WO2023028828A1 - 光学叠层结构、显示模组、终端及相关制备方法 - Google Patents

光学叠层结构、显示模组、终端及相关制备方法 Download PDF

Info

Publication number
WO2023028828A1
WO2023028828A1 PCT/CN2021/115620 CN2021115620W WO2023028828A1 WO 2023028828 A1 WO2023028828 A1 WO 2023028828A1 CN 2021115620 W CN2021115620 W CN 2021115620W WO 2023028828 A1 WO2023028828 A1 WO 2023028828A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
liquid crystal
cholesteric liquid
absorbing layer
Prior art date
Application number
PCT/CN2021/115620
Other languages
English (en)
French (fr)
Inventor
李霄
李孟庭
梁书海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/115620 priority Critical patent/WO2023028828A1/zh
Publication of WO2023028828A1 publication Critical patent/WO2023028828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 

Definitions

  • the present application relates to the field of display technology, and in particular to an optical laminated structure, a display module, a terminal and related preparation methods.
  • LED (Light Emitting Diode, Light Emitting Diode) device is an electroluminescent device, which has the advantages of simple preparation process, low cost, low power consumption, high luminous brightness, wide range of working temperature, light and thin volume, fast response speed and wide viewing angle. and other advantages; therefore, the display technology using light-emitting diodes has become an important display technology.
  • the LED display device is generally provided with metal wires.
  • the reflectivity of metal traces to external light is high.
  • the display brightness obtained by the human eye is the sum of the original brightness to be displayed and the brightness of the reflected external light, that is, the display brightness of the LED display device. Deviation occurs, thereby affecting the display effect of the LED display device.
  • circular polarizers are usually used to reduce reflectivity.
  • half of the polarized light emitted by the LED device will be absorbed by the circular polarizer, which will lead to a decrease in the light rate of the LED display device.
  • the present application provides an optical stack structure, a display module, a terminal and related preparation methods, which are used to reduce the reflectivity of ambient light on the basis of ensuring the display light efficiency.
  • the present application provides an optical stack structure, which can be arranged on the light emitting side of the LED display panel, and is used to reduce the reflectivity of ambient light on the basis of ensuring the light output efficiency of the LED display panel.
  • the LED display panel may include pixels of multiple colors such as a plurality of first pixels, a plurality of second pixels, and a plurality of third pixels.
  • the optical laminated structure may include a circular polarizer, and a light absorbing layer and a CLC (Cholesteric Liquid Crystal, CLC) layer positioned at the side of the circular polarizer facing the LED display panel; the light absorbing layer and the The CLC is stacked, and the CLC layer is located between the light absorbing layer and the circular polarizing plate, or the light absorbing layer is located between the CLC layer and the circular polarizing plate.
  • CLC Chargesteric Liquid Crystal
  • the light-absorbing layer is used to absorb light in the first wavelength band, and the light-absorbing layer has a plurality of hollowed out areas, and the hollowed out areas are set corresponding to the first pixels in the LED display panel, so that the first pixels
  • the emitted light can pass through;
  • the CLC layer acts on the light of the first wavelength band, and is used to transmit the left-handed circularly polarized light and make the right-handed Circularly polarized light is reflected, or right-handed circularly polarized light is transmitted, and left-handed circularly polarized light is reflected.
  • the light of the first pixel can be emitted through the hollow area.
  • the light-absorbing layer cannot act on other pixels in the LED display panel except the first pixel, that is, the LED Light emitted by other pixels of the display panel can pass through the light absorbing layer. Therefore, in the present application, the first wavelength band includes at least part of the light emitting wavelength band of the first pixel.
  • the first wavelength band may include the light emitting wavelength band of the first pixel. It should be noted that the partial overlapping of the first wavelength band and the light emission band of the first pixel also belongs to the protection scope of the present application, which is not limited here.
  • the circular polarizing plate may include a linear polarizing plate and a ⁇ /4 wave plate, the linear polarizing plate is located away from the LED display panel, and the ⁇ /4 wave plate is located close to the LED display panel. panel side.
  • the outgoing light is left-handed circularly polarized light or right-handed circularly polarized light.
  • the CLC layer is used to irradiate the light in the first wavelength band to the The CLC layer transmits left-handed circularly polarized light and reflects right-handed circularly polarized light. If the outgoing light is right-handed circularly polarized light, the CLC layer is configured to transmit right-handed circularly polarized light and reflect left-handed circularly polarized light when the light of the first wavelength band irradiates the CLC layer.
  • the circular polarizing plate may also include a C-type compensation film layer located on the side of the ⁇ /4 wave plate away from the linear polarizing plate, so as to correct the optical color cast (strabismus, large viewing angle, etc.) problems existing in the display panel. compensate.
  • a C-type compensation film layer located on the side of the ⁇ /4 wave plate away from the linear polarizing plate, so as to correct the optical color cast (strabismus, large viewing angle, etc.) problems existing in the display panel. compensate.
  • the CLC layer is located between the light-absorbing layer and the circular polarizer
  • the light perpendicular to the transmission axis of the linear polarizer in the external light is absorbed, and the The light whose transmission axis is parallel to the linear polarizer passes through and becomes linearly polarized light, and then the linearly polarized light is converted into left-handed circularly polarized light (or right-handed circularly polarized light) after passing through the ⁇ /4 wave plate, and left-handed circularly polarized light ( Or right-handed circularly polarized light) after passing through the CLC layer
  • light of other colors such as red light R and green light G
  • the light of the first waveband For example, only the part of the blue light B) irradiated on the hollowed-out area of the light-absorbing layer can pass through.
  • the reflected right-handed circularly polarized light (or left-handed circularly polarized light) enters the LED display panel after passing through the light-absorbing layer, and is then routed by the metal wiring. Reflection becomes left-handed circularly polarized light (or right-handed circularly polarized light).
  • left-handed circularly polarized light sequentially passes through the light absorbing layer and the CLC layer and then irradiates on the ⁇ /4 wave plate, and becomes linearly polarized light after passing through the ⁇ /4 wave plate 2, while the linearly polarized light
  • the polarization direction is parallel to the transmission axis of the linear polarizer, so that it is emitted after passing through the linear polarizer. That is, most of the light in the first waveband in the external light is absorbed, and about half of the light of other colors is absorbed by the linear polarizer, similar to the prior art. Therefore, by reducing the reflection of light in the first waveband, the ambient light reflectance of the display module is reduced, and the overall black effect of the display module in the screen-off state is improved.
  • the pixels of each color in the LED display panel emit light.
  • the light can be irradiated to the CLC layer through the light absorbing layer, and then the left-handed circularly polarized light (or right-handed circularly polarized light) can pass through the CLC layer, and the right-handed circularly polarized light (or left-handed circularly polarized light) is reflected by the CLC layer and then transmitted. Enter the LED display panel through the light absorbing layer.
  • the left-handed circularly polarized light (or right-handed circularly polarized light) passing through the CLC layer becomes linearly polarized light after passing through the ⁇ /4 wave plate. slice through.
  • the right-handed circularly polarized light (or left-handed circularly polarized light) reflected back to the LED display panel is reflected by the metal wires in the LED display panel and becomes left-handed circularly polarized light (or right-handed circularly polarized light), and the left-handed circularly polarized light (or right-handed circularly polarized light) Circularly polarized light) sequentially passes through the light absorbing layer and the CLC layer, and then emerges from the circular polarizing plate. That is, if light loss is not considered, basically all the natural light emitted by the LED display panel can be emitted, thereby ensuring the light extraction efficiency of the display module.
  • the light-absorbing layer is located between the CLC layer and the circular polarizing plate
  • the light perpendicular to the transmission axis of the linear polarizing plate in the external light is absorbed, and the The light whose transmission axis is parallel to the linear polarizer passes through and becomes linearly polarized light, and then the linearly polarized light is converted into left-handed circularly polarized light (or right-handed circularly polarized light) after passing through the ⁇ /4 wave plate, and left-handed circularly polarized light ( Or right-handed circularly polarized light) light of other colors except the light of the first waveband can pass through the light-absorbing layer, while the light of the first waveband can only pass through the hollowed-out area of the light-absorbing layer.
  • the right-handed circularly polarized light (or left-handed circularly polarized light) is reflected by the CLC layer, and the reflected right-handed circularly polarized light (or left-handed circularly polarized light) enters the LED display panel, and is reflected by the metal traces to become left-handed circularly polarized light ( or right-handed circularly polarized light).
  • left-handed circularly polarized light sequentially passes through the CLC layer and the light absorbing layer and then irradiates on the ⁇ /4 wave plate, and becomes linearly polarized light after passing through the ⁇ /4 wave plate, and the polarization of linearly polarized light
  • the direction is parallel to the transmission axis of the linear polarizer, so that it is emitted after passing through the linear polarizer. That is, most of the light in the first waveband in the external light is absorbed, and about half of the light of other colors is absorbed by the linear polarizer, similar to the prior art. Therefore, by reducing the reflection of light in the first waveband, the ambient light reflectance of the display module is reduced, and the overall black effect of the display module in the screen-off state is improved.
  • the left-handed circularly polarized light (or right-handed circularly polarized light) can pass through the CLC layer, and the right-handed circularly polarized light (or left-handed circularly polarized light) is reflected by the CLC layer into the LED display panel.
  • the right-handed circularly polarized light (or left-handed circularly polarized light) reflected back to the LED display panel is reflected by the metal wires in the LED display panel and becomes left-handed circularly polarized light (or right-handed circularly polarized light), and the left-handed circularly polarized light (or right-handed circularly polarized light) Circularly polarized light) passes through the CLC layer, and when the left-handed circularly polarized light (or right-handed circularly polarized light) passing through the CLC layer passes through the light-absorbing layer, although the light-absorbing layer can absorb the light of the first waveband, due to the The area corresponding to a pixel has a hollow area, so the light emitted by the pixels of each color in the LED display panel can pass through the light-absorbing layer, and the left-handed circularly polarized light (or right-handed circularly polarized light) passing through the light-absorbing layer passes through the ⁇ After the /4 wave plate, it becomes linearly polarized light, and
  • the light intensity of blue light plays a major role, so in this application, the first waveband corresponds to the blue light waveband, the first pixel is a blue pixel, and the light-emitting waveband of the first pixel Mainly in the blu-ray band.
  • the light absorbing layer is used to absorb blue incident light, and can transmit incident light of other wavelength bands except blue light, so that the display module can reduce the reflectivity of blue light in ambient light.
  • the present application does not limit the thickness of the light-absorbing layer and the CLC layer.
  • the thickness of the light-absorbing layer can be controlled between 1 ⁇ m and 2 ⁇ m, such as 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, etc.; the CLC
  • the thickness of the layer can be controlled between 2 ⁇ m and 5 ⁇ m, such as 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m and so on.
  • the hollow area in the light-emitting layer may also be filled with a material that allows light in the first wavelength band to pass through.
  • a material that allows light in the first wavelength band to pass through For example, an optically transparent material may be filled in the hollow area, and the optically transparent material is used to at least transmit light in the first wavelength band.
  • a cholesteric liquid crystal material may be filled in the hollow area, and the cholesteric liquid crystal material may be the same as the cholesteric liquid crystal material in the CLC layer.
  • the light absorbing layer described in this application may be formed of a yellow photoresist material.
  • the yellow photoresist material can include hardening resin, yellow pigment, propylene glycol methyl ether acetate (PGMEA) and propylene glycol methyl ether (PGME).
  • PGMEA propylene glycol methyl ether acetate
  • PGME propylene glycol methyl ether
  • the yellow photoresist material can also be made of It can be formed of other materials, which is not limited here.
  • the setting of the hollow area in the light-absorbing layer is to allow the light emitted by the first pixel in the LED display panel to pass through, but in actual implementation, the light emission angle of the pixel is not completely Normal direction, but with a certain exit angle.
  • the orthographic projection of the hollow area on the LED display panel covers the pixels of the corresponding first wavelength band (such as blue B). a light-emitting layer, and the area of the orthographic projection of the hollowed out region on the LED display panel is larger than the area of the light-emitting layer of the first pixel.
  • the distance between the boundary of the hollow area and the corresponding boundary of the light-emitting layer of the first pixel may be greater than or equal to 25 ⁇ m and less than or equal to 35 ⁇ m.
  • the CLC layer is disposed between the circular polarizer and the light-absorbing layer, so that the distance between the light-absorbing layer and the light-emitting layer can be reduced.
  • the optical stack structure may further include a planarization layer located between the circular polarizing plate and the light absorbing layer.
  • the flattening layer has a flattening and protecting effect on the display module, and can avoid air bubbles between film layers, which is beneficial to the mass production feasibility of the display module.
  • the present application does not limit the material of the planarization layer.
  • the material of the planarization layer may be acrylic.
  • the material of the optically transparent material and the planarization layer can be set to be the same, thereby avoiding the need for additional Add craft.
  • the planarization layer may be located between the light-absorbing layer and the CLC layer, so that the hollow area may be filled with the optically transparent material while forming the planarization layer, avoiding The process step of filling the hollowed-out area with the optically transparent material is eliminated, thereby reducing process steps and reducing costs.
  • the CLC layer may be bonded to the circular polarizing plate and the planarization layer through an adhesive layer, respectively.
  • the CLC layer can be coated on the side of the circular polarizing plate facing the LED display panel; the CLC layer is away from the circular polarizing plate One side of the first transparent adhesive layer is combined with the planarization layer, so that one adhesive layer can be reduced.
  • the ⁇ /4 wave plate in the circular polarizing plate is generally formed by coating with liquid crystal material, the process of coating the CLC layer on the side of the circular polarizing plate facing the LED display panel is simpler, and , the CLC layer can be coated on a large circular polarizing plate and then cut, that is, the CLC layer in multiple display modules can be coated at the same time, and the cost is lower.
  • the transmittance of the first transparent adhesive layer is between 99% and 100%.
  • the difference between the refractive index of the first transparent bonding layer and the refractive index of the planarization layer may be less than or equal to 0.1.
  • the refractive index of the first transparent adhesive layer can be set to be close to the refractive index of acrylic.
  • the refractive index of acrylic acid is about 1.5
  • the refractive index of the first transparent adhesive layer can be set between 1.4 ⁇ 1.6.
  • the first transparent adhesive layer may be a molecular covalent bonding layer, and the molecular covalent bonding layer is respectively connected to the The CLC layer and the planarization layer are bonded by chemical bonds, that is, a chemical bond is formed between the materials of the two layers of the molecular covalent bonding layer and the CLC layer at the contact surface, and the molecular covalent bonding layer and the The planarization layer forms a chemical bond between the materials of the two layers at the interface. Therefore, the molecular covalent bonding layer can be used to achieve a nanoscale thickness of less than 1 um.
  • the material of the planarization layer is acrylic acid
  • the material of the molecular covalent bonding layer is a molecular binder material containing alkoxy silicon groups.
  • the alkoxysilane group may be an alkoxysilane compound.
  • the CLC layer can be coated on the side of the planarization layer away from the light absorbing layer; the CLC layer is away from the light absorbing layer One side of the layer is combined with the circular polarizing plate through the second transparent adhesive layer, so that one layer of adhesive layer can be reduced, and the distance between the CLC layer and the light emitting layer can be reduced.
  • the transmittance of the second transparent adhesive layer is between 99% and 100%.
  • the second transparent adhesive layer may be PSA, OCA, or molecular covalent bonding layer, etc., which is not limited herein.
  • the second transparent adhesive layer is PSA.
  • the planarization layer may be located between the CLC layer and the circular polarizer.
  • the CLC layer is coated on the side of the light-absorbing layer away from the LED display panel; the planarization layer is coated on the side of the CLC layer away from the LED display panel.
  • the side of the light absorbing layer, the side of the planarization layer away from the CLC layer is combined with the circular polarizer through a third transparent adhesive layer.
  • the third transparent adhesive layer may be PSA, OCA, or a molecular covalent bonding layer, etc., which is not limited herein.
  • the third transparent adhesive layer may be PSA.
  • the present application also provides a display module, which includes an LED display panel and the optical stack structure described in the first aspect or various implementation modes of the first aspect, and the optical stack The layer structure is located on the light emitting side of the LED display panel.
  • the cholesteric liquid crystal layer is located between the circular polarizer and the light-absorbing layer; the surface of the cholesteric liquid crystal layer facing the side of the LED display panel and the light-absorbing layer face The distance between the surfaces on one side of the LED display panel may be less than 3 ⁇ m; the surface of the light-absorbing layer facing the side of the LED display panel and the surface of the light-emitting layer of the first pixel facing the side of the light-absorbing layer The distance between surfaces may be less than 15 ⁇ m.
  • the thickness of the light absorbing layer may be set to be less than 2 ⁇ m, which is not limited herein.
  • the light of the first pixel is reflected by the CLC layer and then passes through the metal path in the LED display panel.
  • the line can still pass through the hollow area after secondary reflection, so the distance between the boundary of the hollow area and the boundary of the light-emitting layer of the first pixel corresponding to it S1 ⁇ 3*L2+2*L1 ⁇ (2*d1+ 3*d2)/tan ⁇ .
  • L2 d2/tan ⁇
  • L1 d1/tan ⁇
  • d1 represents the distance between the surface of the CLC layer facing the side of the LED display panel and the surface of the light absorbing layer facing the side of the LED display panel
  • d2 represents the distance between the surface of the light-absorbing layer facing the side of the LED display panel and the surface of the light-emitting layer of the first pixel facing the side of the light-absorbing layer
  • represents the distance of the first pixel
  • the light emission angle is determined by the luminous light type of the pixels in the LED display panel.
  • the cholesteric liquid crystal material when the hollow region of the light absorbing layer is filled with the cholesteric liquid crystal material, regardless of the refractive index of the material, the cholesteric liquid crystal material has the same function as the CLC layer .
  • the light of the first pixel can still pass through the hollow area after being reflected by the cholesteric liquid crystal material and reflected twice by the metal wiring in the LED display panel, so the boundary of the hollow area and the corresponding first pixel The distance S1 ⁇ 3*L2 ⁇ 3*d2/tan ⁇ between the boundaries of the light emitting layers.
  • L2 d2/tan ⁇
  • d2 represents the distance between the surface of the light-absorbing layer facing the LED display panel and the surface of the light-emitting layer of the first pixel facing the light-absorbing layer
  • Indicates the light emission angle of the first pixel.
  • the display module may further include a touch layer.
  • the touch layer can be integrated in the LED display panel, that is, the In cell display screen.
  • the touch layer can also be integrated on the packaging layer of the LED display panel, that is, the On cell display screen, and the touch layer is directly fabricated on the LED display panel.
  • the formed touch layer may also be bonded to any film position on the light emitting side of the LED display panel.
  • the touch layer can be arranged between the CLC layer and the between circular polarizers.
  • the display module may further include a hardened protective layer between the touch layer and the CLC layer and a fourth transparent bonding layer between the circular polarizer and the touch layer layer.
  • the fourth transparent adhesive layer may be PSA, OCA, or a molecular covalent bonding layer, etc., which is not limited herein.
  • the fourth transparent adhesive layer may be PSA.
  • the present application does not limit the material and the specific formation method of the hardened protective layer.
  • the hardened protective layer may be formed by coating with polyacrylic resin or acrylic material.
  • the optically transparent material filled in the hollow area of the light-absorbing layer may be acrylic. Therefore, it is possible to avoid the need for an additional process due to the increase of materials.
  • the display module further includes a screen cover on the side of the circular polarizer away from the LED display panel, and the screen cover is combined with the circular polarizer through an optically transparent double-sided adhesive.
  • the present application further provides a terminal, which includes a casing and the display module as described in the second aspect or various implementation manners of the second aspect.
  • the present application also provides a method for preparing an optical laminated structure, which may include: coating a light-absorbing layer on one side of a circular polarizer, and removing part of the light-absorbing layer to form a plurality of A hollow area; a cholesteric liquid crystal layer is formed on the light absorbing layer formed with the hollow area.
  • the preparation method may include: forming a cholesteric liquid crystal layer on one side of the circular polarizer; coating a light-absorbing layer on the cholesteric liquid crystal layer, and removing part of the light-absorbing layer to form multiple a hollow area.
  • removing part of the light-absorbing layer to form a plurality of hollowed-out areas may include: using a mask to expose and develop the light-absorbing layer, so as to remove part of the light-absorbing layer to form a plurality of Cutout area.
  • the present application also provides a method for manufacturing a display module, which may include the following steps: providing an LED display panel, the LED display panel at least including a plurality of first pixels and a plurality of second pixels and a plurality of third pixels; coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing parts of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas; Coating a cholesteric liquid crystal layer on the circular polarizer; making the cholesteric liquid crystal layer face the light absorbing layer, installing the circular polarizer coated with the cholesteric liquid crystal layer on the light on the absorbent layer.
  • the circular polarizing plate coated with the cholesteric liquid crystal layer may further include: coating the light absorbing layer and the hollow area a planarization layer, so that the planarization layer covers the light absorption layer and fills the hollow area.
  • installing the circular polarizing plate coated with the cholesteric liquid crystal layer on the light absorbing layer may include: coating a first transparent adhesive layer on the planarization layer; The first transparent adhesive layer mounts the circular polarizer coated with the cholesteric liquid crystal layer on the planarization layer.
  • the present application also provides another method for manufacturing a display module, which may include the following steps: providing an LED display panel, the LED display panel at least including a plurality of first pixels, a plurality of second A pixel and a plurality of third pixels; coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing the part of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas; A cholesteric liquid crystal layer covering the light absorbing layer is coated on the light absorbing layer; a circular polarizer is installed on the cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer covering the light-absorbing layer on the light-absorbing layer may further include: coating the light-absorbing layer and the hollowed-out area with a flat layer, so that the planarization layer covers the light absorption layer and fills the hollow area.
  • installing a circular polarizer on the cholesteric liquid crystal layer may include: forming a second transparent adhesive layer on the circular polarizer; making the second transparent adhesive layer face the cholesteric liquid crystal layer , installing the circular polarizer on the cholesteric liquid crystal layer through the second transparent adhesive layer.
  • the cholesteric liquid crystal layer covering the light absorbing layer on the light absorbing layer may further include: filling the hollow area with an optically transparent material, the The optically transparent material is used to transmit at least light in the first wavelength band.
  • coating the CLC layer covering the light absorption layer on the light absorption layer may specifically include: coating a CLC layer on the light absorption layer and the hollowed out area, so that the CLC A layer covers the light absorbing layer and fills the hollow area.
  • the method may further include: coating a planarization layer on the cholesteric liquid crystal layer.
  • Installing a circular polarizer on the cholesteric liquid crystal layer may specifically include: forming a third transparent adhesive layer on the circular polarizer; making the third transparent adhesive layer face the planarization layer, passing through the A third transparent adhesive layer mounts the circular polarizer on the planarizing layer.
  • coating the CLC layer covering the light absorbing layer on the light absorbing layer may further include: filling the hollow area with an optically transparent material, the optically transparent material used to at least transmit light in the first wavelength band.
  • coating the CLC layer covering the light absorbing layer on the light absorbing layer may include: coating a CLC layer on the light absorbing layer and the hollow area, so that the CLC layer Covering the light absorbing layer and filling the hollow area.
  • the circular polarizing plate before installing the circular polarizing plate on the CLC layer, it may further include: coating a hardened protective layer on the cholesteric liquid crystal layer; forming a touch layer on the hardened protective layer.
  • Installing a circular polarizer on the cholesteric liquid crystal layer may specifically include: forming a fourth transparent adhesive layer on the circular polarizer; making the fourth transparent adhesive layer face the touch layer, passing through the The fourth transparent adhesive layer installs the circular polarizer on the touch layer.
  • FIG. 1 is a schematic diagram of an application scenario of a display module provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a display module provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display module provided by a related art
  • FIG. 4 is a schematic structural diagram of a display module provided by another related art
  • FIG. 5 is a schematic diagram of light output from the OLED display panel in the display module shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the reflection of the display module to ambient light shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a display module provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of light output from the LED display panel in the display module shown in FIG. 7;
  • FIG. 10 is a schematic diagram of the reflection of the display module to ambient light shown in FIG. 7;
  • FIG. 11 is a schematic structural diagram of another display module provided in the embodiment of the present application.
  • Fig. 12 is a partial structural schematic diagram of the display module shown in Fig. 11;
  • Fig. 13 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 14 is a partial structural schematic diagram of the display module shown in Fig. 13;
  • FIG. 15 is a schematic diagram of a partial structure of a display module provided by an embodiment of the present application.
  • FIG. 16 is a schematic top view of the light-absorbing layer and the light-emitting layer provided in the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 18 is a schematic flow chart of a method for preparing a display module provided in an embodiment of the present application.
  • Fig. 19 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 17;
  • Figure 20 is a schematic diagram of chemical bonding through a molecular covalent bonding layer in the present application.
