WO2023065153A1 - 量子点材料、量子点膜层的图案化方法及量子点显示器件 - Google Patents

量子点材料、量子点膜层的图案化方法及量子点显示器件 Download PDF

Info

Publication number
WO2023065153A1
WO2023065153A1 PCT/CN2021/125003 CN2021125003W WO2023065153A1 WO 2023065153 A1 WO2023065153 A1 WO 2023065153A1 CN 2021125003 W CN2021125003 W CN 2021125003W WO 2023065153 A1 WO2023065153 A1 WO 2023065153A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
group
dot film
light
dot material
Prior art date
Application number
PCT/CN2021/125003
Other languages
English (en)
French (fr)
Inventor
王好伟
冯靖雯
卢志高
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/125003 priority Critical patent/WO2023065153A1/zh
Priority to CN202180003028.9A priority patent/CN116323861A/zh
Publication of WO2023065153A1 publication Critical patent/WO2023065153A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the present application relates to the field of display technology, in particular to a quantum dot material, a method for patterning a quantum dot film layer, and a quantum dot display device.
  • quantum dot technology With the in-depth development of quantum dot technology, the research on QLED (Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes) display technology is getting more and more in-depth, and the luminous efficiency of quantum dots is also continuously improving. Further adopting new processes and technologies to realize its industrialization has become a trend. Among them, patterning quantum dot films to prepare high-resolution display products is one of the important issues.
  • the embodiments of the present application provide a quantum dot material, including a quantum dot body and a ligand coordinated on the surface of the quantum dot body;
  • the ligand includes: a coordination group combined with the surface of the quantum dot body, a decomposable group connected to the coordination group, and an energy transfer group connected to the decomposable group;
  • the decomposable group is configured to decompose and generate a polarity-changing group
  • the energy transfer group is configured to transfer carriers in the quantum dot material and prevent the quantum dot body from emitting light .
  • the energy transfer group is an electron donating group, and the energy transfer group is configured to transfer holes in the quantum dot material and prevent the quantum dot body from emitting light.
  • the energy transfer group is an electron-withdrawing group, and the energy transfer group is configured to transfer electrons in the quantum dot material and prevent the quantum dot body from emitting light.
  • the energy transfer group includes an oligothiophene group or a polythiophene group.
  • the general formula of the oligothiophene group or the polythiophene group is
  • the range of n is 3-10.
  • both X1 and X2 are electron-withdrawing groups.
  • the energy transfer group includes
  • the energy transfer group includes
  • the decomposable groups include pyrolyzable groups or photolyzable groups.
  • the embodiments of the present application also provide a method for patterning a quantum dot film layer, the method comprising:
  • the mask plate is used to cover the quantum dot film, and light is used to irradiate a part of the quantum dot film, so that the quantum dot material in the illuminated area is decomposed
  • generating said polarity changing group comprises:
  • the decomposable group is a photolyzable group
  • the decomposable group is a pyrolyzable group.
  • the cleaning of the quantum dot film to obtain the patterned quantum dot film layer includes:
  • a good solvent for the quantum dot material is used to clean the area of the quantum dot film except the illuminated area to form a patterned quantum dot film layer; wherein, the polarity-changing group is insoluble in the Good solvent for quantum dot materials.
  • an embodiment of the present application provides a quantum dot display device, comprising a quantum dot film layer made of the quantum dot material as described above.
  • the quantum dot display device is a quantum dot light emitting device, and the quantum dot light emitting device includes a first pole, a second pole, and a The quantum dot film layer between.
  • the quantum dot display device is a quantum dot color conversion device
  • the quantum dot color conversion device includes a light emitting substrate and the quantum dot film layer on the light emitting substrate.
  • Fig. 1 and Fig. 2 are the photolysis reaction schematic diagrams of two kinds of quantum dot materials that the embodiment of the present application provides;
  • Fig. 3 is a flow chart of a method for patterning a quantum dot film layer provided in an embodiment of the present application
  • Figure 4- Figure 7a is a schematic structural view of four electroluminescent quantum dot display devices provided by the embodiment of the present application.
  • Figure 7b- Figure 7g is a schematic diagram of the preparation process of the first full-color quantum dot display device provided by the embodiment of the present application;
  • Figure 8a- Figure 8c is a schematic diagram of the preparation process of the second full-color quantum dot display device provided by the embodiment of the present application;
  • Figure 9a- Figure 9d is a schematic diagram of the preparation process of the third full-color quantum dot display device provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a fourth full-color quantum dot display device provided by an embodiment of the present application.
  • alkaline liquid is used as a developer to pattern quantum dot films to form patterned quantum dot film layers;
  • alkaline liquids can reduce the luminescent properties of quantum dots.
  • the quantum dot material includes a quantum dot body 1 and a ligand 2 coordinated on the surface of the quantum dot body 1;
  • the ligand 2 includes: a coordination group R1 combined with the surface of the quantum dot body 1, a decomposable group R2 connected to the coordination group R1, and an energy transfer group R3 connected to the decomposable group R2;
  • the decomposable group R2 is configured to decompose and generate a polarity-changing group R4, and the energy transfer group R3 is configured to transfer carriers in the quantum dot material and prevent the quantum dot body 1 from emitting light.
  • the emission color of the quantum dot body may be red, green, blue or white, and of course, other colors may also be used, which are not listed here.
  • the luminescence spectrum of the quantum dot material is different, which can be determined according to the actual situation.
  • the material of the quantum dot body can be cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), zinc selenide (ZnSe), indium phosphide (InP), sulfide Lead (PbS), copper indium sulfur (CuInS 2 ), zinc oxide (ZnO), cesium lead chloride (CsPbCl 3 ), cesium lead bromide (CsPbBr 3 ), cesium lead iodide (CsPbI 3 ), cadmium sulfide/zinc sulfide (CdS /ZnS), cadmium selenide/zinc sulfide (CdSe/ZnS), zinc selenide (ZnSe), indium phosphide/zinc sulfide (InP/ZnS), lead sulfide/zinc sulfide (P)
  • the quantum dot body 1 is coordinated with the ligand 2, and the ligand 2 is wrapped on the surface of the quantum dot body 1 to protect the quantum dot body 1 function, and promote better dispersion of the quantum dot body 1 in the solution.
  • the coordinating group R1 in Ligand 2 can be a functional group with certain reactivity, or it can also be a group with positive or negative charge;
  • the functional group, or the group with positive or negative charge, and the coordinating group R1 can be combined with the surface of the quantum dot body to assist ligand 2 to coordinate on the surface of the quantum dot body 1 .
  • the coordinating group R1 may include amino, polyamino, hydroxyl, polyhydroxy, mercapto, polymercapto, thioether, polythioether, phosphine, phosphine oxide and other functional groups or elements capable of binding to the surface of quantum dots.
  • the coordination group R1 may include -(CH 2 )n-COOH, wherein n is a natural number.
  • the decomposable group R2 in the ligand 2 can be decomposed under certain conditions to generate a polarity-changing group R4. Specifically, after the decomposable group R2 is decomposed, a part of the decomposable group R2 and the energy transfer group R3 are broken from the ligand 2, and the remaining part of the decomposable group R2 generates a polarity-changing group R4.
  • the decomposable group R2 may include a photolyzable group or a pyrolyzable group.
  • the decomposable group R2 may include a group with a conjugated double bond system, for example: a carbon-oxygen double bond, a carbon-carbon double bond, a carbon-nitrogen double bond, etc.; or, the decomposable group R2 may also include It has double electron-pushing groups, such as: dimethoxy, di-secondary amino, etc.
  • the decomposable group R2 may include
  • the decomposable group R2 can be directly connected with the energy transfer group R3; or, as shown in FIG. 2, the decomposable group R2 can be connected with the energy transfer group R3 through -(CH2)n-, wherein, n is a natural number.
  • the polarity-altering group R4 is generated by cleavage such that the solubility of Ligand 2 after cleavage is opposite in polarity to the solubility of Ligand 2 before cleavage occurs. Specifically, if ligand 2 after cleavage is oil-soluble, ligand 2 before cleavage is water-soluble; or, if ligand 2 after cleavage is water-soluble, ligand 2 before cleavage It is oil soluble.
  • the energy transfer group R3 in the ligand 2 can transfer carriers in the quantum dot material and prevent the quantum dot body 1 from emitting light.
