WO2020187105A1 - 反射式液晶显示装置及其制备方法 - Google Patents

反射式液晶显示装置及其制备方法 Download PDF

Info

Publication number
WO2020187105A1
WO2020187105A1 PCT/CN2020/078750 CN2020078750W WO2020187105A1 WO 2020187105 A1 WO2020187105 A1 WO 2020187105A1 CN 2020078750 W CN2020078750 W CN 2020078750W WO 2020187105 A1 WO2020187105 A1 WO 2020187105A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
liquid crystal
crystal display
guide plate
light guide
Prior art date
Application number
PCT/CN2020/078750
Other languages
English (en)
French (fr)
Inventor
占江徽
赵雪梅
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020187105A1 publication Critical patent/WO2020187105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a reflective liquid crystal display device and a method for preparing a reflective liquid crystal display device.
  • RLCD reflective liquid crystal display
  • the embodiments of the present disclosure provide a reflective liquid crystal display device and a method of manufacturing the reflective liquid crystal display device.
  • An aspect of the present disclosure provides a reflective liquid crystal display device, including:
  • a liquid crystal display panel including a reflective layer, a liquid crystal display structure, and a first polarizer, wherein the liquid crystal display structure is located between the reflective layer and the first polarizer;
  • a light source structure which is located on a side of the first polarizer away from the reflective layer and is configured to emit light to the liquid crystal display panel;
  • the second polarizer is located on the side of the light source structure away from the liquid crystal display panel, and the included angle between the vibration direction of the first polarizer and the vibration direction of the second polarizer is less than 45° .
  • the second polarizer is configured to filter noise light, and the vibration direction of the second polarizer is the same as the vibration direction of the first polarizer.
  • the light source structure includes: a light source and a light guide plate, the light guide plate is located between the liquid crystal display panel and the second polarizer, and the light source is located on the side of the light guide plate to make The light emitted by the light source enters the light guide plate through the side surface of the light guide plate.
  • the surface of the light guide plate on the side away from the liquid crystal display panel has a plurality of protrusions that cause the light to be totally reflected in the light guide plate.
  • the plurality of protrusions of the light guide plate are a plurality of triangular prisms distributed in an array.
  • the reflective liquid crystal display device further includes: a connector connecting the light guide plate and the second polarizer, and the connector is located between the light guide plate and the second polarizer. And fill the gap between any two adjacent protrusions of the light guide plate, wherein the refractive index of the connecting member is smaller than the refractive index of the light guide plate.
  • the height of the connecting member is less than or equal to 5 times the height of each of the plurality of protrusions of the light guide plate and greater than or equal to the height of the plurality of protrusions of the light guide plate. The height of each one.
  • the reflective liquid crystal display device further includes: a connector located in the non-display area between the light guide plate and the second polarizer and configured to connect the light guide plate The edge area is fixedly connected with the edge area of the second polarizer, and there is a gap between the light guide plate and the second polarizer.
  • the connecting member includes glue material.
  • the reflective liquid crystal display device further includes:
  • the touch structure is located on the side of the second polarizer away from the liquid crystal display panel.
  • Another aspect of the present disclosure provides a method of manufacturing a reflective liquid crystal display device, including:
  • a liquid crystal display panel is formed, wherein the liquid crystal display panel includes a reflective layer, a liquid crystal display structure, and a first polarizer, the liquid crystal display structure is located between the reflective layer and the first polarizer; a light source structure is formed, wherein The light source structure is located on the side of the first polarizer away from the reflective layer and is configured to emit light to the liquid crystal display panel; and
  • a second polarizer is provided on the side of the light source structure away from the liquid crystal display panel, wherein the angle between the vibration direction of the first polarizer and the vibration direction of the second polarizer is less than 45°
  • the second polarizer is configured to filter noise light, and the vibration direction of the second polarizer is set to be the same as the vibration direction of the first polarizer.
  • the formation of the light source structure includes: forming a light source and a light guide plate, wherein the light guide plate is located between the liquid crystal display panel and the second polarizer, and the light source is located on the side of the light guide plate , So that the light emitted by the light source enters the light guide plate through the side surface of the light guide plate.
  • a plurality of protrusions are formed on the surface of the light guide plate on the side away from the liquid crystal display panel to cause total reflection of light in the light guide plate.
  • the plurality of protrusions of the light guide plate are formed as a plurality of triangular prisms distributed in an array.
  • the method further includes: providing a connecting member between the light guide plate and the second polarizer, wherein the connecting member connects the light guide plate and the second polarizer and fills the light guide plate and the second polarizer.
  • the gap between any two adjacent ones of the plurality of protrusions of the light guide plate, and the refractive index of the connecting member is smaller than the refractive index of the light guide plate.
  • the height of the connecting member is less than or equal to 5 times the height of each of the plurality of protrusions of the light guide plate and greater than or equal to the height of the plurality of protrusions of the light guide plate. The height of each one.
  • a connecting member is provided in the non-display area between the light guide plate and the second polarizer, wherein the connecting member is configured to connect the edge area of the light guide plate to the second polarizer.
  • the edge regions of the sheet are fixedly connected, and there is a gap between the light guide plate and the second polarizer.
  • the connecting member is made of glue material.
  • the method further includes:
  • a touch control structure is provided on the side of the second polarizer away from the liquid crystal display panel.
  • FIG. 1 is a schematic structural diagram of a reflective liquid crystal display device according to an embodiment of the present disclosure
  • FIG. 2a is a schematic structural diagram of another reflective liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 2b is a partially enlarged schematic diagram of the reflective liquid crystal display device of FIG. 2a.
  • FIG. 3 is a schematic structural diagram of another reflective liquid crystal display device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a reflective liquid crystal display device, which includes a reflective layer 11, a liquid crystal display structure 12, a first polarizer 13 and a light source structure 20 stacked together in sequence.
  • the light source structure 20 may be located on the light exit side of the liquid crystal display structure 12, and the light source structure 20 may include a light source (for example, at least one light emitting diode LED) 21 and a light guide plate (LGP) 22.
  • a light source for example, at least one light emitting diode LED
  • LGP light guide plate
  • the light at a specific angle emitted by the light source structure 20 passes through the first polarizer 13 and the liquid crystal display structure 12 in turn, and then is reflected by the reflective layer 11 on the side of the liquid crystal display structure 12 away from the light source structure 20 and enters the human eye, thereby realizing information display .
  • the reflective liquid crystal display device shown in FIG. 1 includes the light source structure 20, a normal display can be realized even when the ambient light is low.
  • the inventor of the inventive concept found that in the reflective liquid crystal display device shown in FIG. 1, only a part of the light emitted by the light source structure 20 (as shown by the solid arrow in FIG. 1) enters the liquid crystal display.
