; on a surface of the first substrate facing the light guide layer, Forming the plurality of second microprisms through a patterning process; and fixedly connecting the plurality of first microprisms to the plurality of second microprisms.
  • the step of fixedly connecting the plurality of first microprisms to the plurality of second microprisms includes: making the first microprisms The microprism is in direct contact with the second microprism, and the plurality of first microprisms and the plurality of second microprisms are formed into an integrated structure through a curing process.
  • the step of fixedly connecting the plurality of first microprisms to the plurality of second microprisms includes: Forming a second substrate bonded to the plurality of first microprisms on a surface of the first microprism away from the light guide layer; and separating the surface of the second substrate away from the light guide layer and the plurality of The second microprism is bonded.
  • the step of fixedly connecting the plurality of first microprisms to the plurality of second microprisms includes: A fourth substrate bonded to the plurality of first microprisms is formed on a surface of the first microprisms away from the light guide layer; A third substrate bonded by a plurality of second microprisms; and a surface of the fourth substrate remote from the light guide layer and a surface of the third substrate remote from the first substrate.
  • FIG. 1 is a schematic structural diagram of a composite layer according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a backlight module according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of another structure of the first microprism of the backlight module in FIG. 3;
  • FIG. 5 is a schematic structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a first microprism and a second microprism of the backlight module in FIG. 2 in contact with each other;
  • FIG. 8 is a schematic structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display device according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 12 is a flowchart of a method for manufacturing a backlight module according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic diagram of a corresponding process of a method for manufacturing a backlight module according to some embodiments of the present disclosure.
  • first”, “second”, and the like are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined using “first”, “second”, etc. may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise stated, “multiple” means two or more.
  • 01-backlight module 01-composite layer; 03-display panel; 10-light guide layer 100-dot structure 11-first microprism 20-first substrate 21-second microprism 22-second substrate 23-third substrate 24-fourth substrate 30- Light source; 40-anti-adsorption layer; 41-first reflective layer; 42-second reflective layer; 50-scattering layer; 300-array substrate; 301-to-box substrate; and 110-groove.
  • a backlight module includes a composite layer 02 as shown in FIG. 1.
  • the composite layer 02 includes a light guide layer 10 and a first substrate 20 opposite to each other.
  • the composite layer 02 further includes a plurality of first microprisms 11 and a plurality of second microprisms 21 located between the light guide layer 10 and the first substrate 20.
  • a plurality of first microprisms 11 are located on a surface of the light guide layer 10 facing the first substrate 20, that is, a light emitting surface of the light guide layer 10, and each of the first microprisms 11 is parallel to the light guide.
  • the light emitting surface of the layer 10 extends in a first direction H.
  • the plurality of second microprisms 21 are located on the surface of the light guide layer 10 on the surface of the first substrate 20, and each of the second microprisms 21 is in the second direction V parallel to the light exit surface of the light guide layer 10. Extension, wherein the second direction V is different from the first direction H. Specifically, as shown in FIG. 1, the second direction V and the first direction H are perpendicular to each other.
  • a patterning process may be used to form the plurality of first microprisms 11 on the light exit surface of the light guide layer 10.
  • the first microprism 11 may have a triangular prism shape, and one side of the first microprism 11 may be in contact with and fixedly connected with the light exit surface of the light guide layer 10.
  • a material for example, a transparent resin material
  • a transparent resin material for forming the above-mentioned light guide layer 10 may be selected so that light incident on the light guide layer 10 from the light source 30 (shown in FIG. 2 below) can be applied thereon. Total reflection occurs inside.
  • a transparent resin material may be Polycarbonate (PC).
  • the hardness of the light guide layer 10 can be flexibly selected according to actual needs.
  • the light guide layer 10 may be a plate material structure with a relatively hard material or a film structure with a relatively soft material.
  • a plurality of second microprisms 21 can be formed by a patterning process. For example, one side surface of the formed second microprism 21 is brought into contact with and fixedly connected to the surface of the light guide layer 10 on the surface of the first substrate 20.
  • a material for forming the first substrate 20 described above may include a transparent resin material.
  • the transparent resin material may be selected from polyethylene terephthalate (Polyethylene Terephthalate, PET).
  • the first direction H and the second direction V are both parallel to the light exit surface of the light guide layer 10.
  • the light emitting surface of the light guide layer 10 refers to a surface on which light rays inside the light guide layer 10 exit from the light guide layer 10, for example, the upper surface of the light guide layer 10 shown in the figure.
  • the first direction H may be a horizontal direction corresponding to the horizontal viewing angle of the display panel
  • the second direction V may be a vertical direction corresponding to the vertical viewing angle of the display panel.
  • the horizontal and vertical viewing angles of the display panel described above will be when the handheld device is in a vertical state (for example, when a handheld user holds the handheld device).
  • the horizontal viewing angle and the vertical viewing angle that is, respectively correspond to the extending directions of the two pairs of sides of the rectangular display panel, for example.
  • a process for forming a predetermined pattern such as a photolithography process, an inkjet printing process, or a roll coating transfer process
  • the above-mentioned photolithography process refers to a process of forming a pattern by using a photoresist, a mask, an exposure machine, and the like, and typically includes processes such as film formation, exposure, and development. It should be noted that on the premise of benefiting from the teachings of the present disclosure, those skilled in the art can select a corresponding patterning process according to the specific structure formed in the embodiments of the present disclosure.
  • the above-mentioned backlight module 01 may further include a light source 30.
  • the light source 30 is disposed on at least one side of the light guide layer 10.
  • a side of the light guide layer 10 on which the light source 30 is provided is referred to as a light incident surface of the light guide layer 10.
  • the light beam emitted by the light source 30 has a cone shape (for example, a cone angle is about 120 °).
  • a cone angle is about 120 °.
  • the first direction H is perpendicular to the light incident surface of the light guide layer 10
  • the second direction V is parallel to the light incident surface of the light guide layer 10.
  • the composite layer 02 further includes a plurality of dot structure 100 disposed on a non-light-emitting surface of the light-guiding layer 10.
  • the non-light-emitting surface of the light-guiding layer 10 is connected to the light-guiding layer 10.
  • the surface on which the light emitting surface is oppositely disposed that is, the lower surface in the figure.
  • the light transmitted in the first direction H inside the light guide layer 10 will be able to be transmitted forward by total reflection in the light guide layer 10.
  • the total reflection of the light transmitted in the first direction H will be destroyed when the dot structure 100 is irradiated, so that this part of the light exits the light guide layer 10 Shoot out.
  • the total reflection of the light transmitted in the first direction H is not destroyed due to the incident on the dot structure 100, then this part of the light will continue to be transmitted through the total reflection in the light guide layer 10.
  • the light transmitted in the first direction H in the light guide layer 10 is emitted from the light exit surface of the light guide layer 10 under the action of the dot structure 100 described above. After that, this part of the light is incident on the second microprism 21.
  • the second microprism 21 can converge the incident light, so that the exit angle ⁇ of the light emitted by the second microprism 21 is controlled within a certain range, thereby improving the brightness of the light finally emitted.
  • the plurality of second microprisms 21 located above the light guide layer and each extending in the second direction V are capable of transmitting in the light guide layer 10 in the first direction H and since The part of the light emitted from the light guide layer 10 due to the destruction of the reflection is condensed.
  • each of the above-mentioned second microprisms 21 is a triangular prism.
  • the second microprism 21 having a triangular prism shape has, for example, three sides of a rectangle, that is, a first side, a second side, and a third side that are adjacent to each other, and two triangles. Underside. Specifically, the first side surface is in contact with the first substrate 20, and the other two side surfaces (ie, the second side surface and the third side surface) form an included angle with each other, for example, the included angle ⁇ 2 in FIG. 2.
  • the inventor has found through research that when the above-mentioned included angle ⁇ 2 of the second microprism 21 in the shape of a triangular prism is less than 60 ° or greater than 120 °, the exit angle ⁇ of the portion of the light emitted by the second microprism 21 is too large. As a result, the horizontal viewing angle of the final display device (which corresponds to, for example, the light transmitted in the first direction H) is too large, so that the light emitted at the edge of the display device cannot be received by the human eye and eventually causes this Part of the waste of light.
  • the included angle ⁇ 2 of the second microprism 21 having a triangular prism shape can be selected in a range of 60 ° -120 ° to avoid unnecessary waste of light.
  • the requirement for a horizontal viewing angle is relatively small.
  • the included angle ⁇ 2 of the second microprism 21 can be selected to be 90 °.
  • the exit angle ⁇ of the light emitted from the second microprism 21 can be controlled at about 30 °, so that the horizontal viewing angle has higher brightness.
  • the horizontal viewing angle is required.
  • the included angle ⁇ 2 of the second microprism 21 can be selected to be 60 ° or 120 °. In this way, it is possible to ensure that the light emitted at the edges of the display panel or the display device can be received by the human eye, and also to increase the horizontal viewing angle of the display panel or the display device, thereby improving the display effect.
  • the light rays transmitted in the second direction V in the light guide layer 10 will be transmitted forward by total reflection in a similar manner.
  • the total reflection of the portion of the light transmitted in the light guide layer 10 in the second direction V but incident on the dot structure 100 will be destroyed, so that the light emitted from the light guide layer 10 is also similarly Shoot out.
  • the first microprism 11 can also converge the light incident thereon, so that the exit angle of the light finally exiting from the first microprism 11 ⁇ is controlled within a certain range, thereby increasing the brightness of the emitted light.
  • the plurality of first microprisms 11 play a similar role to the plurality of second microprisms 21, that is, for the transmission in the light guide layer 10 originally in the second direction V but due to The part of the light emitted from the light guide layer 10 that is destroyed by total reflection is condensed.
  • the first microprism 11 may also be designed as a triangular prism. Similar to the case of the second microprism 21 shown in FIG. 2, as shown in FIG. 3, the first microprism 11 also has three sides, one of which is in contact with the light guide layer 10, and the other two sides are formed. The angle ⁇ 1. The inventors have found again that if the included angle ⁇ 1 of the first microprism 11 is selected to be less than 60 ° or greater than 120 °, the exit angle ⁇ of the light emitted from the first microprism 11 is too large.
  • the vertical viewing angle of the display panel or the display device including the display panel (which corresponds to the light transmitted in the second direction V) is too large, resulting in the emission of light at the edges of the display panel or the display device. Light cannot be received by the human eye, and this part of the light is wasted.
  • a display panel or a display device for example, a size in the second direction V
  • a size for example, a horizontal size
  • the included angle ⁇ 1 of the first microprism 11 may be selected as 90 °.
  • the exit angle ⁇ of the light emitted from the first microprism 11 can be controlled at about ⁇ 30 °, so that the light in the vertical viewing angle has higher brightness.