  • the quantum dot material receives light energy or electrical energy from the outside, The electrons and holes in the quantum dot material both transition from the ground state to the excited state, and the electrons in the excited state combine with the holes in the excited state to generate excitons, which radiate energy and emit light.
  • the energy transfer group R3 can transfer the carriers (electrons or holes) in the quantum dot material, specifically, the energy transfer group R3 can transfer the original charge into the quantum dot body 1
  • the electrons or holes of the energy transfer group R3 are transferred to the microscopic space where the energy transfer group R3 is located, reducing or even avoiding the combination of electrons in the excited state and holes in the excited state in the quantum dot body 1, and avoiding the generation of excitons in the quantum dot body 1 , thereby preventing the quantum dot body 1 from emitting light.
  • the quantum dot material provided in the embodiment of the present application, by setting the ligand 2 to include the coordination group R1, the decomposable group R2 and the energy transfer group R3 sequentially connected to the quantum dot body 1, in the preparation of the patterned
  • the quantum dot film layer is used, the quantum dot film is covered by a mask, and light is used to irradiate some areas of the quantum dot film, so that the quantum dot material in the illuminated area decomposes and generates a polarity-changing group R4.
  • the good solvent of dot material cleans the quantum dot thin film to complete patterning, wherein, the polarity change group R4 is insoluble in the good solvent of quantum dot material (the quantum dot material of irradiated area stays, the quantum dot material of the area not irradiated by light be cleaned). In this way, a simple and efficient way of patterning the quantum dot film layer is provided, and the damage of the quantum dot film layer caused by developing the quantum dot film with an alkaline solution can be avoided.
  • the energy transfer group R3 exists in the quantum dot material in the area not irradiated by light. In the process of cleaning with solvent, even if this part of the material is not cleaned and there is residue on the substrate, because the energy transfer group R3 can transfer
  • the carrier in the quantum dot material prevents the quantum dot material from emitting light, and largely avoids the cross-color problem caused by the residual quantum dot material.
  • the energy transfer group R3 is an electron donating group, and the energy transfer group R3 is configured to transfer holes in the quantum dot material and prevent the quantum dot body 1 from emitting light.
  • the energy transfer group R3 when the energy transfer group R3 is an electron-donating group, when the quantum dot material absorbs external energy to generate excited state holes, the energy transfer group R3 can donate electrons to transfer to the quantum dot body 1 The holes in the excited state (or the holes that are still in the ground state are transferred), thereby reducing or avoiding the formation of excitons in the quantum dot body 1, and achieving the effect of preventing the quantum dot body 1 from emitting light.
  • the energy transfer group R3 is an electron-withdrawing group, and the energy transfer group R3 is configured to transfer electrons in the quantum dot material and prevent the quantum dot body 1 from emitting light.
  • the energy transfer group R3 when the energy transfer group R3 is an electron-withdrawing group, when the quantum dot material absorbs external energy to generate electrons in an excited state, the energy transfer group R3 can attract electrons to transfer the excited electrons that migrate to the quantum dot body 1. electrons in the ground state (or transfer electrons still in the ground state), thereby reducing or avoiding the formation of excitons in the quantum dot body 1, and achieving the effect of preventing the quantum dot body 1 from emitting light.
  • the energy transfer group R3 prevents the light emission of the quantum dot body 1, effectively avoiding the cross-color caused by the residual quantum dot material question.
  • the energy transfer group R3 includes an oligothiophene group or a polythiophene group.
  • the degree of polymerization of the oligothiophene-like group or the polythiophene-like group can be determined according to their respective effects on the solubility of the quantum dot material. Specifically, the lower the polymerization degree of the oligothiophene group or the polythiophene group is, the better the solubility of the quantum dot material is.
  • the solubility of the quantum dot material in the corresponding solvent can be improved.
  • the lower the molecular weight of the oligothiophene group or polythiophene group the better the solubility of the quantum dot material. Specifically, it may be determined according to actual conditions, and no limitation is made here.
  • the general formula of the oligothiophene group or the polythiophene group is
  • the value range of the degree of polymerization m is 3-10.
  • both X1 and X2 are electron-withdrawing groups.
  • electron-withdrawing groups may include: cyano (-CN), sulfonic acid (-SO 3 H), formyl (-CHO), acyl (-COR), carboxyl (-COOH), nitro (- NO 2 ), tertiary ammonium cation (-NR 3 ), trihalomethyl (-CX 3 ); wherein, R is an alkane, and X is a halogen.
  • X1 and X2 may be any one of the above electron-withdrawing groups.
  • the energy transfer group R3 is an oligothiophene group or a polythiophene group, and the oligothiophene group or the polythiophene group is also connected with an electron-withdrawing group X1 and X2 makes the oligothiophene group or polythiophene group, which is originally an electron-withdrawing group, have a stronger electron-withdrawing ability.
  • the energy transfer group R3 Electrons can be attracted to transfer the electrons in the excited state in the quantum dot body 1 (or the electrons still in the ground state), thereby reducing or avoiding the formation of excitons in the quantum dot body 1, and achieving the effect of preventing the quantum dot body 1 from emitting light.
  • the energy transfer group R3 includes
  • the energy transfer group R3 includes
  • the decomposable group R2 includes a pyrolyzable group or a photolyzable group.
  • the decomposable group R2 may include a group with a conjugated double bond system, for example: a carbon-oxygen double bond, a carbon-carbon double bond, a carbon-nitrogen double bond, etc.; or, the decomposable group R2 may also include It has double electron-pushing groups, such as: dimethoxy, di-secondary amino, etc.
  • Embodiments of the present application also provide a method for patterning a quantum dot film layer, as shown in FIG. 3 , the method includes:
  • CdSe cadmium selenide
  • TOP-Se trioctylphosphine cadmium
  • the cleaning process is divided into three steps: 1 Add 100 mL of acetone/methanol mixed solution with a volume ratio of 7:3 into a three-necked round-bottomed flask containing quantum dot solution, and stir magnetically at 60 °C for 10 min.
  • n-octane quantum dot solution with a concentration of 20mg/ml in a three-neck round bottom flask, stir and heat at 80°C, vacuumize, and pass nitrogen three times, then inject 5ml of ligand molecule 2 with a concentration of 60mg/ml (comprising R1 group as shown in Figure 1, R2 group and R3 group) n-octane solution, reacted for 4 hours, after repeating the cleaning process of step S9013, dissolved in n-octane for subsequent use.
  • the quantum dot film can be formed on the substrate by printing or coating process, and the quantum dot film is a whole-surface film.
  • the quantum dot material in the area irradiated by light undergoes a chemical reaction as shown in Figure 1 or Figure 2, so that the decomposable group R2 decomposes and generates a polarity-changing group R4, so that the illuminated area
  • the ligands of the quantum dot material include R1 group and R4 group, while the ligands of the quantum dot material in the area not irradiated by light still include R1 group, R2 group and R3 group.
  • the polarity-changing group R4 is generated by decomposing, so that the solubility of the ligand 2 after the cleavage is opposite in polarity to the solubility of the ligand 2 before the cleavage occurs. Specifically, if ligand 2 after cleavage is oil-soluble, ligand 2 before cleavage is water-soluble; or, if ligand 2 after cleavage is water-soluble, ligand 2 before cleavage It is oil soluble.
  • the quantum dot film is cleaned with a good solvent for the quantum dot material, wherein the polarity-changing group R4 is insoluble in the good solvent for the quantum dot material, so that the quantum dot material in the illuminated area remains, and the area that is not irradiated by light The quantum dot material in the area is washed away, thereby obtaining a patterned quantum dot film layer.
  • the patterning method of the quantum dot film layer provided by the embodiments of the present application is simple and efficient, and avoids damage to the quantum dot film layer caused by developing the quantum dot film with an alkaline solution.
  • S903 cover the quantum dot film with a mask, and irradiate a part of the quantum dot film with light, so that the quantum dot material in the illuminated area is decomposed and generates polarity-changing radicals.
  • the group includes:
  • the photolyzable group is usually a UV-decomposable group, so ultraviolet light is used for irradiation; in addition, since infrared light has a strong thermal effect, local area heating can be achieved through infrared light irradiation
  • the purpose is to decompose the thermally decomposable groups.