  • Structure 12 another part of light (which may be called noise light, as shown by the dashed arrow in FIG. 1) can directly enter the human eye without passing through the liquid crystal display structure 12.
  • the noise light does not carry the image information to be displayed by the liquid crystal display structure 12, so it is not only meaningless to the display, but also causes display defects such as low contrast of the displayed image and reduced clarity of the displayed information.
  • the blue light component of the noise light may be more, so it may cause harm to human eyes.
  • FIG. 2b is a partially enlarged schematic view of the second polarizer 30, the connecting member 40, and the light guide plate 22 in the reflective liquid crystal display device of FIG. 2a.
  • the above-mentioned reflective liquid crystal display device includes a liquid crystal display panel 10, a light source structure 20 and a second polarizer 30.
  • the liquid crystal display panel 10 includes a reflective layer 11, a liquid crystal display structure 12 and a first polarizer 13, wherein the liquid crystal display structure 12 is located between the reflective layer 11 and the first polarizer 13.
  • the light source structure 20 is located on the side of the first polarizer 13 away from the reflective layer 11 for emitting light to the liquid crystal display panel 10.
  • the second polarizer 30 is located on the side of the light source structure 20 away from the liquid crystal display panel 10 and is used to filter the light that is directly emitted from the light source structure 20 to the side away from the liquid crystal display panel 10.
  • the angle between the vibration transmission direction of the first polarizer 13 and the vibration transmission direction of the second polarizer 30 is less than 45°, so that the utilization rate of the light emitted by the light source structure 20 can be improved.
  • the angle between the transmission direction of the first polarizer 13 and the transmission direction of the second polarizer 30 may be zero degrees, that is, The vibration transmission direction of the first polarizer 13 and the vibration transmission direction of the second polarizer 30 may be parallel to each other.
  • the light source structure 20 is located on the light emitting side of the liquid crystal display panel 10, that is, the light source structure 20 serves as the front light source of the liquid crystal display panel 10, and at least a part of the light emitted by the light source structure 20 Can enter the liquid crystal display panel 10.
  • the liquid crystal display panel 10 includes a reflective layer 11, a liquid crystal display structure 12 and a first polarizer 13.
  • the liquid crystal display structure 12 and the first polarizer 13 are located between the reflective layer 11 and the light source structure 20. In this way, the light emitted by the light source structure 20 entering the liquid crystal display panel 10 can pass through the first polarizer 13 and the liquid crystal display structure 12, and be reflected by the reflective layer 11. The reflected light passes through the liquid crystal display structure 12 and the first polarizer 13 again. Finally, it is emitted from the light emitting side of the liquid crystal display panel 10 (that is, the side of the liquid crystal display structure 12 provided with the first polarizer 13) to realize the display of information, as shown by the solid arrow in FIG. 2a.
  • the liquid crystal display structure 12 may also include known structures (not shown in the figure) such as a liquid crystal layer, a color filter layer, and a substrate, and detailed descriptions of these known structures are omitted in this disclosure.
  • the light emitted from the light source structure 20 directly directed to the second polarizer 30 without passing through the liquid crystal display panel 10 is unpolarized light, so the light passes through the second polarizer 30.
  • the polarizer 30 is weakened by 50%.
  • the light (display light) that passes through the liquid crystal display structure 12 and the first polarizer 13 and is directed to the second polarizer 30 must be polarized light.
  • the first polarizer 13 and the second polarizer 30 are arranged in parallel and the first polarizer
  • the angle between the transmission direction of 13 and the transmission direction of the second polarizer 30 is less than 45°
  • the attenuation degree of the second polarizer 30 to the light that passes through the first polarizer 13 is less than 50°. % (Ie smaller than the attenuation ratio of noise light).
  • the second polarizer 30 can be made to pass through the All the light directed by a polarizer 13 passes.
  • the second polarizer 30 in the reflective liquid crystal display device of this embodiment can greatly reduce the light of the light source structure 20 directly emitted to the outside without passing through the liquid crystal display panel 10 (noise light, as shown by the dotted arrow in FIG. 2a) , Thereby reducing display defects such as low contrast of the displayed image and improving the clarity of information display.
  • the second polarizer 30 can reduce the amount of blue light entering human eyes (which can be reduced by 50%), and protect the eyes.
  • the vibration transmission direction of the first polarizer 13 may be the same as the vibration transmission direction of the second polarizer 30, so as to optimize the utilization rate of the light emitted by the light source structure 20.
  • the second polarizer 30 will not attenuate the light directed to it through the first polarizer 13, while the second polarizer 30
  • the attenuation degree of the light (noise light) emitted from the light source structure 20 directly directed to it without passing through the liquid crystal display panel 10 is still 50%.
  • the vibration transmission direction of the first polarizer 13 and the vibration transmission direction of the second polarizer 30 are the same to ensure that the light emitted from the liquid crystal display panel 10 will not be weakened, that is, the reflective liquid crystal display device will not affect the normal display ( For example, on the premise of not affecting the brightness of the normal display), the noise light emitted by the light-emitting structure is greatly reduced.
  • the light source structure 20 includes a light source 21 and a light guide plate (LGP) 22, the light guide plate 22 is located between the liquid crystal display panel 10 and the second polarizer 30, and the light source 21 is located on the side of the light guide plate 22 (for example, The right side or left side of the light guide plate 22 shown in FIGS. 1 to 3), so that the light emitted by the light source 21 enters the light guide plate 22 through the side surface of the light guide plate 22.
  • LGP light guide plate
  • the light emitted from the light source 21 does not directly enter the liquid crystal display panel 10 or directly enters the environment, but enters the light guide plate 22 through the side of the light guide plate 22, and then the light entering the light guide plate 22 is totally reflected, and finally It enters the liquid crystal display panel 10 or enters the environment through the second polarizer 30. Therefore, the light guide plate 22 at least plays a role in uniforming light.
  • the light source 21 may be at least one light emitting diode LED; the light guide plate (LGP) 22 may be formed of materials such as polymethyl methacrylate PMMA or polycarbonate PC.
  • the light guide plate 22 can make the light emitted by the light source 21 be emitted to the liquid crystal display panel 10 more uniformly, that is, the light source structure 20 can emit uniform light to the liquid crystal display panel 10, thereby improving the display effect.
  • the surface of the light guide plate 22 on the side away from the liquid crystal display panel 10 may have at least one protrusion 221 for total reflection of light in the light guide plate 22, as shown in FIG. 2b.
  • the light emitted by the light source 21 entering the light guide plate 22 can be totally reflected as much as possible on the surface with the protrusions 221, and finally uniformly directed toward the reflective layer 11.
  • the light-emitting uniformity of the light source structure 20 can be improved, light loss can also be reduced, and the light-emitting efficiency can be improved.
  • the incident angle of the light emitted by the light source 21 to the surface where the protrusion 221 of the light guide plate 22 is located is relatively large, and the light is reflected by the reflective layer 11 to the light guide plate 22.
  • the incident angle of most of the light on the surface where the protrusion 221 is located is relatively small, so the shape of the protrusion 221 can be adjusted so that most of the light emitted from the light source 21 to the surface where the protrusion 221 of the light guide plate 22 is located is totally reflected, and Most of the light reflected by the reflective layer 11 to the surface where the protrusion 221 of the light guide plate 22 is located is refracted, so as not to affect the normal display of the reflective liquid crystal display device.