  • Fig. 21 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 22 is a schematic flow chart of another method for preparing a display module provided in the embodiment of the present application.
  • Fig. 23 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 21;
  • Fig. 24 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 25 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 24;
  • Fig. 26 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 27 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 26;
  • Fig. 28 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 29 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 31 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 32 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 33 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 32;
  • Fig. 34 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 35 is a schematic flow chart of the preparation method corresponding to the display module shown in Fig. 34;
  • Fig. 36 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • Fig. 37 is a schematic structural diagram of another display module provided by the embodiment of the present application.
  • FIG. 38 is a schematic flowchart of a method for preparing an optical stack structure provided in the embodiment of the present application.
  • FIG. 39 is a schematic flowchart of another preparation method of the optical stack structure provided by the embodiment of the present application.
  • Polarized light Light is an electromagnetic wave, and electromagnetic waves are transverse waves.
  • the plane formed by the vibration direction and the forward direction of the light wave is called the vibration plane, and the light vibration plane is limited to light in a certain fixed direction, which is called polarized light.
  • ⁇ /4 wave plate It is a birefringent single crystal wave plate with a certain thickness.
  • the phase difference between ordinary light (o light) and extraordinary light (e light) is equal to ⁇ / 2 or its odd multiples.
  • the linearly polarized light is vertically incident on the 1/4 wave plate, and the polarization direction of the linearly polarized light is at 45° to the optical axis of the ⁇ /4 wave plate, the outgoing light is circularly polarized light, and the crystal type of the wave plate determines the outgoing circle
  • the polarized light is right-handed circularly polarized light or left-handed circularly polarized light.
  • Circular polarizer composed of linear polarizer and ⁇ /4 wave plate.
  • the included angle between the optical axis of the ⁇ /4 wave plate and the transmission axis (also called the polarization axis) of the linear polarizer is 45°.
  • Linearly polarized light whose direction is parallel to the transmission axis of the linear polarizer, after passing through the ⁇ /4 wave plate, the linearly polarized light is converted into right-handed circularly polarized light or left-handed circularly polarized light.
  • Cholesteric Liquid Crystal (CLC) layer The cholesteric liquid crystal molecules in the layer are flat and arranged in layers. The molecules in the layer are parallel to each other, and the long axis of the molecules is parallel to the layer plane. The direction of the long axis of the molecules in different layers is slightly There are changes, arranged in a helical structure along the normal direction of the layer.
  • the helical structure is left-handed or right-handed, and the cholesteric liquid crystal layer can be divided into a left-handed cholesteric liquid crystal layer and a right-handed cholesteric liquid crystal layer according to the direction of the helical structure.
  • the cholesteric liquid crystal layer may include multiple cholesteric liquid crystals with different pitches, or may include cholesteric liquid crystals with a single pitch, depending on actual conditions.
  • the cholesteric liquid crystal layer When light with a wavelength equal to the pitch of the cholesteric liquid crystal layer is incident on the surface of the cholesteric liquid crystal layer, the cholesteric liquid crystal layer will exhibit selective reflection characteristics, that is, the left-handed cholesteric liquid crystal layer transmits right-handed circularly polarized light, It reflects left-handed circularly polarized light; the right-handed cholesteric liquid crystal layer transmits left-handed circularly polarized light and reflects right-handed circularly polarized light.
  • the wavelength of the incident light is inconsistent with the helical pitch of the cholesteric liquid crystal, the cholesteric liquid crystal allows all the incident light to pass through.
  • the display module can be applied to a terminal, and the terminal includes, for example, a watch, a mobile phone, a tablet computer, and a personal digital assistant (personal digital assistant, PDA). , on-board computer, monitor (monitor) and television (television, TV), etc.
  • PDA personal digital assistant
  • the embodiment of the present application does not specifically limit the specific form of the foregoing terminal.
  • the description below takes the terminal as a mobile phone as an example.
  • the terminal mainly includes a display module 1 and a housing 2 , and the display module 1 can be arranged in the housing 2 .
  • the display module 1 mainly includes an OLED display panel 01 and a screen cover 02 disposed on the light emitting side of the OLED display panel 01 .
  • the screen cover 02 is used to provide good protection for the OLED display panel 01 .
  • the OLED display panel 01 is mainly provided with an OLED device and a circuit film layer (the specific structure of the OLED display panel 01 is not shown in FIG. 2 ), wherein the circuit film layer is provided with metal wires.
  • the reflectivity of metal traces to external light is high.
  • the display brightness obtained by the human eye is the sum of the brightness to be displayed and the brightness of reflected external light, thereby affecting the display effect of the display module.
  • the circular polarizer 03 is arranged between the OLED display panel 01 and the screen cover 02, the circular polarizer 03 is composed of a linear polarizer 031 and a ⁇ /4 wave plate 032, and the external light enters the linear polarizer 031 , the light perpendicular to the transmission axis of the linear polarizer 031 in the external light is absorbed, and the light parallel to the transmission axis of the linear polarizer 031 is transmitted into linearly polarized light, and then the linearly polarized light passes through ⁇ /4 After the wave plate 032, it is converted into circularly polarized light.
  • left-handed circularly polarized light enters OLED display panel 01 and is reflected by metal lines to become right-handed circularly polarized light.
  • Right-handed circularly polarized light passes through ⁇ /4 After the wave plate 032 becomes linearly polarized light, but the polarization direction of the linearly polarized light is perpendicular to the transmission axis of the linear polarizing plate 031, the linearly polarized light is absorbed by the linear polarizing plate 031 and cannot be emitted, so the reflection of external light is prevented.
  • the light emitted by the OLED display panel 01 includes various polarization states, such as: linearly polarized light, elliptically polarized light, and circularly polarized light, etc.
  • the overall polarization state is almost unchanged; when After the above-mentioned light passes through the linear polarizer 031, only the light parallel to the polarization direction of the linear polarizer 031 can pass through and be used for display, while the perpendicular light is absorbed. Therefore, after the light emitted by the OLED display panel 01 passes through the circular polarizer 03, its brightness will at least be attenuated by half, resulting in a significant decrease in display brightness.
  • a CLC layer 04 is added between the OLED display panel 01 and the circular polarizer 03 .
  • the left-handed circularly polarized light can pass through the CLC layer 04
  • the right-handed circularly polarized light is reflected by the CLC layer 04 and enters the OLED display panel 01 .
  • the left-handed circularly polarized light passing through the CLC layer 04 passes through the ⁇ /4 wave plate 032 and becomes linearly polarized light.
  • the polarization direction of the linearly polarized light is parallel to the transmission axis of the linear polarizing plate 031 , so that it passes through the linear polarizing plate 031 .
  • the right-handed circularly polarized light reflected back to the OLED display panel 01 is reflected by the metal wires in the OLED display panel 01 and becomes left-handed circularly polarized light, and the left-handed circularly polarized light passes through the CLC layer 04 and is emitted from the circular polarizer 03 .
  • the right-handed circularly polarized light that cannot pass through the circular polarizer 03 can be converted into a circularly polarized light that can pass through the circular polarizer 03.
  • the left-handed circularly polarized light of the polarizer 03 increases the light output of the display module, thereby improving the display effect of the display module.
  • the left-handed circularly polarized light passes through the CLC layer 04 and irradiates on the ⁇ /4 wave plate 032, and becomes linearly polarized light after passing through the ⁇ /4 wave plate 032, and the polarization direction of the linearly polarized light is the same as the transmission axis of the linear polarizing plate 031 Parallel, so that they are emitted after passing through the linear polarizer 031, which increases the reflection effect of the display module.
  • the reflection effect of the display module 1 increases, which affects the normal display of the display module.
  • the overall black effect of the display module is poor when the screen is off, and there are problems such as graying or color cast.
  • the embodiment of the present application proposes an optical laminated structure and a display module that can not only ensure the display light efficiency but also reduce the ambient light reflectance.
  • the embodiment of the present application provides an optical stack structure, which is used to be arranged on the light emitting side of the LED display panel.
  • the present application also provides a display module, which may include an LED display panel and an optical laminated structure arranged on the light emitting side of the LED display panel.
  • optical stack structure In order to illustrate the function of the optical stack structure, the optical stack structure and the LED display panel will be combined for description below. It should be noted that the optical stack structure in the present application is a structure that can exist independently of the LED display panel, and the optical stack structure independent of the LED display panel also falls within the protection scope of the present application.
  • the LED display panel 11 includes at least a plurality of first pixels pix, a plurality of second pixels pix and a plurality of third pixels pix.
  • the optical laminated structure 10 may include a circular polarizer 12 , and a light absorbing layer 13 and a CLC layer 14 located on the side of the circular polarizer 12 facing the LED display panel 11 .
  • the light absorbing layer 13 and the CLC layer 14 are stacked.
  • the CLC layer 14 may be located between the light absorbing layer 13 and the circular polarizer 12, or, as shown in FIG. 8, the light absorbing layer 13 may be located between the Between the CLC layer 14 and the circular polarizer 12.
  • the light-absorbing layer 13 is used to absorb light in the first wavelength band, and the light-absorbing layer 13 has a plurality of hollowed out areas, and the hollowed out areas are arranged corresponding to the first pixels pix in the LED display panel 11 .
  • the CLC layer 14 acts on the light of the first wavelength band, and is used to transmit the left-handed circularly polarized light and the right-handed circularly polarized light when the light of the first waveband irradiates the CLC layer 14 . be reflected, or transmit right-handed circularly polarized light and reflect left-handed circularly polarized light.
  • the light of the first pixel can be emitted through the hollow area.
  • the light-absorbing layer cannot act on other pixels in the LED display panel except the first pixel, that is, the LED Light emitted by other pixels of the display panel can pass through the light absorbing layer. Therefore, in the present application, the first wavelength band includes at least part of the light emitting wavelength band of the first pixel.
  • the first wavelength band may include the light emitting wavelength band of the first pixel. It should be noted that the partial overlapping of the first wavelength band and the light emission band of the first pixel also belongs to the protection scope of the present application, which is not limited here.
  • the circular polarizer 12 may include a linear polarizer 121 and a ⁇ /4 wave plate 122, the linear polarizer 121 is located on the side away from the LED display panel 11, and the ⁇ /4 The wave plate 122 is located near the side of the LED display panel 11 .
  • the outgoing light is circularly polarized light. Whether the circularly polarized light is left-handed circularly polarized light or right-handed circularly polarized light is composed of ⁇
  • the crystal type 122 of the /4 wave plate is determined.
  • the direction of circularly polarized light is also determined. It can only be a kind of circularly polarized light, for example, it can only be left-handed. , or only for right-handed circularly polarized light.
  • the type of the CLC layer 14 in the present application is related to the type of the ⁇ /4 wave plate 122 in the circular polarizer 12.
  • the CLC layer 14 is used to The left-handed circularly polarized light is transmitted, and the right-handed circularly polarized light is reflected.
  • the CLC layer 14 is used to transmit the right-handed circularly polarized light and reflect the left-handed circularly polarized light when the light of the first wavelength band irradiates the CLC layer 14 .
  • the circular polarizing plate may also include a C-type compensation film layer located on the side of the ⁇ /4 wave plate away from the linear polarizing plate, so as to correct the optical color cast (strabismus, large viewing angle, etc.) problems existing in the display panel. compensate.
  • a C-type compensation film layer located on the side of the ⁇ /4 wave plate away from the linear polarizing plate, so as to correct the optical color cast (strabismus, large viewing angle, etc.) problems existing in the display panel. compensate.
  • the transmission axis of the external light and the linear polarizer 121 when the external light irradiates the display module, the transmission axis of the external light and the linear polarizer 121 The perpendicular light is absorbed, and the light parallel to the transmission axis of the linear polarizer 121 is transmitted to become linearly polarized light, and then the linearly polarized light is converted into left-handed circularly polarized light after passing through the ⁇ /4 wave plate 122, and the left-handed circularly polarized light After the light passes through the CLC layer 14, light of other wavelength bands (such as red light R and green light G) except the light of the first wavelength band can pass through the light absorbing layer 13, while the light of the first wavelength band (such as blue light B) Only the part irradiated on the hollow area of the light absorbing layer 13 can pass through.
  • other wavelength bands such as red light R and green light G
  • the left-handed circularly polarized light passing through the light-absorbing layer 13 enters the LED display panel 11 and becomes right-handed circularly polarized light after being reflected by the metal wiring, and the reflected right-handed circularly polarized light passes through the light-absorbing layer 13 and is then absorbed by the CLC layer 14 Reflection, the reflected right-handed circularly polarized light passes through the light absorbing layer 13 and then enters the LED display panel 11, and is reflected by the metal traces to become left-handed circularly polarized light.
  • the left-handed circularly polarized light passes through the light absorbing layer 13 and the CLC layer 14 sequentially and then irradiates on the ⁇ /4 wave plate 122, and becomes linearly polarized light after passing through the ⁇ /4 wave plate 122, and the polarization direction of the linearly polarized light is the same as that of the linearly polarized light
  • the transmission axis of the plate 121 is parallel, so that it passes through the linear polarizing plate 122 and is emitted. That is, most of the light in the first wavelength band in the external light is absorbed, and about half of the light of other colors is absorbed by the linear polarizer 121 similarly to the prior art. Therefore, by reducing the reflection of light in the first waveband, the ambient light reflectance of the display module is reduced, and the overall black effect of the display module in the screen-off state is improved.
  • the LED display panel 11 when the natural light emitted by the LED display panel 11 passes through the light absorbing layer 13, although the light absorbing layer will absorb the light of the first wavelength band, since there is a hollow area in the area corresponding to the first pixel, the LED display panel 11
  • the light emitted by the pixels of each color can pass through the light-absorbing layer 13 and irradiate the CLC layer 14, then the left-handed circularly polarized light can pass through the CLC layer 14, and the right-handed circularly polarized light can be reflected by the CLC layer 14 and then pass through the light-absorbing layer 13 into the LED display panel 11.
  • the left-handed circularly polarized light passing through the CLC layer 14 passes through the ⁇ /4 wave plate 122 and becomes linearly polarized light.
  • the polarization direction of the linearly polarized light is parallel to the transmission axis of the linear polarizing plate 121 , so that it passes through the linear polarizing plate 121 .
  • the right-handed circularly polarized light reflected back to the LED display panel 11 is reflected by the metal wires in the LED display panel 11 and becomes left-handed circularly polarized light. 12 shots. That is, if light loss is not considered, basically all the natural light emitted by the LED display panel 11 can be emitted, thereby ensuring the light extraction efficiency of the display module.
  • the light absorbing layer 13 is located between the CLC layer 14 and the circular polarizing plate 12
  • the light perpendicular to the transmission axis of the linear polarizing plate 121 in the external light is absorbed, and the light parallel to the transmission axis of the linear polarizer 121 passes through and becomes linearly polarized light, and then the linearly polarized light is converted into left-handed circularly polarized light after passing through the ⁇ /4 wave plate 122, and the left-handed circularly polarized light is except for the first Light of other colors other than the light in the wavelength band can pass through the light-absorbing layer 13 , while the light of the first waveband can only pass through the hollow area of the light-absorbing layer 13 .
  • the left-handed circularly polarized light passing through the light-absorbing layer 13 passes through the CLC layer 14 and then enters the LED display panel 11. After being reflected by the metal wiring, it becomes right-handed circularly polarized light, and the reflected right-handed circularly polarized light is reflected by the CLC layer 14 again. The reflected right-handed circularly polarized light enters the LED display panel 11 and is reflected by the metal wires to become left-handed circularly polarized light.
  • the left-handed circularly polarized light passes through the CLC layer 14 and the light absorbing layer 13 successively, and then shines on the ⁇ /4 wave plate 122, and becomes linearly polarized light after passing through the ⁇ /4 wave plate 122, and the polarization direction of the linearly polarized light is the same as that of the linearly polarized light.
  • the transmission axis of the plate 121 is parallel, so that it passes through the linear polarizing plate 122 and is emitted. That is, most of the light in the first waveband of the external light is absorbed, and about half of the light in other wavebands is absorbed by the linear polarizer 121 similarly to the prior art. Therefore, by reducing the reflection of light in the first waveband, the ambient light reflectance of the display module is reduced, and the overall black effect of the display module in the screen-off state is improved.
  • the left-handed circularly polarized light can pass through the CLC layer 14 , and the right-handed circularly polarized light is reflected by the CLC layer 14 and enters the LED display panel 11 .
  • the right-handed circularly polarized light reflected back to the LED display panel 11 is reflected by the metal wires in the LED display panel 11 and becomes left-handed circularly polarized light, the left-handed circularly polarized light passes through the CLC layer 14, and the left-handed circularly polarized light passing through the CLC layer 14
  • the light-absorbing layer 13 Although the light-absorbing layer will absorb the light of the first waveband, since there is a hollowed-out area in the area corresponding to the first pixel, the light emitted by the pixels of each color in the LED display panel 11 can pass through.
  • the left-handed circularly polarized light passing through the light absorbing layer 13 becomes linearly polarized light after passing through the ⁇ /4 wave plate 122, and the polarization direction of the linearly polarized light is parallel to the transmission axis of the linear polarizing plate 121, thereby from The linear polarizer 121 passes through. That is, if light loss is not considered, basically all the natural light emitted by the LED display panel 11 can be emitted, thereby ensuring the light extraction efficiency of the display module.
  • the LED display panel at least includes a plurality of first pixels, a plurality of second pixels and a plurality of third pixels.
  • the first pixel, the second pixel and the third pixel may be blue pixels, red pixels and green pixels.
  • the LED display panel may also include white pixels, yellow pixels, etc., which are not limited here. .
  • the first pixel is a blue pixel
  • the light emission band of the first pixel is mainly the blue band.
  • the LED display panel 11 may include an array substrate 111, a pixel pix and an encapsulation layer 112, wherein each pixel pix may include at least one LED device, and the LED device mainly includes an anode layer 113, a light emitting layer 114 and cathode layer 115.
  • the array substrate 111 generally includes a base substrate and a circuit film layer on the base substrate, wherein the circuit film layer is provided with metal traces, and the anode layer 113 is generally located on the side close to the array substrate 111, and is connected to the metal traces in the array substrate 111.
  • wire connection, and the cathode layer 115 is generally made of a whole layer of transparent conductive material.
  • the base substrate may be a rigid substrate or a flexible substrate; the encapsulation layer 112 may be an encapsulation film or an encapsulation substrate, which is not limited herein.
  • the LED display panel provided in the embodiment of the present application can be an ordinary LED display panel, or a micro light emitting diode (Micro LED) display panel, a mini light emitting diode (Mini LED) display panel, an organic light emitting diode (OLED) display panel or a quantum LED display panel.
  • the dot light emitting diode (QLED) display panel and the like are not limited here.
  • the present application does not limit the thickness of the light-absorbing layer and the CLC layer.
  • the thickness of the light-absorbing layer can be controlled between 1 ⁇ m and 2 ⁇ m, such as 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, etc.; the CLC
  • the thickness of the layer can be controlled between 2 ⁇ m and 5 ⁇ m, such as 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m and so on.
  • the hollow area in the light-emitting layer may also be filled with a material that allows light in the first wavelength band to pass through.
  • a material that allows light in the first wavelength band to pass through Exemplarily, as shown in FIG. 11 and FIG. 12 , an optically transparent material 131 may be filled in the hollow area, and the optically transparent material is used to at least transmit light in the first wavelength band.
  • the cholesteric liquid crystal material 132 can be filled in the hollowed-out area, and the cholesteric liquid crystal material 132 is the same as the cholesteric liquid crystal material in the CLC layer 14 .
  • the first waveband corresponds to the blue light waveband
  • the light-absorbing layer is used to absorb the incident light of blue light. Incident light in other wavelength bands other than blue light can pass through, so that the display module can reduce the reflectivity of blue light in ambient light.
  • the present application will be described in detail by taking the first wavelength band as the light emitting band of the blue pixel as an example.
  • the effective band of the CLC layer is the blue light band.
  • the pitch of the CLC layer is consistent with the blue light wavelength, the CLC layer only has selective reflection characteristics for blue light, that is, the left-handed circle of blue light. Polarized light can pass through, right-handed circularly polarized light is reflected, and for incident light whose wavelength is inconsistent with the pitch of the CLC layer, all incident light is allowed to pass through.
  • the light absorbing layer described in this application may be formed of a yellow photoresist material.
  • the yellow photoresist material can include hardening resin, yellow pigment, propylene glycol methyl ether acetate (PGMEA) and propylene glycol methyl ether (PGME).
  • PGMEA propylene glycol methyl ether acetate
  • PGME propylene glycol methyl ether
  • the yellow photoresist material can also be made of It can be formed of other materials, which is not limited here.
  • the setting of the hollow area in the light absorbing layer 13 is to allow the light emitted by the first pixel pix in the LED display panel 11 to pass through, but in actual implementation, the light emission angle of the pixel pix is not It is completely along the normal direction of the light-emitting layer, but has a certain exit angle.
  • the light absorption layer 13 in order to prevent the light absorption layer 13 from absorbing the light emitted by the first pixel pix, as shown in FIG. 15 and FIG.
  • the orthographic projection of the hollow area A on the LED display panel 11 covers all corresponding The light-emitting layer 114 of the pixel pix of the first wavelength band (for example, blue B), and the area of the orthographic projection of the hollow area A on the LED display panel 11 is larger than the area of the light-emitting layer 114 of the first pixel pix.
  • the light-absorbing layer 13 covers other colors in the LED display panel 11 except the light-emitting layer 114 of the first pixel pix (for example, blue B pixel) in the front projection of the LED display panel 11
  • the light-emitting layer 114 of the pixel pix for example, the first wavelength band is the blue light band
  • the orthographic projection of the light-absorbing layer on the LED display panel 11 covers pixels of other colors (such as red R and green G) except the blue pixel pix
  • the light emitting layer 114 of pix covers other colors in the LED display panel 11 except the light-emitting layer 114 of the first pixel pix (for example, blue B pixel) in the front projection of the LED display panel 11
  • the light-emitting layer 114 of the pixel pix for example, the first wavelength band is the blue light band
  • the orthographic projection of the light-absorbing layer on the LED display panel 11 covers pixels of other colors (such as red R and green G) except the blue pixel pix
  • the orthographic projection of the light absorbing layer 13 on the LED display panel 11 covers the light emitting layers 114 of the pixels pix of other colors in the LED display panel 11 except the light emitting layer 114 of the first pixel pix.
  • the distance between the boundary of the hollowed out area and the corresponding boundary of the light emitting layer 114 of the first pixel pix is affected by the pixel resolution of the LED display panel 11, that is, the boundary of the hollowed out area and the corresponding boundary of the hollowed out area
  • the maximum distance between the boundaries of the light emitting layers 114 of the first pixel pix is equal to the gap distance between the light emitting layers 114 of adjacent pixels.
  • the distance S1 between the boundary of the hollowed-out area A and the boundary of the light-emitting layer 114 of the pixel corresponding to the first wavelength band can be set 25 ⁇ m or more and 35 ⁇ m or less. It should be noted that, in the present application, there is no light absorbing layer 13 within the range defined by the boundary of the hollow area A.
  • the shape of the hollowed-out area A can be set to be the same as the shape of the light-emitting layer 114 of the corresponding first pixel pix, for example, the shape of the light-emitting layer 114 is a rectangle as shown in FIG. 16 , The shape of the hollowed out area A is also a rectangle as shown in FIG. The same, but the coverage area of the hollow area A is larger than the coverage area of the light emitting layer 114 .
  • the present application does not limit the arrangement of pixels of different colors on the LED display panel, nor does it limit the shape of the light-emitting layer in each pixel.
  • the light of the first pixel can pass through the hollow area, but also consider that the light of the first pixel is reflected by the CLC layer and then reflected by the metal traces in the LED display panel. Can pass through the hollow area. Therefore, the farther the light-absorbing layer is from the light-emitting layer, the more complicated the light-emitting design for the light of the first pixel will be.
  • the CLC layer 13 is arranged between the circular polarizer 12 and the light absorbing layer 13, so that the distance between the light absorbing layer 13 can be reduced The distance between the light emitting layer 114.
  • the light of the first pixel is reflected by the CLC layer 14 and then passes through
  • the metal traces in the LED display panel 11 can still pass through the hollow area after second reflection, so the distance between the boundary of the hollow area and the corresponding boundary of the light emitting layer 114 of the first pixel is S1 ⁇ 3*L2+2 *L1 ⁇ (2*d1+3*d2)/tan ⁇ .
  • L2 d2/tan ⁇
  • L1 d1/tan ⁇
  • d1 represents the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11
  • d2 represents the distance between the surface of the light-absorbing layer 13 facing the side of the LED display panel 11 and the surface of the light-emitting layer 114 of the first pixel facing the side of the light-absorbing layer 13
  • represents the light emission angle of the first pixel, which is determined by the light emission type of the pixel in the LED display panel.
  • the cholesteric liquid crystal material 132 has the same properties as the CLC layer 14 same function.
  • the light of the first pixel can still pass through the hollow area after being reflected by the cholesteric liquid crystal material 132 and then reflected twice by the metal wiring in the LED display panel 11, so the boundary of the hollow area and its corresponding The distance S1 between the borders of the light emitting layer 114 of the first pixel ⁇ 3*L2 ⁇ 3*d2/tan ⁇ .
  • L2 d2/tan ⁇
  • d2 represents the distance between the surface of the light-absorbing layer 13 facing the side of the LED display panel 11 and the surface of the light-emitting layer 114 of the first pixel facing the side of the light-absorbing layer 13
  • represents the light exit angle of the first pixel
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel can be designed with reference to the above formula, and other conditions need to be considered during design, such as the refraction of the material rate etc.