  • S904 cleaning the quantum dot film to obtain a patterned quantum dot film layer includes:
  • the patterning method of the quantum dot film layer provided by the embodiments of the present application is simple and efficient, and avoids damage to the quantum dot film layer caused by developing the quantum dot film with an alkaline solution.
  • An embodiment of the present application provides a quantum dot display device, comprising a quantum dot film layer made of the quantum dot material as described above.
  • the ligand 2 is provided in the quantum dot material of the quantum dot film layer, and the ligand 2 includes a coordination group R1, which is connected to the quantum dot body 1 in sequence,
  • the decomposable group R2 and the energy transfer group R3, when preparing the patterned quantum dot film layer, are blocked on the quantum dot film through the mask plate, and are irradiated with light on some areas of the quantum dot film, so that the area of the illuminated area Quantum dot material decomposes and generates polarity change group R4, adopts the good solvent of quantum dot material to clean quantum dot thin film to complete patterning, wherein, polarity change group R4 is insoluble in the good solvent of quantum dot material (the light area The quantum dot material remains, and the quantum dot material in the areas not exposed to light is washed away). In this way, a simple and efficient way of patterning the quantum dot film layer is provided, and the damage of the quantum dot
  • the quantum dot display device is a quantum dot light-emitting device. As shown in FIG. 4, the quantum dot light-emitting device includes a first pole 11, a second pole 13, and a Quantum dot film layer 12 between 13.
  • the first pole 11 may be a cathode, and the second pole 13 may be an anode; or, the first pole 11 may be an anode, and the second pole 13 may be a cathode.
  • the light emitting principle of the quantum dot film layer in the quantum dot light emitting device is electroluminescence.
  • the quantum dot light emitting device further includes a hole transport layer 16 , a hole injection layer 17 and an electron transport layer 14 .
  • the quantum dot light-emitting device includes an upright structure as shown in FIG. 5 and an inverted structure as shown in FIG. 6 .
  • the quantum dot light-emitting device with an upright structure includes a second pole 13, a hole injection layer (HI) 17, a hole transport layer (HT) 16, and a quantum dot film layer that are sequentially stacked on the substrate. 12.
  • the second pole 13 is conductive glass; specifically, the conductive glass is ultrasonically cleaned with isopropanol, water, and acetone, and treated with ultraviolet light for 5-10 minutes.
  • the conductive glass can be obtained by forming an ITO (indium tin oxide) film on the glass, or the conductive glass can be obtained by doping fluorine in the glass (SiO2), and the conductive glass doped with fluorine can be called FTO .
  • the hole injection layer 17 is prepared by spin coating, evaporation, or inkjet printing.
  • the hole injection layer can choose PEDOT:PSS (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate); wherein, the film-forming temperature of PEDOT is 130-150°C.
  • the speed of the homogenizer can be set at 500-2500rpm to adjust the thickness of the film layer.
  • the hole transport layer 16 is prepared by spin coating, evaporation, or inkjet printing, for example, 5 mg/ml-30 mg/ml TFB (poly-9,9-dioctylfluorene -CO-N-4-butylphenyldiphenylamine) is dissolved in chlorobenzene solution.
  • TFB poly-9,9-dioctylfluorene -CO-N-4-butylphenyldiphenylamine
  • the speed of the homogenizer can be set at 2000rpm-4000rpm, and then annealed at 235°C for 30mins.
  • the main component of the hole transport layer 16 is TFB, and in practical application, the main component of the hole transport layer 16 may also be polyvinylcarbazole (PVK).
  • the electron transport layer 14 may be a zinc oxide-based nanoparticle film, specifically, zinc oxide nanoparticles are spin-coated, and then heated at 80-120° C. to form a film.
  • the electron transport layer material can also be ion-doped zinc oxide nanoparticles, such as magnesium (Mg), indium (In), aluminum (Al), gallium (Ga) doped magnesium oxide nanoparticles and the like.
  • the speed of the homogenizer can be set at 500-2500rpm to adjust the thickness of the film layer.
  • the material of the first pole 11 can be a metal material, such as aluminum (Al), silver (Ag) or indium zinc oxide (IZO), which can be prepared specifically by evaporation or magnetron sputtering.
  • a metal material such as aluminum (Al), silver (Ag) or indium zinc oxide (IZO), which can be prepared specifically by evaporation or magnetron sputtering.
  • the quantum dot light-emitting device with an inverted structure includes a first pole 11, an electron transport layer 14, a quantum dot film layer 12, a hole transport layer 16, a hole injection layer 17 and The second pole 13, wherein the first pole 11 is a cathode, and the second pole 13 is an anode.
  • the manufacturing process of the quantum dot light-emitting device with an inverted structure is similar to that of the quantum dot light-emitting device with an upright structure, but the manufacturing process is in the opposite order, as follows: prepare the first electrode 11 and clean it, prepare the electron transport layer 14, and prepare the quantum dot light-emitting device.
  • Dot film layer 12, preparation of hole transport layer 16, preparation of hole injection layer 17 and preparation of second electrode 13 the specific process can refer to the preparation process of quantum dot light emitting device with upright structure.
  • the material of the electron transport layer can also be a zinc oxide film
  • the preparation process of the zinc oxide film is as follows: 1g of zinc acetate (or zinc nitrate, etc.) Dissolve in 5mL of a mixed solution of ethanolamine and n-butanol. Put the conductive glass provided with the first pole 11 on the glue homogenizer, drop 90-120 ⁇ L zinc precursor solution onto the first pole 11, and spin-coat, and place the above-mentioned conductive glass provided with the first pole 11 on the On a hot stage at 250-300 degrees, heat and evaporate the solvent, and then introduce the polyetherimide film layer.
  • Figure 7a shows a full-color quantum dot light-emitting device
  • the quantum dot light-emitting device includes a substrate 100, and a first pole 11 located on the substrate 100, an electron transport layer 14, a pixel definition layer 18, a red quantum dot Dot film layer 121 , green quantum dot film layer 122 , blue quantum dot film layer 123 , hole transport layer 16 , hole injection layer 17 and second pole 13 .
  • the full-color quantum dot light-emitting device may also include other structures or components, for details, reference may be made to related technologies, which will not be repeated here.
  • a full-color quantum dot light-emitting device can be prepared, as shown in Figure 7b-7g, the red quantum dot film layer 121, the green quantum dot film layer 121
  • the patterned preparation method of the quantum dot film layer 122 and the blue quantum dot film layer 123 is as follows:
  • the specific structure of the substrate 500 is not limited here, and its specific structure can be determined according to different types of quantum dot display devices.
  • the quantum dot display device is a quantum dot color conversion device
  • the quantum dot color conversion device includes a light emitting substrate and a quantum dot film layer on the light emitting substrate.
  • the light emitting principle of the quantum dot film layer in the quantum dot color conversion device is photoluminescence.
  • the light emitting substrate may be an OLED light emitting substrate, for example, a white light OLED light emitting substrate, or a blue light OLED light emitting substrate.
  • a pixel definition layer 18 is provided on a blue OLED light-emitting substrate 200, and a red quantum dot film layer 121 as shown in FIG. 8b is sequentially formed in the structure shown in FIG.
  • a red quantum dot film layer 121 as shown in FIG. 8b is sequentially formed in the structure shown in FIG.
  • the green quantum dot film layer 122 shown in Figure 8c since the blue OLED light-emitting substrate 200 itself emits blue light, the blue light can excite the red quantum dot film layer 121 to emit red light, and the blue light can also excite the green quantum dot film layer 122 to emit green light. Thus, a full-color quantum dot display device is obtained.
  • the specific structure of the blue OLED light-emitting substrate 200 is not limited, and may be determined according to actual conditions.
  • a pixel definition layer 18 is provided on a white OLED light-emitting substrate 300, and a red quantum dot film layer 121 as shown in FIG. 9b is sequentially formed in the structure shown in FIG.
  • the green quantum dot film layer 122 as shown in FIG. 9c is formed into the blue quantum dot film layer 123 as shown in FIG. 9d , thereby obtaining another full-color quantum dot display device.
  • the specific structure of the white OLED light-emitting substrate 300 is not limited, and may be determined according to actual conditions.
  • the light-emitting substrate can be a Micro LED (Micro Light Emitting Diode) light-emitting diode 400, and the light-emitting color of the Micro LED light-emitting substrate 400 can be blue.
  • a full-color quantum dot display device based on Micro LED technology can also be obtained.
  • the specific structure of the above-mentioned blue Micro LED light-emitting substrate 400 is not limited here, and can be determined according to actual conditions.