  • the plurality of protrusions 221 are a plurality of triangular prisms distributed in an array, or protrusions of other suitable shapes.
  • the reflective liquid crystal display device of this embodiment further includes a connector 40 connecting the light guide plate 22 and the second polarizer 30, and the connector 40 is located between the light guide plate 22 and the second polarizer 30.
  • the refractive index n1 of the connecting member 40 is smaller than the refractive index n2 of the light guide plate 22 (ie, n1 ⁇ n2).
  • the connecting member 40 covers the surface of the light guide plate 22 provided with the protrusions 221 (and fills the gap between the protrusions 221), and the surface of the connecting member 40 away from the light guide plate 22 is a plane, and the plane is connected to the second polarizer 30, Thus, a fixed connection between the light guide plate 22 and the second polarizer 30 is formed.
  • the refractive index of the connecting member 40 is smaller than the refractive index of the light guide plate 22 so that the light emitted by the light source 21 entering the light guide plate 22 can still be totally reflected on the surface with the protrusions 221, so as to be uniformly emitted to the liquid crystal display panel 10.
  • the plurality of protrusions 221 shown may have the same shape and size.
  • the height of the connecting piece 40 (that is, the maximum dimension of the connecting piece 40 shown in FIG. 2b in the vertical direction) d1 is less than or equal to the height of each protrusion 221 (that is, each protrusion 221 shown in FIG.
  • the size in the direction) d2 is 5 times (ie, d1 ⁇ 5d2).
  • the connecting member 40 completely covers the plurality of protrusions 221, that is, d1 ⁇ d2.
  • the height of the connecting member 40 is less than or equal to 5 times the height of the protrusion 221 to ensure the flatness of the surface of the connecting member 40 away from the light guide plate 22, thereby improving the stability of the connecting member 40 connecting the light guide plate 22 and the second polarizer 30.
  • the connecting member 40 includes an adhesive material (such as a sub-sensitive adhesive material).
  • the connecting member 40 including the glue material can bond the second polarizer 30 to the surface of the light guide plate 22 with the protrusions 221 to ensure the connection effect between the second polarizer 30 and the light guide plate 22.
  • the connecting member 40 of the reflective liquid crystal display device of this embodiment may also have another structure:
  • the connecting member 40 may be located only in the edge area (ie, non-display area) of the area between the light guide plate 22 and the second polarizer 30, that is, the connecting member 40 is used to connect the edge area of the light guide plate 22 and the second polarizer 30
  • the edge area is fixedly connected, and there is a gap between the light guide plate 22 and the second polarizer 30 (that is, the central part of the area between the light guide plate 22 and the second polarizer 30 (ie, the display area) does not need to be filled with the connector 40) In this way, the display brightness of the display area of the reflective liquid crystal display device can be improved.
  • the light guide plate 22 and the second polarizer 30 may be connected only at the edge area (this connection method may be referred to as frame attachment), and the height of the connecting member 40 may be greater than or equal to the height of each protrusion 221.
  • the height of the connecting member 40 ie, the maximum dimension of the connecting member 40 in the vertical direction as shown in FIG. 2b
  • d1 may also be less than or equal to the height of each protrusion 221 (ie, each protrusion shown in FIG. 2b).
  • the size of 221 in the vertical direction) d2 is 5 times (that is, d1 ⁇ 5d2).
  • the edge of the area between the light guide plate 22 and the second polarizer 30 may refer to the non-display area of the reflective liquid crystal display device, and the display area between the light guide plate 22 and the second polarizer 30 has a gap filled with air. That is, the light reflected from the reflective layer 11 does not pass through the connecting member 40, but directly reaches the second polarizer 30, so that the display brightness of the display area of the reflective liquid crystal display device can be improved.
  • the refractive index of air is smaller than the refractive index of the light guide plate 22, which can further increase the ratio of total reflection of the light emitted by the light source 21 into the light guide plate 22 on the surface with the protrusions 221, so that the light is more uniformly emitted to the liquid crystal display Panel 10.
  • the connecting member 40 includes an adhesive material (such as a sub-sensitive adhesive material).
  • the reflective liquid crystal display device of this embodiment further includes a touch structure (for example, Touch glass or Touch film), which is located on the side of the second polarizer 30 shown in FIGS. 2a to 3 away from the liquid crystal display panel 10. (Not shown in the figure).
  • a touch structure for example, Touch glass or Touch film
  • the reflective liquid crystal display device of this embodiment may be a touch display panel.
  • one surface of the touch structure (such as a touch substrate or a touch film) is completely connected to the surface of the second polarizer 30 away from the liquid crystal display panel 10 (surface attachment).
  • the reflective liquid crystal display device of the foregoing embodiments of the present disclosure can reduce the noise light generated by the light source structure 20 without affecting the touch performance, thereby reducing display defects such as low contrast of the displayed image, thereby improving the clarity of information display degree.
  • the reflective liquid crystal display device can be any product or component with display function such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • the foregoing embodiments of the present disclosure also provide a method for preparing a reflective liquid crystal display device, including: forming a liquid crystal display panel, wherein the liquid crystal display panel includes a reflective layer, A liquid crystal display structure, a first polarizer, and the liquid crystal display structure is located between the reflective layer and the first polarizer.
  • the method further includes forming a light source structure, wherein the light source structure is located on a side of the first polarizer away from the reflective layer and is configured to emit light to the liquid crystal display panel.
  • the method further includes: disposing a second polarizer on a side of the light source structure away from the liquid crystal display panel, wherein the vibration transmission direction of the first polarizer is between the vibration transmission direction of the second polarizer The included angle is less than 45°
  • the second polarizer is configured to filter noise light, and the vibration direction of the second polarizer is set to be the same as the vibration direction of the first polarizer.
  • a plurality of protrusions are formed on the surface of the light guide plate on the side away from the liquid crystal display panel to cause total reflection of light in the light guide plate.
  • the plurality of protrusions of the light guide plate are formed into a plurality of triangular prisms distributed in an array.
  • the method may further include: arranging a connecting member between the light guide plate and the second polarizer, wherein the connecting member connects the light guide plate and the second polarizer and fills all of the light guide plate.
  • the gap between any two adjacent ones of the plurality of protrusions, and the refractive index of the connecting member is less than the refractive index of the light guide plate.
  • the height of the connecting member is less than or equal to 5 times the height of each of the plurality of protrusions of the light guide plate.
  • a connecting member is provided in a non-display area between the light guide plate and the second polarizer, wherein the connecting member is configured to connect the edge area of the light guide plate to the second polarizer.
  • the edge regions of the sheet are fixedly connected, and there is a gap between the light guide plate and the second polarizer.
  • the method may further include the steps of forming or arranging other structures or components described above with reference to FIGS. 2a to 3, and the detailed description of these steps can be referred to above.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开提供一种反射式液晶显示装置和一种制备反射式液晶显示装置的方法。所述反射式液晶显示装置包括:液晶显示面板,其包括反射层、液晶显示结构、第一偏光片,其中所述液晶显示结构位于所述反射层与所述第一偏光片之间;光源结构,其位于所述第一偏光片远离所述反射层的一侧并被配置为向所述液晶显示面板发光;以及第二偏光片,其位于所述光源结构远离所述液晶显示面板一侧,并且第一偏光片的透振方向与所述第二偏光片的透振方向之间的夹角小于45°。