  • the included angle ⁇ 1 of the first microprism 11 may be selected as 60 ° or 120 °. In such a case, the light emitted at the edge of the display panel or the display device can be guaranteed to be received by the human eye, and the vertical viewing angle of the display panel or the display device can be increased, thereby improving the display effect.
  • the display panel or display device can be made The light has a greater brightness in one viewing angle (such as a horizontal viewing angle or a vertical viewing angle), while obtaining a larger viewing angle range in another viewing angle (such as a vertical viewing angle or a horizontal viewing angle).
  • the included angle ⁇ 1 of the first microprism 11 is kept constant, it is also possible to connect the first microprism 11 that is not in contact with the light guide layer 10 through an arc surface.
  • the other two sides such as the second side and the third side, have common edges instead of the sides next to each other in a conventional triangular prism, as shown in Figure 1-3. That is, in a cross section parallel to the bottom surface of the second microprism 21, a vertex angle away from the light guide layer 10 is a rounded corner. As shown in FIG. 4, in order to further increase the viewing angle range of the vertical viewing angle of the display device.
  • the second microprism 21 may also be connected with the first substrate through a circular arc surface. 20
  • the other two sides that remain in contact, such as the second side and the third side, have a common edge instead of the sides next to each other in a conventional triangular prism, as shown in Figures 1-3. That is, in a cross section parallel to the bottom surface of the second microprism 21, a vertex angle away from the light guide layer 10 is a rounded corner. To further increase the viewing angle range of the horizontal viewing angle of the display device. Understandably,
  • the first microprism 11 and the second microprism 21 are fixedly connected to each other.
  • one side surface of the plurality of first microprisms 11 is in contact with and fixedly connected with the light exit surface of the light guide layer 10
  • a plurality of second One side surface of the prism 21 is in contact with and fixedly connected to the surface of the light guide layer 10 from the surface of the first substrate 20.
  • the light emitted by the light source 30 will be able to be derived from the light exit surface of the light guide layer 10, and further, incident on the first On the microprism 11 and the second microprism 21.
  • the first microprism 11 and the second microprism 21 can respectively converge the portions of the incident light that were originally transmitted in the second direction V and the first direction H in the light guide layer 10, thereby improving the display.
  • the light guide layer 10 may also be made of a resin material with a softer material.
  • the light guide layer 10 may be a light guide film.
  • the thickness of the light guide layer 10 may be 200 ⁇ m. At this time, the thickness of the composite layer 02 will be in a range of 250 ⁇ m to 600 ⁇ m.
  • the thickness of the composite layer 02 is less than 250 ⁇ m, the precision requirements of the manufacturing process are high, which is not conducive to reducing the production cost.
  • the thickness of the composite layer 02 is too large, for example, it is larger than 600 ⁇ m, the thickness of the backlight module 01 to be finally formed will be too large, which is not conducive to the ultra-thin design of the display device.
  • the composite layer 02 further includes a second substrate 22.
  • the second substrate 22 is located between the plurality of first microprisms 11 and the plurality of second microprisms 21.
  • the surface of the second substrate 22 facing the first substrate 20 (ie, the upper surface in the figure) is connected to the plurality of second microprisms 21, and the second substrate 22 faces the light guide layer 10.
  • the surface ie, the lower surface in the figure is connected to the plurality of first microprisms 11.
  • the above-mentioned second substrate 22 may be a single adhesive layer, so that the top end of the first microprism 11 (that is, the end facing the first substrate 20 in the figure) and the first The top ends of the two microprisms 21 (that is, the ends of the light guide layer 10 in the figure) are bonded together.
  • the second substrate 22 may be a transparent resin film layer.
  • a light guide layer 10 having a plurality of first microprisms 11 and a first substrate 20 having a plurality of second microprisms 21 may be manufactured first.
  • an adhesive layer may be coated on the surface (ie, the lower surface) of the light guide layer 10 on the second substrate 22 side, and such an adhesive layer may be bonded to the top end of the first microprism 11.
  • an adhesive layer may be coated on the surface (ie, the upper surface) of the second substrate 22 away from the light guide layer 10, and then the top ends of the plurality of second microprisms 21 are bonded to the first On this adhesive layer of the two substrates 22.
  • the upper and lower surfaces of the second substrate 22 can provide a larger bonding area for the second microprism 21 and the first microprism 11 respectively, thereby reducing the difficulty of the above bonding process.
  • the fixed connection manner between the first microprism 11 and the second microprism 21 may also be as shown in FIG. 6.
  • the above-mentioned composite layer 02 further includes a third substrate 23 and a fourth substrate 24 which are arranged and connected to each other, and further, the third substrate 23 and the fourth substrate 24 are also located in a plurality of Between a microprism 11 and a plurality of second microprisms 21.
  • a surface (ie, an upper surface) of the third substrate 23 facing the first substrate 20 is connected to the plurality of second microprisms 21, and the fourth substrate is The surface (ie, the lower surface) of the 24-plane light guide layer 10 is connected to the plurality of first microprisms 11.
  • the third substrate 23 and the second substrate 24 described above may both be transparent resin film layers. Based on this, in the manufacturing process, a light guide layer 10 having a plurality of first microprisms 11 and a first substrate 20 having a plurality of second microprisms 21 may be manufactured first. Then, an adhesive layer is coated on the surface (lower surface) of the light guide layer 10 on the side of the fourth substrate 24, and is bonded to the top end of the first microprism 11. Next, in a similar manner, an adhesive layer is coated on the surface (upper surface) of the third substrate 23 away from the light guide layer 10, and then the top ends of the plurality of second microprisms 21 are bonded to the third substrate 23. on.
  • the upper surface of the third substrate 23 and the lower surface of the fourth substrate 24 can provide a larger bonding area for the second microprism 21 and the first microprism 11 respectively, thereby reducing the above-mentioned bonding process. Difficulty.
  • the fixed connection manner between the first microprism 11 and the second microprism 21 may also be as shown in FIG. 2 or FIG. 3.
  • the plurality of first microprisms 11 are in direct contact with the plurality of second microprisms 21 and become an integrated structure.
  • a first microprism 11 may be first formed on the light guide layer 10 through a semi-curing process, and a second microprism 21 may be formed on the first substrate 20.
  • the first microprism 11 and the second microprism 21 that are in contact with each other are fixedly connected together through a full curing process.
  • the above-mentioned curing process may be a thermal curing or a light curing process, and the present disclosure is not limited in this regard.
  • the second microprism 21 is capable of transmitting the light guide layer 10 that originally transmitted in the light guide layer 10 in the first direction H (for example, horizontal direction) but exited from the light guide layer 10 due to the damage of total reflection The light converges.
  • a display device with a smaller vertical size than a horizontal size for example, a flat-screen TV
  • the first and second directions H and V are horizontal and vertical or vertical (ie, perpendicular to each other), respectively, for a flat-screen TV having sub-pixels arranged in an array .
  • the number of sub-pixels in the horizontal direction is obviously greater than the number of sub-pixels in the vertical or vertical direction. That is to say, for a display device with a relatively large horizontal size, such as a flat-screen TV, the number of sub-pixels in the horizontal direction is significantly larger, so the convergence of light in the horizontal direction is more important.
  • the above-mentioned groove 110 is provided at a position where the first microprism 11 and the second microprism 21 are in contact with each other.
  • the first microprism 11 is small (ie, the texture is softer)
  • a part of the second microprism 21 will be located in the groove 110, that is, the groove 110 is in the first microprism 11.
  • the tip corresponding to the included angle ⁇ 2 in the second microprism 21 will be able to retain the complete shape.
  • the convergence effect of the second microprism 21 on the light in the horizontal direction is effectively ensured.
  • the first microprism 11 can transmit the light guide layer 10 from the light guide layer 10 in the second direction V (for example, longitudinal direction), but is transmitted by the total reflection.
  • the emitted light is converged.
  • a display device such as a mobile phone having a smaller horizontal size than a vertical size, it is easier to improve the brightness of the entire display screen by focusing light in the vertical direction than the horizontal size.
  • the first direction H and the second direction V are horizontal and vertical or vertical (ie, perpendicular to each other), respectively, for a mobile phone having an array of subpixels
  • the number of sub-pixels in the horizontal direction is obviously smaller than the number of sub-pixels in the vertical or vertical direction. That is to say, for a display device with a relatively large vertical size, such as a mobile phone, the number of sub-pixels in the vertical or vertical direction is significantly larger, so the convergence of light in the vertical or vertical direction is even more important.
  • the above-mentioned groove 110 is provided at a position where the second microprism 21 and the first microprism 11 are in contact with each other.
  • the hardness of the second microprism 21 is small (ie, the texture is softer)
  • the top end of the first microprism 11 corresponding to the included angle ⁇ 1 can retain the complete shape. Therefore, the convergence effect of the first microprism 11 on the light in the longitudinal direction is effectively ensured.
  • the inventors have also found that in the above-mentioned backlight module 01, the larger the contact area between the first microprism 11 and the second microprism 21, the better the light scattering effect, and the display device will have The greater the angle of view.
  • the display device has a viewing angle of 0 °.
  • a groove 110 is provided on a microprism (for example, the first microprism 11), and the depth H1 of the groove 110 is increased (that is, on a surface perpendicular to the light exit surface of the light guide layer 10) Direction), then the portion of the second microprism 21 located in the groove 110 will increase, thereby obtaining a larger contact area between the first microprism 11 and the second microprism 21, thereby achieving an increase in the viewing angle of the display device.
  • the depth H1 of the groove 110 occupies 1/5 of the height H2 of the microprism (for example, the above-mentioned first microprism 11) provided with the groove 110, between the first microprism 11 and the second microprism 21
  • the contact depth will be 1/5 of the height H2 of the first microprism 11.
  • the inventor has found that the viewing angle of the mobile phone can reach ⁇ 30 °.
  • the viewing angle of the mobile phone can even reach ⁇ 10 °.
  • the depth of the groove 110 and the height of the corresponding microprism are along the direction perpendicular to the light exit surface of the light guide layer 10, as shown in FIG. 7, for example.
  • a flat-screen TV with a smaller vertical size than a horizontal size requires a larger viewing angle, such as between 0 ° and ⁇ 60 °. between.
  • the ratio of the depth H2 of the groove 110 to the height H2 of the microprism having the groove 110 (for example, the first microprism 11) S H1: H2: S can be selected as 0 ⁇ S ⁇ 3 / 5.
  • the depth H1 of the groove 110 occupies 3/5 of the height H2 of the microprism (for example, the first microprism 11) provided with the groove 110, the distance between the first microprism 11 and the second microprism 21 The contact depth will be 3/5 of the height H2 of the first microprism 11.
  • the inventors have found that the viewing angle of the flat-screen TV can reach ⁇ 60 °.
  • the viewing angle of the flat-screen TV can be even Reached ⁇ 10 °.
  • the backlight module may further include other thin film layers that are in contact with the light emitting surface of the composite layer 02.
  • another thin film layer may be a polarizer.