  • the smaller the distance between the CLC layer and the light-emitting layer The greater the proportion of the light emitted by the first pixel that can pass through the hollow area, the smaller the distance between the CLC layer and the light emitting layer can further improve the display light efficiency of the display module.
  • the distance d2 can be set to be less than 15 ⁇ m, which is not limited here.
  • the distance between the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11 d1 may be less than 3 ⁇ m, which is not limited here.
  • the thickness of the light absorbing layer 13 may be set to be less than 2 ⁇ m, which is not limited herein.
  • the optical stack structure 10 may further include a planarization layer 15 located between the circular polarizer 12 and the light absorbing layer 13 .
  • the planarization layer 15 has a planarization and protection function for the display module, and can avoid air bubbles between film layers, which is beneficial to the mass production feasibility of the display module.
  • the present application does not limit the material of the planarization layer.
  • the material of the planarization layer may be acrylic.
  • the material of the optically transparent material 131 and the planarization layer 15 can be set to be the same, thereby avoiding the Materials require additional workmanship.
  • the planarization layer 15 may be located between the light absorbing layer 13 and the CLC layer 14, so that the hollowed-out area can be filled at the same time when the planarization layer 15 is formed.
  • the optically transparent material 131 avoids the process step of filling the hollow area with the optically transparent material 131 , thereby reducing process steps and reducing costs.
  • the CLC layer may be bonded to the circular polarizing plate and the planarization layer through an adhesive layer, respectively.
  • the side of the CLC layer 14 away from the circular polarizing plate 12 is combined with the planarization layer 15 through the first transparent adhesive layer 16, so that one layer of adhesive layer can be reduced.
  • the ⁇ /4 wave plate 122 in the circular polarizing plate 12 is generally formed by coating with liquid crystal material, the process of coating the CLC layer on the side of the circular polarizing plate 12 facing the LED display panel 11 It is simpler, and the CLC layer can be cut after being coated on a large circular polarizer, that is, the CLC layer in multiple display modules can be coated at the same time, and the cost is lower.
  • the distance d1 between the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11 can be According to the formula: d1 ⁇
  • d1 is the total thickness of the first transparent adhesive layer 16, the planarization layer 15 and the light absorbing layer 13, the size of d1 can be controlled between 1 ⁇ m and 3 ⁇ m, and d2 is the thickness of the encapsulation layer 112 in the LED display panel.
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel is affected by the pixel resolution, and the size of S1 is usually set within 30 ⁇ m.
  • the method for preparing a display module may include the following steps:
  • Step S101 providing an LED display panel, the LED display panel at least including a plurality of first pixels, a plurality of second pixels and a plurality of third pixels.
  • Step S102 coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing portions of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S103 coating a CLC layer on the circular polarizer.
  • Step S104 making the CLC layer face the light-absorbing layer, and installing the circular polarizer coated with the CLC layer on the light-absorbing layer.
  • the circular polarizing plate coated with the CLC layer on the light absorbing layer in step S104 may also include: on the light absorbing layer and the The hollow area is coated with a planarization layer, so that the planarization layer covers the light absorption layer and fills the hollow area.
  • the step S104 of installing the circular polarizing plate coated with the CLC layer on the light absorbing layer may include: coating a first transparent adhesive layer on the planarization layer; The first transparent adhesive layer mounts the circular polarizer coated with the CLC layer on the planarization layer.
  • Step S201 forming a light absorbing layer on the light emitting side of the LED display panel, and a region of the light absorbing layer corresponding to each pixel of the first color is a hollowed out region.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that of the corresponding first color.
  • the light emitting layers in the pixels have the same shape.
  • Step S202 forming a planarization layer on the side of the light absorption layer away from the LED display panel, and the planarization layer fills the hollow area.
  • planarization layer may be formed by coating with acrylic acid.
  • Step S203 coating a first transparent adhesive layer on the planarization layer.
  • Step S204 coating a CLC layer on the circular polarizer.
  • Step S205 mounting the circular polarizer coated with the CLC layer on the planarization layer through the first transparent adhesive layer.
  • the transmittance of the first transparent adhesive layer is between 99% and 100%.
  • the difference between the refractive index of the first transparent bonding layer and the refractive index of the planarization layer may be less than or equal to 0.1.
  • the refractive index of the first transparent adhesive layer can be set to be close to the refractive index of acrylic.
  • the refractive index of acrylic acid is about 1.5
  • the refractive index of the first transparent adhesive layer can be set between 1.4 ⁇ 1.6.
  • the first transparent adhesive layer may be a molecular covalent bonding layer, and the molecular covalent bonding layer is respectively connected to the The CLC layer and the planarization layer are bonded by chemical bonds, that is, a chemical bond is formed between the materials of the two layers of the molecular covalent bonding layer and the CLC layer at the contact surface, and the molecular covalent bonding layer and the The planarization layer forms a chemical bond between the materials of the two layers at the interface. Therefore, the molecular covalent bonding layer can be used to achieve a nanoscale thickness of less than 1 um.
  • the material of the planarization layer is acrylic acid
  • the material of the molecular covalent bonding layer is a molecular binder material containing alkoxy silicon groups.
  • the alkoxysilane group may be an alkoxysilane compound.
  • the surface of the LED display panel 11 with the prepared planarization layer and the circular polarizing plate coated with the CLC layer can be cleaned, and then the chemical solution containing the molecular bonding material of the alkoxy silicon group can be evenly coated. Distributed to the side of the planarization layer away from the LED display panel 11, and then the side of the CLC layer away from the circular polarizer is fully contacted with the upper surface of the planarization layer, and UV light is used to promote chemical bonding, thereby forming molecular covalent bonds of chemical bond functional groups layered.
  • the schematic diagram of the chemical bonding between the planarization layer 15 and the CLC layer 14 through the molecular covalent bonding layer can be seen in FIG. 20 , and the chemical formula of the molecular bonding agent material containing an alkoxy silicon group can be shown as follows:
  • the first transparent adhesive layer may also be a pressure sensitive adhesive layer (pressure sensitive adhesive, PSA) or an optically clear double-sided adhesive (Optically Clear Adhesive, OCA), etc., which is not limited herein.
  • PSA pressure sensitive adhesive
  • OCA optically Clear Adhesive
  • the first transparent adhesive layer is OCA.
  • the first transparent adhesive layer in the present application is compared with the molecular covalent bonding layer, OCA and ultra-thin OCA, and the closer d1 is to the design target value (d1 ⁇ 0.5* S1*tan ⁇ -1.5*d2), the more obvious the light effect is improved.
  • the CLC Layers can effectively improve light utilization.
  • the light-absorbing layer can effectively reduce the reflectance of ambient light.
  • the CLC layer 14 can be coated on the side of the planarization layer 15 away from the light absorbing layer 13; the CLC layer 14 is away from the light absorbing layer 13.
  • One side of the layer 13 can be combined with the circular polarizer 12 through the second transparent adhesive layer 17, so that one layer of adhesive layer can be reduced, and the distance between the CLC layer 14 and the light-emitting layer 114 can be reduced .
  • the transmittance of the second transparent adhesive layer is between 99% and 100%.
  • the second transparent adhesive layer may be PSA, OCA, or molecular covalent bonding layer, etc., which is not limited herein.
  • the second transparent adhesive layer is PSA.
  • the distance d1 between the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11 can be According to the formula: d1 ⁇ 0.5*S1*tan ⁇ -1.5d2 for approximate design.
  • d1 is the total thickness of the planarization layer 15 and the light absorbing layer 13
  • the size of d1 can be controlled between 1 ⁇ m and 3 ⁇ m
  • d2 is the thickness of the encapsulation layer 112 in the LED display panel.
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel is affected by the pixel resolution, and the size of S1 is usually set within 30 ⁇ m.
  • the method for preparing a display module may include the following steps:
  • Step S301 providing an LED display panel, the LED display panel at least including a plurality of first pixels, a plurality of second pixels and a plurality of third pixels.
  • Step S302 coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing portions of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S303 coating a CLC layer covering the light absorbing layer on the light absorbing layer.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S304 installing a circular polarizer on the CLC layer.
  • a CLC layer covering the light absorbing layer on the light absorbing layer in step S303 may further include: coating a planarization layer on the light absorbing layer and the hollowed-out area, so that The planarization layer covers the light absorbing layer and fills the hollow area.
  • step S304 installing a circular polarizer on the CLC layer may include: forming a second transparent adhesive layer on the circular polarizer; making the second transparent adhesive layer face the CLC layer, passing through the The second transparent adhesive layer is used to mount the circular polarizer on the CLC layer.
  • Step S401 forming a light absorbing layer on the light emitting side of the LED display panel, and a region of the light absorbing layer corresponding to each pixel of the first color is a hollowed out region.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that of the corresponding first color.
  • the light emitting layers in the pixels have the same shape.
  • Step S402 forming a planarization layer on the side of the light absorption layer away from the LED display panel, and the planarization layer fills the hollow area.
  • planarization layer may be formed by coating with acrylic acid.
  • Step S403 coating a CLC layer on the side of the planarization layer away from the light absorbing layer.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S404 bonding a circular polarizer on the side of the CLC layer facing away from the planarization layer through a second transparent bonding layer.
  • the second transparent adhesive layer may be PSA.
  • the planarization layer 15 is located between the circular polarizer 12 and the light absorption layer 13 .
  • the flattening layer 15 has a flattening and protective effect on the display module, which can avoid air bubbles between film layers, and is beneficial to the mass production feasibility of the display module.
  • the present application does not limit the material of the planarization layer.
  • the material of the planarization layer may be acrylic.
  • the planarization layer 15 can be located between the CLC layer 14 and the circular polarizing plate 12 .
  • the CLC layer 14 is coated on the side of the light absorbing layer 13 away from the LED display panel 11; the planarization layer 15 is coated on the The side of the CLC layer 14 facing away from the light absorbing layer 13 , the side of the planarization layer 15 facing away from the CLC layer 14 is combined with the circular polarizer 12 through a third transparent adhesive layer 18 .
  • the third transparent adhesive layer may be PSA, OCA, or a molecular covalent bonding layer, etc., which is not limited herein.
  • the third transparent adhesive layer may be PSA.
  • the hollow area of the light absorbing layer 13 can also be filled with an optically transparent material 131, and the optically transparent material 131 can be set to be the same as the material of the planarization layer 15.
  • the cholesteric liquid crystal material can also be filled in the hollowed-out area of the light absorbing layer 13, and the cholesteric liquid crystal material is the same as the cholesteric liquid crystal material in the CLC layer. , so as to avoid the need for additional process due to the increase of materials.
  • the method for preparing a display module may include the following steps:
  • Step S301 providing an LED display panel, the LED display panel at least including a plurality of first pixels, a plurality of second pixels and a plurality of third pixels.
  • Step S302 coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing portions of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S303 coating a CLC layer covering the light absorbing layer on the light absorbing layer.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S304 installing a circular polarizer on the CLC layer.
  • step S303 coating the CLC layer covering the light-absorbing layer on the light-absorbing layer it may further include: filling the hollow area with an optically transparent material, the optically transparent material being used for at least make the light of the first wavelength band pass through.
  • step S303 coating a CLC layer covering the light absorbing layer on the light absorbing layer may include: coating a CLC layer on the light absorbing layer and the hollow area, so that all The CLC layer covers the light absorbing layer and fills the hollow area.
  • a circular polarizer on the CLC layer in step S304, it may further include: coating a planarization layer on the CLC layer.
  • step S304 installing a circular polarizer on the CLC layer may include: forming a third transparent adhesive layer on the circular polarizer; making the third transparent adhesive layer face the the planarization layer, and the circular polarizer is installed on the planarization layer through the third transparent adhesive layer.
  • Step S501 forming a light absorbing layer on the light emitting side of the LED display panel, and the area of the light absorbing layer corresponding to each pixel of the first color is a hollow area.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that of the corresponding first color.
  • the light emitting layers in the pixels have the same shape.
  • Step S502 filling the hollow area with an optically transparent material.
  • the optically transparent material may be set to be the same as the material of the subsequently formed planarization layer.
  • Step S503 coating a CLC layer on the side of the light absorbing layer away from the LED display panel.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S504 forming a planarization layer on the side of the CLC layer away from the light absorbing layer.
  • planarization layer may be formed by coating with acrylic acid.
  • Step S505 bonding a circular polarizer on the side of the planarization layer facing away from the CLC layer through a third transparent bonding layer.
  • the distance d1 between the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11 can be According to the formula: d1 ⁇ 0.5*S1*tan ⁇ -1.5*d2 for approximate design.
  • d1 is the thickness of the light absorbing layer 13
  • the size of d1 can be controlled between 1 ⁇ m and 2 ⁇ m
  • d2 is the thickness of the encapsulation layer in the LED display panel.
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel is affected by the pixel resolution, and the size of S1 is usually set within 30 ⁇ m.
  • Step S601 forming a light absorbing layer on the light emitting side of the LED display panel, and the light absorbing layer is a hollow area in the area corresponding to each of the first pixels.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S602 coating a CLC layer on the side of the light absorbing layer away from the LED display panel, and filling the hollow area with the CLC layer.
  • the thickness of the CLC layer corresponding to the hollow area can be controlled between 3 ⁇ m and 3 ⁇ m, and the thickness of the CLC layer (the CLC layer located above the light-absorbing layer) in other regions can be controlled between 2 ⁇ m and 5 ⁇ m.
  • Photoalignment or liquid crystal self-assembly makes the CLC layers regularly arranged to achieve an alignment state.
  • planarization layer may be formed by coating with acrylic acid.
  • Step S603 forming a planarization layer on the side of the CLC layer away from the light absorbing layer.
  • Step S604 bonding a circular polarizer on the side of the planarization layer away from the cholesteric liquid crystal layer through a third transparent bonding layer.
  • the distance S1 between the boundary of the hollowed-out area and the corresponding boundary of the light-emitting layer 114 of the first pixel ⁇ 3*d2/tan ⁇ .
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel is affected by the pixel resolution, the size of S1 is usually set within 30 ⁇ m, and d2 is the thickness of the encapsulation layer in the LED display panel.
  • Embodiment 3 of the present application since the CLC layer is directly coated on the light-absorbing layer, the light extraction efficiency can be further improved compared with Embodiments 1 and 2. However, the coating of the CLC layer on the circular polarizer in the first embodiment is less difficult and less costly than the coating of the CLC layer on the light absorbing layer in the second embodiment.
  • the display module shown in FIG. 26 can reduce the steps of filling material in the hollowed-out area separately, so that the coating process can be further simplified.
  • the display module shown in FIG. 26 due to the positional differences in the thickness of the CLC layer, it has an adverse effect on the brightness uniformity, which can be compensated by setting an optical compensation film at the corresponding position of the hollowed out area.
  • the display module may further include a touch layer.
  • the touch layer can be integrated in the LED display panel, that is, the In cell display screen.
  • the touch layer can also be integrated on the packaging layer of the LED display panel, that is, the On cell display screen, and the touch layer is directly fabricated on the LED display panel.
  • the formed touch layer may also be bonded to any film position on the light emitting side of the LED display panel.
  • the touch layer 20 is integrated on the encapsulation layer 112 of the LED display panel 11 .
  • d2 refers to the thickness of the touch layer 20 and the encapsulation layer 112 .
  • the touch layer can be 20 is disposed between the CLC layer 14 and the circular polarizer 12 .
  • the display module may further include: a hardened protective layer 21 located between the touch layer 20 and the CLC layer 14; 20 between the fourth transparent adhesive layer 19.
  • the fourth transparent adhesive layer may be PSA, OCA, or a molecular covalent bonding layer, etc., which is not limited herein.
  • the fourth transparent adhesive layer may be PSA.
  • the hollowed-out area of the light-absorbing layer 13 may also be filled with an optically transparent material 131 , or, as shown in FIG. 34 , all areas of the light-absorbing layer 13 may The hollow area is filled with a cholesteric liquid crystal material, which is the same as the cholesteric liquid crystal material in the CLC layer.
  • the method for preparing a display module may include the following steps:
  • Step S301 providing an LED display panel, the LED display panel at least including a plurality of first pixels, a plurality of second pixels and a plurality of third pixels.
  • Step S302 coating a light-absorbing layer on the light-emitting side of the LED display panel, and removing portions of the light-absorbing layer corresponding to the plurality of first pixels to form a plurality of hollow areas.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S303 coating a CLC layer covering the light absorbing layer on the light absorbing layer.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S304 installing a circular polarizer on the CLC layer.
  • step S303 coating the CLC layer covering the light-absorbing layer on the light-absorbing layer, it may further include: filling the hollow area with an optically transparent material, the optically transparent material being used for at least make the light of the first wavelength band pass through.
  • coating a CLC layer covering the light absorbing layer on the light absorbing layer in step S303 may include: coating a CLC layer on the light absorbing layer and the hollow area, so that the The CLC layer covers the light absorbing layer and fills the hollow area.
  • the circular polarizer before installing the circular polarizer on the CLC layer in step S304 , it may further include: coating a hardened protective layer on the cholesteric liquid crystal layer; forming a touch layer on the hardened protective layer.
  • installing a circular polarizer on the cholesteric liquid crystal layer in step S304 may include: forming a fourth transparent adhesive layer on the circular polarizer; making the fourth transparent adhesive layer face the touch screen layer, and the circular polarizer is mounted on the touch layer through the fourth transparent bonding layer.
  • Step S701 forming a light absorbing layer on the light emitting side of the LED display panel, and the light absorbing layer is a hollow area in the area corresponding to each of the first pixels.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S702 filling the hollow area with an optically transparent material.
  • the optically transparent material may be acrylic.
  • Step S703 coating a CLC layer on the side of the light absorbing layer away from the LED display panel.
  • the thickness of the CLC layer can be controlled between 2 ⁇ m and 5 ⁇ m, and the CLC layer can be regularly arranged to achieve an alignment state through photo-alignment or liquid crystal self-assembly.
  • Step S704 forming a hardened protective layer on the side of the CLC layer away from the light absorbing layer.
  • the present application does not limit the material and the specific formation method of the hardened protective layer.
  • the hardened protective layer may be formed by coating with polyacrylic resin or acrylic material.
  • Step S705 forming a touch layer on the side of the hardened protective layer away from the CLC layer.
  • the pattern of the touch layer can be directly formed on the hardened protective layer by using low-temperature coating, photolithography process and dry etching process, wherein the touch layer can be formed of metal materials, such as titanium/ Aluminum/titanium alloy.
  • Step S706 bonding a circular polarizer on the side of the touch layer facing away from the hardened protective layer through the fourth transparent bonding layer.
  • the distance d1 between the surface of the CLC layer 14 facing the side of the LED display panel 11 and the surface of the light absorbing layer 13 facing the side of the LED display panel 11 can be According to the formula: d1 ⁇ 0.5*S1*tan ⁇ -1.5*d2 for approximate design.
  • d1 is the thickness of the light absorbing layer 13
  • the size of d1 can be controlled between 1 ⁇ m and 2 ⁇ m
  • d2 is the thickness of the encapsulation layer 112 in the LED display panel.
  • the distance S1 between the boundary of the hollow area and the corresponding boundary of the light-emitting layer 114 of the first pixel is affected by the pixel resolution, and the size of S1 is usually set within 30 ⁇ m.
  • Step S801 forming a light absorbing layer on the light emitting side of the LED display panel, and the light absorbing layer is a hollow area in the area corresponding to each of the first pixels.
  • the material of the light-absorbing layer may be yellow photoresist, and a hollow area may be formed in the light-absorbing layer through an exposure and development process using a mask, and the shape of the hollow area may be the same as that in the corresponding first pixel.
  • the shape of the luminescent layer is the same.
  • Step S802 coating a CLC layer on the side of the light absorbing layer away from the LED display panel, and filling the hollow area with the CLC layer.
  • the thickness of the CLC layer corresponding to the hollow area can be controlled between 3 ⁇ m and 3 ⁇ m, and the thickness of the CLC layer (the CLC layer located above the light-absorbing layer) in other regions can be controlled between 2 ⁇ m and 5 ⁇ m.
  • Photoalignment or liquid crystal self-assembly makes the CLC layers regularly arranged to achieve an alignment state.
  • Step S803 forming a hardened protective layer on the side of the CLC layer away from the light absorbing layer.
  • the present application does not limit the material and the specific formation method of the hardened protective layer.
  • the hardened protective layer may be formed by coating with polyacrylic resin or acrylic material.
  • Step S804 forming a touch layer on the side of the hardened protective layer away from the CLC layer.
  • the pattern of the touch layer can be directly formed on the hardened protective layer by using low-temperature coating, photolithography process and dry etching process, wherein the touch layer can be formed of metal materials, such as titanium/ Aluminum/titanium alloy.
  • Step S805 bonding a circular polarizer on the side of the touch layer facing away from the hardened protective layer through the fourth transparent bonding layer.
  • the distance S1 between the boundary of the hollowed-out area and the corresponding boundary of the light-emitting layer 114 of the first pixel ⁇ 3*d2/tan ⁇ .
  • the distance S1 between the boundary of the hollow area and the boundary of the light-emitting layer 114 of the corresponding first pixel is affected by the resolution of the pixel, the size of S1 is usually set within 30 ⁇ m, and d2 is the thickness of the encapsulation layer 112 in the LED display panel .
  • the touch layer is disposed above the CLC layer, the light extraction efficiency can be further improved compared with the fourth embodiment, and the light extraction efficiency can be increased by more than 10%.
  • the coating of the light-absorbing layer on the touch layer in the fourth embodiment is less difficult and less costly than the coating of the light-absorbing layer on the encapsulation layer in the fifth embodiment.
  • the display module shown in FIG. 34 can reduce the steps of filling material in the hollowed-out area separately, so that the coating process can be further simplified.
  • the display module shown in FIG. 34 due to the positional differences in the thickness of the CLC layer, it has an adverse effect on the brightness uniformity, which can be compensated by setting an optical compensation film at the corresponding position of the hollowed out area.
  • the display module further includes a screen cover 30 located on the side of the circular polarization 12 away from the LED display panel 11 , and the screen cover 30 can be attached to the LED display panel 11 through an optically transparent double-sided adhesive 31 .
  • the circular polarizers 12 are combined.
  • the screen cover 30 can be made of glass or a flexible foldable cover material, specifically a visible LED display panel. If the LED display panel is a non-foldable screen, the screen cover 30 can be made of glass. For example, if the LED display panel For a folding screen, the screen cover 30 may use a flexible and foldable cover material.
  • forming the CLC layer may include first coating an alignment film on the substrate, and then coating the CLC layer on the alignment film.
  • the thickness of the CLC layer can be controlled between 1 ⁇ m and 5 ⁇ m.
  • the alignment process of the alignment film may adopt a rubbing alignment process or a photo-alignment process.
  • the substrate refers to the support layer used to support the coated CLC, such as the circular polarizing plate or planarization layer in Examples 1 and 2, and the light absorbing layer in Examples 3 and 4.
  • the substrate when performing the rubbing alignment process, can be placed on the carrying platform with the side coated with the alignment film facing up; the carrying platform is combined with the driving mechanism, and the driving mechanism drives the carrying platform toward the set Direction for linear conveying.
  • a felted roller is provided on the substrate transport path. When the substrate passes through the roller, the roller rolls and rubs the alignment film on the surface of the substrate in a clockwise direction in which the tangential velocity direction of the bottom is opposite to the direction of travel of the substrate, and the molecules on the surface of the alignment film after friction alignment will no longer be scattered. Distributed, and the interface condition of uniform arrangement is presented, so that the liquid crystal in the CLC layer can be arranged according to the predetermined direction.
  • the photo-alignment process belongs to the non-contact type alignment.
  • the ultraviolet light in the high-precision real-time tracking compensation mode is used to make the photosensitive polymer monomer material chemically react to produce anisotropy.
  • the liquid crystal molecules in the CLC layer and the surface molecules of the alignment film In order to achieve a stable state with the minimum energy, the liquid crystal molecules are arranged along the direction of the maximum force defined by the photo-alignment.
  • liquid crystal alignment can also be achieved by using a liquid crystal self-assembly process, that is, the alignment film that already has an alignment effect is pasted on the substrate.
  • the embodiment of the present application also provides a preparation method of an optical laminated structure, the preparation method may include the following steps:
  • both the light absorbing layer and the cholesteric liquid crystal layer are formed on the same side of the circular polarizing plate and are in contact with each other.
  • the light-absorbing layer may be exposed and developed by using a mask to remove part of the light-absorbing layer, thereby forming a plurality of hollow areas.
  • an optical stack structure can be formed according to the following steps:
  • Step S901 coating a light-absorbing layer on one side of the circular polarizer, and removing part of the light-absorbing layer to form a plurality of hollow areas.
  • Step S902 forming a cholesteric liquid crystal layer on the light absorbing layer formed with the hollow region.
  • an optical stack structure can be formed according to the following steps:
  • Step S1001 forming a cholesteric liquid crystal layer on one side of the circular polarizer
  • Step S1002 coating a light absorbing layer on the cholesteric liquid crystal layer, and removing part of the light absorbing layer to form a plurality of hollow areas.
  • the implementation of the preparation method can refer to the implementation of the aforementioned optical stack structure, and the repetition will not be repeated.
  • the embodiment of the present application also provides a terminal, and the terminal may include a casing and any display module provided in the foregoing embodiments of the present application. Since the problem-solving principle of the terminal is similar to that of the aforementioned display module, the implementation of the terminal can refer to the implementation of the aforementioned display module, and repeated descriptions will not be repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