Description

反射式液晶显示装置及其制备方法
相关申请的交叉引用
本申请要求于2019年3月15日提交的中国专利申请No.201910198607.8的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种反射式液晶显示装置和一种制备反射式液晶显示装置的方法。
背景技术
在显示技术领域中,存在一种反射式液晶显示(RLCD)装置。RLCD装置一般不包括光源因而不能主动发光,主要通过反射环境光来显示信息。因此,在环境光照度低的情况下,RLCD装置可能不能正常显示。为此,可以考虑在RLCD装置中增加光源来解决这一问题。
发明内容
本公开的实施例提供了一种反射式液晶显示装置和一种制备反射式液晶显示装置的方法。
本公开的一方面提供了一种反射式液晶显示装置,包括:
液晶显示面板,其包括反射层、液晶显示结构、第一偏光片,其中所述液晶显示结构位于所述反射层与所述第一偏光片之间;
光源结构,其位于所述第一偏光片远离所述反射层的一侧并被配置为向所述液晶显示面板发光;以及
第二偏光片,其位于所述光源结构远离所述液晶显示面板一侧,并且所述第一偏光片的透振方向与所述第二偏光片的透振方向之间的夹角小于45°。
在一个实施例中,所述第二偏光片被配置为过滤噪声光,并 且所述第二偏光片的透振方向与所述第一偏光片的透振方向相同。
在一个实施例中,所述光源结构包括:光源以及导光板,所述导光板位于所述液晶显示面板与所述第二偏光片之间,所述光源位于所述导光板的侧面,以使所述光源发出的光通过所述导光板的侧面进入所述导光板中。
在一个实施例中,所述导光板远离所述液晶显示面板的一侧的表面具有使光在所述导光板中发生全反射的多个凸起。
在一个实施例中,所述导光板的所述多个凸起为阵列分布的多个三棱柱。
在一个实施例中,所述反射式液晶显示装置还包括:连接件,其连接所述导光板与所述第二偏光片,所述连接件位于所述导光板与所述第二偏光片之间并填充所述导光板的所述多个凸起中任意相邻两个之间的间隙,其中所述连接件的折射率小于所述导光板的折射率。
在一个实施例中,所述连接件的高度小于或等于所述导光板的所述多个凸起的每一个的高度的5倍并大于或等于所述导光板的所述多个凸起的每一个的高度。
在一个实施例中,所述反射式液晶显示装置还包括:连接件,其位于所述导光板与所述第二偏光片之间的非显示区中,并被配置为将所述导光板的边缘区与所述第二偏光片的边缘区固定连接,且使所述导光板和所述第二偏光片之间具有间隙。
在一个实施例中,所述连接件包括胶材料。
在一个实施例中,所述反射式液晶显示装置还包括:
触控结构,位于所述第二偏光片远离所述液晶显示面板的一侧。
本公开的另一方面提供了一种制备反射式液晶显示装置的方法,包括:
形成液晶显示面板,其中所述液晶显示面板包括反射层、液晶显示结构、第一偏光片,所述液晶显示结构位于所述反射层与 所述第一偏光片之间;形成光源结构,其中所述光源结构位于所述第一偏光片远离所述反射层一侧并被配置为向所述液晶显示面板发光;以及
在位于所述光源结构远离所述液晶显示面板一侧设置第二偏光片,其中所述第一偏光片的透振方向与所述第二偏光片的透振方向之间的夹角小于45°
在一个实施例中,所述第二偏光片被配置为过滤噪声光,并且将所述第二偏光片的透振方向设置为与所述第一偏光片的透振方向相同。
在一个实施例中,所述形成光源结构包括:形成光源以及导光板,其中所述导光板位于所述液晶显示面板与所述第二偏光片之间,所述光源位于所述导光板的侧面,以使所述光源发出的光通过所述导光板的侧面进入所述导光板中。
在一个实施例中,在所述导光板远离所述液晶显示面板的一侧的表面形成有使光在所述导光板中发生全反射的多个凸起。
在一个实施例中,将所述导光板的所述多个凸起形成为阵列分布的多个三棱柱。
在一个实施例中,所述方法还包括:在所述导光板与所述第二偏光片之间设置连接件,其中所述连接件连接所述导光板与所述第二偏光片并填充所述导光板的所述多个凸起中任意相邻两个之间的间隙,并且所述连接件的折射率小于所述导光板的折射率。
在一个实施例中,所述连接件的高度小于或等于所述导光板的所述多个凸起的每一个的高度的5倍并大于或等于所述导光板的所述多个凸起的每一个的高度。
在一个实施例中,在所述导光板与所述第二偏光片之间的非显示区设置连接件,其中所述连接件被配置为将所述导光板的边缘区与所述第二偏光片的边缘区固定连接,且使所述导光板和所述第二偏光片之间具有间隙。
在一个实施例中,所述连接件由胶材料制成。
在一个实施例中,所述方法还包括:
在所述第二偏光片远离所述液晶显示面板的一侧设置触控结构。
附图说明
图1为根据本公开的实施例的一种反射式液晶显示装置的结构示意图;
图2a为根据本公开的实施例的另一种反射式液晶显示装置的结构示意图;
图2b为图2a的反射式液晶显示装置的局部放大的结构示意图;以及
图3为根据本公开的实施例的另一种反射式液晶显示装置的结构示意图。
具体实施方式
以下将参照附图更详细地描述本公开的技术方案。在各个附图中,相同的元件采用类似的附图标记来表示。应注意,该附图仅是一种示例,附图中未示出本文提到的以外的其他公知的部分。为了清楚起见,附图中的各个部分可能没有按比例绘制。此外,对本领域技术人员而言应显而易见的,在不脱离本公开的范围的情况下,可以对本文中描述的实施例进行各种改变。
在下文中描述了本公开的技术方案的许多特定的细节,例如部件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开的技术方案。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开的技术方案。
如图1所示,本公开的实施例提供了一种反射式液晶显示装置,其包括依次堆叠在一起的反射层11、液晶显示结构12、第一偏光片13和光源结构20。例如,光源结构20可以位于液晶显示结构12的出光侧,并且该光源结构20可以包括光源(例如,至少一个发光二极管LED)21和导光板(LGP)22。光源结构20发出的特定角度的光依次经过第一偏光片13和液晶显示结构12, 然后被位于液晶显示结构12远离光源结构20一侧的反射层11反射出来进入人眼,从而实现信息的显示。