  • the above-mentioned composite layer 02 may further include an anti-adsorption layer 40 disposed on a surface of the first substrate 20 away from the light guide layer 10. .
  • the anti-adsorption layer 40 has a plurality of grooves and a plurality of protrusions, so as to improve the roughness of the light-emitting surface of the composite layer 02. In this way, air can be accommodated in the groove on the anti-adsorption layer 40, so that the adsorption force between the light-emitting surface of the composite layer 02 and the above-mentioned polarizer or other thin film layer can be reduced.
  • the backlight module 01 further includes a first reflective layer 41 so as to improve the utilization rate of light, for example.
  • the first reflective layer 41 is disposed on a side of the light guide layer 10 away from the first substrate 20.
  • the first reflective layer 41 the light originally emitted from the lower surface (that is, the non-light-emitting surface) of the light guide layer 10 can be reflected into the light guide layer 10 again, thereby realizing the reuse and reduction of this part of the light The optical loss of the entire device.
  • a display device is also provided in the embodiment.
  • the display device includes a display panel 03 as shown in FIG. 9 or FIG. 10, and any one of the backlight modules 01 described above.
  • This display device has the same technical effects as the backlight module 01 provided in the above embodiments, and will not be repeated here.
  • the display device may be a liquid crystal display device.
  • the liquid crystal display device includes a device having a display function, such as a mobile phone, a television, and a tablet computer.
  • the above display device can be further divided into a rear backlight type display device and a front backlight type display device.
  • the structures of these two display devices will be described in detail below with reference to the drawings.
  • the display device is a rear-backlit display device.
  • the display panel 03 includes an array substrate 300 and a cell substrate 301 opposite to each other, and a liquid crystal layer is further provided between the array substrate 300 and the cell substrate 301.
  • the pair of box substrates 301 may be a color filter substrate.
  • the backlight module 01 is located on a side of the array substrate 300 away from the box substrate 301. Specifically, in the backlight module 01, the first substrate 20 faces the array substrate 300, and the light guide layer 10 is far from the array substrate 300.
  • the light incident from the light source 30 into the light guide layer 10 will be emitted from the light exit surface of the light guide layer 10, and then collected by the first microprism 11 and the second microprism 21. Under the action of light, it enters the array substrate 300 in the display panel 03, and exits after passing through the liquid crystal layer and the cell substrate 301, thereby displaying a screen.
  • a front-backlit display device may also be provided.
  • the display panel 03 includes an array substrate 300 and a box substrate 301 opposite to each other, and a first substrate 300 disposed on a side of the array substrate 300 away from the box substrate 301.
  • Two reflecting layer 42 is also provided in the front-backlit display device.
  • the backlight module 01 is located on a side of the box substrate 301 away from the array substrate 300 and does not include the first reflective layer 41 (as shown in FIG. 9).
  • the first substrate 20 faces the box substrate 301, and the light guide layer 10 is far from the array substrate 300.
  • the light incident from the light source 30 into the light guide layer 10 will be emitted from the light exit surface of the light guide layer 10, and then the first microprism 11 and the second microprism Under the effect of the light concentration of 21, the light is incident on the cell substrate 301 in the display panel 03, and then passes through the liquid crystal layer and the array substrate 300 and is incident on the second reflective layer 42. Next, under the reflection of the second reflective layer 42, the light passes through the display panel 03 and the backlight module 01 again and finally displays.
  • the backlight module 01 may further include a first substrate 20 disposed away from the light guide layer 10. Side of the scattering layer 50. Specifically, the scattering layer 50 can scatter the light incident on the display panel 03.
  • the above-mentioned scattering layer 50 may be removed while increasing the roughness of the anti-adsorption layer 40 on the surface of the first substrate 20 away from the light guide layer 10. In this manner, scattering of light incident on the display panel 03 can be achieved by the anti-adsorption layer 40.
  • a backlight-type display device can generally be applied to a low-light environment.
  • display devices using liquid crystal, for example, a watch having a display function and the like.
  • these display devices have low requirements for the display quality effect, as long as they can display relevant effective information (such as time or date) under weak ambient light.
  • the second microprism 21 can transmit light that is originally transmitted in the light guide layer 10 in the first direction H (for example, horizontal direction) but exits from the light guide layer 10 due to the destruction of the total reflection. The light converges. Therefore, in order to ensure the convergence effect of the second microprism 21 on the light in the horizontal direction, the above-mentioned groove 110 may be provided at a position where the first microprism 11 and the second microprism 21 contact each other, and the second microprism A part of 21 is located in the groove 110. In this way, it is ensured that the top end of the second microprism 21 facing the first microprism 11 can retain a complete shape.
  • the design for retaining the complete top shape of the second microprism 21 described above will be more suitable for a display device with a smaller vertical size than a horizontal size. That is, in the display area of the display device, the number of sub-pixels arranged in the first direction H is greater than the number of sub-pixels arranged in the second direction V.
  • the first microprism 11 can transmit in the light guide layer 10 in the second direction V (for example, longitudinal direction) but exits from the light guide layer 10 due to the damage of total reflection.
  • the light is converging. Therefore, in order to ensure the convergence effect of the first microprism 11 on the light in the longitudinal direction, the above-mentioned groove 110 may be provided at a position where the second microprism 21 and the first microprism 11 contact each other, and the first microprism 11 A portion is located in the groove 110. In this way, it is ensured that the top end of the first microprism 11 facing the second microprism 21 can retain a complete shape.
  • the design for retaining the complete top shape of the first microprism 11 described above will be more suitable for a display device with a smaller horizontal size than a vertical size. That is, in the display area of the display device, the number of sub-pixels arranged in the first direction H is smaller than the number of sub-pixels arranged in the second direction V.
  • a method for manufacturing a backlight module is also provided. As shown in FIG. 12, the manufacturing method includes steps S101-S103.
  • step S101 the plurality of first microprisms 11 are formed on a light emitting surface of the light guide layer 10 through a patterning process.
  • the light guide film on which the dot structure 100 has been fabricated is wound on the reel 1. After the light guide film is cut, the light guide layer 10 is formed.
  • the dot structure 100 may be manufactured after the first microprism 11 and the second microprism 21 are manufactured.
  • a plurality of first microprisms 11 are transferred to a surface of the light guide film on which the dot structure 100 is not provided by a roll coating process, and then the plurality of first microprisms 11 are semi-cured. deal with.
  • step S102 the plurality of second microprisms 21 are formed on the first substrate 20 through a patterning process.
  • the reel 2 is wound with a resin film on which the anti-adsorption layer 40 has been produced.
  • the resin film is cut to form the first substrate 20.
  • the anti-adsorption layer 40 may be manufactured after the first microprism 11 and the second microprism 21 are manufactured.
  • a plurality of second microprisms 21 are transferred to a surface of the resin film not provided with the anti-adsorption layer 40 by a roll coating process, and then the plurality of second microprisms 21 are semi-cured. .
  • step S103 the plurality of first microprisms 11 and the plurality of second microprisms 21 are fixedly connected.
  • the light guide film on which the first microprism 11 is made and the resin film on which the second microprism 21 is made are oppositely disposed through the reels 3 and 4, and then the first microprism 11 and the first The two microprisms 21 are in direct contact with each other and undergo a full curing process, so that the plurality of first microprisms 11 and the plurality of second microprisms 21 become an integrated structure.
  • a protective film is affixed on the surface of the light guide film away from the first microprism 11 and the surface of the resin film away from the second microprism 21, and is rolled and formed by the reel 5 to facilitate subsequent processing of the backlight module 01 Cut during fabrication and assembly.
  • the above step S103 may include the following sub-steps: first, forming a second substrate 22 bonded to the first microprism 11 on a surface of the plurality of first microprisms 11 away from the light guide layer 10; and Then, the surface of the second substrate 22 away from the light guide layer 10 is bonded to the plurality of second microprisms 21.
  • the upper and lower surfaces of the second substrate 22 can provide a larger bonding area for the second microprism 21 and the first microprism 11 respectively, thereby reducing the difficulty of the above bonding process.
  • the above step S103 may include the following sub-steps: first, a fourth substrate 24 bonded to the plurality of first microprisms 11 is formed on a surface of the plurality of first microprisms 11 away from the light guide layer 10; Forming a third substrate 23 bonded to the plurality of second microprisms 21 on a surface of the plurality of second microprisms 21 away from the first substrate 20; and then, moving the fourth substrate 24 away from the light guide layer 10 The surface of the third substrate 23 is bonded to the surface of the third substrate 23 away from the first substrate 20.
  • the upper surface of the third substrate 23 and the lower surface of the fourth substrate 24 can provide a larger bonding area for the second microprism 21 and the first microprism 11 respectively, thereby reducing the above-mentioned bonding process. Difficulty.