Abstract

本申请提供了一种量子点材料、量子点膜层的图案化方法及量子点显示器件,涉及显示技术领域,该量子点材料包括量子点本体和配体;配体包括:配位基团、可分解基团和能量转移基团;可分解基团被配置为能够分解并生成极性改变基团,能量转移基团被配置为能够转移量子点材料中的载流子并阻止量子点本体发光。在制备图案化的量子点膜层时,通过掩膜版遮挡在量子点薄膜上,并采用光照射在量子点薄膜的部分区域,使得光照区域的量子点材料发生分解并生成极性改变基团,采用量子点材料的良溶剂清洗量子点薄膜以完成图案化,极性改变基团不溶于量子点材料的良溶剂。上述量子点膜层的图案化方法可避免使用碱性溶液对量子点薄膜进行显影造成的膜层破坏。

Description

量子点材料、量子点膜层的图案化方法及量子点显示器件 技术领域
本申请涉及显示技术领域,尤其涉及一种量子点材料、量子点膜层的图案化方法及量子点显示器件。
背景技术
随着量子点技术的深入发展,QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示技术的研究日益深入,量子点发光效率也不断提升,进一步采用新的工艺和技术来实现其产业化已成为趋势。其中,对量子点薄膜进行图案化以制备高分辨率的显示产品是其中一项重要的议题。
发明内容
本申请的实施例采用如下技术方案:
一方面,本申请的实施例提供了一种量子点材料,包括量子点本体以及配位在所述量子点本体表面的配体;
所述配体包括:与所述量子点本体表面相结合的配位基团,与所述配位基团连接的可分解基团,以及与所述可分解基团连接的能量转移基团;
其中,所述可分解基团被配置为能够分解并生成极性改变基团,所述能量转移基团被配置为能够转移所述量子点材料中的载流子并阻止所述量子点本体发光。
在本申请的一些实施例中,所述能量转移基团为给电子基团,所述能量转移基团被配置为能够转移所述量子点材料中的空穴并阻止所述量子点本体发光。
在本申请的一些实施例中,所述能量转移基团为吸电子基团,所述能量转移基团被配置为能够转移所述量子点材料中的电子并阻止所述量子点本体发光。
在本申请的一些实施例中,所述能量转移基团包括低聚噻吩类基团或聚噻吩类基团。
在本申请的一些实施例中,所述低聚噻吩类基团或所述聚噻吩类基团的通式均为
Figure PCTCN2021125003-appb-000001
中任意的一个。
在本申请的一些实施例中,n的取值范围为3-10。
在本申请的一些实施例中,X1和X2均为吸电子基团。
在本申请的一些实施例中,所述能量转移基团包括
Figure PCTCN2021125003-appb-000002
在本申请的一些实施例中,所述能量转移基团包括
Figure PCTCN2021125003-appb-000003
在本申请的一些实施例中,所述可分解基团包括可热解基团或可光解基团。
另一方面,本申请的实施例还提供了一种量子点膜层的图案化方法,所述方法包括:
采用如上所述的量子点材料形成量子点溶液;
采用所述量子点溶液在基板上形成量子点薄膜;
用掩膜版遮挡在所述量子点薄膜上,并采用光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;
清洗所述量子点薄膜中除所述光照区域之外的区域,得到图案化的所述量子点膜层。
在本申请的一些实施例中,所述用掩膜版遮挡在所述量子点薄膜上,并采用光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团包括:
用掩膜版遮挡在所述量子点薄膜上,并采用紫外光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;其中,所述可分解基团为可光解基团;
或者,
用掩膜版遮挡在所述量子点薄膜上,并采用红外光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;其中,所述可分解基团为可热解基团。
在本申请的一些实施例中,所述清洗所述量子点薄膜,得到图案化的所述量子点膜层包括:
采用所述量子点材料的良溶剂清洗所述量子点薄膜中除所述光照区域之外的区域,形成图案化的所述量子点膜层;其中,所述极性改变基团不溶于所述量子点材料的良溶剂。
又一方面,本申请的实施例提供了一种量子点显示器件,包括如上所述的量子点材料制备的量子点膜层。
在本申请的一些实施例中,所述量子点显示器件为量子点发光器件,所述量子点发光器件包括第一极、第二极、以及位于所述第一极和所述第二极之间的所述量子点膜层。
在本申请的一些实施例中,所述量子点显示器件为量子点色转换器件,所述量子点色转换器件包括发光基板以及位于所述发光基板上的所述量子点膜层。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1和图2为本申请实施例提供的两种量子点材料的光解反应示意图;
图3为本申请实施例提供的一种量子点膜层的图案化方法流程图;
图4-图7a为本申请实施例提供的四种电致发光的量子点显示器件的结构示意图;
图7b-图7g为本申请实施例提供的第一种全彩化的量子点显示器件的制备过程示意图;
图8a-图8c为本申请实施例提供的第二种全彩化的量子点显示器件的制备过程示意图;
图9a-图9d为本申请实施例提供的第三种全彩化的量子点显示器件的制备过程示意图;
图10为本申请实施例提供的第四种全彩化的量子点显示器件的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
相关技术中常采用光刻的方式制备图案化的量子点膜层,在光刻过程中,需要采用碱性液体作为显影液以将量子点薄膜进行图案化处理,形成图案化的量子点膜层;然而,碱性液体会降低量子点的发光性能。
基于此,本申请的实施例提供了一种量子点材料、量子点膜层图案化的方法以及量子点显示器件。参考图1所示,该量子点材料包括量子点本体1以及配位在量子点本体1表面的配体2;
配体2包括:与量子点本体1表面相结合的配位基团R1,与配位基团R1连接的可分解基团R2,以及与可分解基团R2连接的能量转移基团R3;
其中,可分解基团R2被配置为能够分解并生成极性改变基团R4,能量转移基团R3被配置为能够转移量子点材料中的载流子并阻止量子点本体1发光。
在示例性的实施例中,量子点本体的发光颜色可以为红色、绿色、蓝色或者白色,当然,还可以是其它颜色,这里不进行一一列举。
在实际应用中,在量子点本体上配位的配体不同时,量子点材料的发光频谱存在差异,具体可以根据实际情况确定。
在示例性的实施例中,量子点本体的材料可以为硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硒化锌(ZnSe)、磷化铟(InP)、硫化铅(PbS)、硫铟铜(CuInS 2)、氧化锌(ZnO)、铯铅氯(CsPbCl 3)、铯铅溴(CsPbBr 3)、铯铅碘(CsPbI 3)、硫化镉/硫化锌(CdS/ZnS)、硒化镉/硫化锌(CdSe/ZnS)、硒化锌(ZnSe)、磷化铟/硫化锌(InP/ZnS)、硫化铅/硫化锌(PbS/ZnS)、砷化铟(InAs)、砷化镓铟(InGaAs)、氮化镓铟(InGaN)、GaN(氮化镓)、碲化锌(ZnTe)、硅(Si)、锗点(Ge)、碳点(C)以及具有上述成分的其他纳米尺度材料中的一种或多种的组合。
在示例性的实施例中,通过对量子点本体1进行表面处理,使得量子点本体1与配体2配位,配体2包裹在量子点本体1表面,以对量子点本体1起到保护作用,并促进量子点本体1更好的分散在溶液中。
在示例性的实施例中,配体2中的配位基团R1可以是具有一定反应活性的官能团,或者,还可以是带有正电荷或负电荷的基团;无论是具有一定反应活性的官能团,还是带有正电荷或负电荷的基团,配位基团R1均能够与量子点本体表面进行结合,以辅助配体2配位在量子点本体1表面。
具体的,配位基团R1可以包括氨基、多氨基、羟基、多羟基、巯基、多巯基、硫醚、多硫醚、膦、氧膦等能与量子点表面进行结合的官能团或元素。
示例性的,参考图2所示,配位基团R1可以包括-(CH 2)n-COOH,其中,n为自然数。
在示例性的实施例中,配体2中的可分解基团R2能够在一定条件下分解,并生成极性改变基团R4。具体的,可分解基团R2分解后,使得可分解基团R2中的一部分和能量转移基团R3从配体2中断裂掉,剩余部分的可分解基团R2生成极性改变基团R4。
示例性的,可分解基团R2可以包括可光解基团或可热解基团。
示例性的,可分解基团R2可以包括具有共轭双键体系的基团,例如:具有碳氧双键,碳碳双键,碳氮双键等;或者,可分解基团R2还可以包括具有双推电子基团,例如:二甲氧基,二仲氨基等。