由于图1所示的反射式液晶显示装置包括光源结构20,因此即使在环境光照度低的情况下也可以实现正常的显示。
然而,本发明构思的发明人发现,在图1所示的反射式液晶显示装置中,该光源结构20发出的光中,只有一部分光(如图1中的实线箭头所示)进入液晶显示结构12,另一部分光(其可称为噪声光,如图1中的虚线箭头所示)可以没有经过液晶显示结构12而直接进入人眼。该噪声光没有携带液晶显示结构12将要显示的图像信息,因此不仅对显示没有意义,而且会造成显示图像的对比度低从而使显示信息清晰度降低等显示缺陷。此外,该噪声光的蓝光成分可能比较多,因此可能对人眼造成伤害。
本公开的其他实施例提供一种反射式液晶显示装置,其至少部分解决图1所示的反射式液晶显示装置由于噪声光造成的显示缺陷的问题。参见图2a至图3,其中,图2b为图2a的反射式液晶显示装置中的第二偏光片30、连接件40以及导光板22的局部放大的结构示意图。上述反射式液晶显示装置包括液晶显示面板10、光源结构20和第二偏光片30。液晶显示面板10包括反射层11、液晶显示结构12和第一偏光片13,其中液晶显示结构12位于反射层11与第一偏光片13间。光源结构20位于第一偏光片13远离反射层11一侧用于向液晶显示面板10发光。第二偏光片30位于光源结构20远离液晶显示面板10的一侧,并用于过滤光源结构20直接射向远离液晶显示面板10的一侧的光。第一偏光片13的透振方向与第二偏光片30的透振方向间的夹角小于45°,这样可以提高光源结构20所发出的光的利用率。在一个实施例中,为了使光源结构20所发出的光的利用率最佳,第一偏光片13的透振方向与第二偏光片30的透振方向间的夹角可以为零度,即,第一偏光片13的透振方向与第二偏光片30的透振方向可以互相平行。
也就是说,在该反射式液晶显示装置中,光源结构20位于液 晶显示面板10的出光侧,即光源结构20作为液晶显示面板10的前置光源,而该光源结构20发出的光的至少一部分可以进入液晶显示面板10。
液晶显示面板10包括反射层11、液晶显示结构12以及第一偏光片13,液晶显示结构12和第一偏光片13位于反射层11与光源结构20之间。这样光源结构20发出的进入液晶显示面板10的光可以经过第一偏光片13和液晶显示结构12,并由反射层11反射,反射后的光再一次经过液晶显示结构12、第一偏光片13,最终从液晶显示面板10的出光侧(即,液晶显示结构12设置有第一偏光片13的一侧)发出,以实现信息的显示,如图2a中的实线箭头所示。液晶显示结构12还可以包括液晶层、彩膜层、基板等已知结构(图中未示出),在本公开中省略这些已知结构的详细说明。
从光源结构20发出的未经过液晶显示面板10而直接射向第二偏光片30的光(即,噪声光,如图2a中的虚线箭头所示)为非偏振光,故该光经过第二偏光片30后被削弱50%。而经过液晶显示结构12和第一偏光片13后射向第二偏光片30的光(显示光)必然为偏振光,在第一偏光片13与第二偏光片30平行设置并且第一偏光片13的透振方向与第二偏光片30的透振方向间的夹角小于45°的情况下,可以使得第二偏光片30对通过第一偏光片13射向其的光的削弱程度小于50%(即比噪声光的削弱比例小)。在第一偏光片13与第二偏光片30平行设置并且第一偏光片13的透振方向与第二偏光片30的透振方向互相平行的情况下,可以使得第二偏光片30使通过第一偏光片13射向其的光全部通过。
本实施例的反射式液晶显示装置中的第二偏光片30可以大大减少光源结构20的未经过液晶显示面板10而直接射向外界的光(噪声光,如图2a中的虚线箭头所示),从而减轻显示图像的对比度低等显示缺陷,提高信息显示的清晰度。此外,由于噪声光的蓝光(蓝光对人眼损伤较大)成分比较多,第二偏光片30可以减少蓝光进入人眼的量(可减少50%),对眼睛起到保护作用。
如上所述,根据本公开的实施例,第一偏光片13的透振方向可以与第二偏光片30的透振方向相同,以使光源结构20所发出的光的利用率最佳。
在第一偏光片13和第二偏光片30的光的偏振方向相同的情况下,第二偏光片30不会对经由第一偏光片13射向其的光进行削弱,而第二偏光片30对从光源结构20发出的未经过液晶显示面板10而直接射向其的光(噪声光)的削弱程度仍为50%。
第一偏光片13的透振方向与第二偏光片30的透振方向相同可以保证从液晶显示面板10射出的光不会被削弱,也就是说该反射式液晶显示装置在不影响正常显示(例如不影响正常显示的亮度)的前提下,大大减少发光结构发出的噪声光。
根据本公开的实施例,光源结构20包括:光源21以及导光板(LGP)22,导光板22位于液晶显示面板10与第二偏光片30之间,光源21位于导光板22的侧面(例如,图1至图3所示的导光板22的右侧面或左侧面),以使光源21发出的光通过导光板22的侧面进入导光板22中。
也就是说,从光源21发出的光没有直接进入液晶显示面板10或者直接进入环境中,而是通过导光板22的侧面进入导光板22中,然后进入导光板22中的光发生全反射,最终进入液晶显示面板10或者通过第二偏光片30进入环境中,因此,导光板22至少起到使光均匀的作用。例如,光源21可以为至少一个发光二极管LED;导光板(LGP)22可由聚甲基丙烯酸甲酯PMMA或者聚碳酸酯PC等材料形成。
导光板22可以使得光源21发出的光的更加均匀的射向液晶显示面板10,即该光源结构20可以向液晶显示面板10发射均匀的光,从而可提高显示效果。
在本公开的实施例中,导光板22远离液晶显示面板10的一侧的表面可以具有用于使光在导光板22中发生全反射的至少一个凸起221,如图2b所示。
也就是说,通过调整凸起221的形状可以使得光源21发出的 进入导光板22的光在具有凸起221的面上尽可能多的发生全反射,最终均匀的射向反射层11,这样不仅可以提高光源结构20的发光的均匀性,还可以减少光损失,提高发光效率。
需要说明的是,由于光源21设于导光板22的侧面,故光源21发出的光照到导光板22的凸起221所在的面时的入射角比较大,而由反射层11反射至导光板22的凸起221所在的面的大部分光的入射角比较小,因此可以调整凸起221的形状使得从光源21射至导光板22的凸起221所在的面的大部分光发生全反射,而使被反射层11反射至导光板22的凸起221所在的面的大部分光发生折射,从而不会影响反射式液晶显示装置的正常显示。