  • the above manufacturing method has the same technical effect as the backlight module provided in the foregoing embodiment, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组及其制作方法以及显示装置。背光模组包括复合层(02)。复合层(02)包括相对设置的导光层(10)和第一衬底(20),以及位于导光层(10)与第一衬底(20)之间的多个第一微棱镜(11)和多个第二微棱镜(21)。导光层(10)包括面向第一衬底(20)的出光面,并且多个第一微棱镜(11)位于导光层(10)的出光面上,每一个第一微棱镜(11)沿着平行于导光层(10)的出光面的第一方向(H)延伸且多个第一微棱镜(11)沿平行于导光层(10)的出光面的第二方向(V)依次排列,第二方向(V)与第一方向(H)彼此交叉。多个第二微棱镜(21)位于第一衬底(20)面向导光层(10)的表面上,每一个第二微棱镜(21)沿第二方向(V)延伸,且多个第二微棱镜(21)沿第一方向(H)依次排列。第一微棱镜(11)与第二微棱镜(21)固定连接。

Description

背光模组及其制作方法、显示装置
对相关申请的交叉引用
本申请要求2018年9月21日提交的中国专利申请201811109607.8的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及显示技术领域,并且尤其涉及背光模组及其制作方法、显示装置。
背景技术
薄膜晶体管-液晶显示装置(Thin Film Transistor Liquid Crystal Display,TFT-LCD)属于一种平板显示装置,并且因其具有体积小、功耗低、无辐射以及制作成本相对较低等特点,而越来越多地被应用于高性能显示领域当中。
TFT-LCD通常包括用于向显示面板提供背光的背光模组(Back Light Unit,BLU)。典型地,背光模组包括多片层叠设置的光学膜片。因此,在显示装置的使用、测试或运输等状态下,部分光学膜片会发生相对位移,从而产生褶皱,并且导致显示图像出现牛顿环、摩尔纹等不良现象。
发明内容
根据本公开的一个方面,提供了一种背光模组。所述背光模组包括复合层。所述复合层包括:相对设置的导光层和第一衬底,其中,所述导光层包括面向所述第一衬底的出光面;位于所述导光层的出光面上的多个第一微棱镜,其中,每一个第一微棱镜沿着平行于所述导光层的出光面的第一方向延伸且所述多个第一微棱镜沿平行于所述导光层的出光面的第二方向依次排列,所述第二方向与所述第一方向彼此交叉;以及位于所述第一衬底面向所述导光层的表面上的多个第二微棱镜,其中,每一个第二微棱镜沿着平行于所述第二方向延伸,且所述多个第二微棱镜沿所述第一方向依次排列。进一步地,在以上复合层中,所述第一微棱镜与所述第二微棱镜固定连接。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述复合层还包括:所述多个第一微棱镜与所述多个第二微棱镜之间的第二衬底,其中,所述第二衬底面向所述第一衬底的表面与所述多个第二微棱镜连接,并且所述第二衬底面向所述导光层的表面与所述多个第一微棱镜连接。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述复合层还包括:在所述多个第一微棱镜与所述多个第二微棱镜之间层叠设置且彼此相连的第三衬底和第四衬底。进一步地,所述第三衬底面向所述第一衬底的表面与所述多个第二微棱镜连接,并且所述第四衬底面向所述导光层的表面与所述多个第一微棱镜连接。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述多个第一微棱镜与所述多个第二微棱镜直接接触且形成一体结构。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述复合层还包括:位于所述多个第一微棱镜与所述多个第二微棱镜彼此接触的位置处的一个或多个凹槽。具体地,每一个凹槽位于一个第一微棱镜中且配置为接收对应的第二微棱镜的一部分。可替换地,每一个凹槽位于一个第二微棱镜中且配置为接收对应的第一微棱镜的一部分。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述多个第一微棱镜中的至少一个包括第一三棱柱,所述第一三棱柱包括第一侧面、第二侧面和第三侧面,其中,其中,所述第一三棱柱的第一侧面与所述导光层接触,而第二侧面与第三侧面之间的夹角为60°-120°。进一步地,所述多个第二微棱镜中的至少一个包括第二三棱柱,所述第二三棱柱包括第一侧面、第二侧面和第三侧面,其中,其中,所述第二三棱柱的第一侧面与所述第一衬底接触,而第二侧面与第三侧面之间的夹角为60°-120°。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述第一三棱柱的第二侧面和第三侧面通过圆弧面相连接。可替换地,在本公开的其它实施例中,所述第二三棱柱的第二侧面和第三侧面通过圆弧面相连接。
根据具体实现方式,在本公开的实施例提供的背光模组中,所述复合层还包括:位于所述导光层远离所述第一衬底的表面上的多个网 点结构。
根据具体实现方式,在本公开的实施例提供的背光模组中,在垂直于所述导光层的出光面的方向上,所述复合层的厚度为250μm-600μm。
根据具体实现方式,由本公开的实施例提供的背光模组,还包括:第一反射层,所述第一反射层位于所述导光层远离所述第一衬底的一侧。
根据本公开的另一方面,还提供了一种显示装置。所述显示装置包括:显示面板;以及根据前面任一个实施例所述的背光模组。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述显示面板包括相对设置的阵列基板和对盒基板;并且所述背光模组位于所述阵列基板远离所述对盒基板的一侧,其中,所述第一衬底面向所述阵列基板,而所述导光层远离所述阵列基板。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述显示面板包括相对设置的阵列基板和对盒基板,以及位于所述阵列基板远离所述对盒基板的一侧的第二反射层。具体地,所述背光模组位于所述对盒基板远离所述阵列基板的一侧,其中,所述第一衬底面向所述对盒基板,而所述导光层远离所述阵列基板。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述多个第一微棱镜与所述多个第二微棱镜直接接触;所述多个第一微棱镜中的至少一个第一微棱镜包括至少一个凹槽,所述至少一个凹槽配置用于容纳与所述至少一个第一微棱镜直接接触的所述多个第二微棱镜中的至少一个第二微棱镜的一部分;以及所述显示装置包括位于显示区域中并在所述第一方向上和所述第二方向上阵列排布的多个亚像素,其中,所述第一方向上的亚像素的数量大于所述第二方向上的亚像素的数量。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述多个第一微棱镜与所述多个第二微棱镜直接接触;所述多个第二微棱镜中的至少一个第二微棱镜包括至少一个凹槽,所述至少一个凹槽配置用于容纳与所述至少一个第二微棱镜直接接触的所述多个第一微棱镜中的至少一个第一微棱镜的一部分;以及所述显示装置包括位于显示区域中并在所述第一方向上和所述第二方向上阵列排布的多个亚像 素,其中,所述第一方向上的亚像素的数量小于所述第二方向上的亚像素的数量。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述显示装置的视角在0°至±30°之间;并且在垂直于所述导光层的出光面的方向上,所述凹槽的深度与所述凹槽所位于的第一微棱镜或第二微棱镜的高度之比S满足0<S≤1/5。
根据具体实现方式,在本公开的实施例提供的显示装置中,所述显示装置的视角在0°至±60°之间;并且在垂直于所述导光层的出光面的方向上,所述凹槽的深度与所述凹槽所位于的第一微棱镜或第二微棱镜的高度之比S满足0<S≤3/5。
根据本公开的又一方面,还提供了一种用于上述背光模组的制作方法。所述制作方法包括以下步骤:在所述导光层的出光面上,通过构图工艺形成所述多个第一微棱镜;在所述第一衬底面向所述导光层的表面上上,通过构图工艺形成所述多个第二微棱镜;以及将所述多个第一微棱镜与所述多个第二微棱镜固定连接。
根据具体实现方式,在本公开的实施例提供的背光模组的制作方法中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:使所述第一微棱镜与所述第二微棱镜直接接触,并且通过固化工艺,将所述多个第一微棱镜与所述多个第二微棱镜形成为一体结构。
根据具体实现方式,在本公开的实施例提供的背光模组的制作方法中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:在所述多个第一微棱镜远离导光层的表面上形成与所述多个第一微棱镜粘接的第二衬底;以及将所述第二衬底远离所述导光层的表面与所述多个第二微棱镜粘接。
根据具体实现方式,在本公开的实施例提供的背光模组的制作方法中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:在所述多个第一微棱镜远离导光层的表面上形成与所述多个第一微棱镜粘接的第四衬底;在所述多个第二微棱镜远离第一衬底的表面上形成与所述多个第二微棱镜粘接的第三衬底;以及将所述第四衬底远离所述导光层的表面与所述第三衬底远离所述第一衬底的表面粘接。
附图说明
为了更清楚地说明本公开的实施例中的技术方案,下面将对实施例的描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅代表本公开的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图中的实施例而获得其他的实施例。
图1为根据本公开的一些实施例的一种复合层的结构示意图;
图2为根据本公开的一些实施例的一种背光模组的结构示意图;
图3为根据本公开的一些实施例的另一种背光模组的结构示意图;
图4为图3中的背光模组的第一微棱镜的另一种结构示意图;
图5为根据本公开的一些实施例的另一种背光模组的结构示意图;
图6为根据本公开的一些实施例的另一种背光模组的结构示意图;
图7为图2中的背光模组的第一微棱镜和第二微棱镜彼此相接触的结构示意图;
图8为根据本公开的一些实施例的另一种背光模组的结构示意图;
图9为根据本公开的一些实施例的一种显示装置的结构示意图;
图10为根据本公开的一些实施例的另一种显示装置的结构示意图;
图11为根据本公开的一些实施例的另一种显示装置的结构示意图;
图12为根据本公开的一些实施例的一种背光模组的制作方法流程图;以及
图13为根据本公开的一些实施例的一种背光模组的制作方法的对应工艺示意图。
具体实施方式
下面将结合本公开的实施例中的附图,对本公开的实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅代表本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,利用“第一”、“第二”等限定的特征可以明示或者隐 含地包括一个或者更多个该特征。在本申请的实施例的描述中,除非另有说明,否则“多个”的含义是两个或两个以上。
进一步地,在接下来的描述中,使用以下附图标记来分别指代根据本公开的实施例的不同组件:01-背光模组;02-复合层;03-显示面板;10-导光层;100-网点结构;11-第一微棱镜;20-第一衬底;21-第二微棱镜;22-第二衬底;23-第三衬底;24-第四衬底;30-光源;40-抗吸附层;41-第一反射层;42-第二反射层;50-散射层;300-阵列基板;301-对盒基板;以及110-凹槽。