示例性的,参考图2所示,可分解基团R2可以包括
Figure PCTCN2021125003-appb-000004
示例性的,可分解基团R2可以与能量转移基团R3直接连接;或者,参考图2所示,可分解基团R2可以通过-(CH2)n-与能量转移基团R3连接,其中,n为自然数。
在示例性的实施例中,通过分解生成极性改变基团R4,使得发生裂解之后的配体2的溶解性与发生裂解之前的配体2的溶解性的极性相反。具体来说,若发生裂解之后的配体2为油溶性,则发生裂解之前的配体2为水溶性;或者,若发生裂解之后的配体2为水溶性,则发生裂解之前的配体2为油溶性。
在示例性的实施例中,配体2中的能量转移基团R3能够转移量子点材料中的载流子并阻止量子点本体1发光。为了说明能量转移基团R3转移量子点材料中的载流子并阻止量子点本体1发光的原理,需要说明量子点材料的发光原理:当量子点材料收到来自外界的光能或者电能时,量子点材料中的电子和空穴均从基态跃迁到激发态,激发态的电子和激发态的空穴结合后生成激子,激子辐射出能量而发光。
在本申请的实施例中,由于能量转移基团R3能够转移量子点材料中的载流子(电子或者空穴),具体来说,能量转移基团R3能够将原本迁移到量子点本体1中的电子或者空穴转移到能量转移基团R3所在的微观空间内,减少甚至避免了量子点本体1中激发态的电子和激发态的空穴结合,避免了在量子点本体1中生成激子,从而阻止量子点本体1发光。
在本申请的实施例提供的量子点材料中,通过设置配体2中包括与 量子点本体1依次连接的配位基团R1、可分解基团R2和能量转移基团R3,在制备图案化的量子点膜层时,通过掩膜版遮挡在量子点薄膜上,并采用光照射在量子点薄膜的部分区域,使得光照区域的量子点材料发生分解并生成极性改变基团R4,采用量子点材料的良溶剂清洗量子点薄膜以完成图案化,其中,极性改变基团R4不溶于量子点材料的良溶剂(光照区域的量子点材料留下,未被光线照射的区域的量子点材料被清洗掉)。这样,提供了一种简单、高效的量子点膜层图案化的方式,且可以避免使用碱性溶液对量子点薄膜进行显影造成的量子点膜层破坏。
另外,未被光线照射的区域的量子点材料中存在能量转移基团R3,在采用溶剂清洗的过程中,即使该部分材料未清洗干净、在基板上存在残留,由于能量转移基团R3能够转移量子点材料中的载流子而阻止量子点材料发光,很大程度上避免了由于量子点材料残留造成的串色问题。
在本申请的一些实施例中,能量转移基团R3为给电子基团,能量转移基团R3被配置为能够转移量子点材料中的空穴并阻止量子点本体1发光。
需要说明的是,能量转移基团R3为给电子基团时,在量子点材料吸收外界能量生成激发态的空穴时,能量转移基团R3能够给出电子以转移向量子点本体1中迁移的激发态的空穴(或者转移还处于基态的空穴),从而减少或避免在量子点本体1中形成激子,达到阻止量子点本体1发光的效果。
在本申请的一些实施例中,能量转移基团R3为吸电子基团,能量转移基团R3被配置为能够转移量子点材料中的电子并阻止量子点本体1发光。
需要说明的是,能量转移基团R3为吸电子基团时,在量子点材料吸收外界能量生成激发态的电子时,能量转移基团R3能够吸引电子以转移向量子点本体1中迁移的激发态的电子(或者转移还处于基态的电子),从而减少或避免在量子点本体1中形成激子,达到阻止量子点本体1发光的效果。
在实际对量子点膜层进行图案化处理时,即使存在部分残留的量子点材料,由于能量转移基团R3阻止了量子点本体1的发光,有效的避免了由于量子点材料残留造成的串色问题。
在本申请的一些实施例中,能量转移基团R3包括低聚噻吩类基团或聚噻吩类基团。
在示例性的实施例中,低聚噻吩类基团或聚噻吩类基团的聚合度可以根据其各自对量子点材料的溶解性的影响确定。具体的,低聚噻吩类基团或聚噻吩类基团的聚合度越低,量子点材料的溶解性越好。
当然,在低聚噻吩类基团或聚噻吩类基团上含有促进溶解的侧链或基团时,可以提高量子点材料在相应溶剂中的溶解度。另外,低聚噻吩类基团或聚噻吩类基团的分子量越低,量子点材料的溶解性越好。具体可以根据实际情况确定,这里不进行限制。
在本申请的一些实施例中,低聚噻吩类基团或聚噻吩类基团的通式均为
Figure PCTCN2021125003-appb-000005
中任意的一个。
在示例性的实施例中,聚合度m的取值范围为3-10。
在示例性的实施例中,X1和X2均为吸电子基团。
具体的,吸电子基团可以包括:氰基(-CN)、磺酸基(-SO 3H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)、硝基(-NO 2)、叔胺正离子(-NR 3)、三卤甲基(-CX 3);其中,R为烷烃,X为卤素。
在示例性的实施例中,X1和X2可以为如上吸电子基团中任意的一个。
在本申请的实施例中,能量转移基团R3为低聚噻吩类基团或聚噻吩类基团,且低聚噻吩类基团或聚噻吩类基团上还连接有吸电子基团X1和X2,使得原本就属于吸电子基团的低聚噻吩类基团或聚噻吩类基团有更强的吸电子能力,在量子点材料吸收外界能量生成激发态的电子时,能量转移基团R3能够吸引电子以转移位于量子点本体1中的激发态的电子(或者转移还处于基态的电子),从而减少或避免在量子点本体1中形成激子,达到阻止量子点本体1发光的效果。
需要说明的是,本申请的实施例中涉及到的吸电子基团和给电子基团是相对的概念,没有明确的划分界限。
在本申请的一些实施例中,能量转移基团R3包括
Figure PCTCN2021125003-appb-000006
在本申请的一些实施例中,能量转移基团R3包括
Figure PCTCN2021125003-appb-000007
在本申请的一些实施例中,可分解基团R2包括可热解基团或可光解基团。
示例性的,可分解基团R2可以包括具有共轭双键体系的基团,例如:具有碳氧双键,碳碳双键,碳氮双键等;或者,可分解基团R2还可以包括具有双推电子基团,例如:二甲氧基,二仲氨基等。
本申请的实施例还提供了一种量子点膜层的图案化方法,参考图3所示,该方法包括:
S901、采用如上所述的量子点材料形成量子点溶液;
下面以硒化镉(CdSe)量子点为例,说明量子点材料的溶液制备方法,具体如下:
S9011、CdSe核的制备;
将0.4mmol的氧化镉(CdO),3.2mmol的油酸(OA),和10mL的十八烯(ODE)加入50mL三颈圆底烧瓶中,在120℃的油浴中加热,抽真空1h,通氮气,升温至240℃,此时,三口瓶内溶液呈澄清透明状态。加入1g的三辛基膦(TOP)和3g十六胺,降温至150℃,抽真空30min,通氮气,升温至280℃。快速注入三辛基膦化镉(TOP-Se)澄清溶液,该溶液包括2mmol的Se,2mL的三辛基膦和2.5mL的十八烯,在手套箱中搅拌至液体变为黄色透明状,保温3min,迅速降至室温,用体积比为3:1的甲醇/氯仿溶液多次萃取后,将量子点本体分散于氯仿中待用。
S9012、硫化锌(ZnS)壳层前驱体的制备;
在三颈圆底烧瓶中加入0.3mmoL的醋酸锌,1mmol的双对氯苯基 三氯乙烷(DDT),6mL的十八烯,4mL的油胺(OLA),在90℃下搅拌加热,并抽真空通氮气三次后,备用。
S9013、壳层包覆过程;
在三颈圆底烧瓶中加入2mL的硒化镉氯仿溶液,2mL的十八烯,200μL的油酸,120℃抽真空-换氮气三次后,升温至240℃,以1.5mL/h的速度ZnS壳层前驱体转移至主反应体系硒化镉氯仿溶液中。
S9013、清洗过程;
为了彻底清除游离配体,清洗过程分为三步:①将100mL体积比为7:3丙酮/甲醇混合溶液加入装有量子点溶液的三颈圆底烧瓶中,60℃下磁力搅拌10min后,离心得到沉淀;②在三颈圆底烧瓶中,将沉淀完全分散于20mL甲苯,再加入100mL体积比为3:7的丙酮/甲醇混合溶液,60℃下磁力搅拌10min后,离心得到沉淀;③将沉淀完全分散于20mL甲苯,加入三颈圆底烧瓶中,再加入20mL冰醋酸和70mL甲醇,70℃下搅拌10min后,离心得到沉淀,将沉淀放入真空干燥箱中60℃烘干,用研钵研磨成粉末备用。
S9014、配体交换过程;
在三颈圆底烧瓶中配制浓度为20mg/ml的5ml正辛烷量子点溶液,在80℃下搅拌加热、抽真空、通氮气三次后,注入5ml的浓度为60mg/ml的配体分子2(包括如图1中所示的R1基团、R2基团和R3基团)的正辛烷溶液,反应4个小时,在重复步骤S9013、的清洗过程后,溶解在正辛烷中备用。
这样,就完成了配体包括如图1中所示的R1基团、R2基团和R3基团的量子点材料的溶液的制备。
S902、采用量子点溶液在基板上形成量子点薄膜;