例如,多个凸起221为阵列分布的多个三棱柱,或者是其他适合的形状的凸起。
在本公开的实施例中,如图2b所示,本实施例的反射式液晶显示装置还包括:连接导光板22与第二偏光片30的连接件40,连接件40位于导光板22与第二偏光片30之间且完全填充任意相邻两个凸起221之间的间隙,连接件40的折射率n1小于导光板22的折射率n2(即,n1<n2)。
连接件40覆盖导光板22设有凸起221的面(并且填充各凸起221之间的间隙),并且连接件40远离导光板22的面为平面,该平面与第二偏光片30连接,从而形成导光板22与第二偏光片30的固定连接。
连接件40的折射率小于导光板22的折射率可使光源21发出的进入导光板22的光在具有凸起221的面上仍能发生全反射,从而均匀的射向液晶显示面板10。
在本公开的实施例中,所示多个凸起221可以具有相同的形状和尺寸。连接件40的高度(即,图2b所示的连接件40在竖直方向上的最大尺寸)d1小于等于每个凸起221高度(即,图2b所示的每个凸起221在竖直方向上的尺寸)d2的5倍(即,d1≤5d2)。连接件40将所述多个凸起221全部覆盖,即d1≥d2。
连接件40的高度小于等于凸起221高度的5倍可以保证连接 件40远离导光板22的面的平整度,从而可以提高连接件40连接导光板22与第二偏光片30的稳定程度。
例如,该连接件40包括胶材料(如亚敏胶材料)。
包括胶材料的连接件40可使第二偏光片30粘结在导光板22具有凸起221的面上,以保证第二偏光片30与导光板22的连接效果。
如图3所示,本实施例的反射式液晶显示装置的连接件40还可以具有另一种结构:
连接件40可以只位于导光板22与第二偏光片30之间的区域的边缘区(即,非显示区),即连接件40用于将导光板22的边缘区与第二偏光片30的边缘区固定连接,且使导光板22和第二偏光片30之间具有间隙(即导光板22和第二偏光片30之间的区域的中心部分(即,显示区)不必填充连接件40),这样,可以提高反射式液晶显示装置的显示区的显示亮度。
也就是说,导光板22和第二偏光片30可以只在边缘区域连接(这种连接方式可以称为框贴),且连接件40的高度可以大于或等于每个凸起221的高度。此外,连接件40的高度(即,如图2b所示的连接件40在竖直方向上的最大尺寸)d1也可以小于等于每个凸起221高度(即,图2b所示的每个凸起221在竖直方向上的尺寸)d2的5倍(即,d1≤5d2)。该导光板22与第二偏光片30之间的区域的边缘可以是指反射式液晶显示装置的非显示区,而在导光板22和第二偏光片30之间的显示区具有充满空气的间隙,即从反射层11反射的光不经过连接件40,而直接到第二偏光片30,从而可以提高反射式液晶显示装置的显示区的显示亮度。
空气的折射率小于导光板22的折射率,这可进一步提高光源21发出的进入导光板22的光在具有凸起221的面上的全反射的比率,从而使光更加均匀的射向液晶显示面板10。
例如,该连接件40包括胶材料(如亚敏胶材料)。
例如,本实施例的反射式液晶显示装置还包括:触控结构(例 如,Touch glass或者Touch film),其位于图2a至图3所示的第二偏光片30远离液晶显示面板10的一侧(图中未示出)。
也就是说,本实施例的反射式液晶显示装置可以是触控显示面板。例如,触控结构(如触控基板或触控膜)的一个面与第二偏光片30远离液晶显示面板10的面完全连接(面贴)。
本公开的上述各个实施例的反射式液晶显示装置可以在不影响触控性能的前提下,减少光源结构20产生的噪声光,从而减轻显示图像的对比度低等显示缺陷,从而提高信息显示的清晰度。
例如,该反射式液晶显示装置可为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
相应地,如图2a至图3所示,本公开的上述各个实施例还提供了一种制备反射式液晶显示装置的方法,包括:形成液晶显示面板,其中所述液晶显示面板包括反射层、液晶显示结构、第一偏光片,所述液晶显示结构位于所述反射层与所述第一偏光片之间。所述方法还包括:形成光源结构,其中所述光源结构位于所述第一偏光片远离所述反射层一侧并被配置为向所述液晶显示面板发光。所述方法还包括:在位于所述光源结构远离所述液晶显示面板一侧设置第二偏光片,其中所述第一偏光片的透振方向与所述第二偏光片的透振方向之间的夹角小于45°
在所述方法中,所述第二偏光片被配置为过滤噪声光,并且将所述第二偏光片的透振方向设置为与所述第一偏光片的透振方向相同。
在所述方法中,在所述导光板远离所述液晶显示面板的一侧的表面形成有使光在所述导光板中发生全反射的多个凸起。
在所述方法中,将所述导光板的所述多个凸起形成为阵列分布的多个三棱柱。
所述方法还可以包括:在所述导光板与所述第二偏光片之间设置连接件,其中所述连接件连接所述导光板与所述第二偏光片并填充所述导光板的所述多个凸起中任意相邻两个之间的间隙, 并且所述连接件的折射率小于所述导光板的折射率。
在所述方法中,所述连接件的高度小于或等于所述导光板的所述多个凸起的每一个的高度的5倍。
在所述方法中,在所述导光板与所述第二偏光片之间的非显示区设置连接件,其中所述连接件被配置为将所述导光板的边缘区与所述第二偏光片的边缘区固定连接,且使所述导光板和所述第二偏光片之间具有间隙。
此外,所述方法还可以包括形成或设置上文参照图2a至图3描述的其他结构或部件的步骤,这些步骤的详细描述可以参见上文。
应当理解的是,在没有明显冲突的情况下,本文所描述的各个实施例可以互相结合。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
依照本公开的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本公开的原理和实际应用,从而使所属技术领域技术人员能很好地利用本公开以及在本公开基础上的修改使用。本公开的范围仅受权利要求书及其等效物的限制。