根据本申请的一些实施例,提供了一种背光模组。该背光模组包括如图1所示的复合层02。该复合层02包括相对设置的导光层10和第一衬底20。
此外,如图1所示,上述复合层02还包括位于导光层10与第一衬底20之间的多个第一微棱镜11和多个第二微棱镜21。
具体地,多个第一微棱镜11位于导光层10面向第一衬底20的表面上,即,该导光层10的出光面上,并且每一个第一微棱镜11在平行于导光层10的出光面的第一方向H上延伸。
与此类似,多个第二微棱镜21位于第一衬底20面向导光层10的表面上,并且每一个第二微棱镜21在平行于导光层10的出光面的第二方向V上延伸,其中,第二方向V不同于第一方向H。特别地,如图1所示,第二方向V与第一方向H彼此垂直。
进一步地,在本申请的一些实施例中,可以采用构图工艺在导光层10的出光面上形成上述多个第一微棱镜11。作为示例,如图1所示,第一微棱镜11可以具有三棱柱形状,并且可以使第一微棱镜11的一个侧面与导光层10的出光面相接触且固定连接。
根据示例实施例,可以选择用于形成上述导光层10的材料(例如,透明树脂材料),使得从光源30(在以下图2中示出)入射至导光层10上的光线能够在其内部发生全反射。作为示例,这样的透明树脂材料可以为聚碳酸酯(Polycarbonate,PC)。此外,对于该导光层10的硬度,可以根据实际需要灵活地选择。例如,该导光层10可以为材质较硬的板材结构或者材质较软的膜材结构。
同理,在第一衬底20面向导光层10的表面上,可以采用构图工艺形成上述多个第二微棱镜21。例如,使所形成的第二微棱镜21的一个 侧面与第一衬底20面向导光层10的表面相接触且固定连接。
根据示例实施例,用于形成上述第一衬底20的材料可以包括透明树脂材料。例如,该透明树脂材料可以选择为聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)。
需要说明的是,在以上描述中,第一方向H和第二方向V均与导光层10的出光面平行。此处,导光层10的出光面指的是导光层10内部的光线由导光层10出射的表面,例如,在图中示出的导光层10的上表面。
为了方便说明,在以下实施例中,作为示例,第一方向H可以为与显示面板的水平视角相对应的水平方向,并且第二方向V可以为与显示面板的垂直视角相对应的纵向。例如,如果将显示面板使用在像手机这样的手持设备中,那么以上所说的显示面板的水平视角和垂直视角将分别为该手持设备处于竖直状态下时(例如,由站立的用户手持时)的水平视角和垂直视角,也就是,分别对应于例如矩形显示面板的两对侧边的延伸方向。
此外,对于上述构图工艺,可以具体采用光刻工艺、喷墨打印工艺或者滚涂转印工艺等用于形成预定图形的工艺。例如,上述光刻工艺是指利用光刻胶、掩模板、曝光机等形成图形的工艺,其典型地包括成膜、曝光、显影等过程。应指出,在获益于本公开的教导的前提下,本领域技术人员可以根据本公开的实施例中所形成的具体结构来选择相应的构图工艺。
根据本公开的实施例,如图2所示,上述背光模组01还可以包括光源30。例如,该光源30设置于导光层10的至少一个侧面。在以下描述中,将导光层10的设置有光源30的侧面称为导光层10的入光面。
典型地,由光源30发出的光束呈锥形(例如,锥角为120°左右)。在此情况下,在从该光源30入射至导光层10内部的光线中,一部分光线沿第一方向H传播,而另一部分光线沿第二方向V传播。参照例如图2所示,第一方向H与导光层10的入光面垂直,而第二方向V与导光层10的入光面平行。
此外,如图2所示,上述复合层02还包括设置于该导光层10的非出光面上的多个网点结构100,其中,该导光层10的非出光面是与导光层10的出光面相对设置的表面,即,图中的下表面。
在此情况下,如图2所示,在导光层10内部沿第一方向H传输的光线将能够在导光层10中通过全反射而向前传输。此时,应当理解到,由于上述网点结构100的引入,沿第一方向H传输的光线的全反射将在照射到网点结构100上时被破坏,从而使得这部分光线从导光层10的出光面出射。与此相反,如果沿第一方向H传输的光线的全反射没有由于入射至网点结构100上而被破坏,那么这部分光线会继续在导光层10内通过全反射而传输。
基于此,对于在导光层10中沿第一方向H传输的光线,在上述网点结构100的作用下,将从导光层10的出光面出射。在此之后,这部分光线入射至第二微棱镜21。根据本公开的实施例,第二微棱镜21能够对入射光进行汇聚,使得由第二微棱镜21出射的光线的出射角α控制在一定的范围内,由此提高最终出射的光线的亮度。也就是说,在本公开的实施例中,位于导光层上方且各自沿第二方向V延伸的多个第二微棱镜21能够对在导光层10内沿第一方向H传输并且由于全反射的破坏而从导光层10出射的光线部分进行汇聚。
在本公开的一些实施例中,如图1所示,上述第二微棱镜21中的至少一个,特别地,每一个均为三棱柱。例如,如图1或2所示,呈三棱柱形状的第二微棱镜21具有例如矩形的三个侧面,即,彼此相互邻接的第一侧面、第二侧面和第三侧面,和两个三角形的底面。具体地,第一侧面与第一衬底20相接触,而另外两个侧面(即,第二侧面和第三侧面)彼此呈一个夹角,例如,图2中的夹角γ2。发明人经研究发现,当呈三棱柱形状的第二微棱镜21的上述夹角γ2小于60°或大于120°时,由该第二微棱镜21出射的光线部分的出射角α太大。由此,使得最终的显示装置的水平视角(其例如与在第一方向H上传输的光线相对应)太大,从而导致在显示装置的边缘处发出的光线无法被人眼接收并且最终造成这部分光线的浪费。鉴于此,在本公开的实施例中,有利地,呈三棱柱形状的第二微棱镜21的夹角γ2可以选择在60°-120°的范围中,以避免光线不必要的浪费。
基于以上所述,在本公开的一些实施例中,对于第一方向H上的尺寸(例如,水平尺寸)相对于第二方向V上的尺寸(例如,纵向尺寸)较小的显示面板或者包括这样的显示面板的显示装置(例如手机)而言,其水平视角的要求较小。在此情况下,有利地,可以将第二微 棱镜21的夹角γ2选择为90°。此时,由第二微棱镜21出射的光线的出射角α可以控制在±30°左右,使得水平视角具有较高的亮度。
可替换地,在本公开的另一些实施例中,对于第一方向H上的尺寸(例如,水平尺寸)相对于第二方向V上的尺寸(例如,纵向尺寸)较大的面板或者包括这样的显示面板的显示装置(例如平板电视)而言,其水平视角的要求较大。在此情况下,有利地,可以将第二微棱镜21的夹角γ2选择为60°或120°。以这样的方式,既能够保证在显示面板或显示装置的边缘处发出的光线能够被人眼接收,而且还能够增大显示面板或显示装置的水平视角,从而提升显示效果。
考虑到从光源30发出的光束的对称性,在导光层10中沿第二方向V传输的光线将以类似的方式通过全反射向前传输。再一次,由于网点结构100的引入,在导光层10中沿第二方向V传输但入射到网点结构100上的光线部分的全反射将被破坏,从而同样地也从导光层10的出光面出射。
在这样的情况下,例如参照图3所示,在全反射被破坏之后,原本在导光层10中沿第二方向V传输的光线将从导光层10的出光面出射离开,并且然后入射至导光层10上方的第一微棱镜11上。与以上描述的第二微棱镜21类似,在本公开的实施例中,第一微棱镜11同样能够对入射到其上的光线进行汇聚,使得最终从第一微棱镜11出射的光线的出射角β控制在一定的范围内,从而提高所出射的光线的亮度。也就是说,根据本公开的实施例,多个第一微棱镜11发挥着与多个第二微棱镜21类似的作用,即,对原本在导光层10中沿第二方向V传输但是由于全反射的破坏而从导光层10出射的光线部分进行汇聚。
在本公开的一些实施例中,如图1所示,第一微棱镜11也可以设计为三棱柱。与图2中示出的第二微棱镜21的情况类似,如图3所示,第一微棱镜11同样具有三个侧面,其中一个侧面与导光层10相接触,而另外两个侧面形成夹角γ1。发明人再次发现,如果将第一微棱镜11的上述夹角γ1选择为小于60°或大于120°,那么从第一微棱镜11出射的光线的出射角β太大。在这样的情况下,显示面板或者包括该显示面板的显示装置的垂直视角(其与在第二方向V上传输的光线相对应)太大,从而导致在显示面板或显示装置的边缘处发出的光线无法被人眼接收,并且造成这部分光线的浪费。鉴于此,在本公开的实 施例中,有利地,将第一微棱镜11的上述夹角γ1选择为60°-120°。
基于此,在本公开的一些实施例中,对于第二方向V上的尺寸(例如,纵向尺寸)相对于第一方向H上的尺寸(例如,水平尺寸)较小的显示面板或显示装置(例如平板电视)而言,其垂直视角的要求较小。在此情况下,可以将第一微棱镜11的夹角γ1选择为90°。此时,由第一微棱镜11出射的光线的出射角β可以控制在±30°左右,从而使得垂直视角内的光线具有较高的亮度。
可替换地,在本公开的另一些实施例中,对于第二方向V上的尺寸(例如,纵向尺寸)相对于第一方向H上的尺寸(例如,水平尺寸)较大的显示面板或显示装置(例如手机)而言,其垂直视角的要求较大。在此情况下,可以将第一微棱镜11的夹角γ1选择为60°或120°。在这样的情况下,既能够保证在显示面板或显示装置的边缘处发出的光线能够被人眼接收,而且还能够增大显示面板或显示装置的垂直视角,从而提升显示效果。
由上述可知,在本公开的实施例中,通过选择用于第一微棱镜11的夹角γ1和第二微棱镜21的夹角γ2的适当范围或值,可以使得从显示面板或显示装置发出的光线在一个视角(例如水平视角或垂直视角)内具有较大的亮度,而同时在另一个视角(例如垂直视角或水平视角)内获得较大的视角范围。
此外,根据本公开的进一步可选的实施例,如果第一微棱镜11的夹角γ1保持一定,那么还可以通过圆弧面连接上述第一微棱镜11中未与导光层10保持接触的另外两个侧面,例如第二侧面和第三侧面),而不是像常规三棱柱中彼此相互邻接的侧面具有公共的边,,如图1-3所示。即在平行于第二微棱镜21底面的截面中,远离导光层10的顶角为圆角。如图4所示,以便进一步提高显示装置的垂直视角的视角范围。
同理,根据本公开的另一可选实施例,如果第二微棱镜21的夹角γ2保持一定,那么也可以同样地通过圆弧面连接上述第二微棱镜21中未与第一衬底20保持接触的另外两个侧面,例如第二侧面和第三侧面,而不是像常规三棱柱中彼此相互邻接的侧面具有公共的边,,如图1-3所示。即在平行于第二微棱镜21底面的截面中,远离导光层10的顶角为圆角。,以便进一步提高显示装置的水平视角的视角范围。 可以理解的是,
进一步地,根据本公开的实施例,在背光模组01中,上述第一微棱镜11与第二微棱镜21彼此固定连接。根据本公开的实施例,可选地,在背光模组01中,多个第一微棱镜11的一个侧面与导光层10的出光面保持接触且固定连接,而同样地,多个第二棱镜21的一个侧面与第一衬底20面向导光层10的表面保持接触且固定连接。这意味着,在整个复合层02中,各个组件之间彼此固定连接,即,复合层02内的各个组件的相对位置保持固定。以这样的方式,对于包括该背光模组01的显示面板或显示装置而言,在使用、测试或运输等过程期间,复合层02中将不大可能发生各个组件之间的相对移动,从而有效地降低了复合层02内产生褶皱以及由此导致的显示图像中的牛顿环、莫尔纹等不良现象的出现几率。
此外,根据以上实施例还可以得出,在背光模组01的复合层02中,由光源30发射的光将能够从导光层10的出光面导出,并且进一步地,入射到上方的第一微棱镜11和第二微棱镜21上。在此之后,第一微棱镜11和第二微棱镜21可以分别对所入射的光线中原本在导光层10内的第二方向V和第一方向H上传输的部分进行汇聚,从而提高显示画面在相应垂直视角和水平视角内的亮度。