本申请公开了一种光学叠层结构、显示模组、终端及相关制备方法。其中,光学叠层结构用于设置在LED显示面板的出光侧,光学叠层结构包括圆偏振片,以及位于圆偏振片面向LED显示面板一侧的光吸收层和胆甾相液晶层;光吸收层和胆甾相液晶层叠设置;光吸收层用于吸收第一波段的光,光吸收层在与各第一像素对应的区域为镂空区域。利用所述CLC层可有效提升出光效率,通过设置的所述光吸收层,可有效降低环境光的反射率。

Description

光学叠层结构、显示模组、终端及相关制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种光学叠层结构、显示模组、终端及相关制备方法。
背景技术
LED(Light Emitting Diode,发光二极管)器件是一种电致发光器件,其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广、体积轻薄、响应速度快、视角宽等优点;因此,利用发光二极管的显示技术已成为一种重要的显示技术。
LED显示器件中除了设置有LED器件,一般还设置有金属走线。然而,金属走线对于外界光线的反射率较高,当LED显示器件显示时,人眼获得的显示亮度为原本要显示的亮度与反射的外界光线的亮度之和,即LED显示器件的显示亮度发生了偏差,从而影响了LED显示器件的显示效果。为了改善LED显示器件由于环境光反射造成的不良影响,通常都会采用圆偏振片来降低反射率。但是在降低反射率的同时,LED器件出射的光也会有一半的偏振光被圆偏振片吸收,从而会导致LED显示器件显示出光率降低。
发明内容
本申请提供一种光学叠层结构、显示模组、终端及相关制备方法,用于在保证显示出光效率的基础上降低环境光的反射率。
第一方面,本申请提供了一种光学叠层结构,所述光学叠层结构可以设置在LED显示面板的出光侧,用于在保证LED显示面板出光效率的基础上降低环境光的反射率。其中,所述LED显示面板可以包括多个第一像素、多个第二像素、多个第三像素等多种颜色的像素。所述光学叠层结构可以包括圆偏振片,以及位于所述圆偏振片面向所述LED显示面板一侧的光吸收层和CLC(Cholesteric Liquid Crystal,CLC)层;所述光吸收层和所述CLC层叠设置,所述CLC层位于所述光吸收层与所述圆偏振片之间,或者,所述光吸收层位于所述CLC层与所述圆偏振片之间。所述光吸收层用于吸收第一波段的光,所述光吸收层中具有多个镂空区域,所述镂空区域与所述LED显示面板中的第一像素对应设置,以使第一像素所发出的光可以通过;所述CLC层作用于第一波段的光,用于在所述第一波段的光照射至所述胆甾相液晶层时,使左旋圆偏振光透过、使右旋圆偏振光被反射,或者使右旋圆偏振光透过、使左旋圆偏振光被反射。
在本申请中,第一像素的光可以通过镂空区域出射,为了保证光吸收层不影响LED显示面板的正常显示,光吸收层不能作用于LED显示面板中除了第一像素的其它像素,即LED显示面板的其它像素发出的光可以透过光吸收层。因此,在本申请中,第一波段至少包括部分第一像素的发光波段。示例性的,第一波段可以包括第一像素的发光波段。需要说明的是,第一波段与第一像素的发光波段部分重叠也属于本申请的保护范围,在此不作限定。
在本申请中,所述圆偏振片可以包括线偏振片和λ/4波片,所述线偏振片位于远离所述LED显示面板一侧,所述λ/4波片位于靠近所述LED显示面板一侧。当自然光从线偏 振片一侧入射时,从λ/4波片一侧出射时,出射光为左旋圆偏振光或右旋圆偏振光。
需要说明的是,本申请中,如果从圆偏振片的λ/4波片一侧出射的光为左旋圆偏振光,则所述CLC层用于在所述第一波段的光照射至所述CLC层时,使左旋圆偏振光透过、右旋圆偏振光被反射。如果出射光为右旋圆偏振光,则所述CLC层用于在所述第一波段的光照射至所述CLC层时,使右旋圆偏振光透过、左旋圆偏振光被反射。
可选的,所述圆偏振片中还可以包括位于λ/4波片背离线偏振片一侧的C型补偿膜层,对显示面板存在的光学偏色(斜视、大视角等)问题进行视角补偿。
对于所述CLC层位于所述光吸收层与所述圆偏振片之间的情况,当外界光线照射显示模组时,外界光线中与线偏振片的透过轴相垂直的光被吸收,与线偏振片的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片后转变为左旋圆偏振光(或者右旋圆偏振光),左旋圆偏振光(或者右旋圆偏振光)穿过CLC层后除了第一波段的光之外的其它颜色的光(例如红光R和绿光G)均可以透过光吸收层,而第一波段的光(例如蓝光B)只有照射在光吸收层的镂空区域的部分可以通过。透过光吸收层的左旋圆偏振光(或者右旋圆偏振光)进入LED显示面板被金属走线反射后变为右旋圆偏振光(或者左旋圆偏振光),反射回来的右旋圆偏振光(或者左旋圆偏振光)透过光吸收层后又被CLC层反射,反射的右旋圆偏振光(或者左旋圆偏振光)透过光吸收层后进入LED显示面板,又被金属走线反射变为左旋圆偏振光(或者右旋圆偏振光)。从而左旋圆偏振光(或者右旋圆偏振光)依次透过光吸收层、CLC层后照射在λ/4波片,经过λ/4波片2后变为线偏振光,而线偏振光的偏振方向与线偏振片的透过轴平行,从而透过线偏振片后射出。即外界光线中第一波段的光大部分被吸收,其它颜色的光与现有技术差不多,有约一半被线偏振片吸收。从而通过降低第一波段的光的反射降低显示模组的环境光反射率,提升显示模组在熄屏状态下的一体黑效果。
当LED显示面板发出的自然光经过光吸收层时,虽然光吸收层会吸收第一波段的光,但是由于在第一像素对应的区域有镂空区域,因此LED显示面板中各中颜色的像素发出的光均可以透过光吸收层照射到CLC层,然后左旋圆偏振光(或者右旋圆偏振光)可以穿过CLC层,右旋圆偏振光(或者左旋圆偏振光)被CLC层反射后透过光吸收层进入LED显示面板。穿过CLC层的左旋圆偏振光(或者右旋圆偏振光)经过λ/4波片后变为线偏振光,线偏振光的偏振方向与线偏振片的透过轴平行,从而从线偏振片透过。反射回LED显示面板的右旋圆偏振光(或者左旋圆偏振光)被LED显示面板中金属走线反射后变为左旋圆偏振光(或者右旋圆偏振光),左旋圆偏振光(或者右旋圆偏振光)依次透过光吸收层和CLC层后从圆偏振片射出。即如果不考虑光损失,LED显示面板发出的自然光基本上都可以出射,从而保证显示模组的出光效率。
对于所述光吸收层位于所述CLC层与所述圆偏振片之间的情况,当外界光线照射显示模组时,外界光线中与线偏振片的透过轴相垂直的光被吸收,与线偏振片的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片后转变为左旋圆偏振光(或者右旋圆偏振光),左旋圆偏振光(或者右旋圆偏振光)除了第一波段的光之外的其它颜色的光均可以透过光吸收层,而第一波段的光只有照射在光吸收层的镂空区域的部分可以通过。透过光吸收层的左旋圆偏振光(或者右旋圆偏振光)通过CLC层后进入LED显示面板被金属走线反射后变为右旋圆偏振光(或者左旋圆偏振光),反射回来的右旋圆偏振光(或者左旋圆偏振光)又被CLC层反射,反射的右旋圆偏振光(或者左旋圆偏振光)进入LED 显示面板,又被金属走线反射变为左旋圆偏振光(或者右旋圆偏振光)。从而左旋圆偏振光(或者右旋圆偏振光)依次透过CLC层、光吸收层后照射在λ/4波片,经过λ/4波片后变为线偏振光,而线偏振光的偏振方向与线偏振片的透过轴平行,从而透过线偏振片后射出。即外界光线中第一波段的光大部分被吸收,其它颜色的光与现有技术差不多,有约一半被线偏振片吸收。从而通过降低第一波段的光的反射降低显示模组的环境光反射率,提升显示模组在熄屏状态下的一体黑效果。
当LED显示面板发出的自然光照射到CLC层时,左旋圆偏振光(或者右旋圆偏振光)可以穿过CLC层,右旋圆偏振光(或者左旋圆偏振光)被CLC层反射进入LED显示面板。反射回LED显示面板的右旋圆偏振光(或者左旋圆偏振光)被LED显示面板中金属走线反射后变为左旋圆偏振光(或者右旋圆偏振光),左旋圆偏振光(或者右旋圆偏振光)穿过CLC层,穿过CLC层的左旋圆偏振光(或者右旋圆偏振光)在经过光吸收层时,虽然光吸收层会吸收第一波段的光,但是由于在第一像素对应的区域有镂空区域,因此LED显示面板中各中颜色的像素发出的光均可以透过光吸收层,穿过光吸收层的左旋圆偏振光(或者右旋圆偏振光)经过λ/4波片后变为线偏振光,线偏振光的偏振方向与线偏振片的透过轴平行,从而从线偏振片透过。即如果不考虑光损失,LED显示面板发出的自然光基本上都可以出射,从而保证显示模组的出光效率。
由于显示模组反射的环境光(外界光线)中,蓝光的光强起主要的作用,因此在本申请中,第一波段对应蓝光波段,第一像素为蓝色像素,第一像素的发光波段以蓝光波段为主。所述光吸收层用于吸收蓝光入射光,对于除了蓝光之外其它波段的入射光则可以透过,从而显示模组可以降低环境光中蓝色光的反射率。
本申请对所述光吸收层和所述CLC层的厚度不作限定,示例性的,所述光吸收层的厚度可以控制在1μm~2μm之间,例如1μm、1.5μm、2μm等;所述CLC层的厚度可以控制在2μm~5μm之间,例如2μm、3μm、4μm、5μm等。
在本申请中,为了增加所述LED显示面板出光侧的平坦性,还可以在所述发光层中的镂空区域中填充允许第一波段的光透过的材料。例如可在所述镂空区域中填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。或者,可在所述镂空区域中填充胆甾相液晶材料,所述胆甾相液晶材料与所述CLC层中的胆甾相液晶材料可以相同。
示例性的,本申请中所述光吸收层可以由黄色光刻胶材料形成。在其中一种实施例中,所述黄色光刻胶材料可以包括硬化树脂、黄色颜料、丙二醇甲醚醋酸酯(PGMEA)及丙二醇甲醚(PGME),当然所述黄色光刻胶材料还可以由其它材料形成,在此不作限定。
在本申请中,所述光吸收层中镂空区域的设置是为了使所述LED显示面板中第一像素发出的光可以通过,但是在具体实施时,像素的光出射角度并不是完全沿发光层法线方向,而是具有一定的出射角度的。可选地,为了避免光吸收层对第一像素发出的光的吸收,所述镂空区域在所述LED显示面板的正投影覆盖与其对应的所述第一波段(例如蓝色B)的像素的发光层,且所述镂空区域在所述LED显示面板的正投影的面积大于所述第一像素的发光层的面积。
示例性的,所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离可以大于或等于25μm、小于或等于35μm。
为了提升第一像素的出光效率,不仅需要考虑第一像素的光可以从镂空区域通过,还需要考虑第一像素的光经过CLC层反射后再经过LED显示面板中金属走线二次反射后仍 然可以从镂空区域通过。因此,光吸收层距离发光层的距离越远,对第一像素的光的出光设计会越复杂。可选地,在本申请中,所述CLC层设置于所述圆偏振片与所述光吸收层之间,从而可以减小光吸收层距离发光层的距离。
示例性的,所述光学叠层结构中还可以包括位于所述圆偏振片与所述光吸收层之间的平坦化层。所述平坦化层对显示模组起平坦化作用和保护作用,可以避免膜层之间产生气泡,有利于显示模组的量产可行性。
本申请对所述平坦化层的材料的不作限定,示例性的,所述平坦化层的材料可以为丙烯酸。
示例性的,当所述光吸收层的所述镂空区域填充有光学透明材料时,所述光学透明材料与所述平坦化层的材料可以设置为相同,从而可以避免由于增加了材料而需要额外增加工艺。
示例性的,所述平坦化层可以位于所述光吸收层与所述CLC层之间,这样可以在形成所述平坦化层时同时在所述镂空区域中填充所述有光学透明材料,避免了单独在所述镂空区域中填充所述有光学透明材料的工艺步骤,从而减少工艺步骤,降低成本。
在具体实施时,所述CLC层可以分别通过粘结层与所述圆偏振片以及所述平坦化层粘结。
为了降低光学叠层结构的厚度,在一种可行的实施方式中,所述CLC层可以涂布于所述圆偏振片面向所述LED显示面板一侧;所述CLC层背离所述圆偏振片的一侧通过第一透明粘结层与所述平坦化层结合,这样可以减少一层粘结层。并且,由于圆偏振片中的λ/4波片一般是由液晶材料涂布形成的,因此在所述圆偏振片面向所述LED显示面板一侧涂布所述CLC层工艺上更加简单,并且,可以在一大块圆偏振片上涂布所述CLC层后进行切割,即同时涂布多个显示模组中的所述CLC层,成本更低。
在具体实施时,为了保证透光率,所述第一透明粘结层的透过率在99%~100%之间。
为了保证出光效率,所述第一透明粘结层的折射率与所述平坦化层的折射率的差异可以小于或等于0.1。例如当所述平坦化层的材料为丙烯酸时,所述第一透明粘结层的折射率可以设置为接近丙烯酸的折射率。示例性的,丙烯酸的折射率约为1.5,所述第一透明粘结层的折射率可以设置在1.4~1.6之间。
可选的,为了减小所述CLC层与所述发光层之间的距离,所述第一透明粘结层可以为分子共价键合层,所述分子共价键合层分别与所述CLC层和所述平坦化层通过化学键键合,即分子共价键合层与所述CLC层在接触面处两层的材料之间形成有化学键,所述分子共价键合层与所述平坦化层在接触面处两层的材料之间形成有化学键。从而利用所述分子共价键合层可以实现厚度为1um以下的纳米级厚度。
在具体实施时,当平坦化层的材料为丙烯酸时,所述分子共价键合层的材料为含有烷氧基硅基的分子接合剂材料。示例性的,所述含有烷氧基硅基可以为烷氧基硅烷化合物。
为了降低光学叠层结构的厚度,在另一种可行的实施方式中,所述CLC层可以涂布于所述平坦化层背离所述光吸收层一侧;所述CLC层背离所述光吸收层一侧通过第二透明粘结层与所述圆偏振片结合,这样可以减少一层粘结层,并且可以减小所述CLC层与所述发光层之间的距离。
在具体实施时,为了保证透光率,所述第二透明粘结层的透过率在99%~100%之间。示例性的,所述第二透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。 可选地,在本申请实例中,所述第二透明粘结层为PSA。
可选地,为了减小发光层与CLC层之间的距离,所述平坦化层可以位于所述CLC层与所述圆偏振片之间。
进一步地,为了降低LED显示面板出光侧的膜层厚度,所述CLC层涂布于所述光吸收层背离所述LED显示面板一侧;所述平坦化层涂布于所述CLC层背离所述光吸收层一侧,所述平坦化层背离所述CLC层的一侧通过第三透明粘结层与所述圆偏振片结合。
在具体实施时,所述第三透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。示例性的,在本申请实施例中,所述第三透明粘结层可以为PSA。
第二方面,本申请还提供了一种显示模组,该显示模组包括LED显示面板和如第一方面或第一方面的各种实施方式所述的光学叠层结构,且所述光学叠层结构位于所述LED显示面板出光侧。
示例性的,所述胆甾相液晶层位于所述圆偏振片与所述光吸收层之间;所述胆甾相液晶层面向所述LED显示面板一侧的表面与所述光吸收层面向所述LED显示面板一侧的表面之间的距离可以小于3μm;所述光吸收层面向所述LED显示面板一侧的表面与所述第一像素的发光层面向所述光吸收层一侧的表面之间的距离可以小于15μm。
示例性的,为了减小所述CLC层与所述LED显示面板的发光层之间的距离,所述光吸收层的厚度可以设置为小于2μm,在此不作限定。
在本申请中,当所述光吸收层的所述镂空区域填充有所述光学透明材料时,不考虑材料的折射率,第一像素的光经过CLC层反射后再经过LED显示面板中金属走线二次反射后仍然可以从镂空区域通过,因此镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离S1≥3*L2+2*L1≥(2*d1+3*d2)/tanθ。其中,L2=d2/tanθ,L1=d1/tanθ,d1表示所述CLC层面向所述LED显示面板一侧的表面与所述光吸收层面向所述LED显示面板一侧的表面之间的距离,d2表示所述光吸收层面向所述LED显示面板一侧的表面与所述第一像素的发光层面向所述光吸收层一侧的表面之间的距离,θ表示所述第一像素的光出射角度,是由所述LED显示面板中像素的发光光型决定的。
在本申请中,当所述光吸收层的所述镂空区域填充有所述胆甾相液晶材料时,不考虑材料的折射率,所述胆甾相液晶材料具有与所述CLC层相同的功能。第一像素的光经过胆甾相液晶材料反射后再经过LED显示面板中金属走线二次反射后仍然可以从镂空区域通过,因此所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离S1≥3*L2≥3*d2/tanθ。其中,L2=d2/tanθ,d2表示所述光吸收层面向所述LED显示面板一侧的表面与所述第一像素的发光层面向所述光吸收层一侧的表面之间的距离,θ表示所述第一像素的光出射角度。
在本申请中,显示模组中还可以包括触控层。其中,触控层可以集成于所述LED显示面板内,即In cell显示屏。或者,所述触控层也可以集成于所述LED显示面板的封装层上,即On cell显示屏,在所述LED显示面板上直接制作所述触控层。或者,也可以是将已经形成触控层粘贴方式贴合在所述LED显示面板出光侧的任一膜层位置。
在本申请中,对于设置有触控层的显示模组,为了避免由于触控层的设置而增加CLC层与发光层之间的距离,可以将触控层设置在所述CLC层与所述圆偏振片之间。
可选地,所述显示模组还可以包括位于所述触控层与所述CLC层之间的硬化保护层和位于所述圆偏振片与所述触控层之间的第四透明粘结层。
在具体实施时,所述第四透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。示例性的,在本申请实施例中,所述第四透明粘结层可以为PSA。
本申请对硬化保护层的材料和具体形成方式不作限定,在具体实施时,可以采用聚丙烯酸树脂或亚克力材料通过涂布的方式形成所述硬化保护层。
在具体实施时,对于LED显示面板出光侧不设置平坦化层的情况,所述光吸收层的所述镂空区域填充的所述光学透明材料可以为丙烯酸。从而可以避免由于增加了材料而需要额外增加工艺。
在本申请中,所述显示模组还包括位于所述圆偏振片背离所述LED显示面板一侧的屏幕盖板,所述屏幕盖板通过光学透明双面胶与所述圆偏振片结合。
第三方面,本申请还提供了一种终端,该终端包括壳体以及如第二方面或第二方面的各种实施方式所述的显示模组。
第四方面,本申请还提供了一种光学叠层结构的制备方法,该制备方法可以包括:在圆偏振片的一侧涂布光吸收层,并去除部分所述光吸收层以形成多个镂空区域;在形成有所述镂空区域的所述光吸收层上形成胆甾相液晶层。或者,该制备方法可以包括:在所述圆偏振片的一侧形成胆甾相液晶层;在所述胆甾相液晶层上涂布光吸收层,并去除部分所述光吸收层以形成多个镂空区域。
示例性的,在本申请中,去除部分所述光吸收层以形成多个镂空区域可以包括:采用掩模板对所述光吸收层进行曝光显影,以去除部分所述光吸收层,形成多个镂空区域。
第五方面,本申请还提供了一种显示模组的制备方法,该制备方法可以包括以下步骤:提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素;在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域;在所述圆偏振片上涂布胆甾相液晶层;使所述胆甾相液晶层面向所述光吸收层,将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上。
示例性的,在将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上之前,还可以包括:在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
可选地,将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上,可以包括:在所述平坦化层上涂布第一透明粘结层;通过所述第一透明粘结层将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述平坦化层上。
第六方面,本申请还提供了另一种显示模组的制备方法,该制备方法可以包括以下步骤:提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素;在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域;在所述光吸收层上涂布覆盖所述光吸收层的胆甾相液晶层;在所述胆甾相液晶层上安装圆偏振片。
在一种可行的实现方式中,在所述光吸收层上形成覆盖所述光吸收层的胆甾相液晶层之前,还可以包括:在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
进一步地,在所述胆甾相液晶层上安装圆偏振片可以包括:在所述圆偏振片上形成第二透明粘结层;使所述第二透明粘结层面向所述胆甾相液晶层,通过所述第二透明粘结层 将所述圆偏振片安装在所述胆甾相液晶层上。
在另一种可行的实现方式中,在所述光吸收层上涂布覆盖所述光吸收层的胆甾相液晶层之前,还可以包括:在所述镂空区域内填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。或者,示例性的,在所述光吸收层上涂布覆盖所述光吸收层的CLC层具体可以包括:在所述光吸收层上以及所述镂空区域涂布CLC层,以使所述CLC层覆盖所述光吸收层、且填充所述镂空区域。
进一步地,在所述胆甾相液晶层上安装圆偏振片之前,还可以包括:在所述胆甾相液晶层上涂布平坦化层。在所述胆甾相液晶层上安装圆偏振片具体可以包括:在所述圆偏振片上形成第三透明粘结层;使所述第三透明粘结层面向所述平坦化层,通过所述第三透明粘结层将所述圆偏振片安装在所述平坦化层上。