Claims (20)

  1. 一种反射式液晶显示装置,包括:
    液晶显示面板,其包括反射层、液晶显示结构、第一偏光片,其中所述液晶显示结构位于所述反射层与所述第一偏光片之间;
    光源结构,其位于所述第一偏光片远离所述反射层的一侧并被配置为向所述液晶显示面板发光;以及
    第二偏光片,其位于所述光源结构远离所述液晶显示面板一侧,并且所述第一偏光片的透振方向与所述第二偏光片的透振方向之间的夹角小于45°。
  2. 根据权利要求1所述的反射式液晶显示装置,其中,
    所述第二偏光片被配置为过滤噪声光,并且所述第二偏光片的透振方向与所述第一偏光片的透振方向相同。
  3. 根据权利要求1或2所述的反射式液晶显示装置,其中,所述光源结构包括:光源以及导光板,所述导光板位于所述液晶显示面板与所述第二偏光片之间,所述光源位于所述导光板的侧面,以使所述光源发出的光通过所述导光板的侧面进入所述导光板中。
  4. 根据权利要求3所述的反射式液晶显示装置,其中,所述导光板远离所述液晶显示面板的一侧的表面具有使光在所述导光板中发生全反射的多个凸起。
  5. 根据权利要求4所述的反射式液晶显示装置,其中,所述导光板的所述多个凸起为阵列分布的多个三棱柱。
  6. 根据权利要求4或5所述的反射式液晶显示装置,还包括:连接件,其连接所述导光板与所述第二偏光片,所述连接件位于 所述导光板与所述第二偏光片之间并填充所述导光板的所述多个凸起中任意相邻两个之间的间隙,其中所述连接件的折射率小于所述导光板的折射率。
  7. 根据权利要求6所述的反射式液晶显示装置,其中,所述连接件的高度小于或等于所述导光板的所述多个凸起的每一个的高度的5倍并大于或等于所述导光板的所述多个凸起的每一个的高度。
  8. 根据权利要求4或5所述的反射式液晶显示装置,还包括:连接件,其位于所述导光板与所述第二偏光片之间的非显示区中,并被配置为将所述导光板的边缘区与所述第二偏光片的边缘区固定连接,且使所述导光板和所述第二偏光片之间具有间隙。
  9. 根据权利要求6至8中任一项所述的反射式液晶显示装置,其中,所述连接件包括胶材料。
  10. 根据权利要求1至9中任一项所述的反射式液晶显示装置,还包括:
    触控结构,位于所述第二偏光片远离所述液晶显示面板的一侧。
  11. 一种制备反射式液晶显示装置的方法,包括:
    形成液晶显示面板,其中所述液晶显示面板包括反射层、液晶显示结构、第一偏光片,所述液晶显示结构位于所述反射层与所述第一偏光片之间;形成光源结构,其中所述光源结构位于所述第一偏光片远离所述反射层一侧并被配置为向所述液晶显示面板发光;以及
    在位于所述光源结构远离所述液晶显示面板一侧设置第二偏光片,其中所述第一偏光片的透振方向与所述第二偏光片的透振 方向之间的夹角小于45°
  12. 根据权利要求11所述的方法,其中所述第二偏光片被配置为过滤噪声光,并且将所述第二偏光片的透振方向设置为与所述第一偏光片的透振方向相同。
  13. 根据权利要求11或12所述的方法,其中,所述形成光源结构包括:形成光源以及导光板,其中所述导光板位于所述液晶显示面板与所述第二偏光片之间,所述光源位于所述导光板的侧面,以使所述光源发出的光通过所述导光板的侧面进入所述导光板中。
  14. 根据权利要求13所述的方法,其中,在所述导光板远离所述液晶显示面板的一侧的表面形成有使光在所述导光板中发生全反射的多个凸起。
  15. 根据权利要求14所述的方法,其中,将所述导光板的所述多个凸起形成为阵列分布的多个三棱柱。
  16. 根据权利要求14或15所述的方法,还包括:在所述导光板与所述第二偏光片之间设置连接件,其中所述连接件连接所述导光板与所述第二偏光片并填充所述导光板的所述多个凸起中任意相邻两个之间的间隙,并且所述连接件的折射率小于所述导光板的折射率。
  17. 根据权利要求16所述的方法,其中,所述连接件的高度小于或等于所述导光板的所述多个凸起的每一个的高度的5倍并大于或等于所述导光板的所述多个凸起的每一个的高度。
  18. 根据权利要求14或15所述的方法,其中,在所述导光 板与所述第二偏光片之间的非显示区设置连接件,其中所述连接件被配置为将所述导光板的边缘区与所述第二偏光片的边缘区固定连接,且使所述导光板和所述第二偏光片之间具有间隙。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述连接件由胶材料制成。
  20. 根据权利要求11至19中任一项所述的方法,还包括:
    在所述第二偏光片远离所述液晶显示面板的一侧设置触控结构。
PCT/CN2020/078750 2019-03-15 2020-03-11 反射式液晶显示装置及其制备方法 WO2020187105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910198607.8A CN109870843A (zh) 2019-03-15 2019-03-15 反射式液晶显示装置
CN201910198607.8 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020187105A1 true WO2020187105A1 (zh) 2020-09-24