基于此,根据本公开的实施例,在具有上述复合层02的背光模组01中,将无需再设置上导光板、上下棱镜以及扩散片等结构。此外,在上述复合层02中,导光层10还可以采用材质较软的树脂材料构成。在这样的情况下,该导光层10可以为导光膜。特别地,在本公开的实施例中,导光层10的厚度可以为200μm。此时,上述复合层02的厚度将在250μm-600μm的范围中。本领域技术人员应当能够理解到,当复合层02的厚度小于250μm时,对制作工艺的精度要求较高,并且不利于生产成本的降低。相反地,如果复合层02的厚度过大,例如大于600μm,那么将导致最终形成的背光模组01的厚度太大,从而不利于实现显示装置的超薄化设计。
接下来,将参照具体实现方式对本公开的实施例中的第一微棱镜11与第二微棱镜21之间的固定连接方式进行详细的说明。
例如,在本申请的一些实施例中,如图5所示,复合层02还包括第二衬底22。
具体地,该第二衬底22位于多个第一微棱镜11与多个第二微棱镜21之间。
进一步地,该第二衬底22面向第一衬底20的表面(即,图中的上表面)与多个第二微棱镜21相连接,而该第二衬底22面向导光层10的表面(即,图中的下表面)与多个第一微棱镜11相连接。
作为示例,在本公开的一些实施例中,上述第二衬底22可以为单个粘结层,以将第一微棱镜11的顶端(即,图中面向第一衬底20的一端)与第二微棱镜21的顶端(即,图中面向导光层10的一端)粘结在一起。
可替换地,在本公开的另一些实施例中,上述第二衬底22还可以为透明的树脂薄膜层。
在此情况下,在例如背光模组01的制作过程中,可以首先制作具有多个第一微棱镜11的导光层10,以及具有多个第二微棱镜21的第一衬底20。在此之后,可以在第二衬底22面向导光层10的表面(即,下表面)上涂覆胶层,并且将这样的胶层与第一微棱镜11的顶端粘接在一起。接下来,以同样的方式,可以在第二衬底22远离导光层10的表面(既,上表面)上涂覆胶层,并且然后将多个第二微棱镜21的顶端粘接于第二衬底22的这一胶层上。这样一来,第二衬底22的上下表面能够分别为第二微棱镜21和第一微棱镜11提供较大的粘接面积,从而能够降低上述粘接工艺的难度。
可替换地,在本申请的一些实施例中,第一微棱镜11与第二微棱镜21之间的固定连接方式还可以如图6所示。例如,参照图6,上述复合层02还包括层叠设置且彼此相连的第三衬底23和第四衬底24,并且进一步地,第三衬底23和第四衬底24还位于多个第一微棱镜11与多个第二微棱镜21之间。
此外,如图6所示,在背光模组01中,第三衬底23面向第一衬底20的表面(即,上表面)与多个第二微棱镜21相连接,并且第四衬底24面向导光层10的表面(即,下表面)与多个第一微棱镜11相连接。
在本公开的一些实施例中,上述第三衬底23和第二衬底24可以均为透明的树脂薄膜层。基于此,在制作过程中,可以首先制作具有多个第一微棱镜11的导光层10,以及具有多个第二微棱镜21的第一 衬底20。然后,在第四衬底24面向导光层10的表面(下表面)上涂覆胶层,并且使其与第一微棱镜11的顶端粘接在一起。接下来,以类似方式,在第三衬底23远离导光层10的表面(上表面)上涂覆胶层,并且然后将多个第二微棱镜21的顶端粘接于第三衬底23上。这样一来,第三衬底23的上表面和第四衬底24下表面能够分别为第二微棱镜21和第一微棱镜11提供较大的粘接面积,从而能够降低上述粘接工艺的难度。
可替换地,在本申请的一些实施例中,第一微棱镜11与第二微棱镜21之间的固定连接方式还可以如图2或图3所示。例如,参照图2或图3,多个第一微棱镜11与多个第二微棱镜21直接接触且成为一体结构。
具体地,在制作过程中,可以首先通过半固化工艺在导光层10上形成第一微棱镜11,以及在第一衬底20上形成第二微棱镜21。接下来,再通过全固化过程将彼此接触的第一微棱镜11与第二微棱镜21固定连接在一起。
在获益于本公开的教导的情况下,本领域技术人员应当能够理解到,上述固化工艺可以为热固化或者光固化工艺,并且本公开在这一方面不受限制。
基于上文所述,在将经过半固化的第一微棱镜11与第二微棱镜21直接接触的过程中,如果第一微棱镜11与第二微棱镜21的硬度不同,那么如图7所示,质地较软的微棱镜(例如第一微棱镜11)上将会形成凹槽110,而质地较硬的微棱镜(例如第二微棱镜21)的一部分将会位于上述与凹槽110内,并且与该凹槽110的内壁相接触。
此外,根据前面的描述可以得知,第二微棱镜21能够对原本在导光层10中沿第一方向H(例如,水平方向)传输但是由于全反射的破坏而从导光层10出射的光线进行汇聚。而且,对于纵向尺寸相对于水平尺寸较小的显示装置(例如平板电视)而言,相比于纵向尺寸,通过对水平方向上的光线进行汇聚,可以更容易提升整个显示画面的亮度。在这样的情况下,特别地,如果第一方向H和第二方向V分别为水平方向和竖直方向或纵向(即,彼此垂直),那么对于具有阵列排布的亚像素的平板电视而言,其在水平方向上的亚像素的数量显然要大于在竖直方向或纵向上的亚像素的数量。也就是说,对于像平板电 视这种具有相对大的水平尺寸的显示装置而言,水平方向上的亚像素数量明显更多,因此对水平方向上的光线的汇聚就更为重要。
在此情况下,在整个背光模组01中,在第一微棱镜11与第二微棱镜21彼此接触的位置处,设置有上述凹槽110。例如,如果第一微棱镜11的硬度较小(即,质地较软),那么将是第二微棱镜21的一部分位于凹槽110内,即,凹槽110处于第一微棱镜11中。这样一来,如图2所示,第二微棱镜21中与夹角γ2对应的顶端将能够保留完整的形状。由此,有效地保证了第二微棱镜21对水平方向上的光线的汇聚效果。
同理,根据前面的实施例还可以得知,第一微棱镜11能够对原本在导光层10中沿第二方向V(例如,纵向)传输但是由于全反射的破坏而从导光层10出射的光线进行汇聚。而且,对于水平尺寸相对于纵向尺寸较小的显示装置(例如手机)而言,相比于水平尺寸,通过对纵向上的光线进行汇聚,可以更容易提升整个显示画面的亮度。在这样的情况下,特别地,如果第一方向H和第二方向V分别为水平方向和竖直方向或纵向(即,彼此垂直),那么对于具有阵列排布的亚像素的手机而言,其在水平方向上的亚像素的数量显然要小于在竖直方向或纵向上的亚像素的数量。也就是说,对于像手机这种具有相对大的纵向尺寸的显示装置而言,竖直方向或纵向上的亚像素数量明显更多,因此对竖直方向或纵向上的光线的汇聚就更为重要。
在此情况下,在整个背光模组01中,在第二微棱镜21与第一微棱镜11彼此接触的位置处,设置有上述凹槽110。例如,如果第二微棱镜21的硬度较小(即,质地较软),那么将是第一微棱镜11的一部分位于凹槽110内,即,凹槽110处于第二微棱镜中。这样一来,如图3所示,第一微棱镜11中与夹角γ1对应的顶端将能够保留完整的形状。由此,有效地保证了第一微棱镜11对纵向上的光线的汇聚效果。
此外,发明人还已经发现,在上述背光模组01中,第一微棱镜11与第二微棱镜21之间的接触面积越大,对光线的散射效果就越好,并且显示装置将具有的视角就越大。例如,当第一微棱镜11与第二微棱镜21彼此相对的顶端直接接触时,显示装置具有0°的视角。然而,如图7所示,如果在一个微棱镜(例如第一微棱镜11)上设置有凹槽 110,并且增加凹槽110的深度H1(即,在垂直于导光层10的出光面的方向上),那么第二微棱镜21位于凹槽110中的部分将增加,由此获得第一微棱镜11与第二微棱镜21之间的较大接触面积,从而达到增大显示装置视角的目的。
在此情况下,在一些进一步可选的实施例中,对于中心亮度要求较高的显示装置,例如水平尺寸相对于纵向尺寸较小的手机,其所需要的视角较小,通常在0°至±30°之间。此时,可以将凹槽110的深度与具有该凹槽110的微棱镜(例如,图7中的第一微棱镜11)的高度H2之比S=H1:H2;S的取值范围选择为0<S≤1/5。
当上述凹槽110的深度H1占据设置有该凹槽110的微棱镜(例如,上述第一微棱镜11)的高度H2的1/5时,第一微棱镜11与第二微棱镜21之间的接触深度将为第一微棱镜11的高度H2的1/5。此时,发明人已经发现,手机的视角可以达到±30°。
当进一步减小第一微棱镜11与第二微棱镜21之间的接触深度,以使凹槽110的高度H1小于第一微棱镜11的高度H2的1/5时,手机的视角可以甚至达到±10°。
此处,需要指出的是,在以上所有描述中,凹槽110的深度与相应微棱镜的高度均沿着垂直于导光层10的出光面的方向,如例如图7所示。
在本公开的另一些实施例中,对于中心亮度要求较低的显示装置,例如纵向尺寸相对于水平尺寸较小的平板电视,其所需要的视角较大,例如在0°至±60°之间。在这样的情况下,可以将凹槽110的深度与具有该凹槽110的微棱镜(例如第一微棱镜11)的高度H2之比S=H1:H2:S的取值范围选择为0<S≤3/5。
当上述凹槽110的深度H1占据设置有该凹槽110的微棱镜(例如上述第一微棱镜11)的高度H2的3/5时,第一微棱镜11与第二微棱镜21之间的接触深度将为第一微棱镜11的高度H2的3/5。此时,发明人已经发现,平板电视的视角可以达到±60°。
当进一步减小第一微棱镜11与第二微棱镜21之间的接触深度,以使凹槽110的高度H1小于第一微棱镜11的高度H2的3/5时,平板电视的视角可以甚至达到±10°。
此外,在本公开的一些实施例中,背光模组还可以包括与该复合 层02的出光面相接触的其他薄膜层。例如,这样的其他薄膜层可以为偏光片。在这样的情况下,由于该偏光片吸附于复合层02的出光面上,往往容易导致偏光片产生褶皱。为了减少或者甚至消除这样的褶皱,如图8所示,在本公开的实施例中,上述复合层02还可以包括设置于第一衬底20远离导光层10的表面上的抗吸附层40。进一步地,该抗吸附层40具有多个凹槽和多个凸起,以提高复合层02的出光面的粗糙度。这样一来,在抗吸附层40上的凹槽内可以容纳空气,从而能够降低复合层02的出光面与上述偏光片或其他薄膜层之间的吸附力。
此外,在本公开的一些实施例中,如图8所示,该背光模组01还包括第一反射层41,以便例如提高光线的利用率。具体地,该第一反射层41设置于导光层10远离第一衬底20的一侧。通过使用第一反射层41,可以将原本从导光层10的下表面(即,非出光面)出射的光线再次反射至导光层10中,从而实现了这部分光线的再利用并且减小了整个装置的光学损耗。
根据本申请的另一方面,在实施例中还提供了一种显示装置。具体地,该显示装置包括如图9或图10所示的显示面板03,以及如上所述的任意一种背光模组01。该显示装置具有与上述实施例中所提供的背光模组01相同的技术效果,并且此处不再赘述。
需要说明的是,上述显示装置可以为液晶显示装置。作为示例,该液晶显示装置包括手机、电视、平板电脑等具有显示功能的装置。
此外,按照显示装置中背光模组01的设置位置的不同,上述显示装置还可以分为后置背光型显示装置和前置背光型显示装置。以下将参照附图对这两种显示装置的结构进行详细的说明。
如图9所示,该显示装置为后置背光型显示装置。具体地,在该显示装置中,显示面板03包括相对设置的阵列基板300和对盒基板301,并且在阵列基板300和对盒基板301之间还设置有液晶层。作为示例,当该对盒基板301包括彩膜基板时,该对盒基板301可以为彩膜基板。
此外,在上述后置背光型显示装置中,背光模组01位于阵列基板300远离对盒基板301的一侧。具体地,在该背光模组01中,第一衬底20面向阵列基板300,而导光层10远离阵列基板300。
由图9可以看出,在显示装置中,从光源30入射至导光层10中的光线将由导光层10的出光面出射,并且随后在第一微棱镜11和第 二微棱镜21的聚光作用下,入射至显示面板03中的阵列基板300上,并且在经过液晶层和对盒基板301之后出射离开,从而显示画面。
在本公开的另一些实施例中,还可以提供前置背光型显示装置。如图10或图11所示,在前置背光型显示装置中,显示面板03包括相对设置的阵列基板300和对盒基板301,以及设置于阵列基板300远离对盒基板301的一侧的第二反射层42。
根据具体实现方式,在以上前置背光型显示装置中,背光模组01位于对盒基板301远离阵列基板300的一侧,并且不包括第一反射层41(如前面参照图9所示)。此外,在背光模组01中,第一衬底20面向对盒基板301,并且导光层10远离阵列基板300。