在另一种可行的实现方式中,在所述光吸收层上涂布覆盖所述光吸收层的CLC层之前,还可以包括:在所述镂空区域内填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。或者,示例性的,在所述光吸收层上涂布覆盖所述光吸收层的CLC层可以包括:在所述光吸收层上以及所述镂空区域涂布CLC层,以使所述CLC层覆盖所述光吸收层、且填充所述镂空区域。
进一步地,在所述CLC层上安装圆偏振片之前还可以包括:在所述胆甾相液晶层上涂布硬化保护层;在所述硬化保护层上形成触控层。在所述胆甾相液晶层上安装圆偏振片具体可以包括:在所述圆偏振片上形成第四透明粘结层;使所述第四透明粘结层面向所述触控层,通过所述第四透明粘结层将所述圆偏振片安装在所述触控层上。
上述第二方面至第六方面中任一方面可以达到的技术效果可以参照上述第一方面中任一可能设计可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请实施例提供的显示模组的一种应用场景的示意图;
图2为本申请实施例提供的显示模组的结构示意图;
图3为一种相关技术提供的显示模组的结构示意图;
图4为另一相关技术提供的显示模组的结构示意图;
图5为图4所示显示模组中OLED显示面板的出光示意图;
图6为图4所示显示模组对环境光的反射示意图;
图7为本申请实施例提供的一种显示模组的结构示意图;
图8为本申请实施例提供的另一种显示模组的结构示意图;
图9为图7所示显示模组中LED显示面板的出光示意图;
图10为图7所示显示模组对环境光的反射示意图;
图11为本申请实施例提供的另一种显示模组的结构示意图;
图12为图11所示显示模组的局部结构示意图;
图13为本申请实施例提供的另一种显示模组的结构示意图;
图14为图13所示显示模组的局部结构示意图;
图15为本申请实施例提供的显示模组的局部结构示意图;
图16为本申请实施例提供的光吸收层与发光层的俯视示意图;
图17为本申请实施例提供的另一种显示模组的结构示意图;
图18为本申请实施例提供的显示模组的一种制备方法的流程示意图;
图19为图17所示显示模组对应的制备方法的流程示意图;
图20为本申请中通过分子共价键合层进行化学结合的原理图;
图21为本申请实施例提供的另一种显示模组的结构示意图;
图22为本申请实施例提供的显示模组的另一种制备方法的流程示意图;
图23为图21所示显示模组对应的制备方法的流程示意图;
图24为本申请实施例提供的另一种显示模组的结构示意图;
图25为图24所示显示模组对应的制备方法的流程示意图;
图26为本申请实施例提供的另一种显示模组的结构示意图;
图27为图26所示显示模组对应的制备方法的流程示意图;
图28为本申请实施例提供的另一种显示模组的结构示意图;
图29为本申请实施例提供的另一种显示模组的结构示意图;
图30为本申请实施例提供的另一种显示模组的结构示意图;
图31为本申请实施例提供的另一种显示模组的结构示意图;
图32为本申请实施例提供的另一种显示模组的结构示意图;
图33为图32所示显示模组对应的制备方法的流程示意图;
图34为本申请实施例提供的另一种显示模组的结构示意图;
图35为图34所示显示模组对应的制备方法的流程示意图;
图36为本申请实施例提供的另一种显示模组的结构示意图;
图37为本申请实施例提供的另一种显示模组的结构示意图;
图38为本申请实施例提供的光学叠层结构的一种制备方法的流程示意图;
图39为本申请实施例提供的光学叠层结构的另一种制备方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于充分理解本申请。但是本申请能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广。因此本申请不受下面公开的具体实施方式的限制。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
为了便于了解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
偏振光(polarized light):光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的光,叫做偏振光。
λ/4波片:是一定厚度的双折射单晶波片,当光从法向入射透过波片时,寻常光(o 光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且线偏振光的偏振方向和λ/4波片的光轴成45°时,出射光为圆偏振光,构成波片的晶体类型决定出射的圆偏振光为右旋圆偏振光或左旋圆偏振光。
圆偏振片:由线偏振片和λ/4波片组成。λ/4波片的光轴与线偏振片的透过轴(也称偏光轴)的夹角为45°角。当自然光经过线偏振片后,光线中与线偏振片的透过轴相平行的光透过,与线偏振片的透过轴相垂直的光被吸收;即自然光经过线偏振片后转变成偏振方向与线偏振片的透过轴相平行的线偏振光,线偏振光经过λ/4波片后转变为右旋圆偏振光或左旋圆偏振光。
胆甾相液晶(Cholesteric Liquid Crystal,CLC)层:层内胆甾相液晶分子呈扁平状,排列成层,层内分子相互平行,分子长轴平行于层平面,不同层的分子长轴方向稍有变化,沿层的法线方向排列成螺旋状结构。该螺旋状结构呈左旋或右旋,按照螺旋状结构的旋向可以将胆甾相液晶层分为左旋胆甾相液晶层和右旋胆甾相液晶层。当分子的排列旋转了360度而又回到原来的方向时,在分子排列完全相同的两层间的距离称胆甾相液晶的螺距。根据实际需要,可以在胆甾相液晶中添加手性剂等改变螺距。胆甾相液晶层可以包含多种螺距不同的胆甾相液晶,还可以包括螺距单一的胆甾相液晶,具体根据实际情况而定。当有波长与胆甾相液晶层的螺距相等的光入射到胆甾相液晶层表面时,胆甾相液晶层会呈现出选择反射特性,即左旋胆甾相液晶层透射右旋圆偏振光,反射左旋圆偏振光;右旋胆甾相液晶层透射左旋圆偏振光,反射右旋圆偏振光。当入射光的波长与胆甾相液晶的螺距不一致,则胆甾相液晶允许全部入射光透过。
需要说明的是,本申请实施例中提到的“左旋”或者“右旋”均是基于同一观察方向观察所得。
为了方便理解本申请实施例提供的显示模组,首先说明一下其应用场景,该显示模组可应用于终端,该终端包括例如手表、手机、平板电脑、个人数字助理(personal digital assistant,PDA)、车载电脑、显示器(monitor)和电视(television,TV)等。本申请实施例对上述终端的具体形式不做特殊限制。以下为了方便说明,以终端为手机为例进行的说明。如图1所示,所述终端主要包括显示模组1以及壳体2,显示模组1可以设置于壳体2内。
其中,如图2所示,显示模组1主要包括OLED显示面板01和设置在OLED显示面板01出光侧的屏幕盖板02。屏幕盖板02用于对OLED显示面板01提供良好的保护作用。而OLED显示面板01中主要设置有OLED器件以及电路膜层(图2中未视出OLED显示面板01的具体结构),其中电路膜层中设置有金属走线。然而,金属走线对于外界光线的反射率较高,当显示时,人眼获得的显示亮度为原本要显示的亮度与反射的外界光线的亮度之和,从而影响显示模组的显示效果。为了改善显示模组由于环境光反射造成的不良影响,通常都会采用圆偏振片来降低反射率。如图3所示,圆偏振片03设置在OLED显示面板01和屏幕盖板02之间,圆偏振片03由线偏振片031和λ/4波片032组成,外界光线在进入线偏振片031时,外界光线中与线偏振片031的透过轴相垂直的光被吸收,与线偏振片031的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片032后转变为圆偏振光,以左旋圆偏振光为例,左旋圆偏振光进入OLED显示面板01被金属走线反射后变为右旋圆偏振光,右旋圆偏振光经过λ/4波片032后变为线偏振光,但是线偏振光的偏振方向与线偏振片031的透过轴垂直,该线偏振光被线偏振片031吸收,不能射出, 故防止了外界光线的反射。但是OLED显示面板01发出光的包含各种偏振态的光,比如:线偏振光、椭圆偏振光和圆偏振光等,其经过λ/4波片032后,总体的偏振情况几乎不变;当上述光线再经过线偏振片031后,只有与线偏振片031的偏振方向平行的光才可透过并用于显示,垂直的光则被吸收。因此,OLED显示面板01发出的光通过圆偏振片03后,其亮度至少会衰减一半,从而导致显示亮度明显降低。
为了提高显示模组的出光效率,如图4所示,相关技术中,在OLED显示面板01与圆偏振片03之间增加了CLC层04。参见图5,OLED显示面板01发出的光在照射到CLC层04时,左旋圆偏振光可以穿过CLC层04,右旋圆偏振光被CLC层04反射进入OLED显示面板01。穿过CLC层04的左旋圆偏振光经过λ/4波片032后变为线偏振光,线偏振光的偏振方向与线偏振片031的透过轴平行,从而从线偏振片031透过。反射回OLED显示面板01的右旋圆偏振光被OLED显示面板01中金属走线反射后变为左旋圆偏振光,左旋圆偏振光穿过CLC层04后从圆偏振片03射出。由上述描述可看出,通过设置的CLC层04与OLED显示面板01中的金属走线的两次反射,可将原来无法穿过圆偏振片03的右旋圆偏振光转换成可穿过圆偏振片03的左旋圆偏振光,从而提高了显示模组的出光量,进而提高了显示模组的显示效果。
但是在增加CLC层04后,不可避免的会增大外界光线照射到显示模组后,显示模组的反射效果。参见图6,当外界光线照射到显示模组时,外界光线中与线偏振片031的透过轴相垂直的光被吸收,与线偏振片031的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片032后转变为左旋圆偏振光,左旋圆偏振光透过CLC层04后进入LED显示面板01被金属走线反射后变为右旋圆偏振光,右旋圆偏振光被CLC层04反射后进入LED显示面板01,又被金属走线反射变为左旋圆偏振光。从而左旋圆偏振光透过CLC层04后照射在λ/4波片032,经过λ/4波片032后变为线偏振光,而线偏振光的偏振方向与线偏振片031的透过轴平行,从而透过线偏振片031后射出,增加了显示模组的反射效果。这导致在外界的光线照射到显示模组后,显示模组1的反射效果增大,影响了显示模组的正常显示。并且,由于环境光的反射影响,显示模组在熄屏状态下一体黑效果较差,有发灰或偏色等效果问题存在。
针对上述问题,本申请实施例提出了一种既可以保证显示出光效率又可以降低环境光反射率的光学叠层结构和显示模组。
本申请实施例提供了一种光学叠层结构,该光学叠层结构用于设置在LED显示面板的出光侧。对应的,本申请还提供了一种显示模组,该显示模组可以包括LED显示面板和设置在所述LED显示面板的出光侧的光学叠层结构。
为了说明光学叠层结构的作用,下面将光学叠层结构与LED显示面板结合在一起来说明。需要说明的是,本申请中光学叠层结构是可以独立于LED显示面板存在的结构,对于独立于LED显示面板的光学叠层结构也属于本申请的保护范围。
示例性的,参见图7和图8,在本申请中,所述LED显示面板11至少包括多个第一像素pix、多个第二像素pix和多个第三像素pix。所述光学叠层结构10可以包括圆偏振片12,以及位于所述圆偏振片12面向所述LED显示面板11一侧的光吸收层13和CLC层14。所述光吸收层13和所述CLC层14层叠设置。示例性的,如图7所示,所述CLC层14可位于所述光吸收层13与所述圆偏振片12之间,或者,如图8所示,所述光吸收层13可位于所述CLC层14与所述圆偏振片12之间。所述光吸收层13用于吸收第一波段的 光,所述光吸收层13中具有多个镂空区域,所述镂空区域与所述LED显示面板11中的第一像素pix对应设置。
在本申请中,所述CLC层14作用于第一波段的光,用于在所述第一波段的光照射至所述CLC层14时,使左旋圆偏振光透过、右旋圆偏振光被反射,或者使右旋圆偏振光透过、左旋圆偏振光被反射。
在本申请中,第一像素的光可以通过镂空区域出射,为了保证光吸收层不影响LED显示面板的正常显示,光吸收层不能作用于LED显示面板中除了第一像素的其它像素,即LED显示面板的其它像素发出的光可以透过光吸收层。因此,在本申请中,第一波段至少包括部分第一像素的发光波段。示例性的,第一波段可以包括第一像素的发光波段。需要说明的是,第一波段与第一像素的发光波段部分重叠也属于本申请的保护范围,在此不作限定。
继续参见图7和图8,所述圆偏振片12可以包括线偏振片121和λ/4波片122,所述线偏振片121位于远离所述LED显示面板11一侧,所述λ/4波片122位于靠近所述LED显示面板11一侧。当自然光从线偏振片121一侧入射时,从λ/4波片122一侧出射时,出射光为圆偏振光,具体圆偏振光为左旋圆偏振光还是为右旋圆偏振光由构成λ/4波片的晶体类型122决定,当λ/4波片122确定后,圆偏振光的旋向也是确定的,只能是一种旋向的圆偏振光,例如只能为左旋圆偏振光,或者只能为右旋圆偏振光。
需要说明的是,本申请中所述CLC层14的类型与所述圆偏振片12中λ/4波片122的类型相关,当自然光从圆偏振片12的线偏振片121一侧入射,从圆偏振片12的λ/4波片122一侧出射时,如果出射光为左旋圆偏振光,则所述CLC层14用于在所述第一波段的光照射至所述CLC层14时,使左旋圆偏振光透过、右旋圆偏振光被反射。如果出射光为右旋圆偏振光,则所述CLC层14用于在所述第一波段的光照射至所述CLC层14时,使右旋圆偏振光透过、左旋圆偏振光被反射。
可选的,所述圆偏振片中还可以包括位于λ/4波片背离线偏振片一侧的C型补偿膜层,对显示面板存在的光学偏色(斜视、大视角等)问题进行视角补偿。
下面以自然光从圆偏振片12的线偏振片121一侧入射,从圆偏振片12的λ/4波片122一侧出射时,出射光为左旋圆偏振光为例,对本申请进行详细说明。需要说明的是,本实施例中是为了更好的解释本申请,但不限制本申请。
参见图9,对于所述CLC层14位于所述光吸收层13与所述圆偏振片12之间的情况,当外界光线照射显示模组时,外界光线中与线偏振片121的透过轴相垂直的光被吸收,与线偏振片121的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片122后转变为左旋圆偏振光,左旋圆偏振光穿过CLC层14后除了第一波段的光之外的其它波段的光(例如红光R和绿光G)均可以透过光吸收层13,而第一波段的光(例如蓝光B)只有照射在光吸收层13的镂空区域的部分可以通过。透过光吸收层13的左旋圆偏振光进入LED显示面板11被金属走线反射后变为右旋圆偏振光,反射回来的右旋圆偏振光透过光吸收层13后又被CLC层14反射,反射的右旋圆偏振光透过光吸收层13后进入LED显示面板11,又被金属走线反射变为左旋圆偏振光。从而左旋圆偏振光依次透过光吸收层13、CLC层14后照射在λ/4波片122,经过λ/4波片122后变为线偏振光,而线偏振光的偏振方向与线偏振片121的透过轴平行,从而透过线偏振片122后射出。即外界光线中第一波段的光大部分被吸收,其它颜色的光与现有技术差不多,有约一半被线偏振片121吸收。 从而通过降低第一波段的光的反射降低显示模组的环境光反射率,提升显示模组在熄屏状态下的一体黑效果。
参见图10,当LED显示面板11发出的自然光经过光吸收层13时,虽然光吸收层会吸收第一波段的光,但是由于在第一像素对应的区域有镂空区域,因此LED显示面板11中各中颜色的像素发出的光均可以透过光吸收层13照射到CLC层14,然后左旋圆偏振光可以穿过CLC层14,右旋圆偏振光被CLC层14反射后透过光吸收层13进入LED显示面板11。穿过CLC层14的左旋圆偏振光经过λ/4波片122后变为线偏振光,线偏振光的偏振方向与线偏振片121的透过轴平行,从而从线偏振片121透过。反射回LED显示面板11的右旋圆偏振光被LED显示面板11中金属走线反射后变为左旋圆偏振光,左旋圆偏振光依次透过光吸收层13和CLC层14后从圆偏振片12射出。即如果不考虑光损失,LED显示面板11发出的自然光基本上都可以出射,从而保证显示模组的出光效率。
对于所述光吸收层13位于所述CLC层14与所述圆偏振片12之间的情况,当外界光线照射显示模组时,外界光线中与线偏振片121的透过轴相垂直的光被吸收,与线偏振片121的透过轴相平行的光透过变为线偏振光,然后线偏振光经过λ/4波片122后转变为左旋圆偏振光,左旋圆偏振光除了第一波段的光之外的其它颜色的光均可以透过光吸收层13,而第一波段的光只有照射在光吸收层13的镂空区域的部分可以通过。透过光吸收层13的左旋圆偏振光通过CLC层14后进入LED显示面板11被金属走线反射后变为右旋圆偏振光,反射回来的右旋圆偏振光又被CLC层14反射,反射的右旋圆偏振光进入LED显示面板11,又被金属走线反射变为左旋圆偏振光。从而左旋圆偏振光依次透过CLC层14、光吸收层13后照射在λ/4波片122,经过λ/4波片122后变为线偏振光,而线偏振光的偏振方向与线偏振片121的透过轴平行,从而透过线偏振片122后射出。即外界光线中第一波段的光大部分被吸收,其它波段的光与现有技术差不多,有约一半被线偏振片121吸收。从而通过降低第一波段的光的反射降低显示模组的环境光反射率,提升显示模组在熄屏状态下的一体黑效果。
当LED显示面板11发出的自然光照射到CLC层14时,左旋圆偏振光可以穿过CLC层14,右旋圆偏振光被CLC层14反射进入LED显示面板11。反射回LED显示面板11的右旋圆偏振光被LED显示面板11中金属走线反射后变为左旋圆偏振光,左旋圆偏振光穿过CLC层14,穿过CLC层14的左旋圆偏振光在经过光吸收层13时,虽然光吸收层会吸收第一波段的光,但是由于在第一像素对应的区域有镂空区域,因此LED显示面板11中各中颜色的像素发出的光均可以透过光吸收层13,穿过光吸收层13的左旋圆偏振光经过λ/4波片122后变为线偏振光,线偏振光的偏振方向与线偏振片121的透过轴平行,从而从线偏振片121透过。即如果不考虑光损失,LED显示面板11发出的自然光基本上都可以出射,从而保证显示模组的出光效率。
在具体实施时,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素。其中,第一像素、第二像素和第三像素可以为蓝色像素、红色像素和绿色像素,当然出于一些其它需求,LED显示面板中还可以包括白色像素、黄色像素等,在此不作限定。
在具体实施时,在本申请中,第一像素为蓝色像素,第一像素的发光波段以蓝光波段为主。
继续参见图7和图8,在LED显示面板11中,可以包括阵列基板111、像素pix和封装层112,其中每一像素pix可以包括至少一个LED器件,LED器件主要包括阳极层113、 发光层114和阴极层115。阵列基板111一般包括衬底基板和位于衬底基板上的电路膜层,其中电路膜层中设置有金属走线,阳极层113一般位于靠近阵列基板111一侧,与阵列基板111中的金属走线连接,而阴极层115一般采用透明导电材料整层设置。衬底基板可以为刚性基板,也可以为柔性基板;封装层112可以为封装薄膜,也可以为封装基板,在此不作限定。
本申请实施例提供的LED显示面板可以是普通的LED显示面板,也可以是微发光二极管(Micro LED)显示面板、迷你发光二极管(Mini LED)显示面板、有机发光二极管(OLED)显示面板或量子点发光二极管(QLED)显示面板等,在此不作限定。
本申请对所述光吸收层和所述CLC层的厚度不作限定,示例性的,所述光吸收层的厚度可以控制在1μm~2μm之间,例如1μm、1.5μm、2μm等;所述CLC层的厚度可以控制在2μm~5μm之间,例如2μm、3μm、4μm、5μm等。
在本申请中,为了增加所述LED显示面板出光侧的平坦性,还可以在所述发光层中的镂空区域中填充允许第一波段的光透过的材料。示例性的,如图11和图12所示,可在所述镂空区域中填充光学透明材料131,所述光学透明材料用于至少使所述第一波段的光透过。或者如图13和图14所示,可在所述镂空区域中填充胆甾相液晶材料132,所述胆甾相液晶材料132与所述CLC层14中的胆甾相液晶材料相同。
由于显示模组反射的环境光(外界光线)中,蓝光的光强起主要的作用,因此在本申请中,第一波段对应蓝光波段,所述光吸收层用于吸收蓝光入射光,对于除了蓝光之外其它波段的入射光则可以透过,从而显示模组可以降低环境光中蓝色光的反射率。下面以第一波段为蓝色像素的发光波段为例,对本申请进行详细介绍。
由于第一波段的光为蓝光,因此所述CLC层的作用波段为蓝光波段,通过将CLC层的螺距设计为与蓝光波长一致,这样CLC层只对蓝光起选择反射特性,即蓝光的左旋圆偏振光可以透过,右旋圆偏振光被反射,对于波长与CLC层的螺距不一致的入射光,则允许全部入射光透过。
示例性的,本申请中所述光吸收层可以由黄色光刻胶材料形成。在其中一种实施例中,所述黄色光刻胶材料可以包括硬化树脂、黄色颜料、丙二醇甲醚醋酸酯(PGMEA)及丙二醇甲醚(PGME),当然所述黄色光刻胶材料还可以由其它材料形成,在此不作限定。
在本申请中,所述光吸收层13中镂空区域的设置是为了使所述LED显示面板11中第一像素pix发出的光可以通过,但是在具体实施时,像素pix的光出射角度并不是完全沿发光层法线方向,而是具有一定的出射角度的。可选地,为了避免光吸收层13对第一像素pix发出的光的吸收,如图15和图16所示,所述镂空区域A在所述LED显示面板11的正投影覆盖与其对应的所述第一波段(例如蓝色B)的像素pix的发光层114,且所述镂空区域A在所述LED显示面板11的正投影的面积大于所述第一像素pix的发光层114的面积。
而增大光吸收层13中镂空区域的面积虽然有利于LED显示面板11中第一像素pix发出的光射出,但是也会增大环境光中第一波段的光的反射率。因此,在具体实施时,可以根据显示光出射率和环境光反射率进行权衡设置,在此不作限定。