Family

ID=66920631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078750 WO2020187105A1 (zh) 2019-03-15 2020-03-11 反射式液晶显示装置及其制备方法

Country Status (2)

Country Link
CN (1) CN109870843A (zh)
WO (1) WO2020187105A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870843A (zh) * 2019-03-15 2019-06-11 合肥京东方光电科技有限公司 反射式液晶显示装置
CN113888958B (zh) * 2020-07-02 2023-06-30 广州视享科技有限公司 光学显示装置、光学显示控制方法及显示器
CN115097564B (zh) * 2022-07-14 2024-03-01 友达光电(昆山)有限公司 光学组件及应用其的显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057628A (ja) * 2001-08-10 2003-02-26 Goyo Paper Working Co Ltd 反射型液晶表示装置
CN1506727A (zh) * 2002-12-10 2004-06-23 统宝光电股份有限公司 具有触控面板的平面显示器
CN1808238A (zh) * 2005-01-18 2006-07-26 精工电子有限公司 液晶显示装置
CN102767748A (zh) * 2011-05-03 2012-11-07 元太科技工业股份有限公司 前光模块
CN109870843A (zh) * 2019-03-15 2019-06-11 合肥京东方光电科技有限公司 反射式液晶显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215503A (ja) * 2000-02-02 2001-08-10 Rohm Co Ltd 液晶表示装置
US20030039112A1 (en) * 2001-08-21 2003-02-27 Shih-Chou Chen Front lighting assembly light guide and production method thereof
TWI518387B (zh) * 2014-05-26 2016-01-21 元太科技工業股份有限公司 前光模組及顯示裝置
CN104503129B (zh) * 2014-12-30 2018-02-13 京东方科技集团股份有限公司 一种光学模组和反射型显示装置
CN206638850U (zh) * 2017-03-24 2017-11-14 信利半导体有限公司 一种前照光显示模组的导光板及前照光显示模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057628A (ja) * 2001-08-10 2003-02-26 Goyo Paper Working Co Ltd 反射型液晶表示装置
CN1506727A (zh) * 2002-12-10 2004-06-23 统宝光电股份有限公司 具有触控面板的平面显示器
CN1808238A (zh) * 2005-01-18 2006-07-26 精工电子有限公司 液晶显示装置
CN102767748A (zh) * 2011-05-03 2012-11-07 元太科技工业股份有限公司 前光模块
CN109870843A (zh) * 2019-03-15 2019-06-11 合肥京东方光电科技有限公司 反射式液晶显示装置

Also Published As

Publication number Publication date
CN109870843A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2020124306A1 (zh) 液晶显示指纹模组、屏下指纹识别系统及电子设备
WO2020187105A1 (zh) 反射式液晶显示装置及其制备方法
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
TW548463B (en) Liquid crystal display device
CN110928038A (zh) 一种背光模组、显示装置及液晶电视
WO2018145469A1 (zh) 导光板、背光模组和液晶显示装置
WO2021190414A1 (zh) 一种显示装置
TW201642002A (zh) 背光模組、導光板結構及顯示裝置
KR20180057942A (ko) 액정표시장치
WO2016183901A1 (zh) 导光板及背光模组
CN106054469B (zh) 超薄型液晶显示器
WO2016169173A1 (zh) 导光板、背光源和显示装置
TWI697710B (zh) 顯示設備
WO2020057295A1 (zh) 背光模组及其制作方法、显示装置
WO2020237956A1 (zh) 直下式背光模组和液晶显示装置
WO2020062558A1 (zh) 偏光结构及显示装置
TW201516529A (zh) 顯示面板單元及顯示裝置
KR101929378B1 (ko) 액정표시장치
US20060146569A1 (en) Backlight module with filler portion
JP2009059498A (ja) 照明装置および液晶表示装置
WO2023116402A1 (zh) 背光模组及液晶显示装置
TWI390302B (zh) 背光模組及包含其之光電裝置
CN115291429B (zh) 一种液晶显示面板
CN216210335U (zh) 显示装置
JP2009231018A (ja) 導光板、面光源装置、および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773935

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20773935

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 10.05.2022

122 Ep: pct application non-entry in european phase

Ref document number: 20773935

Country of ref document: EP

Kind code of ref document: A1