如图10所示,在前置背光型显示装置中,从光源30入射至导光层10中的光线将由导光层10的出光面出射,并且随后在第一微棱镜11和第二微棱镜21的聚光作用下,入射至显示面板03中的对盒基板301上,然后再经过液晶层和阵列基板300之后入射至第二反射层42上。接下来,在第二反射层42的反射作用下,光线再次经过显示面板03和背光模组01并且最终实现显示。
为了使显示面板03的各处都能够均匀地接收到从背光模组01发出的光线,如图10所示,背光模组01还可以包括设置于第一衬底20远离导光层10的一侧的散射层50。具体地,该散射层50能够对入射至显示面板03上的光线进行散射。
可替换地,如图11所示,还可以去除上述散射层50,同时增加位于第一衬底20远离导光层10的表面上的抗吸附层40的粗糙度。以这样的方式,可以通过抗吸附层40实现入射至显示面板03上的光线的散射。
由上述可知,在后置背光型显示装置中,由于对入射至显示面板03上的光线进行散射的结构的设置,因此会减弱第一微棱镜11和第二微棱镜21对光线的汇聚效果。鉴于此,一般可以将后置背光型显示装置应用于弱光环境下。作为示例,可以是使用液晶的一些显示装置,例如,具有显示功能的手表等。典型地,这些显示装置对显示画质的效果要求较低,只要能够在微弱环境光下显示出相关有效信息(例如时间或日期)即可。
此外,由上文还可以得知,第二微棱镜21能够对原本在导光层10 内沿第一方向H(例如,水平方向)传输但是由于全反射的破坏而从导光层10出射的光线进行汇聚。因此,为了保证第二微棱镜21对水平方向上的光线的汇聚效果,在第一微棱镜11与第二微棱镜21彼此接触的位置处,可以设置上述凹槽110,并且使第二微棱镜21的一部分位于凹槽110内。以这样的方式,保证了第二微棱镜21面向第一微棱镜11的顶端能够保留完整的形状。
基于此,对于纵向尺寸相对于水平尺寸较小的显示装置(例如,平板电视)而言,相比于纵向,通过对水平方向上的光线进行汇聚,更容易提升整个显示画面的亮度。因此,以上描述的针对第二微棱镜21保留完整的顶端形状的设计,将更适用于纵向尺寸相对于水平尺寸较小的显示装置。也就是说,在显示装置的显示区域中,沿第一方向H排列的亚像素的数量大于沿第二方向V排列的亚像素的数量。
可替换地,由上文还可以得知,第一微棱镜11能够对原本在导光层10内沿第二方向V(例如,纵向)传输但是由于全反射的破坏而从导光层10出射的光线进行汇聚。因此,为了保证第一微棱镜11对纵向上的光线的汇聚效果,在第二微棱镜21与第一微棱镜11彼此接触的位置处,可以设置上述凹槽110,并且使第一微棱镜11的一部分位于凹槽110内。以这样的方式,保证了第一微棱镜11面向第二微棱镜21的顶端能够保留完整的形状。
基于此,对于水平尺寸相对于纵向尺寸较小的显示装置(例如,手机)而言,相比于水平,通过对纵向上的光线进行汇聚,更容易提升整个显示画面的亮度。因此,以上描述的针对第一微棱镜11保留完整的顶端形状的设计,将更适用于水平尺寸相对于纵向尺寸较小的显示装置。也就是说,在显示装置的显示区域中,沿第一方向H排列的亚像素的数量小于沿第二方向V排列的亚像素的数量。
根据本申请的一些实施例,还提供一种背光模组的制作方法。如图12所示,该制作方法包括步骤S101-S103。
步骤S101、在导光层10的出光面上,通过构图工艺形成所述多个第一微棱镜11。
例如,如图13所示,卷轴1上卷有已经制作有网点结构100的导光膜。该导光膜切割后形成上述导光层10。
需要说明的是,在本公开的另一些实施例中,上述网点结构100 可以在第一微棱镜11和第二微棱镜21制作好之后再制作。
在展开导光膜之后,通过滚涂工艺将多个第一微棱镜11转印至导光膜中未设置有网点结构100的表面上,并且然后对上述多个第一微棱镜11进行半固化处理。
步骤S102、在第一衬底20上通过构图工艺形成所述多个第二微棱镜21。
例如,如图13所示,卷轴2上卷有已经制作有抗吸附层40的树脂薄膜。该树脂薄膜切割后形成上述第一衬底20。
需要说明的是,在本公开的另一些实施例中,上述抗吸附层40可以在第一微棱镜11和第二微棱镜21制作好之后再制作。
在展开树脂薄膜之后,通过滚涂工艺将多个第二微棱镜21转印至树脂薄膜中未设置有抗吸附层40的表面上,并且然后对上述多个第二微棱镜21进行半固化处理。
步骤S103、将多个第一微棱镜11与多个第二微棱镜21固定连接。
例如,如图13所示,通过卷轴3和卷轴4,将制作有第一微棱镜11的导光膜和制作有第二微棱镜21的树脂薄膜相对设置,然后使第一微棱镜11与第二微棱镜21彼此直接相接触,并且经过全固化处理,使得多个第一微棱镜11与多个第二微棱镜21成为一体结构。
接下来,在导光膜远离第一微棱镜11的表面上和树脂薄膜远离第二微棱镜21的表面上贴附保护膜,并且通过卷轴5收卷成型,以便于在背光模组01的后续制作和组装过程中进行切割。
可替换地,上述步骤S103可以包括以下子步骤:首先,在多个第一微棱镜11远离导光层10的表面上形成与所述第一微棱镜11粘接的第二衬底22;并且然后,将第二衬底22远离导光层10的表面与多个第二微棱镜21粘接在一起。
这样一来,第二衬底22的上下表面能够分别为第二微棱镜21和第一微棱镜11提供较大的粘接面积,从而能够降低上述粘接工艺的难度。
进一步可选地,上述步骤S103可以包括以下子步骤:首先,在多个第一微棱镜11远离导光层10的表面上形成与多个第一微棱镜11粘接的第四衬底24;在多个第二微棱镜21远离第一衬底20的表面上形成与多个第二微棱镜21粘接的第三衬底23;并且接下来,将第四衬底 24远离导光层10的表面与第三衬底23远离第一衬底20的表面粘接在一起。
这样一来,第三衬底23的上表面和第四衬底24下表面能够分别为第二微棱镜21和第一微棱镜11提供较大的粘接面积,从而能够降低上述粘接工艺的难度。
上述制作方法具有与前述实施例提供的背光模组相同的技术效果,并且此处不再赘述。
以上所述,仅为本公开的具体实施方式,但是本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内可容易想到的各种变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种背光模组,包括复合层,其中,所述复合层包括:
    相对设置的导光层和第一衬底,其中,所述导光层包括面向所述第一衬底的出光面;
    位于所述导光层的出光面上的多个第一微棱镜,其中,所述多个第一微棱镜中的每一个第一微棱镜沿着平行于所述导光层的出光面的第一方向延伸且所述多个第一微棱镜沿平行于所述导光层的出光面的第二方向依次排列,所述第二方向与所述第一方向彼此交叉;以及
    位于所述第一衬底面向所述导光层的表面上的多个第二微棱镜,其中,所述多个第二微棱镜中的每一个第二微棱镜沿着平行于所述第二方向延伸,且所述多个第二微棱镜沿所述第一方向依次排列,其中,
    所述第一微棱镜与所述第二微棱镜固定连接。
  2. 根据权利要求1所述的背光模组,其中,所述复合层还包括第二衬底;
    所述第二衬底位于所述多个第一微棱镜与所述多个第二微棱镜之间;
    所述第二衬底面向所述第一衬底的表面与所述多个第二微棱镜连接,并且所述第二衬底面向所述导光层的表面与所述多个第一微棱镜连接。
  3. 根据权利要求1所述的背光模组,其中,所述复合层还包括:
    在所述多个第一微棱镜与所述多个第二微棱镜之间层叠设置且彼此相连的第三衬底和第四衬底,其中,
    所述第三衬底面向所述第一衬底的表面与所述多个第二微棱镜连接,并且所述第四衬底面向所述导光层的表面与所述多个第一微棱镜连接。
  4. 根据权利要求1所述的背光模组,其中,
    所述多个第一微棱镜与所述多个第二微棱镜直接接触且形成一体结构。
  5. 根据权利要求1所述的背光模组,其中,所述复合层还包括:
    位于所述多个第一微棱镜与所述多个第二微棱镜彼此接触的位置处的一个或多个凹槽,其中,
    每一个凹槽位于一个第一微棱镜中且配置为接收对应的第二微棱镜的一部分,或者位于一个第二微棱镜中且配置为接收对应的第一微棱镜的一部分。
  6. 根据权利要求1所述的背光模组,其中,
    所述多个第一微棱镜中的至少一个包括第一三棱柱,所述第一三棱柱包括第一侧面、第二侧面和第三侧面,其中,所述第一三棱柱的第一侧面与所述导光层接触,而第二侧面与第三侧面之间的夹角为60°-120°;并且
    所述多个第二微棱镜中的至少一个包括第二三棱柱,所述第二三棱柱包括彼此相互邻接的第一侧面、第二侧面和第三侧面其中,所述第二三棱柱的第一侧面与所述第一衬底接触,所述第二三棱柱的第二侧面与所述第二三棱柱的第三侧面之间的夹角为60°-120°。
  7. 根据权利要求6所述的背光模组,其中,
    所述第一三棱柱的第二侧面和第三侧面通过圆弧面相连接;和/或
    所述第二三棱柱的第二侧面和第三侧面通过圆弧面相连接。
  8. 根据权利要求1所述的背光模组,其中,所述复合层还包括:
    位于所述导光层远离所述第一衬底的表面上的多个网点结构。
  9. 根据权利要求1所述的背光模组,其中,
    在垂直于所述导光层的出光面的方向上,所述复合层的厚度为250μm-600μm。
  10. 根据权利要求1所述的背光模组,还包括:
    第一反射层,所述第一反射层位于所述导光层远离所述第一衬底的一侧。
  11. 一种显示装置,包括:
    显示面板;以及
    根据权利要求1所述的背光模组。
  12. 根据权利要求11所述的显示装置,其中,
    所述显示面板包括相对设置的阵列基板和对盒基板;并且
    所述背光模组位于所述阵列基板远离所述对盒基板的一侧,其中,所述第一衬底面向所述阵列基板,而所述导光层远离所述阵列基板。
  13. 根据权利要求11所述的显示装置,其中,
    所述显示面板包括相对设置的阵列基板和对盒基板,以及位于所述阵列基板远离所述对盒基板的一侧的第二反射层,其中,
    所述背光模组位于所述对盒基板远离所述阵列基板的一侧,其中,所述第一衬底面向所述对盒基板,而所述导光层远离所述阵列基板。
  14. 根据权利要求11所述的显示装置,其中,
    所述多个第一微棱镜与所述多个第二微棱镜直接接触;
    所述多个第一微棱镜中的至少一个第一微棱镜包括至少一个凹槽,所述至少一个凹槽配置用于容纳与所述至少一个第一微棱镜直接接触的所述多个第二微棱镜中的至少一个第二微棱镜的一部分;以及
    所述显示装置包括位于显示区域中并在所述第一方向上和所述第二方向上阵列排布的多个亚像素,其中,所述第一方向上的亚像素的数量大于所述第二方向上的亚像素的数量。
  15. 根据权利要求11所述的显示装置,其中,
    所述多个第一微棱镜与所述多个第二微棱镜直接接触;
    所述多个第二微棱镜中的至少一个第二微棱镜包括至少一个凹槽,所述至少一个凹槽配置用于容纳与所述至少一个第二微棱镜直接接触的所述多个第一微棱镜中的至少一个第一微棱镜的一部分;以及
    所述显示装置包括位于显示区域中并在所述第一方向上和所述第二方向上阵列排布的多个亚像素,其中,所述第一方向上的亚像素的数量小于所述第二方向上的亚像素的数量。
  16. 根据权利要求14或15所述的显示装置,其中,
    所述显示装置的视角在0°至±30°之间;并且
    在垂直于所述导光层的出光面的方向上,所述凹槽的深度与所述凹槽所位于的第一微棱镜或第二微棱镜的高度之比S满足0<S≤1/5。
  17. 根据权利要求14或15所述的显示装置,其中,
    所述显示装置的视角在0°至±60°之间;并且
    在垂直于所述导光层的出光面的方向上,所述凹槽的深度与所述凹槽所位于的第一微棱镜或第二微棱镜的高度之比S满足0<S≤3/5。
  18. 一种根据权利要求1所述的背光模组的制作方法,包括以下步骤:
    在所述导光层的出光面上,通过构图工艺形成所述多个第一微棱镜;
    在所述第一衬底面向所述导光层的表面上,通过构图工艺形成所述多个第二微棱镜;以及