可选地,在本申请中,所述光吸收层13在LED显示面板11的正投影覆盖LED显示面板11中除了第一像素pix(例如蓝色B像素)的发光层114之外的其它颜色的像素pix的发光层114,例如第一波段为蓝光波段,所述光吸收层在LED显示面板11的正投影覆 盖除了蓝色像素pix之外的其它颜色(例如红色R和绿色G)的像素pix的发光层114。具体地,在保证所述光吸收层13在LED显示面板11的正投影覆盖LED显示面板11中除了第一像素pix的发光层114之外的其它颜色的像素pix的发光层114的基础上,所述镂空区域的边界和与其对应的所述第一像素pix的发光层114的边界之间的距离受LED显示面板11的像素分辨率的影响,即所述镂空区域的边界和与其对应的所述第一像素pix的发光层114的边界之间的最大距离等于相邻像素的发光层114之间的间隙距离。
示例性的,如图15和图16所示,所述镂空区域A的边界和与其对应的所述第一波段(例如蓝色B)的像素的发光层114的边界之间的距离S1可以设置为大于或等于25μm、且小于或等于35μm。需要说明的是,在本申请中,在所述镂空区域A的边界所限定的范围内是不存在光吸收层13的。
在具体实施时,在本申请中,所述镂空区域A的形状可以设置为与其对应的第一像素pix的发光层114的形状相同,例如,发光层114的形状为如图16所示矩形,所述镂空区域A的形状也为图16所示矩形,发光层114的形状为六边形,所述镂空区域A的形状也为六边形,即镂空区域A的形状与发光层114的形状相同,但是镂空区域A的覆盖面积大于发光层114的覆盖面积。
可以理解的是,本申请对LED显示面板不同颜色的像素的排列方式不作限定,对各像素中发光层的形状同样不作限定。
为了提升第一像素的出光效率,不仅需要考虑第一像素的光可以从镂空区域通过,还需要考虑第一像素的光经过CLC层反射后再经过LED显示面板中金属走线二次反射后仍然可以从镂空区域通过。因此,光吸收层距离发光层的距离越远,对第一像素的光的出光设计会越复杂。
可选地,在本申请中,如图11和图13所示,所述CLC层13设置于所述圆偏振片12与所述光吸收层13之间,从而可以减小光吸收层13距离发光层114的距离。
参见图11,当所述光吸收层13的所述镂空区域填充有所述光学透明材料131时,不考虑材料的折射率,结合图12,第一像素的光经过CLC层14反射后再经过LED显示面板11中金属走线二次反射后仍然可以从镂空区域通过,因此镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1≥3*L2+2*L1≥(2*d1+3*d2)/tanθ。其中,L2=d2/tanθ,L1=d1/tanθ,d1表示所述CLC层14面向所述LED显示面板11一侧的表面与所述光吸收层13面向所述LED显示面板11一侧的表面之间的距离,d2表示所述光吸收层13面向所述LED显示面板11一侧的表面与所述第一像素的发光层114面向所述光吸收层13一侧的表面之间的距离,θ表示所述第一像素的光出射角度,是由所述LED显示面板中像素的发光光型决定的。
参见图13,当所述光吸收层13的所述镂空区域填充有所述胆甾相液晶材料132时,不考虑材料的折射率,所述胆甾相液晶材料132具有与所述CLC层14相同的功能。结合图14,第一像素的光经过胆甾相液晶材料132反射后再经过LED显示面板11中金属走线二次反射后仍然可以从镂空区域通过,因此所述镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1≥3*L2≥3*d2/tanθ。其中,L2=d2/tanθ,d2表示所述光吸收层13面向所述LED显示面板11一侧的表面与所述第一像素的发光层114面向所述光吸收层13一侧的表面之间的距离,θ表示所述第一像素的光出射角度。
在具体实施时,所述镂空区域的边界和与其对应的所述第一像素的发光层114的边界 之间的距离S1可以参考上述公式进行设计,设计时还需要考虑其它情况,例如材料的折射率等。
具体地,在所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离S1固定的基础上,通过上述公式可知,CLC层与发光层之间的距离越小,第一像素的发出的光能够透过镂空区域的比例越大,因此减小CLC层与发光层之间的距离可以进一步提高显示模组的显示出光效率。
示例性的,如图11所示,所述光吸收层13面向所述LED显示面板11一侧的表面与所述第一像素的发光层114面向所述光吸收层13一侧的表面之间的距离d2可以设置为小于15μm,在此不作限定。
为了提升光出光效率,如图11所示,所述CLC层14面向所述LED显示面板11一侧的表面与所述光吸收层13面向所述LED显示面板11一侧的表面之间的距离d1可以小于3μm,在此不作限定。
示例性的,为了减小所述CLC层14与所述LED显示面板11的发光层114之间的距离,所述光吸收层13的厚度可以设置为小于2μm,在此不作限定。
下面以所述CLC层设置于所述圆偏振片与所述光吸收层之间为例,通过具体实施例对本申请进行详细说明。需要说明的是,本实施例中是为了更好的解释本申请,但不限制本申请。
实施例一、
参见图17,所述光学叠层结构10中还可包括位于所述圆偏振片12与所述光吸收层13之间的平坦化层15。平坦化层15对显示模组起平坦化作用和保护作用,可以避免膜层之间产生气泡,有利于显示模组的量产可行性。
本申请对所述平坦化层的材料的不作限定,示例性的,所述平坦化层的材料可以为丙烯酸。
参见图17,当所述光吸收层13的所述镂空区域填充有光学透明材料131时,所述光学透明材料131与所述平坦化层15的材料可以设置为相同,从而可以避免由于增加了材料而需要额外增加工艺。
示例性的,参见图17,所述平坦化层15可以位于所述光吸收层13与所述CLC层14之间,这样可以在形成所述平坦化层15时同时在所述镂空区域中填充所述有光学透明材料131,避免了单独在所述镂空区域中填充所述有光学透明材料131的工艺步骤,从而减少工艺步骤,降低成本。
在具体实施时,所述CLC层可以分别通过粘结层与所述圆偏振片以及所述平坦化层粘结。
为了降低LED显示面板11出光侧的膜层整体厚度,在一种可行的实施方式中,参见图17,所述CLC层14可以涂布于所述圆偏振片12面向所述LED显示面板11一侧;所述CLC层14背离所述圆偏振片12的一侧通过第一透明粘结层16与所述平坦化层15结合,这样可以减少一层粘结层。并且,由于圆偏振片12中的λ/4波片122一般是由液晶材料涂布形成的,因此在所述圆偏振片12面向所述LED显示面板11一侧涂布所述CLC层工艺上更加简单,并且,可以在一大块圆偏振片上涂布所述CLC层后进行切割,即同时涂布多个显示模组中的所述CLC层,成本更低。
参见图17,在该实施例中,所述CLC层14面向所述LED显示面板11一侧的表面与所述 光吸收层13面向所述LED显示面板11一侧的表面之间的距离d1可以根据公式:d1≤
0.5*S1*tanθ-1.5*d2进行近似设计。其中,d1是第一透明粘结层16、平坦化层15和光吸收层13的总厚度,d1的大小可以控制在1μm~3μm之间,d2是LED显示面板中封装层112的厚度。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内。
对应的,参见图18,本申请提供的显示模组的制备方法可以包括以下步骤:
步骤S101、提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素。
步骤S102、在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S103、在所述圆偏振片上涂布CLC层。
步骤S104、使所述CLC层面向所述光吸收层,将涂布有所述CLC层的所述圆偏振片安装在所述光吸收层上。
可选地,在本申请中,在步骤S104将涂布有所述CLC层的所述圆偏振片安装在所述光吸收层上之前,还可以包括:在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
示例性的,步骤S104将涂布有所述CLC层的所述圆偏振片安装在所述光吸收层上,可以包括:在所述平坦化层上涂布第一透明粘结层;通过所述第一透明粘结层将涂布有所述CLC层的所述圆偏振片安装在所述平坦化层上。
示例性的,以图17所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图19所示,可以包括以下步骤:
步骤S201、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一颜色的像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一颜色的像素中的发光层的形状相同。
步骤S202、在所述光吸收层背离所述LED显示面板一侧形成平坦化层,且所述平坦化层填充所述镂空区域。
本申请对平坦化层的材料和具体形成方式不作限定,在具体实施时,可以采用丙烯酸通过涂布的方式形成所述平坦化层。
步骤S203、在所述平坦化层上涂布第一透明粘结层。
步骤S204、在所述圆偏振片上涂布CLC层。
步骤S205、通过所述第一透明粘结层将涂布有所述CLC层的所述圆偏振片安装在所述平坦化层上。
在具体实施时,为了保证透光率,所述第一透明粘结层的透过率在99%~100%之间。
为了保证出光效率,所述第一透明粘结层的折射率与所述平坦化层的折射率的差异可以小于或等于0.1。例如当所述平坦化层的材料为丙烯酸时,所述第一透明粘结层的折射 率可以设置为接近丙烯酸的折射率。示例性的,丙烯酸的折射率约为1.5,所述第一透明粘结层的折射率可以设置在1.4~1.6之间。
可选的,为了减小所述CLC层与所述发光层之间的距离,所述第一透明粘结层可以为分子共价键合层,所述分子共价键合层分别与所述CLC层和所述平坦化层通过化学键键合,即分子共价键合层与所述CLC层在接触面处两层的材料之间形成有化学键,所述分子共价键合层与所述平坦化层在接触面处两层的材料之间形成有化学键。从而利用所述分子共价键合层可以实现厚度为1um以下的纳米级厚度。
在具体实施时,当平坦化层的材料为丙烯酸时,所述分子共价键合层的材料为含有烷氧基硅基的分子接合剂材料。示例性的,所述含有烷氧基硅基可以为烷氧基硅烷化合物。
在具体实施时,可以将已制备平坦化层的LED显示面板11和涂布有CLC层的圆偏振片做表面清洁处理,再将含有烷氧基硅基的分子接合剂材料的化学药水均匀涂布到平坦化层背离LED显示面板11一侧,接着将CLC层背离圆偏振片一侧与平坦化层上表面充分接触后,使用UV光促使化学键键合,从而形成化学键官能团的分子共价键合层。其中,所述平坦化层15与CLC层14通过分子共价键合层进行化学结合的原理图可以参见图20,而含有烷氧基硅基的分子接合剂材料的化学式可以如下所示:
Figure PCTCN2021115620-appb-000001
当然,在具体实施时,第一透明粘结层也可以是压敏胶层(pressure sensitive adhesive,PSA)或光学透明双面胶(Optically Clear Adhesive,OCA)等,在此不作限定。示例性的,在本实施例中,所述第一透明粘结层为OCA。
示例性的,以该实施例提供的显示模组的结构为例,使用通用光学仿真软件进行建模,将含有CLC层的显示模组出光亮度除以不含CLC层的LED显示模组出光亮度计算光利用率,由表1可看出,将本申请中第一透明粘结层分别为分子共价键结合层、OCA以及超薄OCA进行对比,d1越接近设计目标值(d1≤0.5*S1*tanθ-1.5*d2),出光效果提升越明显。
Figure PCTCN2021115620-appb-000002
表1
由表2可看出,环境光反射率相比现有技术(显示面板出光侧仅设置有圆偏振片)相比,可以保持在相似水平(现有圆偏振片方案反射率约为5.12%)。
Figure PCTCN2021115620-appb-000003
表2
综上所述,本申请实施例提供的显示模组中,通过堆叠设计和分子共价键结合层技术,当d1接近设计目标值(d1≤0.5*S1*tanθ-1.5*d2)时,CLC层可有效提升光利用率。另外,通过设置的光吸收层,可有效降低环境光的反射率。
实施例二、
为了降低光学叠层结构10的整体厚度,参见图21,所述CLC层14可以涂布于所述平坦化层15背离所述光吸收层13一侧;所述CLC层14背离所述光吸收层13一侧可以通过第二透明粘结层17与所述圆偏振片12结合,这样可以减少一层粘结层,并且可以减小所述CLC层14与所述发光层114之间的距离。
在具体实施时,为了保证透光率,所述第二透明粘结层的透过率在99%~100%之间。示例性的,所述第二透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。可选地,在本申请实例中,所述第二透明粘结层为PSA。
参见图21,在该实施例中,所述CLC层14面向所述LED显示面板11一侧的表面与所述光吸收层13面向所述LED显示面板11一侧的表面之间的距离d1可以根据公式:d1≤0.5*S1*tanθ-1.5d2进行近似设计。其中,d1是平坦化层15和光吸收层13的总厚度,d1的大小可以控制在1μm~3μm之间,d2是LED显示面板中封装层112的厚度。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内。
对应的,参见图22,本申请提供的显示模组的制备方法可以包括以下步骤:
步骤S301、提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素。
步骤S302、在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S303、在所述光吸收层上涂布覆盖所述光吸收层的CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S304、在所述CLC层上安装圆偏振片。
示例性的,在步骤S303在所述光吸收层上形成覆盖所述光吸收层的CLC层之前,还可以包括:在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
示例性的,步骤S304在所述CLC层上安装圆偏振片可以包括:在所述圆偏振片上形成第二透明粘结层;使所述第二透明粘结层面向所述CLC层,通过所述第二透明粘结层将所述圆偏振片安装在所述CLC层上。
示例性的,以图21所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图23所示,可以包括以下步骤:
步骤S401、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一颜色的像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一颜色的像素中的发光层的形状相同。
步骤S402、在所述光吸收层背离所述LED显示面板一侧形成平坦化层,且所述平坦化层填充所述镂空区域。
本申请对平坦化层的材料和具体形成方式不作限定,在具体实施时,可以采用丙烯酸通过涂布的方式形成所述平坦化层。
步骤S403、在所述平坦化层背离所述光吸收层一侧涂布CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S404、通过第二透明粘结层在所述CLC层背离所述平坦化层一侧粘结圆偏振片。
可选地,在本申请实例中,所述第二透明粘结层可以为PSA。
该实施例二在LED显示面板与CLC层之间无附加PSA或OCA,可以进一步提高出光效率。
实施例三、
参见图24和图26,所述显示模组中,所述平坦化层15位于所述圆偏振片12与所述光吸收层13之间。所述平坦化层15对显示模组起平坦化作用和保护作用,可以避免膜层之间产生气泡,有利于显示模组的量产可行性。
本申请对所述平坦化层的材料的不作限定,示例性的,所述平坦化层的材料可以为丙烯酸。
可选地,为了减小发光层114与CLC层14之间的距离,如图24和图26所示,所述平坦化层15可以位于所述CLC层14与所述圆偏振片12之间。
进一步地,为了降低LED显示面板11出光侧的膜层厚度,所述CLC层14涂布于所述光吸收层13背离所述LED显示面板11一侧;所述平坦化层15涂布于所述CLC层14背离所述光吸收层13一侧,所述平坦化层15背离所述CLC层14的一侧通过第三透明粘结层18与所述圆偏振片12结合。
在具体实施时,所述第三透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。示例性的,在本申请实施例中,所述第三透明粘结层可以为PSA。
为例避免产生气泡,参见图24,还可以在所述光吸收层13的所述镂空区域填充有光学透明材料131,所述光学透明材料131可以与所述平坦化层15的材料设置为相同,或者,如图26所示,也可以在所述光吸收层13的所述镂空区域填充胆甾相液晶材料,所述胆甾相液晶材料与所述CLC层中的胆甾相液晶材料相同,从而可以避免由于增加了材料而需要额外增加工艺。
对应的,参见图22,本申请提供的显示模组的制备方法可以包括以下步骤:
步骤S301、提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素。
步骤S302、在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S303、在所述光吸收层上涂布覆盖所述光吸收层的CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S304、在所述CLC层上安装圆偏振片。
示例性的,在步骤S303在所述光吸收层上涂布覆盖所述光吸收层的CLC层之前,还可以包括:在所述镂空区域内填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。或者,示例性的,步骤S303在所述光吸收层上涂布覆盖所述光吸收层的CLC层,可以包括:在所述光吸收层上以及所述镂空区域涂布CLC层,以使所述CLC层覆盖所述光吸收层、且填充所述镂空区域。
示例性的,在步骤S304在所述CLC层上安装圆偏振片之前,还可以包括:在所述CLC层上涂布平坦化层。
在一种可行的执行方式中,步骤S304在所述CLC层上安装圆偏振片,可以包括:在所述圆偏振片上形成第三透明粘结层;使所述第三透明粘结层面向所述平坦化层,通过所述第三透明粘结层将所述圆偏振片安装在所述平坦化层上。
示例性的,以图24所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图25所示,可以包括以下步骤:
步骤S501、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一颜色的像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一颜色的像素中的发光层的形状相同。
步骤S502、在所述镂空区域填充光学透明材料。
为了简化工艺,所述光学透明材料可以与后续形成的所述平坦化层的材料设置为相同。
步骤S503、在所述光吸收层背离所述LED显示面板一侧涂布CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S504、在所述CLC层背离所述光吸收层一侧形成平坦化层。
本申请对平坦化层的材料和具体形成方式不作限定,在具体实施时,可以采用丙烯酸通过涂布的方式形成所述平坦化层。
步骤S505、通过第三透明粘结层在所述平坦化层背离所述CLC层一侧粘结圆偏振片。
参见图24,在该实施例中,所述CLC层14面向所述LED显示面板11一侧的表面与所述光吸收层13面向所述LED显示面板11一侧的表面之间的距离d1可以根据公式:d1 ≤0.5*S1*tanθ-1.5*d2进行近似设计。其中,d1是光吸收层13的厚度,d1的大小可以控制在1μm~2μm之间,d2是LED显示面板中封装层的厚度。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内。
示例性的,以图26所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图27所示,可以包括以下步骤:
步骤S601、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S602、在所述光吸收层背离所述LED显示面板一侧涂布CLC层,且所述CLC层填充所述镂空区域。
在具体实施时,镂空区域对应处CLC层的厚度可以控制在3μm~3μm之间,其它区域处CLC层(位于光吸收层上方的CLC层)的厚度可以控制在2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
本申请对平坦化层的材料和具体形成方式不作限定,在具体实施时,可以采用丙烯酸通过涂布的方式形成所述平坦化层。
步骤S603、在所述CLC层背离所述光吸收层一侧形成平坦化层。
步骤S604、通过第三透明粘结层在所述平坦化层背离所述胆甾相液晶层一侧粘结圆偏振片。
参见图26,在该实施例中,所述镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1≥3*d2/tanθ。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内,d2是LED显示面板中封装层的厚度。
本申请实施例三由于CLC层是直接涂布在光吸收层上的,因此相比实施例一和二可以进一步提高出光效率。但是实施例一在圆偏振片上涂布CLC层相比实施例二在光吸收层上涂布CLC层工艺难度低,成本低。
另外,在实施例三中,图26的显示模组相比图24的显示模组可以减少单独在镂空区域中填充材料的步骤,从而可以进一步简化涂布流程。但是由于CLC层厚度存在位置差异性,对于亮度均匀性有不利影响,可以通过在镂空区域对应位置处设置光学补偿膜进行补偿。