在实际应用中,可以采用印刷或者涂布发工艺在基板上形成量子点薄膜,量子点薄膜是一层整面性的薄膜。
这里对于上述基板的具体类型和结构不做限定,具体可以根据实际情况确定。
S903、用掩膜版遮挡在量子点薄膜上,并采用光照射在量子点薄膜的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团R4;
在实际应用中,被光线照射的区域中的量子点材料发生如图1或如 图2所示的化学反应,使得可分解基团R2分解并生成极性改变基团R4,这样,使得光照区域的量子点材料的配体包括R1基团和R4基团,而未被光线照射的区域的量子点材料的配体仍旧包括R1基团、R2基团和R3基团。
S904、清洗量子点薄膜中除光照区域之外的区域,得到图案化的量子点膜层。
具体的,通过分解生成极性改变基团R4,使得发生裂解之后的配体2的溶解性与发生裂解之前的配体2的溶解性的极性相反。具体来说,若发生裂解之后的配体2为油溶性,则发生裂解之前的配体2为水溶性;或者,若发生裂解之后的配体2为水溶性,则发生裂解之前的配体2为油溶性。
在实际应用中,采用量子点材料的良溶剂清洗量子点薄膜,其中,极性改变基团R4不溶于量子点材料的良溶剂,这样,光照区域的量子点材料留下,未被光线照射的区域的量子点材料被清洗掉,从而得到图案化的量子点膜层。本申请的实施例提供的量子点膜层的图案化方法简单、高效,避免了使用碱性溶液对量子点薄膜进行显影造成的量子点膜层破坏。
在本申请的一些实施例中,S903、用掩膜版遮挡在量子点薄膜上,并采用光照射在量子点薄膜的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团包括:
S9031、用掩膜版遮挡在量子点薄膜上,并采用紫外光照射在量子点薄膜的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团;其中,可分解基团为可光解基团;
或者,
S9032、用掩膜版遮挡在量子点薄膜上,并采用红外光照射在量子点薄膜的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团;其中,可分解基团为可热解基团。
在示例性的实施例中,可光解基团通常为紫外光可分解基团,故采用紫外光线照射;另外,由于红外光线有很强的热效应,可以通过红外光线的照射达到局部区域加热的目的,使得可热分解基团分解。
在本申请的一些实施例中,S904、清洗量子点薄膜,得到图案化的量子点膜层包括:
S9041、采用量子点材料的良溶剂清洗量子点薄膜中除光照区域之外的区域,形成图案化的量子点膜层;其中,极性改变基团不溶于量子点材料的良溶剂。
这样,光照区域的量子点材料留下,未被光线照射的区域的量子点材料被清洗掉,从而得到图案化的量子点膜层。本申请的实施例提供的量子点膜层的图案化方法简单、高效,避免了使用碱性溶液对量子点薄膜进行显影造成的量子点膜层破坏。
本申请的实施例提供了一种量子点显示器件,包括如上所述的量子点材料制备的量子点膜层。
在本申请的实施例提供的量子点显示器件中,通过在量子点膜层的量子点材料中设置配体2,且配体2中包括与量子点本体1依次连接的配位基团R1、可分解基团R2和能量转移基团R3,在制备图案化的量子点膜层时,通过掩膜版遮挡在量子点薄膜上,并采用光照射在量子点薄膜的部分区域,使得光照区域的量子点材料发生分解并生成极性改变基团R4,采用量子点材料的良溶剂清洗量子点薄膜以完成图案化,其中,极性改变基团R4不溶于量子点材料的良溶剂(光照区域的量子点材料留下,未被光线照射的区域的量子点材料被清洗掉)。这样,提供了一种简单、高效的量子点膜层图案化的方式,且可以避免使用碱性溶液对量子点薄膜进行显影造成的量子点膜层破坏。
在本申请的一些实施例中,量子点显示器件为量子点发光器件,参考图4所示,量子点发光器件包括第一极11、第二极13、以及位于第一极11和第二极13之间的量子点膜层12。
在示例性的实施例中,第一极11可以是阴极,第二极13可以是阳极;或者,第一极11可以是阳极,第二极13可以是阴极。
在示例性的实施例中,量子点发光器件中量子点膜层的发光原理为电致发光。
在示例性的实施例中,参考图5或图6所示,量子点发光器件还包括空穴传输层16、空穴注入层17和电子传输层14。
具体的,量子点发光器件包括如图5所示的正置结构和如图6所示的倒置结构。
参考图5所示,正置结构的量子点发光器件包括位于衬底上依次层叠设置的第二极13、空穴注入层(HI)17、空穴传输层(HT)16、量子点 膜层12、电子传输层(ET)14和第一极11,其中,第一极11为阴极,第二极13为阳极。
在实际应用中,图5所示的正置结构的量子点发光器件的制备过程简要如下:
1、形成第二极13并清洗,其中,第二极13为导电玻璃;具体的,将导电玻璃分别采用异丙醇、水、丙酮超声清洗,并使用紫外光处理5-10min。
需要说明的是,导电玻璃可以为在玻璃上形成ITO(铟锡氧化物)薄膜得到,或者,导电玻璃可以为在玻璃(SiO2)中掺杂氟得到,掺杂氟的导电玻璃可以称作FTO。
2、制备空穴注入层17;
在上述导电玻璃上,通过旋涂、蒸镀,或喷墨打印等方式制备空穴注入层17。空穴注入层可以选择PEDOT:PSS(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐);其中,PEDOT的成膜温度为130-150℃。旋涂工艺制备时,匀胶机的转速可以设置为500-2500rpm,以调整膜层的厚度。
3、制备空穴传输层16;
在上述空穴注入层17上,通过旋涂、蒸镀,或喷墨打印等方式制备空穴传输层16,例如将5mg/ml~30mg/ml的TFB(聚9,9-二辛基芴-CO-N-4-丁基苯基二苯胺)溶于氯苯溶液中,旋涂工艺制备时,匀胶机的转速可以设置为2000rpm~4000rpm,再在235℃条件下退火30mins。其中,空穴传输层16的主要成分为TFB,在实际应用中,空穴传输层16的主要成分还可以为聚乙烯基咔唑(PVK)。
4、制备量子点膜层12;
量子点膜层12的制备过程可以参考前文中所述的量子点膜层12的图案化方法,这里不再赘述。
5、制备电子传输层14;
电子传输层14可以是氧化锌基纳米粒子薄膜,具体的,旋涂氧化锌纳米粒子,之后并在80-120℃条件下加热成膜。电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如镁(Mg),铟(In),铝(Al),镓(Ga)掺杂氧化镁纳米粒子等。在旋涂成膜时,匀胶机转速可以设置为500-2500rpm,以调整膜层的厚度。
6、制备第一极11;
第一极11的材料可以为金属材料,例如铝(Al)、银(Ag)或者铟锌氧化物(IZO),具体可以采用蒸镀或者磁控溅射的工艺制备。
在实际应用中,在形成如图5所示的第一极11之后,还会进一步进行封装,以保护该量子点发光器件,具体可以参考相关技术,这里不再赘述。
参考图6所示,倒置结构的量子点发光器件包括位于衬底上依次层叠设置的第一极11、电子传输层14、量子点膜层12、空穴传输层16、空穴注入层17和第二极13,其中,第一极11为阴极,第二极13为阳极。
倒置结构的量子点发光器件的制备工艺过程与正置结构的量子点发光器件的制备方法类似、制备工艺过程顺序相反,依次为:制备第一极11并清洗,制备电子传输层14、制备量子点膜层12、制备空穴传输层16、制备空穴注入层17和制备第二极13,具体过程可以参考正置结构的量子点发光器件的制备工艺过程。
需要说明的是,在实际应用中,在倒置结构的量子点发光器件中,电子传输层的材料还可以为氧化锌薄膜,氧化锌薄膜的制备过程如下:将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中。将设置有第一极11的导电玻璃置于匀胶机,将90-120μL锌的前驱体溶液滴加到第一极11上,旋涂,将上述设置有第一极11的导电玻璃置于250-300度的热台上,加热并使得溶剂蒸发,再引入聚醚酰亚胺膜层。
图7a示出了一种全彩化的量子点发光器件,该量子点发光器件包括衬底100,以及位于衬底100上的第一极11、电子传输层14、像素定义层18、红色量子点膜层121、绿色量子点膜层122、蓝色量子点膜层123、空穴传输层16、空穴注入层17和第二极13。当然,该全彩化的量子点发光器件还可以包括其它结构或部件,具体可以参考相关技术,这里不再赘述。
在实际应用中,通过采用如前文所述的量子点膜层的图案化方法,可以制备得到全彩化的量子点发光器件,参考图7b-图7g所示,红色量子点膜层121、绿色量子点膜层122、蓝色量子点膜层123的图案化制备方法具体如下:
S1、提供基板500,并在基板500上设置像素定义层18;
这里对基板500的具体结构不做限定,可以根据量子点显示器件类 型的不同,确定其具体的结构。
S2、形成如图7b所示的红色量子点薄膜1210,并用掩膜版50遮挡在红色量子点薄膜1210上,并采用紫外光照射在量子点薄膜1210的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团;其中,可分解基团为可光解基团;
S3、采用量子点材料的良溶剂清洗红色量子点薄膜1210中除光照区域之外的区域,形成如图7c所示的图案化的红色量子点膜层121;其中,极性改变基团不溶于量子点材料的良溶剂;
S4、形成如图7d所示的绿色量子点薄膜1220,并用掩膜版51遮挡在绿色量子点薄膜1220上,并采用紫外光照射在绿色量子点薄膜1220的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团;其中,可分解基团为可光解基团;
S5、采用量子点材料的良溶剂清洗绿色量子点薄膜1220中除光照区域之外的区域,形成如图7e所示的图案化的绿色量子点膜层122;其中,极性改变基团不溶于量子点材料的良溶剂;
S6、形成如图7f所示的蓝色量子点薄膜1230,并用掩膜版52遮挡在蓝色量子点薄膜1230上,并采用紫外光照射在蓝色量子点薄膜1230的部分区域,以使得光照区域的量子点材料发生分解并生成极性改变基团;其中,可分解基团为可光解基团;
S7、采用量子点材料的良溶剂清洗蓝色量子点薄膜1230中除光照区域之外的区域,形成如图7g所示的图案化的蓝色量子点膜层123;其中,极性改变基团不溶于量子点材料的良溶剂。
在本申请的一些实施例中,量子点显示器件为量子点色转换器件,量子点色转换器件包括发光基板以及位于发光基板上的量子点膜层。
在示例性的实施例中,量子点色转换器件中量子点膜层的发光原理为光致发光。
在示例性的实施例中,发光基板可以为OLED发光基板,例如:白光OLED发光基板,或者,蓝光OLED发光基板。
示例性的,参考图8a所示,在蓝光OLED发光基板200上设置有像素定义层18,通过依次在如图8a所示的结构中形成如图8b所示的红色量子点膜层121、形成如图8c所示的绿色量子点膜层122,由于蓝光OLED发光基板200本身发出蓝光,蓝光可以激发红色量子点膜层 121发出红光,蓝光也可以激发绿色量子点膜层122发出绿光,从而得到一种全彩化的量子点显示器件。
这里对于上述蓝光OLED发光基板200的具体结构不做限定,具体可以根据实际情况确定。
示例性的,参考图9a所示,在白光OLED发光基板300上设置有像素定义层18,通过依次在如图9a所示的结构中形成如图9b所示的红色量子点膜层121、形成如图9c所示的绿色量子点膜层122、形成如图9d所示的蓝色量子点膜层123,从而得到又一种全彩化的量子点显示器件。
这里对于上述白光OLED发光基板300的具体结构不做限定,具体可以根据实际情况确定。
在示例性的实施例中,参考图10所示,发光基板可以为Micro LED(Micro Light Emitting Diode微发光二极管)发光基板400,Micro LED发光基板400的发光颜色可以为蓝色。通过在蓝色Micro LED发光基板400的发光单元上分别设置红色量子点膜层121和绿色量子点膜层122,也可以得到一种基于Micro LED技术的全彩化量子点显示器件。
这里对于上述蓝色Micro LED发光基板400的具体结构不做限定,具体可以根据实际情况确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种量子点材料,其中,包括量子点本体以及配位在所述量子点本体表面的配体;
    所述配体包括:与所述量子点本体表面相结合的配位基团,与所述配位基团连接的可分解基团,以及与所述可分解基团连接的能量转移基团;
    其中,所述可分解基团被配置为能够分解并生成极性改变基团,所述能量转移基团被配置为能够转移所述量子点材料中的载流子并阻止所述量子点本体发光。
  2. 根据权利要求1所述的量子点材料,其中,所述能量转移基团为给电子基团,所述能量转移基团被配置为能够转移所述量子点材料中的空穴并阻止所述量子点本体发光。
  3. 根据权利要求1所述的量子点材料,其中,所述能量转移基团为吸电子基团,所述能量转移基团被配置为能够转移所述量子点材料中的电子并阻止所述量子点本体发光。
  4. 根据权利要求1所述的量子点材料,其中,所述能量转移基团包括低聚噻吩类基团或聚噻吩类基团。
  5. 根据权利要求4所述的量子点材料,其中,所述低聚噻吩类基团或所述聚噻吩类基团的通式均为
    Figure PCTCN2021125003-appb-100001
    中任意的一个。
  6. 根据权利要求5所述的量子点材料,其中,m的取值范围为3-10。
  7. 根据权利要求5所述的量子点材料,其中,X1和X2均为吸电子基团。
  8. 根据权利要求1所述的量子点材料,其中,所述能量转移基团 包括
    Figure PCTCN2021125003-appb-100002
  9. 根据权利要求1所述的量子点材料,其中,所述能量转移基团包括
    Figure PCTCN2021125003-appb-100003
  10. 根据权利要求1-9任一项所述的量子点材料,其中,所述可分解基团包括可热解基团或可光解基团。
  11. 一种量子点膜层的图案化方法,其中,所述方法包括:
    采用权利要求1-10任一项所述的量子点材料形成量子点溶液;
    采用所述量子点溶液在基板上形成量子点薄膜;
    用掩膜版遮挡在所述量子点薄膜上,并采用光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;
    清洗所述量子点薄膜中除所述光照区域之外的区域,得到图案化的所述量子点膜层。
  12. 根据权利要求11所述的图案化方法,其中,所述用掩膜版遮挡在所述量子点薄膜上,并采用光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团包括:
    用掩膜版遮挡在所述量子点薄膜上,并采用紫外光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;其中,所述可分解基团为可光解基团;
    或者,
    用掩膜版遮挡在所述量子点薄膜上,并采用红外光照射在所述量子点薄膜的部分区域,以使得光照区域的所述量子点材料发生分解并生成所述极性改变基团;其中,所述可分解基团为可热解基团。
  13. 根据权利要求11所述的图案化方法,其中,所述清洗所述量子点薄膜,得到图案化的所述量子点膜层包括:
    采用所述量子点材料的良溶剂清洗所述量子点薄膜中除所述光照 区域之外的区域,形成图案化的所述量子点膜层;其中,所述极性改变基团不溶于所述量子点材料的良溶剂。
  14. 一种量子点显示器件,其中,包括权利要求1-10任一项所述的量子点材料制备的量子点膜层。
  15. 根据权利要求14所述的量子点显示器件,其中,所述量子点显示器件为量子点发光器件,所述量子点发光器件包括第一极、第二极、以及位于所述第一极和所述第二极之间的所述量子点膜层。
  16. 根据权利要求14所述的量子点显示器件,其中,所述量子点显示器件为量子点色转换器件,所述量子点色转换器件包括发光基板以及位于所述发光基板上的所述量子点膜层。
PCT/CN2021/125003 2021-10-20 2021-10-20 量子点材料、量子点膜层的图案化方法及量子点显示器件 WO2023065153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/125003 WO2023065153A1 (zh) 2021-10-20 2021-10-20 量子点材料、量子点膜层的图案化方法及量子点显示器件
CN202180003028.9A CN116323861A (zh) 2021-10-20 2021-10-20 量子点材料、量子点膜层的图案化方法及量子点显示器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125003 WO2023065153A1 (zh) 2021-10-20 2021-10-20 量子点材料、量子点膜层的图案化方法及量子点显示器件

Publications (1)

Publication Number Publication Date
WO2023065153A1 true WO2023065153A1 (zh) 2023-04-27

Family

ID=86057774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125003 WO2023065153A1 (zh) 2021-10-20 2021-10-20 量子点材料、量子点膜层的图案化方法及量子点显示器件

Country Status (2)

Country Link
CN (1) CN116323861A (zh)
WO (1) WO2023065153A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505969A (zh) * 2006-08-23 2009-08-12 E.I.内穆尔杜邦公司 在基材上形成功能材料图案的方法
CN108447999A (zh) * 2018-03-26 2018-08-24 京东方科技集团股份有限公司 量子点层图案化方法及显示装置的制作方法
CN109037490A (zh) * 2018-07-11 2018-12-18 深圳市华星光电技术有限公司 一种像素限定层结构及其制备方法
CN112300784A (zh) * 2020-10-28 2021-02-02 京东方科技集团股份有限公司 量子点材料、量子点膜层的图案化方法及量子点发光器件
CN113088279A (zh) * 2021-04-15 2021-07-09 京东方科技集团股份有限公司 量子点材料、发光二极管基板及制作方法、显示装置
CN113292463A (zh) * 2020-02-21 2021-08-24 京东方科技集团股份有限公司 交联配体、纳米粒子层图案化的方法、量子点发光器件及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008004292B3 (de) * 2007-04-30 2021-11-04 Novaled Gmbh Licht emittierendes Bauelement und Verfahren zum Herstellen
CN101831056B (zh) * 2010-05-17 2012-05-23 中国科学院宁波材料技术与工程研究所 一种高光转化率的含氟聚噻吩光电材料及其制备方法
CN110590549A (zh) * 2019-09-30 2019-12-20 京东方科技集团股份有限公司 配体、量子点及量子点层的图案化方法
CN111769200B (zh) * 2020-07-09 2024-04-16 京东方科技集团股份有限公司 量子点发光器件、量子点层图案化的方法及显示装置
CN111900269A (zh) * 2020-07-15 2020-11-06 京东方科技集团股份有限公司 一种量子点层图案化的方法及量子点发光器件的制作方法
CN112234154B (zh) * 2020-10-14 2023-08-22 京东方科技集团股份有限公司 一种量子点层图案化的方法及相关应用
CN112410019A (zh) * 2020-11-20 2021-02-26 京东方科技集团股份有限公司 纳米粒子、纳米粒子层图案化的方法及相关应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505969A (zh) * 2006-08-23 2009-08-12 E.I.内穆尔杜邦公司 在基材上形成功能材料图案的方法
CN108447999A (zh) * 2018-03-26 2018-08-24 京东方科技集团股份有限公司 量子点层图案化方法及显示装置的制作方法
CN109037490A (zh) * 2018-07-11 2018-12-18 深圳市华星光电技术有限公司 一种像素限定层结构及其制备方法
CN113292463A (zh) * 2020-02-21 2021-08-24 京东方科技集团股份有限公司 交联配体、纳米粒子层图案化的方法、量子点发光器件及显示装置
CN112300784A (zh) * 2020-10-28 2021-02-02 京东方科技集团股份有限公司 量子点材料、量子点膜层的图案化方法及量子点发光器件
CN113088279A (zh) * 2021-04-15 2021-07-09 京东方科技集团股份有限公司 量子点材料、发光二极管基板及制作方法、显示装置

Also Published As

Publication number Publication date
CN116323861A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11866628B2 (en) Ligand modified quantum dot material and patterning thereof, and quantum dot material for light emitting and display devices
CN102473800B (zh) 稳定的且所有溶液可加工的量子点发光二极管
US9419174B2 (en) Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode
Wang et al. A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers
Peng et al. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes
WO2015105027A1 (ja) 発光デバイス、及び発光デバイスの製造方法
CN103872250B (zh) 一种电致发光器件
CN101384963A (zh) 一种使薄膜形成图案的方法
US20070087469A1 (en) Particulate for organic and inorganic light active devices and methods for fabricating the same
TW201712922A (zh) 摻雜有機半導體之方法及摻雜組合物
KR20180035279A (ko) 백색광 양자점 발광 소자 및 이의 제조 방법
WO2023005756A9 (zh) 量子点膜及其制备方法、光电器件、显示装置、量子点发光器件的制备方法
KR20150120026A (ko) 발광 소자 및 발광 소자용 전자수송층 제조 방법
WO2021253923A1 (zh) 量子点发光二极管器件及其制备方法和显示面板
WO2023065153A1 (zh) 量子点材料、量子点膜层的图案化方法及量子点显示器件
Nguyen et al. Investigation the effect of different surface ligand treatments on luminescence and performance of quantum dot LEDs
Kim et al. High-performance quantum dot-light-emitting diodes with a polyethylenimine ethoxylated-modified emission layer
CN110838560B (zh) 核壳纳米材料及其制备方法和量子点发光二极管
Dou et al. Coordinating Solvent Synthesis of InP Quantum Dots with Large Sizes and Suppressed Defects for Yellow Light‐Emitting Diodes
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
WO2023122999A1 (zh) 发光器件及其制备方法、显示面板、显示装置
Deng et al. Three-color polymeric light-emitting devices using selective photo-oxidation of multilayered conjugated polymers
WO2022126382A1 (zh) 量子点膜层、量子点发光器件和制作方法
WO2023028757A1 (zh) 量子点材料、量子点发光器件及其制备方法
CN113707835B (zh) 纳米压印图案化量子点led制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960909

Country of ref document: EP

Kind code of ref document: A1