    将所述多个第一微棱镜与所述多个第二微棱镜固定连接。
  19. 根据权利要求18所述的背光模组的制作方法,其中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:
    使所述第一微棱镜与所述第二微棱镜直接接触,并且通过固化工艺,将所述多个第一微棱镜与所述多个第二微棱镜形成为一体结构。
  20. 根据权利要求18所述的背光模组的制作方法,其中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:
    在所述多个第一微棱镜远离导光层的表面上形成与所述多个第一微棱镜粘接的第二衬底;以及
    将所述第二衬底远离所述导光层的表面与所述多个第二微棱镜粘接。
  21. 根据权利要求18所述的背光模组的制作方法,其中,将所述多个第一微棱镜与所述多个第二微棱镜固定连接的步骤包括:
    在所述多个第一微棱镜远离导光层的表面上形成与所述多个第一微棱镜粘接的第四衬底;
    在所述多个第二微棱镜远离第一衬底的表面上形成与所述多个第二微棱镜粘接的第三衬底;以及
    将所述第四衬底远离所述导光层的表面与所述第三衬底远离所述第一衬底的表面粘接。
PCT/CN2019/100374 2018-09-21 2019-08-13 背光模组及其制作方法、显示装置 WO2020057295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/641,123 US11112554B2 (en) 2018-09-21 2019-08-13 Back light unit, fabricating method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811109607.8A CN110941116A (zh) 2018-09-21 2018-09-21 背光模组及其制作方法、显示装置
CN201811109607.8 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057295A1 true WO2020057295A1 (zh) 2020-03-26

Family

ID=69888243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100374 WO2020057295A1 (zh) 2018-09-21 2019-08-13 背光模组及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11112554B2 (zh)
CN (1) CN110941116A (zh)
WO (1) WO2020057295A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238314B (zh) * 2021-05-06 2022-11-01 苏州晶智科技有限公司 一种用于准直背光模组的楔形导光板及其准直背光模组
CN113433739A (zh) * 2021-07-23 2021-09-24 业成科技(成都)有限公司 光学膜片组、显示面板及电子设备
CN115035806B (zh) * 2022-08-02 2022-11-25 惠科股份有限公司 防窥组件的制造方法、防窥组件、防窥方法及显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268304A (ja) * 1997-03-26 1998-10-09 Dainippon Printing Co Ltd バックライト装置及び液晶表示装置
JP2007256493A (ja) * 2006-03-22 2007-10-04 Sony Corp 光学シート、光学シートの製造方法、バックライト装置および液晶表示装置
CN101326459A (zh) * 2006-03-29 2008-12-17 索尼株式会社 液晶显示装置
CN101398569A (zh) * 2007-09-27 2009-04-01 统宝光电股份有限公司 用于双视显示器的背光模块
CN208818991U (zh) * 2018-09-21 2019-05-03 京东方科技集团股份有限公司 背光模组、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367845B1 (ko) * 2000-06-07 2003-01-10 삼성전자 주식회사 액정표시장치의 조명 방법, 이를 구현시키기 위한액정표시장치의 백라이트 어셈블리 및 이를 채용한액정표시장치
TWI292504B (en) * 2005-12-16 2008-01-11 Innolux Display Corp Brightness enhancement film, backlight module and liuqid crystal display module
KR20080017537A (ko) * 2006-08-21 2008-02-27 삼성전자주식회사 백라이트 어셈블리 및 이를 갖는 표시 장치
US20080259248A1 (en) * 2007-04-19 2008-10-23 Hitachi Maxell, Ltd Multilens member, illumination apparatus, and liquid crystal display apparatus
US8363181B2 (en) 2007-09-27 2013-01-29 Chimei Innolux Corporation Backlight device for dual-view display
KR20110051587A (ko) * 2009-11-10 2011-05-18 삼성전자주식회사 광학 플레이트 및 그 제조 방법
KR101321718B1 (ko) * 2012-06-25 2013-10-28 주식회사 엘엠에스 서로 다른 두께의 광학시트를 가지는 광학시트 모듈
KR101268083B1 (ko) * 2012-06-25 2013-05-29 주식회사 엘엠에스 적층형 광학시트모듈
TWI497105B (zh) * 2013-05-29 2015-08-21 Ubright Optronics Corp 多功能複合型光學膜
CN104698517B (zh) * 2013-12-09 2017-02-22 纬创资通股份有限公司 光学膜片、光学膜片组件及光学膜片的制造方法
JP6829969B2 (ja) * 2015-09-28 2021-02-17 日東電工株式会社 光学部材、ならびに、該光学部材を用いた偏光板のセットおよび液晶表示装置
CN107132694B (zh) * 2017-06-14 2020-06-23 上海天马微电子有限公司 一种背光模组及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268304A (ja) * 1997-03-26 1998-10-09 Dainippon Printing Co Ltd バックライト装置及び液晶表示装置
JP2007256493A (ja) * 2006-03-22 2007-10-04 Sony Corp 光学シート、光学シートの製造方法、バックライト装置および液晶表示装置
CN101326459A (zh) * 2006-03-29 2008-12-17 索尼株式会社 液晶显示装置
CN101398569A (zh) * 2007-09-27 2009-04-01 统宝光电股份有限公司 用于双视显示器的背光模块
CN208818991U (zh) * 2018-09-21 2019-05-03 京东方科技集团股份有限公司 背光模组、显示装置

Also Published As

Publication number Publication date
US11112554B2 (en) 2021-09-07
US20210149105A1 (en) 2021-05-20
CN110941116A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
JP5168813B2 (ja) 光学シート、バックライト装置および液晶表示装置
JP3589716B2 (ja) マイクロレンズ配列を有する液晶プロジェクションパネル
US8013950B2 (en) Optical sheet combination structure, surface emitting device, and liquid crystal device
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
JP5327741B2 (ja) 多重視角表示装置
JPH095739A (ja) 導光シ−ト及びその製造方法、及び前記導光シ−トを用いたバックライト及び前記バックライトを用いた液晶表示装置
CN113296314B (zh) 显示模组和显示装置
WO2020057295A1 (zh) 背光模组及其制作方法、显示装置
WO2016095333A1 (zh) 曲面液晶显示装置
WO2019134433A1 (zh) 导光板组件、背光模组、显示装置
WO2016206261A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
TW200405093A (en) Light guiding apparatus, backlight assembly and liquid crystal display device having the same
WO2016197519A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
JP2001143515A (ja) プリズムシートおよび面光源素子
US8425103B2 (en) Backlight module having a light guide plate with prismatic structures and manufacturing method thereof
JP2007003908A (ja) 液晶表示装置用バックライトに適用される光学フィルム
TWI526742B (zh) 曲型背光模組
WO2016086450A1 (zh) 导光板、背光模组及液晶显示装置
TWM519385U (zh) 顯示裝置
JP2014086245A (ja) 導光板、バックライト・ユニット及びディスプレイ装置
US20080247065A1 (en) Method of making structured optical films
WO2022000690A1 (zh) 显示装置
JP2009164100A (ja) バックライト
JP2003114430A (ja) フロントライト型液晶ディスプレイ
JPH0743704A (ja) 液晶ディスプレイの視野角拡大方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863920

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19863920

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19863920

Country of ref document: EP

Kind code of ref document: A1