实施例四、
在本申请中,显示模组中还可以包括触控层。其中,触控层可以集成于所述LED显示面板内,即In cell显示屏。或者,所述触控层也可以集成于所述LED显示面板的封装层上,即On cell显示屏,在所述LED显示面板上直接制作所述触控层。或者,也可以是将已经形成触控层粘贴方式贴合在所述LED显示面板出光侧的任一膜层位置。
示例性的,以上述实施例一至三中的显示模组为了,参见图28至图31,所述触控层20集成于所述LED显示面板11的封装层112上。在该实施例中,d2是指触控层20和封装层112的厚度。
实施例五、
在本申请中,对于设置有触控层的显示模组,为了避免由于触控层的设置而增加CLC层与发光层之间的距离,如图32和图34所示,可以将触控层20设置在所述CLC层14与所述圆偏振片12之间。
参见图32和图34,所述显示模组还可以包括:位于所述触控层20与所述CLC层14之间的硬化保护层21;位于所述圆偏振片12与所述触控层20之间的第四透明粘结层19。
在具体实施时,所述第四透明粘结层可以为PSA、OCA或者分子共价键合层等,在此不作限定。示例性的,在本申请实施例中,所述第四透明粘结层可以为PSA。
为例避免产生气泡,参见图32,还可以在所述光吸收层13的所述镂空区域填充有光学透明材料131,或者,如图34所示,也可以在所述光吸收层13的所述镂空区域填充胆甾相液晶材料,所述胆甾相液晶材料与所述CLC层中的胆甾相液晶材料相同。
对应的,参见图22,本申请提供的显示模组的制备方法可以包括以下步骤:
步骤S301、提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素。
步骤S302、在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S303、在所述光吸收层上涂布覆盖所述光吸收层的CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S304、在所述CLC层上安装圆偏振片。
示例性的,在步骤S303在所述光吸收层上涂布覆盖所述光吸收层的CLC层之前,还可以包括:在所述镂空区域内填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。或者,示例性的,步骤S303在所述光吸收层上涂布覆盖所述光吸收层的CLC层可以包括:在所述光吸收层上以及所述镂空区域涂布CLC层,以使所述CLC层覆盖所述光吸收层、且填充所述镂空区域。
示例性的,在步骤S304在所述CLC层上安装圆偏振片之前,还可以包括:在所述胆甾相液晶层上涂布硬化保护层;在所述硬化保护层上形成触控层。
可选地,步骤S304在所述胆甾相液晶层上安装圆偏振片可以包括:在所述圆偏振片上形成第四透明粘结层;使所述第四透明粘结层面向所述触控层,通过所述第四透明粘结层将所述圆偏振片安装在所述触控层上。
示例性的,以图32所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图33所示,可以包括以下步骤:
步骤S701、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S702、在所述镂空区域填充光学透明材料。
为了简化工艺,所述光学透明材料可以为丙烯酸。
步骤S703、在所述光吸收层背离所述LED显示面板一侧涂布CLC层。
在具体实施时,CLC层的厚度可以控制在厚度2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S704、在所述CLC层背离所述光吸收层一侧形成硬化保护层。
本申请对硬化保护层的材料和具体形成方式不作限定,在具体实施时,可以采用聚丙烯酸树脂或亚克力材料通过涂布的方式形成所述硬化保护层。
步骤S705、在所述硬化保护层背离所述CLC层一侧形成触控层。
在具体实施时,可以采用低温镀膜、光刻工艺和干刻蚀工艺直接在所述硬化保护层上形成所述触控层的图案,其中所述触控层可以采用金属材料形成,例如钛/铝/钛合金。
步骤S706、通过第四透明粘结层在所述触控层背离所述硬化保护层一侧粘结圆偏振片。
参见图32,在该实施例中,所述CLC层14面向所述LED显示面板11一侧的表面与所述光吸收层13面向所述LED显示面板11一侧的表面之间的距离d1可以根据公式:d1≤0.5*S1*tanθ-1.5*d2进行近似设计。其中,d1是光吸收层13的厚度,d1的大小可以控制在1μm~2μm之间,d2是LED显示面板中封装层112的厚度。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内。
示例性的,以图34所示的显示模组为例,在LED显示面板的出光侧制备光学叠层结构时,如图35所示,可以包括以下步骤:
步骤S801、在所述LED显示面板的出光侧形成光吸收层,且所述光吸收层在与各所述第一像素对应的区域为镂空区域。
在具体实施时,所述光吸收层的材料可以为黄色光刻胶,可以采用掩模板通过曝光显影工艺在所述光吸收层中形成镂空区域,镂空区域的形状可以与对应的第一像素中的发光层的形状相同。
步骤S802、在所述光吸收层背离所述LED显示面板一侧涂布CLC层,且所述CLC层填充所述镂空区域。
在具体实施时,镂空区域对应处CLC层的厚度可以控制在3μm~3μm之间,其它区域处CLC层(位于光吸收层上方的CLC层)的厚度可以控制在2μm~5μm之间,可以通过光配向或者液晶自组装使CLC层规则排列达到取向状态。
步骤S803、在所述CLC层背离所述光吸收层一侧形成硬化保护层。
本申请对硬化保护层的材料和具体形成方式不作限定,在具体实施时,可以采用聚丙烯酸树脂或亚克力材料通过涂布的方式形成所述硬化保护层。
步骤S804、在所述硬化保护层背离所述CLC层一侧形成触控层。
在具体实施时,可以采用低温镀膜、光刻工艺和干刻蚀工艺直接在所述硬化保护层上形成所述触控层的图案,其中所述触控层可以采用金属材料形成,例如钛/铝/钛合金。
步骤S805、通过第四透明粘结层在所述触控层背离所述硬化保护层一侧粘结圆偏振片。
参见图34,在该实施例中,所述镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1≥3*d2/tanθ。镂空区域的边界和与其对应的所述第一像素的发光层114的边界之间的距离S1受到像素分辨率的影响,S1大小通常设置在30μm以内,d2 是LED显示面板中封装层112的厚度。
本申请实施例五由于触控层是设置在CLC层上方的,因此相比实施例四可以进一步提高出光效率,出光效率约可以提升10%以上。但是实施例四在触控层上涂布光吸收层相比实施例五在封装层上涂布光吸收层工艺难度低,成本低。
另外,在实施例五中,图34的显示模组相比图32的显示模组可以减少单独在镂空区域中填充材料的步骤,从而可以进一步简化涂布流程。但是由于CLC层厚度存在位置差异性,对于亮度均匀性有不利影响,可以通过在镂空区域对应位置处设置光学补偿膜进行补偿。
参见图36和图37,所述显示模组还包括位于所述圆偏振12背离所述LED显示面板11一侧的屏幕盖板30,所述屏幕盖板30可以通过光学透明双面胶31与所述圆偏振片12结合。所述屏幕盖板30可以玻璃材质或柔性可折叠盖板材料,具体可视LED显示面板进行设置,如若LED显示面板为非折叠屏,所述屏幕盖板30可以采用玻璃材质,如若LED显示面板为折叠屏,所述屏幕盖板30可以采用柔性可折叠盖板材料。
本申请中,形成CLC层可以包括,先在基底上涂布配向膜,然后在配向膜上涂布CLC层,CLC层的厚度可以控制1μm~5μm之间。配向膜的配向工艺可以采用摩擦配向工艺、或光配向工艺。
这里基底是指用于承载涂布的CLC的支撑层,例如实施例一和二中圆偏振片或平坦化层,实施例三和四中的光吸收层。
示例性的,在进行摩擦配向工艺时,可以将基底放置于承载平台上,并将涂布配向膜的一面朝上;承载平台与驱动机构结合,并由驱动机构带动承载平台朝设定的方向进行直线输送。在基底输送路径上设置表面附设毛布的滚筒。当基底通过滚筒时,滚筒以其底部的切线速度方向与基底的行进方向相反的顺时针方向滚动方式对基底表面的配向膜进行滚动摩擦,经过摩擦配向后的配向膜表面分子将不再杂散分布,而呈现均匀排列的介面条件,从而可以使CLC层中的液晶能够依照预定的方向排列。
在具体实施时,光配向工艺属于非接触型配向,利用高精度实时追踪补偿模式的紫外光使得光敏聚合物单体材料发生化学反应产生各向异性,CLC层中的液晶分子与配向膜表面分子相互作用,为了达到能量最小的稳定状态,液晶分子沿着光配向所定义的受力最大方向排列。
当然,也可以采用液晶自组装工艺实现液晶配向,即将已经具有配向作用的配向膜贴合在基底上。
对应地,本申请实施例还提供了一种光学叠层结构的制备方法,该制备方法可以包括以下步骤:
在圆偏振片的一侧形成光吸收层,并去除部分所述光吸收层以形成多个镂空区域;
在所述圆偏振片的一侧形成胆甾相液晶层;
其中,所述光吸收层和所述胆甾相液晶层均形成于所述圆偏振片的同侧且相互接触。
示例性的,在本申请中,可以采用掩模板对所述光吸收层进行曝光显影,以去除部分所述光吸收层,从而形成多个镂空区域。
在一种可行的实现方式中,参见图38,可以按照以下步骤形成光学叠层结构:
步骤S901、在圆偏振片的一侧涂布光吸收层,并去除部分所述光吸收层以形成多个镂空区域。
步骤S902、在形成有所述镂空区域的所述光吸收层上形成胆甾相液晶层。
在另一种可行的实现方式中,参见图39,可以按照以下步骤形成光学叠层结构:
步骤S1001、在所述圆偏振片的一侧形成胆甾相液晶层;
步骤S1002、在所述胆甾相液晶层上涂布光吸收层,并去除部分所述光吸收层以形成多个镂空区域。
由于光学叠层结构的制备方法解决问题的原理与前述一种光学叠层结构相似,因此该制备方法的实施可以参见前述光学叠层结构的实施,重复之处不再赘述。
本申请实施例还提供了一种终端,该终端可包括壳体和本申请上述实施例提供的任一种显示模组。由于该终端解决问题的原理与前述一种显示模组相似,因此该终端的实施可以参见前述显示模组的实施,重复之处不再赘述。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种光学叠层结构,其特征在于,所述光学叠层结构用于设置在LED显示面板的出光侧;
    所述光学叠层结构包括圆偏振片,以及位于所述圆偏振片面向所述LED显示面板一侧的光吸收层和胆甾相液晶层;
    所述光吸收层和所述胆甾相液晶层层叠设置;
    所述光吸收层用于吸收第一波段的光,所述光吸收层中具有多个镂空区域,所述镂空区域与所述LED显示面板中的第一像素对应设置。
  2. 如权利要求1所述的光学叠层结构,其特征在于,所述第一波段至少包括部分所述第一像素的发光波段。
  3. 如权利要求2所述的光学叠层结构,其特征在于,所述第一像素的发光波段以蓝光波段为主。
  4. 如权利要求3所述的光学叠层结构,其特征在于,所述光吸收层的材料为黄色光刻胶。
  5. 如权利要求1-4任一项所述的光学叠层结构,其特征在于,所述镂空区域在所述LED显示面板的正投影覆盖与其对应的所述第一像素的发光层,且所述镂空区域在所述LED显示面板的正投影的面积大于或等于所述第一像素的发光层的面积。
  6. 如权利要求5所述的光学叠层结构,其特征在于,所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离大于或等于25μm且小于或等于35μm。
  7. 如权利要求1-6任一项所述的光学叠层结构,其特征在于,所述光吸收层的所述镂空区域填充有光学透明材料或者胆甾相液晶材料,所述胆甾相液晶材料与所述胆甾相液晶层中的胆甾相液晶材料相同;
    所述光学透明材料用于至少使所述第一波段的光透过。
  8. 如权利要求1-7任一项所述的光学叠层结构,其特征在于,所述光吸收层的厚度小于2μm。
  9. 如权利要求1-8任一项所述的光学叠层结构,其特征在于,所述胆甾相液晶层位于所述圆偏振片与所述光吸收层之间。
  10. 如权利要求9所述的光学叠层结构,其特征在于,还包括位于所述圆偏振片与所述光吸收层之间的平坦化层。
  11. 如权利要求10所述的光学叠层结构,其特征在于,所述平坦化层的材料包括丙烯酸。
  12. 如权利要求10或11所述的光学叠层结构,其特征在于,所述光吸收层的所述镂空区域填充有光学透明材料,所述镂空区域填充的所述光学透明材料与所述平坦化层的材料相同。
  13. 如权利要求10-12任一项所述的光学叠层结构,其特征在于,所述平坦化层位于所述光吸收层与所述胆甾相液晶层之间。
  14. 如权利要求13所述的光学叠层结构,其特征在于,所述胆甾相液晶层涂布于所述圆偏振片面向所述LED显示面板一侧;
    所述胆甾相液晶层背离所述圆偏振片的一侧通过第一透明粘结层与所述平坦化层结合。
  15. 如权利要求14所述的光学叠层结构,其特征在于,所述第一透明粘结层的折射率与所述平坦化层的折射率的差异小于或等于0.1。
  16. 如权利要求14或15所述的光学叠层结构,其特征在于,所述第一透明粘结层包括分子共价键合层,所述分子共价键合层分别与所述胆甾相液晶层和所述平坦化层通过化学键键合。
  17. 如权利要求16所述的光学叠层结构,其特征在于,所述分子共价键合层的材料包括含有烷氧基硅基的分子接合剂材料。
  18. 如权利要求13所述的光学叠层结构,其特征在于,所述胆甾相液晶层涂布于所述平坦化层背离所述光吸收层一侧;
    所述胆甾相液晶层背离所述光吸收层一侧通过第二透明粘结层与所述圆偏振片结合。
  19. 如权利要求18所述的光学叠层结构,其特征在于,所述第二透明粘结层包括压敏胶层。
  20. 如权利要求10-12任一项所述的光学叠层结构,其特征在于,所述平坦化层位于所述圆偏振片与所述胆甾相液晶层之间;
    所述胆甾相液晶层涂布于所述光吸收层背离所述LED显示面板一侧;
    所述平坦化层涂布于所述胆甾相液晶层背离所述光吸收层一侧;
    所述平坦化层背离所述胆甾相液晶层的一侧通过第三透明粘结层与所述圆偏振片结合。
  21. 如权利要求20所述的光学叠层结构,其特征在于,所述第三透明粘结层包括压敏 胶层。
  22. 一种显示模组,其特征在于,包括LED显示面板和如权利要求1-21任一项所述的光学叠层结构,所述光学叠层结构位于所述LED显示面板出光侧。
  23. 如权利要求22所述的显示模组,其特征在于,所述胆甾相液晶层位于所述圆偏振片与所述光吸收层之间;
    所述胆甾相液晶层面向所述LED显示面板一侧的表面与所述光吸收层面向所述LED显示面板一侧的表面之间的距离小于3μm;
    所述光吸收层面向所述LED显示面板一侧的表面与所述第一像素的发光层面向所述光吸收层一侧的表面之间的距离小于15μm。
  24. 如权利要23所述的显示模组,其特征在于,所述光吸收层的所述镂空区域填充有所述光学透明材料,所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离S1需要满足公式:S1≥(2*d1+3*d2)/tanθ;
    或者,所述光吸收层的所述镂空区域填充有所述胆甾相液晶材料,所述镂空区域的边界和与其对应的所述第一像素的发光层的边界之间的距离S1需要满足公式:S1≥3*d2/tanθ;
    其中,d1表示所述胆甾相液晶层面向所述LED显示面板一侧的表面与所述光吸收层面向所述LED显示面板一侧的表面之间的距离,d2表示所述光吸收层面向所述LED显示面板一侧的表面与所述第一像素的发光层面向所述光吸收层一侧的表面之间的距离,θ表示所述第一像素的光出射角度。
  25. 如权利要求22-24任一项所述的显示模组,其特征在于,所述显示模组还包括触控层;
    所述触控层集成于所述LED显示面板内,或所述触控层集成于所述LED显示面板的封装层上。
  26. 如权利要求22-24任一项所述的显示模组,其特征在于,所述显示模组还包括位于所述胆甾相液晶层与所述圆偏振片之间的触控层。
  27. 如权利要求26所述的显示模组,其特征在于,所述显示模组还包括:
    位于所述触控层与所述胆甾相液晶层之间的硬化保护层;
    位于所述圆偏振片与所述触控层之间的第四透明粘结层。
  28. 如权利要求27所述的显示模组,其特征在于,所述硬化保护层的材料为亚克力材料或聚丙烯酸树脂材料,所述第四透明粘结层为压敏胶层。
  29. 如权利要求22-28任一项所述的显示模组,其特征在于,所述显示模组还包括位于所述圆偏振片背离所述LED显示面板一侧的屏幕盖板,所述屏幕盖板通过光学透明双面胶与所述圆偏振片结合。
  30. 一种终端,其特征在于,包括:壳体和如权利要求22-29任一项所述的显示模组。
  31. 一种光学叠层结构的制备方法,其特征在于,包括:
    在圆偏振片的一侧形成光吸收层,并去除部分所述光吸收层以形成多个镂空区域;
    在所述圆偏振片的一侧形成胆甾相液晶层;
    其中,所述光吸收层和所述胆甾相液晶层均形成于所述圆偏振片的同侧且相互接触。
  32. 如权利要求31所述的制备方法,其特征在于,去除部分所述光吸收层以形成多个镂空区域,包括:
    采用掩模板对所述光吸收层进行曝光显影,以去除部分所述光吸收层,形成多个镂空区域。
  33. 一种显示模组的制备方法,其特征在于,包括:
    提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素;
    在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域;
    在所述圆偏振片上涂布胆甾相液晶层;
    使所述胆甾相液晶层面向所述光吸收层,将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上。
  34. 如权利要求33所述的制备方法,其特征在于,在将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上之前,还包括:
    在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
  35. 如权利要求34所述的制备方法,其特征在于,将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述光吸收层上,包括:
    在所述平坦化层上涂布第一透明粘结层;
    通过所述第一透明粘结层将涂布有所述胆甾相液晶层的所述圆偏振片安装在所述平坦化层上。
  36. 一种显示模组的制备方法,其特征在于,包括:
    提供一LED显示面板,所述LED显示面板至少包括多个第一像素、多个第二像素和多个第三像素;
    在所述LED显示面板的出光侧涂布光吸收层,并去除所述光吸收层与所述多个第一像素对应位置处的部分,形成多个镂空区域;
    在所述光吸收层上涂布覆盖所述光吸收层的胆甾相液晶层;
    在所述胆甾相液晶层上安装圆偏振片。
  37. 如权利要求36所述的制备方法,其特征在于,在所述光吸收层上形成覆盖所述光吸收层的胆甾相液晶层之前,还包括:
    在所述光吸收层上以及所述镂空区域涂布平坦化层,以使所述平坦化层覆盖所述光吸收层、且填充所述镂空区域。
  38. 如权利要求37所述的制备方法,其特征在于,在所述胆甾相液晶层上安装圆偏振片,包括:
    在所述圆偏振片上形成第二透明粘结层;
    使所述第二透明粘结层面向所述胆甾相液晶层,通过所述第二透明粘结层将所述圆偏振片安装在所述胆甾相液晶层上。
  39. 如权利要求36所述的制备方法,其特征在于,在所述光吸收层上涂布覆盖所述光吸收层的胆甾相液晶层之前,还包括:
    在所述镂空区域内填充光学透明材料,所述光学透明材料用于至少使所述第一波段的光透过。
  40. 如权利要求36所述的制备方法,其特征在于,在所述光吸收层上涂布覆盖所述光吸收层的胆甾相液晶层,包括:
    在所述光吸收层上以及所述镂空区域涂布胆甾相液晶层,以使所述胆甾相液晶层覆盖所述光吸收层、且填充所述镂空区域。
  41. 如权利要求39或40所述的制备方法,其特征在于,在所述胆甾相液晶层上安装圆偏振片之前,还包括:
    在所述胆甾相液晶层上涂布平坦化层。
  42. 如权利要求41所述的制备方法,其特征在于,在所述胆甾相液晶层上安装圆偏振片,包括:
    在所述圆偏振片上形成第三透明粘结层;
    使所述第三透明粘结层面向所述平坦化层,通过所述第三透明粘结层将所述圆偏振片安装在所述平坦化层上。
  43. 如权利要求39或40所述的制备方法,其特征在于,在所述胆甾相液晶层上安装圆偏振片之前,还包括:
    在所述胆甾相液晶层上涂布硬化保护层;
    在所述硬化保护层上形成触控层。
  44. 如权利要求43所述的制备方法,其特征在于,在所述胆甾相液晶层上安装圆偏振片,包括:
    在所述圆偏振片上形成第四透明粘结层;
    使所述第四透明粘结层面向所述触控层,通过所述第四透明粘结层将所述圆偏振片安装在所述触控层上。
PCT/CN2021/115620 2021-08-31 2021-08-31 光学叠层结构、显示模组、终端及相关制备方法 WO2023028828A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115620 WO2023028828A1 (zh) 2021-08-31 2021-08-31 光学叠层结构、显示模组、终端及相关制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115620 WO2023028828A1 (zh) 2021-08-31 2021-08-31 光学叠层结构、显示模组、终端及相关制备方法

Publications (1)

Publication Number Publication Date
WO2023028828A1 true WO2023028828A1 (zh) 2023-03-09

Family

ID=85410689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115620 WO2023028828A1 (zh) 2021-08-31 2021-08-31 光学叠层结构、显示模组、终端及相关制备方法

Country Status (1)

Country Link
WO (1) WO2023028828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029356A1 (ja) * 2022-08-01 2024-02-08 大倉工業株式会社 無機基板付偏光板及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633612A (zh) * 2002-02-19 2005-06-29 日东电工株式会社 具有光学补偿功能的偏振片和使用该偏振片的液晶显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
US20110175513A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Double-sided light emitting display device
CN103472515A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 滤光片及其制备方法、显示装置
CN104199225A (zh) * 2014-08-21 2014-12-10 京东方科技集团股份有限公司 一种显示面板及其制作方法、以及显示装置
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN106443859A (zh) * 2016-11-01 2017-02-22 北京海川利元材料科技有限公司 一种有机电致发光显示器增亮膜组及其制备方法
CN110426859A (zh) * 2019-07-31 2019-11-08 京东方科技集团股份有限公司 一种光学膜片、显示组件以及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633612A (zh) * 2002-02-19 2005-06-29 日东电工株式会社 具有光学补偿功能的偏振片和使用该偏振片的液晶显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
US20110175513A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Double-sided light emitting display device
CN103472515A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 滤光片及其制备方法、显示装置
CN104199225A (zh) * 2014-08-21 2014-12-10 京东方科技集团股份有限公司 一种显示面板及其制作方法、以及显示装置
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN106443859A (zh) * 2016-11-01 2017-02-22 北京海川利元材料科技有限公司 一种有机电致发光显示器增亮膜组及其制备方法
CN110426859A (zh) * 2019-07-31 2019-11-08 京东方科技集团股份有限公司 一种光学膜片、显示组件以及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029356A1 (ja) * 2022-08-01 2024-02-08 大倉工業株式会社 無機基板付偏光板及びその製造方法

Similar Documents

Publication Publication Date Title
TWI228196B (en) Liquid crystal display device and electronic apparatus
US11106102B2 (en) Display substrate, method for manufacturing same, and display device
CN105929590B (zh) 显示基板、显示装置
US10948760B2 (en) Liquid crystal display panel
US20170299915A1 (en) Display device
JP2008102416A (ja) ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
JP5893256B2 (ja) 表示装置および電子機器
CN111338108B (zh) 显示装置
JP2013235141A (ja) カラー液晶表示装置
US20200133053A1 (en) Color filter substrate and liquid crystal display device
CN109445176B (zh) 液晶显示面板及其制备方法、液晶显示装置
CN105717694A (zh) 显示装置及电子设备
US20230403908A1 (en) Oled display substrate, method for manufacturing the same, and display device
WO2023028828A1 (zh) 光学叠层结构、显示模组、终端及相关制备方法
JPWO2005091060A1 (ja) 液晶表示パネルおよび液晶表示装置
CN106054469B (zh) 超薄型液晶显示器
KR100459647B1 (ko) 디스플레이장치
JP2009276743A (ja) 液晶表示装置、電子機器
WO2023103967A1 (zh) 电子设备
US20220165986A1 (en) Display panel, manufacturing method thereof, and display device
CN114509895A (zh) 背光模组及其制备方法和显示装置
WO2020211534A1 (zh) 移动终端、盖板、显示组件
WO2020182034A1 (zh) 反射式液晶显示面板及其制备方法、显示装置
JP2005221639A (ja) 液晶装置および投射型表示装置
JP5370193B2 (ja) 液晶装置およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE