WO2023087276A1 - 量子点膜和量子点膜图案化的方法以及它们的应用 - Google Patents

量子点膜和量子点膜图案化的方法以及它们的应用 Download PDF

Info

Publication number
WO2023087276A1
WO2023087276A1 PCT/CN2021/131902 CN2021131902W WO2023087276A1 WO 2023087276 A1 WO2023087276 A1 WO 2023087276A1 CN 2021131902 W CN2021131902 W CN 2021131902W WO 2023087276 A1 WO2023087276 A1 WO 2023087276A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
ligand
dot film
film
residual
Prior art date
Application number
PCT/CN2021/131902
Other languages
English (en)
French (fr)
Inventor
王好伟
李卓
冯靖雯
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/131902 priority Critical patent/WO2023087276A1/zh
Priority to CN202180003489.6A priority patent/CN116472326A/zh
Publication of WO2023087276A1 publication Critical patent/WO2023087276A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the embodiments of the present disclosure relate to but are not limited to the field of display technology, and in particular to a quantum dot film and its application in quantum dot optoelectronic devices and display devices, a method for patterning a quantum dot film and its application in the preparation of quantum dot light-emitting devices in the application.
  • Quantum Dot Semiconductor quantum dot
  • QLED Quantum dot light-emitting diodes
  • EQE External Quantum Efficiency
  • the patterning process of quantum dots in the light-emitting layer is a key step in determining full-color, high-resolution QLED devices.
  • transfer printing, inkjet printing, and photolithography have been used to realize the patterning process of quantum dots.
  • Photolithography is usually used to realize the patterning of electronic materials (quantum dots).
  • Photolithography requires the aid of photoresist.
  • Photoresists include positive photoresists and negative photoresists.
  • the cost of negative photoresist is low, but the developer usually uses p-xylene, and the organic solvent containing benzene is poisonous and not conducive to environmental protection.
  • the positive photoresist has a good contrast, so the generated graphics have good resolution; and the developer is an alkaline aqueous solution, which is conducive to environmental protection.
  • alkaline aqueous solution will destroy the quantum dots of the light-emitting layer.
  • the "lift-off” process based on positive photoresist can realize the patterning of quantum dots.
  • the main steps of this process are: "deposit photoresist positive resist - target area mask exposure - development - deposit quantum dots - full exposure - Developing - Introducing a Patterned Quantum Dot Layer in Targeted Areas". If a full-color (red, green, blue) QLED device is prepared, it is necessary to repeat the above process steps 3 times.
  • the development of photoresist is mainly by means of alkaline solution (such as ammonia solution, or tetramethylammonium hydroxide solution, etc.). Unfortunately, the alkaline solution will seriously damage the state of the ligands on the surface of the quantum dots.
  • the hydroxide ions in the alkaline solution will destroy the coordination between the surface ligands and the dangling bonds of the quantum dots.
  • the surface defect sites of the quantum dots are re-exposed, eventually destroying the light-emitting layer and reducing the device efficiency. Therefore, the development of a more friendly development process or a more environmentally friendly patterning process to prepare high-resolution, full-color QLEDs has become the focus and difficulty of quantum dot display process research.
  • An embodiment of the present disclosure provides a quantum dot film.
  • the quantum dot film includes a target color quantum dot film and a residual non-target color quantum dot film.
  • the ligand of the target color quantum dot in the target color quantum dot film is an oil-soluble ligand. body, the ligands of the residual non-target color quantum dots of the residual non-target color quantum dot film are selected from any one of halide ions and short-chain organic ligands with a carbon chain length ranging from 2 carbons to 18 carbons or more.
  • An embodiment of the present disclosure also provides a quantum dot optoelectronic device, the quantum dot optoelectronic device includes the quantum dot film as described above.
  • An embodiment of the present disclosure also provides a display device, which includes a plurality of quantum dot optoelectronic devices as described above.
  • An embodiment of the present disclosure also provides a method for patterning a quantum dot film, the method comprising:
  • the exchange ligand is selected from any one or more of halide ions and short-chain organic ligands with a carbon chain length ranging from 2 carbons to 18 carbons.
  • An embodiment of the present disclosure also provides a method for preparing a quantum dot light-emitting device, including:
  • Fig. 1 is the process flow chart of direct patterning preparation quantum dot film pattern under ideal state
  • Figure 2 is a schematic diagram of quantum dot residues
  • FIG. 3 is a schematic structural diagram of a quantum dot layer of a quantum dot optoelectronic device according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a quantum dot layer of a quantum dot optoelectronic device according to another exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a positive full-color QLED device according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an inverted full-color QLED device according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a QD-positive blue OLED device according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a QD-inverted blue OLED device according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a QD-positive blue OLED device according to another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a patterned process ligand of a single-color quantum dot film in an exemplary embodiment of the present disclosure
  • FIG. 11 is a schematic flow diagram of patterning a plurality of color quantum dot films in an exemplary embodiment of the present disclosure
  • Figure 12 is a schematic diagram of the preparation process of a QD-blue OLED full-color device
  • Figure 13 is a schematic diagram of the preparation process of a QD-white OLED full-color device
  • Figure 14 is a schematic diagram of the preparation process of the QD-blue Micro LED full-color device
  • FIG. 15 is a comparison diagram of photoluminescence states before and after quantum dot ligand exchange of the PL substrate according to an exemplary embodiment of the present disclosure.
  • film and “layer” are interchangeable.
  • quantum dot film can sometimes be replaced by “quantum dot layer”.
  • ordinal numerals such as “first”, “second”, and “third” are provided to avoid confusion of constituent elements, rather than to limit the quantity.
  • Full-color patterning of quantum dot light-emitting diodes can be achieved using the current direct patterning method, but this process also has its disadvantages, that is, the problem of color mixing caused by the residual quantum dots in the pixel area.
  • Fig. 1 is a process flow chart of direct patterning to prepare quantum dot film patterns under ideal conditions.
  • the process of patterning quantum dot light-emitting diodes includes: depositing a front film layer 20 on a substrate 10 (that is, a film layer between the substrate and the quantum dot film, for example, in an inverted QLED, the front film layer 20 is electron transport layer; in the positive QLED, the front film layer 20 includes a hole injection layer and a hole transport layer); a red quantum dot film 30 is formed on the front film layer 20 (for example, by spin coating), and the red quantum dots The film 30 is exposed, and the red quantum dot film in the green and blue pixel areas is cleaned away, and only the red quantum dot film 30 in the red pixel area is reserved; the green quantum dot film 40 is formed (for example, by spin coating), and the green quantum dot film 40 exposure, the green quantum dot film in the red and blue pixel areas is cleaned, and only the green quantum dot film 40 in the green pixel area is
  • Fig. 2 is a schematic diagram of quantum dot residue.
  • a residual luminescent green quantum dot film 40' formed by residual green quantum dots on the red pixel area and a residual luminescent blue quantum dot film 50' formed by residual blue quantum dots.
  • a residual luminescent red quantum dot film 30' formed by residual red quantum dots and a residual luminescent blue quantum dot film 50' formed by residual blue quantum dots, and a residual luminescent red quantum dot film formed by residual red quantum dots on the blue pixel area
  • the quantum dot film 30' and the remaining green quantum dots form a residual luminescent green quantum dot film 40'.
  • an embodiment of the present disclosure provides a quantum dot film
  • the quantum dot film includes a target color quantum dot film and a residual non-target color quantum dot film
  • the ligand of the target color quantum dot film of the target color quantum dot film is Oil-soluble ligands
  • the ligands of the residual non-target color quantum dots of the residual non-target color quantum dot film are selected from halogen ions and short-chain organic ligands with carbon chain lengths ranging from 2 carbons to 18 carbons Any one or more.
  • Target color quantum dot film is defined as a quantum dot film whose emitted light color is the desired color in the pixel area;
  • Target color quantum dot is defined as a quantum dot forming a “target color quantum dot film”
  • “Residual non-target color quantum dots” are defined as quantum dots that are different in color from the “target color quantum dots” and should be removed but remain.
  • a “residual non-target color quantum dot film” is defined as a quantum dot film formed from “residual non-target color quantum dots”.
  • the "target color quantum dot film" in the red pixel area is a red quantum dot film
  • the corresponding "target color quantum dot” is a red quantum dot
  • the quantum dot film the green quantum dot film and the blue quantum dot film remaining in the red pixel area belong to the residual non-target color quantum dot film relative to the red pixel area.
  • Fig. 3 is a schematic structural diagram of a quantum dot layer of a quantum dot optoelectronic device according to an exemplary embodiment of the present disclosure.
  • the quantum dot layer includes a quantum dot film in the red pixel area, a quantum dot film in the green pixel area, and a quantum dot film in the blue pixel area; wherein, the quantum dot film in the red pixel area
  • the dot film includes a red quantum dot film 30 arranged on one side of the front film layer 20, a residual green quantum dot film 40" arranged on the side of the red quantum dot film 30 away from the front film layer 20", and a green quantum dot film 40" arranged on the residual green quantum dot film 30.
  • the quantum dot film in the blue pixel area includes a residual red quantum dot film 30 "on one side of the front film layer 20", and a residual green quantum dot film on the side far away from the front film layer 20 of the residual red quantum dot film 30 ";
  • the quantum dot film may further include a functional quantum dot film disposed on one side of the target color quantum dot film, the quantum dots of the functional quantum dot film are target color quantum dots, and the functional
  • the quantum dot ligands of the quantum dot film are selected from any one or more of halide ions and short-chain organic ligands with a carbon chain length ranging from 2 carbons to 18 carbons.
  • Fig. 4 is a schematic structural diagram of a quantum dot layer of a quantum dot optoelectronic device according to another exemplary embodiment of the present disclosure.
  • the quantum dot layer includes a quantum dot film in the red pixel area, a quantum dot film in the green pixel area, and a quantum dot film in the blue pixel area; wherein, the quantum dot film in the red pixel area
  • the dot film includes a red quantum dot film 30 arranged on one side of the front film layer 20, a functional red quantum dot film 30"' arranged on the side of the red quantum dot film 30 away from the front film layer 20, a function red quantum dot film 30"' arranged on the functional
  • the carbon chain length of the short-chain organic ligand can be 2 carbons, 3 carbons, 4 carbons, 5 carbons, 6 carbons, 7 carbons, 8 carbons, 9 carbons Carbon, 10 carbons, 11 carbons, 12 carbons, 13 carbons, 14 carbons, 15 carbons, 16 carbons, 17 carbons or 18 carbons.
  • the short-chain organic ligand may have a carbon chain length of 2 carbons to 8 carbons.
  • the short-chain organic ligand may be selected from any one or more of carboxylic acids, sulfonic acids, phosphonic acids, thiols, and amines.
  • the carboxylic acid, the sulfonic acid, and the phosphonic acid may be a monobasic acid or a dibasic acid
  • the thiol may be a monohydric alcohol or a dibasic alcohol
  • the amine may be a monoamine or diamines.
  • the carboxylic acid short-chain organic ligand may be selected from any one or more of acetic acid, propionic acid, mercaptopropionic acid, butyric acid, 1,4-butanedioic acid, and the like.
  • the sulfonic acid short-chain organic ligand may be selected from any one or more of methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid and butanesulfonic acid.
  • the phosphonic acid short-chain organic ligand may be selected from any one or more of methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid and butylphosphonic acid.
  • the thiol-based short-chain organic ligand can be selected from 1,2-ethanedithiol, ethanethiol, 1-propanethiol, 1-butanethiol, 1-octanethiol, 1 - Any one or more of dodecanethiol, 1-octadecanethiol and 1,2-benzenedimethylthiol.
  • the amine short-chain organic ligand may be selected from any one or more of ethylenediamine, ethylamine, propylamine and butylamine.
  • the target color quantum dots and the residual non-target color quantum dots may each be independently selected from CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3 , CsPbBr 3 , CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge and C any one or more.
  • the target color quantum dots and the residual non-target color quantum dots are cadmium-free quantum dots.
  • the oil-soluble ligand may be any one of oleic acid, oleylamine, dodecanethiol, trioctylphosphine, and trioctylphosphine oxide.
  • the quantum dot film of the embodiment of the present disclosure includes a target color quantum dot film and a residual non-target color quantum dot film, wherein the target color quantum dot film can emit light of the desired color in the pixel area where it is located, and the residual non-target color quantum dot film is composed of The expected color of the pixel area is different, and the residual non-target color quantum dots that should be removed but remain are formed, but the ligands on the surface of the residual non-target color quantum dots are halogen ions or short-chain organic ligands, making the residual non-target color quantum dots
  • the color quantum dot film does not emit light or the intensity of the light emitted is low (in electroluminescent devices, it shows no light, and in photoluminescent devices, it shows that the intensity of light emitted is low), so although the non-target color quantum dots remain The color of the dots is not expected, but because the formed residual non-target color quantum dot film does not emit light or the intensity of the emitted light is low, the problem of
  • the quantum dot film of the embodiment of the present disclosure When used as the light-emitting layer of QLED, it will not affect the color gamut of full-color QLED; moreover, the halogen ions and short-chain organic ligands remaining on the surface of quantum dots with non-target colors can achieve the purpose of modifying quantum dots. With the function of realizing the interface modification of the charge transport layer, the quenching of the quantum dot and the charge transport layer at the interface is reduced, thereby improving the performance of the QLED.
  • the quantum dot film of the embodiment of the present disclosure may also include a functional quantum dot film, and the functional quantum dot film may be converted from a target color quantum dot film, so its quantum dots may be target color quantum dots, and the functional quantum dot film
  • the ligands of the quantum dots of the dot film are halogen ions or short-chain organic ligands, so that the functional quantum dot film does not emit light or the intensity of the light emitted is low, and can be present in the quantum dot film as a functional film layer, for example, it can be Improve the compatibility of the film layers on its adjacent sides.
  • An embodiment of the present disclosure also provides a quantum dot optoelectronic device, the quantum dot optoelectronic device includes the quantum dot film as described above.
  • the quantum dot optoelectronic device can be any one of a quantum dot display device, a photodetector, a photovoltaic device, a light-responsive transistor, and a field-responsive transistor;
  • the quantum dot display device can be a quantum dot Light Emitting Diode (QLED), Quantum Dots-Organic Light Emitting Diode (Quantum Dots-Organic Light Emitting Diode, QD-OLED) device, Quantum Dots-Liquid Crystal Display (Quantum Dots-Liquid Crystal Display, QD-LCD) device and Quantum Dots-Micro Any of the Quantum Dots-Micro Light-Emitting Diode (QD-MicroLED) devices.
  • QLED Quantum Dot Light Emitting Diode
  • QD-OLED Quantum Dots-Organic Light Emitting Diode
  • QD-LCD Quantum Dots-Liquid
  • the photoelectric device is a quantum dot light emitting diode
  • the quantum dot light emitting diode includes an anode, a cathode, and a quantum dot light emitting layer sandwiched between the anode and the cathode, and the quantum dot The light-emitting layer is the quantum dot film as described above.
  • FIG. 5 is a schematic structural diagram of a positive full-color QLED device according to an exemplary embodiment of the present disclosure.
  • the QLED device with an upright structure may include: an anode 100, a hole injection layer 200 disposed on the anode 100, a hole transport layer 300 disposed on the side of the hole injection layer 200 away from the anode 100, a set The quantum dot light-emitting layer 400 on the side of the hole transport layer 300 away from the anode 100, the electron transport layer 500 disposed on the side of the quantum dot light-emitting layer 400 away from the anode 100, and the cathode 600 disposed on the side of the electron transport layer 500 away from the anode 100 , and the encapsulation layer 700 disposed on the side of the cathode 600 away from the anode 100 , wherein the structure of the quantum dot light-emitting layer 400 is shown in FIG. 3 or FIG. 4 .
  • FIG. 6 is a schematic structural diagram of an inverted full-color QLED device according to an exemplary embodiment of the present disclosure.
  • the QLED device with an inverted structure may include: a cathode 600, an electron transport layer 500 disposed on the cathode 600, a quantum dot light-emitting layer 400 disposed on the side of the electron transport layer 500 away from the cathode 600, a quantum dot light emitting layer 400 disposed on the quantum dot
  • the encapsulation layer 700 disposed on the side of the anode 100 away from the cathode 600 , wherein the structure of the quantum dot light-emitting layer 400 is shown in FIG. 3 or FIG. 4 .
  • the quantum dot optoelectronic device is a quantum dot-organic light emitting diode
  • the quantum dot-organic light emitting diode includes an organic light emitting diode and a quantum dot disposed on the side of the blue organic light emitting diode away from the substrate
  • a conversion layer, the quantum dot conversion layer is the quantum dot film as described above.
  • the quantum dot photoelectric device is a quantum dot-blue organic light emitting diode
  • the quantum dot-blue organic light emitting diode includes a blue organic light emitting diode and a A quantum dot conversion layer
  • the quantum dot conversion layer is the quantum dot film as described above
  • the blue organic light emitting diode includes an anode, a cathode, and a blue light-emitting layer sandwiched between the anode and the cathode
  • the quantum dot conversion layer includes a red quantum dot conversion layer and a green quantum dot conversion layer
  • the red quantum dot conversion layer includes a red quantum dot film and a residual green quantum dot film
  • the green quantum dot conversion layer includes a green quantum dot film and residual red quantum dot film.
  • FIG. 7 is a schematic structural diagram of a QD-positive blue OLED device according to an exemplary embodiment of the present disclosure.
  • the QD-positive blue OLED device includes a blue OLED and a quantum dot conversion layer arranged on one side of the OLED away from the substrate 10;
  • the blue OLED includes an anode 100 arranged on the substrate 10, arranged on The hole injection layer 200 on the side of the anode 100 away from the substrate 10, the hole transport layer 300 disposed on the side of the hole injection layer 200 away from the substrate 10, the blue light emitting layer disposed on the side of the hole transport layer 300 away from the substrate 10 800, the electron transport layer 500 disposed on the side of the blue light emitting layer 800 away from the substrate 10, the electron injection layer 900 disposed on the side of the electron transport layer 500 away from the substrate 10, the cathode disposed on the side of the electron injection layer 900 away from the substrate 10 600;
  • the quantum dot conversion layer includes a red quantum dot conversion layer and a green quantum dot conversion layer, the red
  • FIG. 8 is a schematic structural diagram of a QD-inverted blue OLED device according to an exemplary embodiment of the present disclosure.
  • the QD-inverted blue OLED device includes a blue OLED and a quantum dot conversion layer arranged on the side of the OLED away from the substrate 10;
  • the blue OLED includes a cathode 600 arranged on the substrate 10, arranged on the cathode 600, the electron injection layer 900 on the side away from the substrate 10, the electron transport layer 500 on the side of the electron injection layer 900 away from the substrate 10, the blue light emitting layer 800 on the side of the electron transport layer 500 away from the substrate 10, the blue light emitting layer 800 on the blue
  • the quantum dot conversion layer includes a red quantum dot conversion layer and
  • the red quantum dot conversion layer includes a red quantum dot film, a functional red quantum dot film and a residual green quantum dot film
  • the green quantum dot conversion layer includes a green quantum dot film, a functional green quantum dot film and residual red quantum dot film.
  • FIG. 9 is a schematic structural diagram of a QD-positive blue OLED device according to another exemplary embodiment of the present disclosure.
  • the QD-positive blue OLED device includes a blue OLED and a quantum dot conversion layer arranged on the side away from the substrate 10 of the OLED;
  • the blue OLED includes an anode 100 arranged on the substrate 10, an The hole injection layer 200 on the side of the anode 100 away from the substrate 10, the hole transport layer 300 disposed on the side of the hole injection layer 200 away from the substrate 10, the blue light emitting layer disposed on the side of the hole transport layer 300 away from the substrate 10 800, the electron transport layer 500 disposed on the side of the blue light emitting layer 800 away from the substrate 10, the electron injection layer 900 disposed on the side of the electron transport layer 500 away from the substrate 10, the cathode disposed on the side of the electron injection layer 900 away from the substrate 10 600;
  • the quantum dot conversion layer includes a red quantum dot conversion layer and a green quantum dot conversion layer, the red quantum do
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, and a smart bracelet.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, and a smart bracelet.
  • the plurality of quantum dot optoelectronic devices include quantum dot light-emitting diodes that emit red light, green light, and blue light respectively, and the quantum dot light-emitting diodes include an anode, a cathode, and are sandwiched between the anode and the The quantum dot luminescent layer between the cathodes, wherein,
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits red light includes a target red quantum dot film, a residual green quantum dot film and a residual blue quantum dot film, and the ligand of the target red quantum dot of the target red quantum dot film is oil Soluble ligand, the ligand of the residual green quantum dots of the residual green quantum dot film is the first ligand, and the ligand of the residual blue quantum dots of the residual blue quantum dot film is the second ligand;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits green light includes a target green quantum dot film, a residual red quantum dot film and a residual blue quantum dot film, and the ligand of the target green quantum dot of the target green quantum dot film is oil Soluble ligand, the ligand of the residual red quantum dots of the residual red quantum dot film is the third ligand, and the ligand of the residual blue quantum dots of the residual blue quantum dot film is the second ligand;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits blue light includes a target blue quantum dot film, a residual red quantum dot film and a residual green quantum dot film, and the ligand of the target blue quantum dot of the target blue quantum dot film is An oil-soluble ligand, the ligand of the residual red quantum dots of the residual red quantum dot film is the third ligand, and the ligand of the residual green quantum dots of the residual green quantum dot film is the first ligand;
  • the first ligand, the second ligand, and the third ligand are independently selected from halide ions and short-chain organic ligands with a carbon chain length ranging from 2 carbons to 18 carbons any one or more of.
  • a plurality of quantum dot optoelectronic devices include quantum dot light-emitting diodes that emit red light, green light, and blue light respectively, and the quantum dot light-emitting diodes include an anode, a cathode, and an interposed A quantum dot light-emitting layer between the anode and the cathode, wherein,
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits red light includes a red quantum dot film, a residual green quantum dot film and a residual blue quantum dot film, wherein the target red quantum dot film is arranged on the front film layer away from the substrate.
  • the residual green quantum dot film is arranged on the side of the target red quantum dot film away from the substrate, and the residual blue quantum dot film is arranged on the side of the residual green quantum dot film away from the substrate;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits green light includes a green quantum dot film, a residual red quantum dot film and a residual blue quantum dot film, wherein the residual red quantum dot film is arranged on the front film layer away from the substrate.
  • the target green quantum dot film is arranged on the side of the residual red quantum dot film away from the substrate, and the residual blue quantum dot film is arranged on the side of the target green quantum dot film away from the substrate;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits blue light includes a blue quantum dot film, a residual red quantum dot film and a residual green quantum dot film, wherein the residual red quantum dot film is arranged on a side of the front film layer that is far away from the substrate. side, the residual green quantum dot film is disposed on the side of the residual red quantum dot film away from the substrate, and the target blue quantum dot film is disposed on the side of the residual green quantum dot film away from the substrate.
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits red light includes a red quantum dot film, a functional red quantum dot film, a residual green quantum dot film and a residual blue quantum dot film, wherein the red quantum dot film is arranged on the front film
  • the functional red quantum dot film is arranged on the side away from the substrate of the red quantum dot film
  • the residual green quantum dot film is arranged on the side of the functional red quantum dot film far away from the substrate
  • the residual blue quantum dot film is disposed on the side away from the substrate of the residual green quantum dot film;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits green light includes a green quantum dot film, a functional green quantum dot film, a residual red quantum dot film and a residual blue quantum dot film, wherein the residual red quantum dot film is arranged in the front
  • the green quantum dot film is arranged on the side of the residual red quantum dot film away from the substrate
  • the functional green quantum dot film is arranged on the side of the green quantum dot film away from the substrate
  • the residual blue quantum dot film is arranged on the side away from the substrate of the functional green quantum dot film;
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode that emits blue light includes a blue quantum dot film, a functional blue quantum dot film, a residual red quantum dot film and a residual green quantum dot film, wherein the residual red quantum dot film is arranged in the front
  • the residual green quantum dot film is arranged on the side away from the substrate of the residual red quantum dot film
  • the blue quantum dot film is arranged on the side of the residual green quantum dot film far away from the substrate
  • the functional blue quantum dot film is arranged on the side away from the substrate of the blue quantum dot film.
  • the first ligand, the second ligand, and the third ligand may be the same or different.
  • the first ligand, the second ligand, and the third ligand may be independently selected from I - , Br - , Cl - , carboxylic acid, sulfonic acid, thiol , any one or more of phosphonic acid and amine.
  • the first ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acid, sulfonic acid, thiol, phosphonic acid and amine ;
  • the second ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acid, sulfonic acid, thiol, phosphonic acid and amine ;
  • the third ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acid, sulfonic acid, thiol, phosphonic acid and amine .
  • the third ligand of the remaining red quantum dots may include a first halide ion, a second halide ion and a third halide ion, the particle diameter of the first halide ion is larger than that of the second halide ion The particle size of the ion, the particle size of the second halide ion is larger than the particle size of the third halide ion.
  • the first halide ion is I ⁇
  • the second halide ion is Br ⁇
  • the third halide ion is Cl ⁇ .
  • An embodiment of the present disclosure also provides a method for patterning a quantum dot film, and the method for patterning a quantum dot film includes:
  • S100 Use quantum dots with oil-soluble ligands to form a quantum dot film in the entire pixel area, remove the quantum dot film that does not retain the pixel area, and obtain a patterned quantum dot film; the patterned quantum dot film can emit desired colors the light;
  • S200 Use the precursor of the exchange ligand to perform a ligand exchange reaction with the quantum dots that do not retain the pixel area, so that the oil-soluble ligands on the surface of the quantum dots that do not retain the pixel area are exchanged for the exchange ligand.
  • a residual quantum dot film is obtained in the region; the residual quantum dot film does not emit light or the intensity of the emitted light is significantly lower than before the ligand exchange;
  • the exchange ligand is selected from any one or more of halide ions and short-chain organic ligands with a carbon chain length ranging from 2 carbons to 18 carbons.
  • the quantum dot film patterning method of the embodiment of the present disclosure uses an exchange ligand to perform ligand exchange on the quantum dots that do not retain the pixel area (that is, the pixel area where the quantum dot film of a certain color is not expected to be retained), and will not retain
  • the oil-soluble ligands on the surface of the residual quantum dots in the pixel area are exchanged for exchange ligands, so that the luminescent recombination area of the residual quantum dots is changed, and the carriers of the residual quantum dots are delocalized, but the surface of the quantum dots in the pixel area is retained.
  • the oil-soluble ligand is still retained, making it easier to transfer the carriers of the quantum dots that do not retain the pixel area to the quantum dots that retain the pixel area, so that the quantum dots that do not retain the pixel area do not emit light or emit light.
  • the intensity is low, which can avoid the problem of color mixing caused by the residual quantum dots in the pixel area.
  • the quantum dot film patterning method of the embodiment of the present disclosure is used to pattern the light-emitting layer of the QLED, it will not affect the color gamut of the full-color QLED; moreover, the exchange ligands on the surface of the quantum dots that do not remain in the pixel area can be To achieve the effect of modifying the residual quantum dots and realizing the interface modification of the charge transport layer, reducing the quenching of the quantum dots and the charge transport layer at the interface, thereby improving the performance of the QLED.
  • FIG. 10 is a schematic diagram of the process ligands for the patterning of a single-color quantum dot film in an exemplary embodiment of the present disclosure.
  • the red quantum dot film 30 that can emit red light is on the front film layer 20 of the red pixel area; before the ligand exchange, the green pixel area and blue
  • the residual luminescent red quantum dot film 30' in the color pixel area can also emit red light; What is obtained after being modified by the exchanged ligand is a residual red quantum dot film 30 ′′ that does not emit light or emits light with a lower intensity.
  • FIG. 11 is a schematic flow chart of patterning a multi-color quantum dot film in an exemplary embodiment of the present disclosure. As shown in Figure 11, in an exemplary embodiment, the method for patterning the quantum dot film may include:
  • S201 Use the precursor of the third exchange ligand to perform a ligand exchange reaction with the red quantum dots remaining in the green pixel area and the blue pixel area (to form a residual luminescent red quantum dot film 30'), so that the green pixel area and the blue pixel area
  • the oil-soluble ligands on the surface of the remaining red quantum dots in the area are exchanged for the third exchange ligands, and the residual red quantum dot film 30 "is obtained in the green pixel area and the blue pixel area, and the residual red quantum dot film 30 "does not emit light Or the intensity of the emitted light is significantly lower than that of the residual luminescent red quantum dot film 30';
  • S102 Use green quantum dots with oil-soluble ligands to form a green quantum dot film 40 in the entire pixel area, remove the green quantum dot film in the red pixel area and the blue pixel area, and obtain a patterned luminescent green quantum dot film 40 ;
  • S202 Use the precursor of the first exchange ligand to perform a ligand exchange reaction with the green quantum dots remaining in the red pixel area and the blue pixel area (forming a residual luminescent green quantum dot film 40'), so that the red pixel area and the blue pixel area
  • the oil-soluble ligands on the surface of the remaining green quantum dots in the region are exchanged for the first exchange ligands, and the residual green quantum dot film 40 "is obtained in the red pixel region and the blue pixel region.
  • the residual green quantum dot film 40 "does not emit light or The intensity of the emitted light is significantly reduced relative to the residual luminescent green quantum dot film 40';
  • S103 Use blue quantum dots with oil-soluble ligands to form a blue quantum dot film 50 in the entire pixel area, remove the blue quantum dot film in the red pixel area and the green pixel area, and obtain a patterned blue quantum dot film 50;
  • S203 Use the precursor of the second exchange ligand to carry out a ligand exchange reaction with the blue quantum dots remaining in the red pixel area and the green pixel area (forming the residual luminescent blue quantum dot film 50'), so that the red pixel area and the green pixel area
  • the oil-soluble ligands on the surface of the remaining blue quantum dots in the region are exchanged for the second exchange ligands, and the residual blue quantum dot film 50 "is obtained in the red pixel region and the green pixel region, and the residual blue quantum dot film 50 "is not
  • the intensity of the luminescent or emitted light is significantly reduced relative to the residual luminescent blue quantum dot film 50'.
  • step S201 when the ligand exchange is performed on the red quantum dots remaining in the green pixel area and the blue pixel area, the oil-soluble ligands of a small amount of red quantum dots in the red pixel area may also be exchanged.
  • the body is exchanged for the third exchange ligand to form a functional red quantum dot film; similarly, in step S202, the oil-soluble ligand of a small amount of green quantum dots in the green pixel area is exchanged for the first exchange ligand to form a functional green quantum dot film.
  • Quantum dot film and in step S203, a small amount of oil-soluble ligands of blue quantum dots in the blue pixel area are exchanged for second exchange ligands to form a functional blue quantum dot film.
  • the functional red quantum dot film, the functional green quantum dot film, and the functional blue quantum dot film can exist in the quantum dot film as functional film layers, for example, the compatibility of the film layers on both adjacent sides can be improved. sex.
  • the halide ion may be selected from any one or more of I ⁇ , Br ⁇ and Cl ⁇ .
  • the short-chain organic ligand may be selected from any one or more of carboxylic acids, sulfonic acids, thiols, phosphonic acids, and amines.
  • the carbon chain length of the short-chain organic ligand may range from 2 carbons to 8 carbons.
  • the carboxylic acid short-chain organic ligand may be selected from any one or more of acetic acid, propionic acid, mercaptopropionic acid, butyric acid and 1,4-butanedioic acid.
  • the sulfonic acid short-chain organic ligand may be selected from any one or more of methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid and butanesulfonic acid.
  • the thiol short-chain organic ligand can be selected from 1,2-ethanedithiol, ethanethiol, 1-propanethiol, 1-butanethiol, 1-octanethiol , any one or more of 1-dodecanethiol, 1-octadecanethiol and 1,2-benzenedimethylthiol.
  • the amine short-chain organic ligand may be selected from any one or more of ethylenediamine, ethylamine, propylamine and butylamine.
  • the first exchange ligand, the second exchange ligand, and the third exchange ligand may be the same or different.
  • the first exchange ligand, the second exchange ligand, and the third exchange ligand can be independently selected from I ⁇ , Br ⁇ , Cl ⁇ , carboxylic acid, sulfonic acid , any one or more of thiols, phosphonic acids and amines.
  • the first exchange ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acids, sulfonic acids, thiols, phosphonic acids and amines kind;
  • the second exchange ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acid, sulfonic acid, thiol, phosphonic acid and amine kind;
  • the third exchange ligand can be selected from any one or more of I - , Br - and Cl - , or any one or more of carboxylic acid, sulfonic acid, thiol, phosphonic acid and amine kind.
  • step S200 may include: using precursors of various exchange ligands to sequentially perform ligand exchange reactions with quantum dots that do not retain pixel regions, so as to make the oil-soluble surface of quantum dots that do not retain pixel regions
  • the ligands are exchanged for various third exchange ligands, and the residual quantum dot film is obtained in the region where the pixels are not retained.
  • step S200 may include:
  • the remaining quantum dots whose surface ligands are oil-soluble ligands are not retained in the pixel area, continue to use the organic salt of the third halogen to carry out ligand exchange reaction with the residual quantum dots in the unreserved pixel area, and obtain surface ligands comprising a third residual quantum dot film of a first halide ion, a second halide ion, and a third halide ion;
  • the particle size of the first halide ion is larger than that of the second halide ion, and the particle size of the second halide ion is larger than that of the third halide ion.
  • the first halide ion is I ⁇
  • the second halide ion is Br ⁇
  • the third halide ion is Cl ⁇ .
  • step S201 may include:
  • the organic salt of iodine is used to carry out a ligand exchange reaction with the red quantum dots remaining in the green pixel area and the blue pixel area, and the first residual red quantum dot film whose surface ligands include I- are obtained in the green pixel area and the blue pixel area;
  • the surface ligands include I- and Br- in the green pixel area and the blue pixel area to obtain the second residual red quantum dot film;
  • the third residual red quantum dot film whose surface ligands include I - , Br - and Cl - is obtained in the green pixel area and the blue pixel area.
  • step S202 may include:
  • the organic salt of iodine is used to carry out a ligand exchange reaction with the green quantum dots remaining in the red pixel area and the blue pixel area, and the first residual green quantum dot film whose surface ligands include I- is obtained in the red pixel area and the blue pixel area;
  • the second residual green quantum dot film whose surface ligands include I- and Br- is obtained in the red pixel area and the blue pixel area.
  • step S203 may include:
  • the organic salt of iodine is used to carry out ligand exchange reaction with the blue quantum dots remaining in the red pixel area and the green pixel area, and the first residual blue quantum dot film whose surface ligands include I- is obtained in the red pixel area and the green pixel area.
  • the red quantum dots can absorb the light emitted from the green quantum dots and blue quantum dots, and emit red light, the residue of the red quantum dots has a greater impact on the green pixel area and the blue pixel area; similarly, the green quantum dots Carryover has a greater effect on blue pixel areas.
  • I - , Br - and Cl - can be used sequentially to carry out ligand exchange on the oil-soluble ligands on the surface of the red quantum dots remaining in the green pixel area and the blue pixel area, so that the green pixel area
  • the oil-soluble ligands on the surface of the red quantum dots remaining in the blue pixel area are more fully exchanged;
  • I - and Br - can be used in turn to treat the oil-soluble ligands on the surface of the green quantum dots remaining in the red pixel area and the blue pixel area
  • Ligand exchange is carried out so that the oil-soluble ligands on the surface of the green quantum dots remaining in the red pixel area and the blue pixel area can be exchanged more fully;
  • the oil-soluble ligands on the surface are subjected to ligand exchange, so that the oil-soluble ligands on the surface of the blue quantum dots remaining in the red pixel area and the green pixel area can be more fully exchanged.
  • the ligand exchange reaction in step S200 may include:
  • the surface of the spin-dried quantum film that does not retain the pixel area is cleaned with the same solvent as that used to prepare the solution containing the precursor of the exchange ligand.
  • the first halogen is iodine
  • the organic salt of the first halogen can be selected from any one or more of tetrabutylammonium iodide, tetrapropylammonium iodide and tetrapentylammonium iodide;
  • the second halogen is bromine, and the organic salt of the second halogen can be selected from any one or more of tetrabutylammonium bromide, tetrapropylammonium bromide and tetrapentylammonium bromide;
  • the third halogen is chlorine, and the organic salt of the third halogen can be selected from any one or more of tetrabutylammonium chloride, tetrapropylammonium chloride and tetrapentylammonium chloride.
  • the concentration of the precursor of the exchange ligand may be 2 mg/mL to 50 mg/ml, for example, may be 2 mg/mL, 5 mg/mL, 10mg/mL, 15mg/mL, 25mg/mL, 30mg/mL, 35mg/mL, 40mg/mL, 45mg/mL, 50.
  • the concentration of the precursor of the exchange ligand can be 2 mg/mL to 50 mg/ml; when the exchange ligand is an exchange organic ligand , in the solution containing the precursor of the exchange ligand, the concentration of the precursor of the exchange ligand may be 2 mg/mL to 30 mg/ml.
  • the precursor of the first exchange ligand, the precursor of the second exchange ligand, and the precursor of the third exchange ligand are dissolved in a solvent to make a solution containing the first exchange ligand precursor, a solution containing the second exchange ligand precursor, and a solution containing the third exchange ligand precursor. solution;
  • the concentration of the precursor of the first exchange ligand is C 1 ;
  • the concentration of the precursor of the second exchange ligand is C 2 ;
  • the concentration of the precursor of the third exchange ligand is C 2 ;
  • C 1 , C 2 , and C 3 are all in the range of 2 mg/mL to 50 mg/ml, and C 1 , C 2 , and C 3 can be the same or different.
  • the residue of red quantum dots has a greater impact on the green pixel area and the blue pixel area, and the residue of green quantum dots has a greater impact on the blue pixel area, it can also be controlled by adjusting the concentration of the exchange ligand and the time of ligand exchange. so that the oil-soluble ligands on the surface of the red quantum dots remaining in the green pixel area and the blue pixel area can be exchanged more fully, and the oil-soluble ligands on the surface of the green quantum dots remaining in the blue pixel area can be exchanged more fully, So as to achieve better results.
  • the solvent may be selected from any one or more of deionized water, acetonitrile, methanol and ethanol.
  • the first time period may be 5 seconds to 60 seconds, for example, may be 5 seconds, 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds;
  • the time period may be 10 seconds to 120 seconds, for example, 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds, 90 seconds, 100 seconds, 110 seconds, 120 seconds.
  • the first time period may be 5 seconds to 60 seconds; when the exchange ligand is an exchange organic ligand, the first time period may be 10 seconds to 60 seconds.
  • the quantum dots may be selected from CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3 , CsPbBr 3 , CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, Any one or more of InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge and C.
  • the quantum dots are cadmium-free quantum dots.
  • the oil-soluble ligand may be any one of oleic acid, oleylamine, dodecanethiol, trioctylphosphine, and trioctylphosphine oxide.
  • An embodiment of the present disclosure also provides a method for preparing a quantum dot light-emitting device, the method comprising:
  • the quantum dot light emitting device may have an upright structure or an inverted structure, the upright structure includes an upright top emission structure and an upright bottom emission structure, and the inversion structure includes an upside down top emission structure and an upside down bottom emission structure.
  • the quantum dot light-emitting device has an upright structure, at this time, the first electrode is an anode, and the second electrode is a cathode;
  • the preparation method further includes: sequentially forming a hole injection layer and a hole transport layer on the first electrode;
  • the forming the quantum dot luminescent layer includes: forming the quantum dot luminescent layer on the hole transport layer;
  • the preparation method further includes: forming an electron transport layer on the quantum dot light emitting layer;
  • the forming the second electrode includes: forming the second electrode on the electron transport layer.
  • the anode 100 can be a bottom emission substrate conductive glass or a common glass substrate deposited with a conductive layer.
  • the conductive layer can be made of indium tin oxide (Indium Tin Oxide, ITO), indium zinc oxide (Indium Zinc Oxide, IZO), fluorine-doped Formed from conductive transparent materials such as F-doped Tin Oxide (FTO);
  • the hole injection layer 200 can be prepared by spin coating, evaporation or inkjet printing; wherein, the organic hole injection layer can be selected from PEDOT:PSS 4083 (poly(3,4-ethylenedioxythiophene)/polyphenylene Ethylene sulfonate) or other commercial compounds suitable for forming hole injection layers, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS, CuSCN, Cu:NiO, etc.; PEDOT film formation
  • the temperature can be from 130°C to 150°C, and the speed of the homogenizer can be set from 500rpm to 2500rpm during film formation to adjust the thickness of the film layer;
  • the hole transport layer 300 can be prepared by spin coating, evaporation or inkjet printing, etc., and the material of the hole transport layer can be selected from, for example, poly(9,9-dioctylfluorene-CO-N -(4-butylphenyl)diphenylamine) (TFB), polyvinylcarbazole (PVK), N,N'-bis(3-methylphenyl)-N,N'-diphenyl-1 , 1′-biphenyl-4,4′-diamine (TPD), 4,4′-bis(9-carbazole)biphenyl (CBP) and other mature commercial materials; spin coating to form the hole transport layer 300 , the speed of the homogenizer can be set from 2000rpm to 4000rpm, and annealed at 235°C for 30 minutes to form a film;
  • the target color quantum dot film formed by the quantum dots with oil-soluble ligands in the quantum dot luminescent layer 400 can be prepared by spin coating, evaporation or inkjet printing, etc., and the quantum dots used can include CdS, CdSe , CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3 , CsPbBr 3 , CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe , Si, Ge, C, and other nanoscale materials with the above compositions, such as nanorods, nanosheets;
  • the specific synthesis method is: under the condition of inert gas and about 100°C, dissolving selenium powder in octadecene to obtain a selenium solution; adding CdO and oleic acid to the Octadecene and heated to about 280°C to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and use methanol-hexane Extract to remove unreacted precursors, precipitate with ethanol, and dissolve in octane to obtain a CdSe quantum dot solution, and spin-coat to form a film (film can also be formed by printing, printing, electrospray printing, etc.) ;
  • the quantum dot film patterning method provided by the embodiment of the present disclosure is used to perform ligand exchange reaction on the quantum dots that do not retain the pixel area, so that the oil-soluble ligands on the surface of the quantum dots that do not retain the pixel area are exchanged for exchange ligands.
  • the residual quantum dot film is obtained in the area where the pixel is not reserved;
  • the material of the electron transport layer 500 can be selected from any one or more of aluminum oxide, barium fluoride, titanium dioxide, zinc sulfide, zirconium oxide, zinc selenide, magnesium oxide, zinc oxide, yttrium oxide and aluminum fluoride ;
  • the electron transport layer 500 can choose zinc oxide nanoparticle film or zinc oxide sol-gel film, etc.;
  • (a) Preparation of zinc oxide nanoparticle film for example, 90 ⁇ L to 120 ⁇ L of zinc oxide nanoparticles with a concentration of 10 mg/mL to 30 mg/mL are dissolved in an alcoholic solvent (for example, methanol, ethanol, isopropanol, etc.) to obtain The solution is added dropwise on the quantum dot luminescent layer, the speed of the homogenizer is set to 500rpm to 4000rpm and spin coating is formed at room temperature or heating (the temperature can be 25°C to 250°C, for example, 80°C to 120°C).
  • the thickness of the zinc oxide nanoparticle film can be in the range of 20nm to 100nm;
  • the material of the electron transport layer 500 can also be ion-doped zinc oxide nanoparticles, for example, Mg, In, Al or Ga-doped zinc oxide nanoparticles, etc.;
  • the cathode 600 can be prepared by evaporation or sputtering, and can be a metal film (such as aluminum film, silver film) or IZO film.
  • the quantum dot light emitting device has an inverted structure, at this time, the first electrode is a cathode, and the second electrode is an anode;
  • the preparation method may further include: forming an electron transport layer on the first electrode;
  • the forming the quantum dot light-emitting layer includes: forming the quantum dot light-emitting layer on the electron transport layer;
  • the preparation method may further include: sequentially forming a hole transport layer and a hole injection layer on the quantum dot light-emitting layer;
  • the forming the second electrode includes: forming the second electrode on the hole injection layer.
  • the cathode 600 can be a bottom emission substrate conductive glass or an ordinary glass substrate deposited with a conductive layer.
  • the conductive layer can be made of conductive transparent materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), FTO (F-doped Tin Oxide), etc. form;
  • the anode 100 can be prepared by evaporation or sputtering, and can be a metal film (such as an Al film) or an IZO film;
  • the hole injection layer 200, the hole transport layer 300, the quantum dot light-emitting layer 400, and the electron transport layer 500 can be prepared by selecting the same materials and methods as the QLED device with the upright structure.
  • Exemplary embodiments of the present disclosure provide a method of manufacturing a QLED device having an inverted structure as shown in FIG. 6 .
  • halogen ions are used to perform ligand exchange on the remaining oil-soluble ligands on the surface of quantum dots, and the preparation process may include:
  • Electron transport layer is prepared on the cathode: an electron transport layer is prepared on the conductive glass cathode, and the electron transport layer can be a zinc oxide nanoparticle film or a zinc oxide sol-gel film, etc.;
  • (a) Preparation of zinc oxide nanoparticle film for example, 90 ⁇ L to 120 ⁇ L of zinc oxide nanoparticles with a concentration of 10 mg/mL to 30 mg/mL are dissolved in an alcoholic solvent (for example, methanol, ethanol, isopropanol, etc.) to obtain Add the solution dropwise to the cathode, set the speed of the homogenizer at 500rpm to 4000rpm and spin coat to form a film, and form a film at room temperature or heating (the temperature can be 25°C to 250°C, for example, 80°C to 120°C), to Adjust the thickness of the zinc oxide nanoparticle film, the thickness of the zinc oxide nanoparticle film can be in the range of 20nm to 100nm; the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, or Ga doped Miscellaneous magnesium oxide nanoparticles, etc.;
  • an alcoholic solvent for example, methanol, ethanol, is
  • the red quantum dot film is prepared by spin coating, evaporation or inkjet printing, etc.
  • the quantum dots used can include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3 , CsPbBr 3 , CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above compositions, Such as nanorods, nanosheets;
  • the specific synthesis method is as follows: under the condition of inert gas and about 100 ° C, dissolving selenium powder in octadecene to obtain a selenium solution; adding CdO and oleic acid to ten Octene and heated to about 280°C to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and use methanol-hexane Extract to remove unreacted precursors, precipitate with ethanol, and dissolve in octane to obtain a CdSe quantum dot solution, and spin-coat to form a film (film can also be formed by printing, printing, electrospray printing, etc.);
  • the quantum dot film in the green and blue pixel areas is exposed to form a patterned red quantum dot film, but red quantum dots will remain in the green and blue pixel areas, which will directly affect the performance of QLEDs.
  • Halogen ion pairs can be used to The oil-soluble ligands of the red quantum dots remaining in the green and blue pixel areas are subjected to ligand exchange.
  • the ligand exchange of bromide ions can include: preparing tetrabutyl bromide with a concentration of 2mg/mL to 50mg/ml Ammonium methanol solution, after forming a patterned red quantum dot film, add tetrabutylammonium bromide methanol solution dropwise on the red quantum dot film, let it stand for 5s to 60s, spin dry, and then wash the quantum dots with methanol Repeat several times on the surface of the film to make it fully exchanged to change its recombination area, so that the red quantum dots remaining in the green and blue pixel areas do not emit light, which can achieve the effect of improving its color gamut, the effect is shown in Figure 3;
  • Body exchange is taken as an example, which may include: preparing a methanol solution of tetrabutylammonium bromide with a concentration of 2mg/mL to 50mg/ml, after forming a patterned green quantum dot film and a patterned blue quantum dot film respectively, Add a methanol solution of tetrabutylammonium bromide dropwise on the quantum dot film, let it stand for 5s to 60s, spin dry, then wash the surface of the quantum dot film with methanol, repeat several times to make it fully exchanged, so as to change its recombination area , so that the green quantum dots remaining in the red and blue pixel areas and the blue quantum dots remaining in the red and green pixel areas do not emit light, the process flow diagram is shown in Figure 4;
  • the exchange ligands used for ligand exchange on the surface of the remaining red quantum dots, green quantum dots, and blue quantum dots can be the same or different; for example , use tetrabutylammonium bromide for ligand exchange reaction on the red quantum dots remaining in the green and blue pixel areas, and use tetrabutylammonium iodide for the ligand exchange reaction on the green quantum dots remaining in the red and blue pixel areas Exchange reaction, using tetrabutylammonium chloride to perform ligand exchange reaction on the blue quantum dots remaining in the red and green pixel areas;
  • a hole transport layer is prepared by spin coating, evaporation or inkjet printing, etc.
  • the material of the hole transport layer can be selected from mature commercial materials such as TFB, PVK, TPD, CBP, etc.; to adopt Take TFB spin coating to form a hole transport layer as an example, which may include: dissolving 5mg/ml to 30mg/ml TFB in chlorobenzene solution, spin coating on the quantum dot light emitting layer at a speed of 2000rpm to 4000rpm, and annealing at 235°C 30 minutes to form a film;
  • a hole injection layer is prepared by spin coating, evaporation or inkjet printing; among them, the organic hole injection layer can be selected from PEDOT:PSS 4083 (poly 3,4-ethylenedioxythiophene/poly styrene sulfonate) or other commercial compounds suitable for forming hole injection layers, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS, CuSCN, Cu:NiO, etc.; the formation of PEDOT
  • the film temperature can be from 130°C to 150°C, and the speed of the homogenizer can be set from 500rpm to 2500rpm during film formation to adjust the thickness of the film layer;
  • anode on the hole injection layer introduce an electrode material on the hole injection layer to prepare an anode, such as evaporating an aluminum film, a silver film or sputtering an indium zinc oxide (IZO) film to form an anode;
  • an electrode material on the hole injection layer such as evaporating an aluminum film, a silver film or sputtering an indium zinc oxide (IZO) film to form an anode;
  • IZO indium zinc oxide
  • Encapsulation cover with an encapsulation cover plate, and encapsulate the device with an ultraviolet curing adhesive to obtain a quantum dot light-emitting diode.
  • Exemplary embodiments of the present disclosure provide a method for fabricating a QLED device having an upright structure as shown in FIG. 5 .
  • halogen ions are used to perform ligand exchange on the remaining oil-soluble ligands on the surface of quantum dots, and the preparation process may include:
  • the organic hole injection layer can be selected from PEDOT:PSS 4083 (Poly(3,4-ethylenedioxythiophene/polystyrene sulfonate) or other commercial compounds suitable for forming the hole injection layer, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS , CuSCN, Cu:NiO, etc.; the film forming temperature of PEDOT can be 130°C to 150°C, and the speed of the homogenizer can be set at 500rpm to 2500rpm during film formation to adjust the thickness of the film layer;
  • PEDOT:PSS 4083 Poly(3,4-ethylenedioxythiophene/polystyrene sulfonate) or other commercial compounds suitable for forming the hole injection layer, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS , CuSCN, Cu:NiO, etc.
  • the film forming temperature of PEDOT can be 130°
  • the material of the hole transport layer can be selected from for example TFB, PVK, TPD, CBP and other mature commercial materials; taking TFB spin coating as an example to form a hole transport layer, it can include: dissolving 5mg/ml to 30mg/ml TFB in chlorobenzene solution, at 2000rpm to 4000rpm The speed is spin-coated on the quantum dot light-emitting layer, and annealed at 235 ° C for 30 minutes to form a film;
  • the red quantum dot film is prepared by spin coating, evaporation or inkjet printing, etc.
  • the quantum dots used can include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3.
  • CsPbBr 3 CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above composition , such as nanorods, nanosheets;
  • the specific synthesis method is as follows: under the condition of inert gas and about 100 ° C, dissolving selenium powder in octadecene to obtain a selenium solution; adding CdO and oleic acid to ten Octene and heated to about 280°C to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and use methanol-hexane Extract to remove unreacted precursors, precipitate with ethanol, and dissolve in octane to obtain a CdSe quantum dot solution, and spin-coat to form a film (film can also be formed by printing, printing, electrospray printing, etc.);
  • the quantum dot film in the green and blue pixel areas is exposed to form a patterned red quantum dot film, but red quantum dots will remain in the green and blue pixel areas, which will directly affect the performance of QLEDs.
  • Halogen ion pairs can be used to The oil-soluble ligands of the red quantum dots remaining in the green and blue pixel areas are subjected to ligand exchange.
  • the ligand exchange of bromide ions can include: preparing tetrabutyl bromide with a concentration of 2mg/mL to 50mg/ml Ammonium methanol solution, after forming a patterned red quantum dot film, add tetrabutylammonium bromide methanol solution dropwise on the red quantum dot film, let it stand for 5s to 60s, spin dry, and then wash the quantum dots with methanol Repeat several times on the surface of the film to make it fully exchanged to change its recombination area, so that the red quantum dots remaining in the green and blue pixel areas do not emit light, which can achieve the effect of improving its color gamut, the effect is shown in Figure 3;
  • Body exchange is taken as an example, which may include: preparing a methanol solution of tetrabutylammonium bromide with a concentration of 2mg/mL to 50mg/ml, after forming a patterned green quantum dot film and a patterned blue quantum dot film respectively, Drop the methanol solution of tetrabutylammonium bromide on the quantum dot film, let it stand for 5s to 60s, spin dry, then wash the surface of the quantum dot film with methanol, repeat several times, make it fully exchanged, to change its recombination area, Make the green quantum dots remaining in the red and blue pixel areas and the blue quantum dots remaining in the red and green pixel areas not emit light, the process flow diagram is shown in Figure 4;
  • the exchange ligands used for ligand exchange on the surface of the remaining red quantum dots, green quantum dots, and blue quantum dots can be the same or different; for example , use tetrabutylammonium bromide for ligand exchange reaction on the red quantum dots remaining in the green and blue pixel areas, and use tetrabutylammonium iodide for the ligand exchange reaction on the green quantum dots remaining in the red and blue pixel areas Exchange reaction, using tetrabutylammonium chloride to perform ligand exchange reaction on the blue quantum dots remaining in the red and green pixel areas;
  • the thickness of the zinc oxide nanoparticle film can be in the range of 20nm to 100nm;
  • the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, Or Ga-doped magnesium oxide nanoparticles, etc.;
  • Encapsulation cover with an encapsulation cover plate, and encapsulate the device with an ultraviolet curing adhesive to obtain a quantum dot light-emitting diode.
  • Exemplary embodiments of the present disclosure provide a method of manufacturing a QLED device having an inverted structure as shown in FIG. 6 .
  • short-chain organic ligands are used to carry out ligand exchange on the remaining oil-soluble ligands on the surface of quantum dots, and the preparation process may include:
  • Electron transport layer is prepared on the cathode: an electron transport layer is prepared on the conductive glass cathode, and the electron transport layer can be a zinc oxide nanoparticle film or a zinc oxide sol-gel film, etc.;
  • the thickness of the zinc oxide nanoparticle film can be in the range of 20nm to 100nm;
  • the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, Or Ga-doped magnesium oxide nanoparticles, etc.;
  • the red quantum dot film is prepared by spin coating, evaporation or inkjet printing, etc.
  • the quantum dots used can include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3 , CsPbBr 3 , CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above compositions, Such as nanorods, nanosheets;
  • the specific synthesis method is as follows: under the condition of inert gas and about 100 ° C, dissolving selenium powder in octadecene to obtain a selenium solution; adding CdO and oleic acid to ten Octene and heated to about 280°C to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and use methanol-hexane Extract to remove unreacted precursors, precipitate with ethanol, and dissolve in octane to obtain a CdSe quantum dot solution, and spin-coat to form a film (film can also be formed by printing, printing, electrospray printing, etc.);
  • Short-chain organic Ligand exchange for the oil-soluble ligands of the red quantum dots remaining in the green and blue pixel areas may include: preparing a concentration of 2mg/mL to 30mg/ml The methanol solution of ethanedithiol, after forming the patterned red quantum dot film, drop the methanol solution of ethanedithiol on the red quantum dot film, let it stand for 10s to 60s, spin dry, and then wash the quantum dots with methanol Repeat several times on the surface of the dot film to make it fully exchanged to change its recombination area, so that the red quantum dots remaining in the green and blue pixel areas do not emit light, which can achieve the effect of improving
  • Ligand exchange for the oil-soluble ligands of the green quantum dots remaining in the red and blue pixel areas, and short-chain organic ligands for the oil-soluble ligands of the blue quantum dots remaining in the red and green pixel areas may include: preparing a methanol solution of ethanedithiol with a concentration of 2mg/mL to 30mg/ml, forming a patterned green quantum dot film and patterning respectively After the blue quantum dot film, drop the methanol solution of ethanedithiol on the quantum dot film, let it stand for 10s to 60s, spin dry, then wash the surface of the quantum dot film with methanol, repeat several times to make it
  • a hole transport layer is prepared by spin coating, evaporation or inkjet printing, etc.
  • the material of the hole transport layer can be selected from mature commercial materials such as TFB, PVK, TPD, CBP, etc.; to adopt Take TFB spin coating to form a hole transport layer as an example, which may include: dissolving 5mg/ml to 30mg/ml TFB in chlorobenzene solution, spin coating on the quantum dot light emitting layer at a speed of 2000rpm to 4000rpm, and annealing at 235°C 30 minutes to form a film;
  • a hole injection layer is prepared by spin coating, evaporation or inkjet printing; among them, the organic hole injection layer can be selected from PEDOT:PSS 4083 (poly 3,4-ethylenedioxythiophene/poly styrene sulfonate) or other commercial compounds suitable for forming hole injection layers, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS, CuSCN, Cu:NiO, etc.; the formation of PEDOT
  • the film temperature can be from 130°C to 150°C, and the speed of the homogenizer can be set from 500rpm to 2500rpm during film formation to adjust the thickness of the film layer;
  • anode on the hole injection layer introduce an electrode material on the hole injection layer to prepare an anode, such as evaporating an aluminum film, a silver film or sputtering an indium zinc oxide (IZO) film to form an anode;
  • an electrode material on the hole injection layer such as evaporating an aluminum film, a silver film or sputtering an indium zinc oxide (IZO) film to form an anode;
  • IZO indium zinc oxide
  • Encapsulation cover with an encapsulation cover plate, and encapsulate the device with an ultraviolet curing adhesive to obtain a quantum dot light-emitting diode.
  • Exemplary embodiments of the present disclosure provide a method for fabricating a QLED device having an upright structure as shown in FIG. 5 .
  • short-chain organic ligands are used to carry out ligand exchange on the remaining oil-soluble ligands on the surface of quantum dots, and the preparation process may include:
  • the organic hole injection layer can be selected from PEDOT:PSS 4083 (Poly(3,4-ethylenedioxythiophene/polystyrene sulfonate) or other commercial compounds suitable for forming the hole injection layer, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS , CuSCN, Cu:NiO, etc.; the film forming temperature of PEDOT can be 130°C to 150°C, and the speed of the homogenizer can be set at 500rpm to 2500rpm during film formation to adjust the thickness of the film layer;
  • PEDOT:PSS 4083 Poly(3,4-ethylenedioxythiophene/polystyrene sulfonate) or other commercial compounds suitable for forming the hole injection layer, such as NiO, MoO 3 , WoO 3 , V 2 O 5 , CuO, CuS , CuSCN, Cu:NiO, etc.
  • the film forming temperature of PEDOT can be 130°
  • the material of the hole transport layer can be selected from for example TFB, PVK, TPD, CBP and other mature commercial materials; taking TFB spin coating as an example to form a hole transport layer, it can include: dissolving 5mg/ml to 30mg/ml TFB in chlorobenzene solution, at 2000rpm to 4000rpm The speed is spin-coated on the quantum dot light-emitting layer, and annealed at 235 ° C for 30 minutes to form a film;
  • the red quantum dot film is prepared by spin coating, evaporation or inkjet printing, etc.
  • the quantum dots used can include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS 2 , ZnO, CsPbCl 3.
  • CsPbBr 3 CsPhI 3 , CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above composition , such as nanorods, nanosheets;
  • the specific synthesis method is as follows: under the condition of inert gas and about 100 ° C, dissolving selenium powder in octadecene to obtain a selenium solution; adding CdO and oleic acid to ten Octene and heated to about 280°C to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and use methanol-hexane Extract to remove unreacted precursors, precipitate with ethanol, and dissolve in octane to obtain a CdSe quantum dot solution, and spin-coat to form a film (film can also be formed by printing, printing, electrospray printing, etc.);
  • Short-chain organic Ligand exchange for the oil-soluble ligands of the red quantum dots remaining in the green and blue pixel areas can include: preparing a concentration of 2mg/mL to 30mg/ml The methanol solution of ethanedithiol, after forming the patterned red quantum dot film, drop the methanol solution of ethanedithiol on the red quantum dot film, let it stand for 10s to 60s, spin dry, and then wash the quantum dots with methanol Repeat several times on the surface of the dot film to make it fully exchanged to change its recombination area, so that the red quantum dots remaining in the green and blue pixel areas do not emit light, which can achieve the effect of
  • Ligand exchange for the oil-soluble ligands of the green quantum dots remaining in the red and blue pixel areas, and short-chain organic ligands for the oil-soluble ligands of the blue quantum dots remaining in the red and green pixel areas may include: preparing a methanol solution of ethanedithiol with a concentration of 2mg/mL to 30mg/ml, forming a patterned green quantum dot film and patterning respectively After the blue quantum dot film, drop the methanol solution of ethanedithiol on the quantum dot film, let it stand for 10s to 60s, spin dry, then wash the surface of the quantum dot film with methanol, repeat several times to make it
  • the thickness of the zinc oxide nanoparticle film can be in the range of 20nm to 100nm;
  • the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, Or Ga-doped magnesium oxide nanoparticles, etc.;
  • Encapsulation cover with an encapsulation cover plate, and encapsulate the device with an ultraviolet curing adhesive to obtain a quantum dot light-emitting diode.
  • the method of exchange ligand exchange can also be used to solve the problem of color mixing caused by quantum dot residues.
  • Exemplary embodiments of the present disclosure provide a method for fabricating a quantum dot-blue organic light emitting diode (QD-Blue OLED) device. Since the blue light OLED itself emits blue light, when preparing the quantum dot conversion layer, only a patterned red quantum dot conversion layer and a patterned green quantum dot conversion layer need to be prepared.
  • Fig. 12 is a schematic diagram of the preparation process of a QD-blue OLED full-color device. As shown in Figure 12, the preparation process includes:
  • Red quantum dot conversion layer 3000 is prepared on blue OLED 2000, and red quantum dot conversion layer 3000 is patterned to obtain patterned red quantum dot conversion layer 3000.
  • red quantum dots that do not remain in the pixel area Referring to the method for preparing a QLED device according to the above exemplary embodiments of the present disclosure, halogen ions or short-chain organic ligands are used to carry out ligand exchange on the oil-soluble ligands on the surface of the red quantum dots that do not retain the residue in the pixel area;
  • Exemplary embodiments of the present disclosure provide a method for fabricating a quantum dot-white organic light emitting diode (QD-White OLED) device.
  • Fig. 13 is a schematic diagram of the preparation process of a QD-white OLED full-color device. As shown in Figure 13, the preparation process includes:
  • the method of exchange ligand exchange can also be used to solve the problem of color mixing caused by quantum dot residues.
  • Exemplary embodiments of the present disclosure provide a method for preparing a quantum dot-blue micro light emitting diode (QD-Blue Micro LED). Since the blue light Micro LED itself emits blue light, when preparing the quantum dot conversion layer, it is only necessary to prepare a patterned red quantum dot conversion layer and a patterned green quantum dot conversion layer.
  • Figure 14 is a schematic diagram of the preparation process of QD-blue Micro LED full-color devices. As shown in Figure 14, the preparation process includes:
  • the preparation process of PL substrate includes:
  • Preparation of zinc oxide nanoparticle film Add 100 ⁇ L of zinc oxide nanoparticle ethanol solution with a concentration of 20 mg/mL dropwise on the cathode, set the speed of the homogenizer at 2500 rpm and spin coat, bake at 200 °C for 15 minutes and heat to form a film , forming an electron transport layer with a thickness of 45nm;
  • CdSe quantum dots to prepare red quantum dot film: Dissolve selenium powder in octadecene under inert gas and about 100°C to obtain selenium solution; add CdO and oleic acid to octadecene and heat to 280°C or so, to obtain a cadmium precursor solution; add the selenium solution to the cadmium precursor solution, cool down to about 250°C for reaction, cool to room temperature after the reaction, and extract with methanol-hexane to remove the unreacted precursor body, precipitated with ethanol, and dissolved in octane to obtain a CdSe quantum dot solution, and spin-coated to form a film;
  • drop concentration is the methanol solution of the tetrabutylammonium iodide of 10mg/ml, spin dry after standing for 60, then clean the red quantum dot film surface with methanol, once again the concentration is 10mg/ml
  • the methanol solution of tetrabutylammonium iodide in ml was drop-coated on the surface of the red quantum dot film, left to stand for 60s and then spin-dried, and repeated 2 to 10 times to complete the ligand exchange.
  • FIG. 15 is a comparison diagram of photoluminescence states before and after quantum dot ligand exchange of the PL substrate according to an exemplary embodiment of the present disclosure.
  • L1 represents the change curve of the number of photons collected before the quantum dot ligand exchange with wavelength
  • L2 represents the change curve of the number of photons collected with the wavelength after the quantum dot ligand exchange.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

量子点膜和量子点膜图案化的方法以及它们的应用,所述量子点膜包括目标颜色量子点膜和残留非目标颜色量子点膜,所述目标颜色量子点膜的目标颜色量子点的配体为油溶性配体,所述残留非目标颜色量子点膜的残留非目标颜色量子点的配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。

Description

量子点膜和量子点膜图案化的方法以及它们的应用 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种量子点膜及其在量子点光电器件和显示装置中的应用、一种量子点膜图案化的方法及其在制备量子点发光器件中的应用。
背景技术
半导体量子点(Quantum Dot,QD)是一种重要的荧光纳米材料。将量子点作为发光层材料,应用于平板照明和光电显示领域,越来越受到学术界和工业界的关注。截止到目前,在器件性能方面,量子点发光二极管(Quantum dot light-emitting diode,QLED)的外量子效率(External Quantum Efficiency,EQE)已经达到了20%以上。当前,发光层量子点的图案化工艺是决定全彩、高分辨QLED器件的关键步骤。目前已有转印、喷墨打印以及光刻等方式实现量子点的图案化工艺。
在实际工业大生产角度,通常采用光刻方式实现电子材料(量子点)的图案化。光刻需要借助于光刻胶。光刻胶包括正性光刻胶和负性光刻胶。但是借助于光刻胶的光刻工艺在应用中存在一些问题:
负性光刻胶成本较低,但是显影液通常采用对二甲苯,含苯类有机溶剂有毒,并不利于环保。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率;并且显影液为碱性水溶液,有利于环保。但是,碱性水溶液会破坏发光层的量子点。具体地:
基于正性光刻胶的“lift-off”工艺可以实现量子点图案化,该工艺的主要步骤为:“沉积光刻正胶-目标区域掩膜版曝光-显影-沉积量子点-全曝光-显影-目标区域引入图案化量子点层”。如果制备全彩(红、绿、蓝)QLED器件,这需要将上述工艺步骤重复3次。这其中,光刻胶的显影主要是借助于碱性溶液(例如氨水溶液,或四甲基氢氧化铵水溶液等)。遗憾的是,碱性溶液会对量子点表面配体的状态有比较严重的破坏,具体表现在碱性溶液中的氢氧根离子会破坏表面配体和量子点悬挂键的配位作用,进而使量子点 的表面缺陷位点重新暴露,最终破坏发光层,降低器件效率。因此,发展更加亲和的显影工艺或更环保的图案化工艺,制备高分辨、全彩QLED已经成为量子点显示工艺研究的重点和难点。
目前已有直接图案化量子点发光膜层的方法,用于制备全彩、高分辨QLED。然而,采用直接图案化对量子点发光二极管进行全彩化制备时,对量子点进行显影时,总会有一部分本该显影掉的量子点残留在像素区,这就导致混色问题(比如红色像素点中理应只发射红光,却含有微弱的绿光或者蓝光峰),从而影响其色域。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种量子点膜,所述量子点膜包括目标颜色量子点膜和残留非目标颜色量子点膜,所述目标颜色量子点膜的目标颜色量子点的配体为油溶性配体,所述残留非目标颜色量子点膜的残留非目标颜色量子点的配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
本公开实施例还提供一种量子点光电器件,所述量子点光电器件包括如上所述的量子点膜。
本公开实施例还提供一种显示装置,所述显示装置包括多个如上所述的量子点光电器件。
本公开实施例还提供一种量子点膜图案化的方法,所述方法包括:
S100:采用带有油溶性配体的量子点在整个像素区形成量子点膜,除去不保留像素区的量子点膜,得到图案化的量子点膜;
S200:采用交换配体的前驱物与不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为交换配体,在不保留像素区得到残留量子点膜;
所述交换配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链 有机配体中的任意一种或多种。
本公开实施例还提供一种量子点发光器件的制备方法,包括:
形成第一电极;
采用如上所述的量子点膜图案化的方法形成图案化的量子点膜,作为量子点发光层;
形成第二电极。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为理想状态下直接图案化制备量子点膜图案的工艺流程图;
图2为量子点残留情况示意图;
图3为本公开示例性实施例的量子点光电器件的量子点层的结构示意图;
图4为本公开另一示例性实施例的量子点光电器件的量子点层的结构示意图;
图5为本公开示例性实施例的正置全彩QLED器件的结构示意图;
图6为本公开示例性实施例的倒置全彩QLED器件的结构示意图;
图7为本公开示例性实施例的QD-正置蓝光OLED器件的结构示意图;
图8为本公开示例性实施例的QD-倒置蓝光OLED器件的结构示意图;
图9为本公开另一示例性实施例的QD-正置蓝光OLED器件的结构示意图;
图10为本公开示例性实施例中单个颜色量子点膜的图案化的流程配体示意图;
图11为本公开示例性实施例中多个颜色量子点膜的图案化的流程示意图;
图12为QD-蓝光OLED全彩器件的制备流程示意图;
图13为QD-白光OLED全彩器件的制备流程示意图;
图14为QD-蓝光Micro LED全彩器件的制备流程示意图;
图15为本公开示例性实施例的PL基板在进行量子点配体交换前后的光致发光状态对比图。
附图中的标记符号的含义为:
10-基底;20-前膜层;30-红色量子点膜;30’-残留发光红色量子点膜;30”-残留红色量子点膜;30”’-功能红色量子点膜;40-绿色量子点膜;40’-残留发光绿色量子点膜;40”-残留绿色量子点膜;40”’-功能绿色量子点膜;50-蓝色量子点膜;50’-残留发光蓝色量子点膜;50”-残留蓝色量子点膜;50”’-功能蓝色量子点膜;100-阳极;200-空穴注入层;300-空穴传输层;400-量子点发光层;500-电子传输层;600-阴极;700-封装层;800-蓝色发光层;2000-蓝光OLED;2000’-白光OLED;2000”-蓝光Micro LED;3000-红色量子点转换层;4000-绿色量子点转换层;5000-蓝色量子点转换层。
具体实施方式
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,可能夸大表示了构成要素的大小、层的厚度或区域。因此,本公开的任意一个实现方式并不一定限定于图中所示尺寸,附图中部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的任意一个实现方式不局限于附图所示的形状或数值等。
在本公开的描述中,“膜”和“层”可以相互调换。例如,有时可以将“量子点膜”换成为“量子点层”。
在本公开的描述中,“第一”、“第二”、“第三”等序数词是为了避免构成 要素的混同而设置,而不是为了在数量方面上进行限定的。
使用当前的直接图案化法可以实现量子点发光二极管的全彩图案化,但是这种工艺也有其缺点,即量子点在像素区的残留带来的混色问题。
图1为理想状态下直接图案化制备量子点膜图案的工艺流程图。如图1所示,量子点发光二极管图案化的工艺包括:在基底10上沉积前膜层20(即基底与量子点膜之间的膜层,例如在倒置QLED中,前膜层20为电子传输层;在正置QLED中,前膜层20包括空穴注入层和空穴传输层);在前膜层20上形成红色量子点膜30(例如通过旋涂的方式),将红色量子点膜30曝光,将绿色和蓝色像素区的红色量子点膜清洗掉,仅保留红色像素区的红色量子点膜30;形成绿色量子点膜40例如通过旋涂的方式),将绿色量子点膜40曝光,将红色和蓝色像素区的绿色量子点膜清洗掉,仅保留绿色像素区的绿色量子点膜40;形成蓝色量子点膜50例如通过旋涂的方式),将蓝色量子点膜50曝光,将红色和绿色像素区的蓝色量子点膜清洗掉,仅保留绿色像素区的蓝色量子点膜50。
然而,上述工艺为理想的工艺制备流程,然而在实际制备过程中,总会伴有量子点的残留(比如红色量子点残留在绿色和蓝色像素区,绿色量子点残留在红色和蓝色像素区)。
图2为量子点残留情况示意图。如图2所示,红色像素区上有残留的绿色量子点形成的残留发光绿色量子点膜40’和残留的蓝色量子点形成的残留发光蓝色量子点膜50’,绿色像素区上有残留的红色量子点形成的残留发光红色量子点膜30’和残留的蓝色量子点形成的残留发光蓝色量子点膜50’,蓝色像素区上有残留的红色量子点形成的残留发光红色量子点膜30’和残留的绿色量子点形成的残留发光绿色量子点膜40’。
量子点残留问题的存在会大大影响全彩量子点发光二极管的色域。
基于此,本公开实施例提供一种量子点膜,所述量子点膜包括目标颜色量子点膜和残留非目标颜色量子点膜,所述目标颜色量子点膜的目标颜色量子点的配体为油溶性配体,所述残留非目标颜色量子点膜的残留非目标颜色量子点的配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机 配体中的任意一种或多种。
在本公开实施例的描述中,
“目标颜色量子点膜”定义为所发出的光的颜色是像素区期望的颜色的量子点膜;
“目标颜色量子点”定义为形成“目标颜色量子点膜”的量子点;
“残留非目标颜色量子点”定义为与“目标颜色量子点”颜色不同、本应该被除去但却残留的量子点。
“残留非目标颜色量子点膜”定义为由“残留非目标颜色量子点”形成的量子点膜。
例如,红色像素区的“目标颜色量子点膜”为红色量子点膜,对应的“目标颜色量子点”为红色量子点,形成绿色像素区的绿色量子点膜和形成蓝色像素区的蓝色量子点膜时残留在红色像素区的绿色量子点膜和蓝色量子点膜相对于红色像素区来说属于残留非目标颜色量子点膜。
图3为本公开示例性实施例的量子点光电器件的量子点层的结构示意图。如图3所示,在该示例性实施例中,量子点层包括红色像素区的量子点膜、绿色像素区的量子点膜和蓝色像素区的量子点膜;其中,红色像素区的量子点膜包括设置在前膜层20一侧的红色量子点膜30、设置在所述红色量子点膜30的远离前膜层20一侧的残留绿色量子点膜40”、设置在所述残留绿色量子点膜40”的远离前膜层20一侧的残留蓝色量子点膜50”;绿色像素区的量子点膜包括设置在前膜层20一侧的残留红色量子点膜30”、设置在所述残留红色量子点膜30”的远离前膜层20一侧的绿色量子点膜40、设置在所述绿色量子点膜40的远离前膜层20一侧的残留蓝色量子点膜50”;蓝色像素区的量子点膜包括设置在前膜层20一侧的残留红色量子点膜30”、设置在所述残留红色量子点膜30”的远离前膜层20一侧的残留绿色量子点膜40”、设置在所述残留绿色量子点膜40”的远离前膜层20一侧的蓝色量子点膜50。
在示例性实施例中,所述量子点膜还可以包括设置在所述目标颜色量子点膜一侧的功能量子点膜,所述功能量子点膜的量子点为目标颜色量子点,所述功能量子点膜的量子点的配体选自卤素离子和碳链长度在2个碳至18 个碳范围内的短链有机配体中的任意一种或多种。
图4为本公开另一示例性实施例的量子点光电器件的量子点层的结构示意图。如图4所示,在该示例性实施例中,量子点层包括红色像素区的量子点膜、绿色像素区的量子点膜和蓝色像素区的量子点膜;其中,红色像素区的量子点膜包括设置在前膜层20一侧的红色量子点膜30、设置在所述红色量子点膜30的远离前膜层20一侧的功能红色量子点膜30”’、设置在所述功能红色量子点膜30”’的远离前膜层20一侧的残留绿色量子点膜40”、设置在所述残留绿色量子点膜40”的远离前膜层20一侧的残留蓝色量子点膜50”;绿色像素区的量子点膜包括设置在前膜层20一侧的残留红色量子点膜30”、设置在所述残留红色量子点膜30”的远离前膜层20一侧的绿色量子点膜40、设置在所述绿色量子点膜40的远离前膜层20一侧的功能绿色量子点膜40”’、设置在所述功能绿色量子点膜40”’的远离前膜层20一侧的残留蓝色量子点膜50”;蓝色像素区的量子点膜包括设置在前膜层20一侧的残留红色量子点膜30”、设置在所述残留红色量子点膜30”的远离前膜层20一侧的残留绿色量子点膜40”、设置在所述残留绿色量子点膜40”的远离前膜层20一侧的蓝色量子点膜50、设置在所述蓝色量子点膜50的远离前膜层20一侧的功能蓝色量子点膜50”’。在示例性实施例中,所述卤素离子可以选自I -、Br -和Cl -中的任意一种或多种。
在示例性实施例中,所述短链有机配体的碳链长度可以为2个碳、3个碳、4个碳、5个碳、6个碳、7个碳、8个碳、9个碳、10个碳、11个碳、12个碳、13个碳、14个碳、15个碳、16个碳、17个碳或18个碳。在示例性实施例中,所述短链有机配体的碳链长度可以为2个碳至8个碳。
在示例性实施例中,所述短链有机配体可以选自羧酸、磺酸、膦酸、硫醇和胺中的任意一种或多种。
在示例性实施例中,所述羧酸、所述磺酸和所述膦酸可以为一元酸或二元酸,所述硫醇可以为一元醇或二元醇,所述胺可以为单胺或双胺。
在示例性实施例中,羧酸类短链有机配体可以选自乙酸、丙酸、巯基丙酸、丁酸、1,4-丁二酸等中的任意一种或多种。
在示例性实施例中,磺酸类短链有机配体可以选自甲磺酸、乙磺酸、丙 磺酸和丁磺酸中的任意一种或多种。
在示例性实施例中,膦酸类短链有机配体可以选自甲基膦酸、乙基膦酸、丙基膦酸和丁基膦酸中的任意一种或多种。
在示例性实施例中,硫醇类短链有机配体可以选自1,2-乙二硫醇、乙硫醇、1-丙硫醇、1-丁硫醇、1-辛硫醇、1-十二硫醇、1-十八硫醇和1,2-苯二甲硫醇中的任意一种或多种。
在示例性实施例中,胺类短链有机配体可以选自乙二胺、乙胺、丙胺和丁胺中的任意一种或多种。
在示例性实施例中,所述目标颜色量子点和所述残留非目标颜色量子点可以各自独立地选自CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge和C中的任意一种或多种。
在示例性实施例中,所述目标颜色量子点和所述残留非目标颜色量子点为不含镉的量子点。
在示例性实施例中,所述油溶性配体可以为油酸、油胺、十二硫醇、三辛基膦、三辛基氧膦中的任意一种。
本公开实施例的量子点膜包括目标颜色量子点膜和残留非目标颜色量子点膜,其中目标颜色量子点膜可以发出其所在的像素区期望颜色的光,残留非目标颜色量子点膜由与其所在的像素区期望的颜色不同、本应该被除去但却残留的残留非目标颜色量子点形成,但残留非目标颜色量子点表面的配体为卤素离子或短链有机配体,使得残留非目标颜色量子点膜不发光或发出的光的强度较低(在电致发光器件中表现为不发光,在光致发光器件中表现为发出的光的强度较低),因此虽然残留非目标颜色量子点的颜色是不期望的,但由于形成的残留非目标颜色量子点膜不发光或发出的光的强度较低,可以避免残留非目标颜色量子点的残留带来混色问题。当采用本公开实施例的量子点膜作为QLED的发光层时,不会影响全彩QLED的色域;而且,残留非目标颜色量子点表面的卤素离子和短链有机配体可以达到修饰量子点与实现电荷传输层界面修饰的作用,减少量子点和电荷传输层在其界面处的淬灭,进而提升QLED的性能。
此外,本公开实施例的量子点膜还可以包括功能量子点膜,所述功能量子点膜可以由目标颜色量子点膜转化而来,因此其量子点可以为目标颜色量子点,所述功能量子点膜的量子点的配体为卤素离子或短链有机配体,使得所述功能量子点膜不发光或发出的光的强度较低,可以作为功能膜层存在于量子点膜中,例如可以提高其相邻两侧的膜层的相容性。
本公开实施例还提供一种量子点光电器件,所述量子点光电器件包括如上所述的量子点膜。
在示例性实施例中,所述量子点光电器件可以为量子点显示器件、光电探测器、光伏器件、光响应晶体管、场响应晶体管中的任意一种;所述量子点显示器件可以为量子点发光二极管(QLED)、量子点-有机发光二极管(Quantum Dots-Organic Light Emitting Diode,QD-OLED)器件、量子点-液晶显示(Quantum Dots-Liquid Crystal Display,QD-LCD)器件和量子点-微型发光二极管(Quantum Dots-Micro Light-Emitting Diode,QD-MicroLED)器件中的任意一种。
在示例性实施例中,所述光电器件为量子点发光二极管,所述量子点发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的量子点发光层,所述量子点发光层为如上所述的量子点膜。
图5为本公开示例性实施例的正置全彩QLED器件的结构示意图。如图5所示,正置结构的QLED器件可以包括:阳极100、设置在阳极100上的空穴注入层200、设置在空穴注入层200远离阳极100一侧的空穴传输层300、设置在空穴传输层300远离阳极100一侧的量子点发光层400、设置在量子点发光层400远离阳极100一侧的电子传输层500、设置在电子传输层500远离阳极100一侧的阴极600、以及设置在阴极600远离阳极100一侧的封装层700,其中,量子点发光层400的结构如图3或图4所示。
图6为本公开示例性实施例的倒置全彩QLED器件的结构示意图。如图6所示,倒置结构的QLED器件可以包括:阴极600、设置在阴极600上的电子传输层500、设置在电子传输层500远离阴极600一侧的量子点发光层400、设置在量子点发光层400远离阴极600一侧的空穴传输层300、设置在空穴传输层300远离阴极600一侧的空穴注入层200、设置在空穴注入层200 远离阴极600一侧的阳极100、以及设置在阳极100远离阴极600一侧的封装层700,其中,量子点发光层400的结构如图3或图4所示。
在示例性实施例中,所述量子点光电器件为量子点-有机发光二极管,所述量子点-有机发光二极管包括有机发光二极管和设置在所述蓝光有机发光二极管的远离基底一侧的量子点转换层,所述量子点转换层为如上所述的量子点膜。
在示例性实施例中,所述量子点光电器件为量子点-蓝光有机发光二极管,所述量子点-蓝光有机发光二极管包括蓝光有机发光二极管和设置在所述蓝光有机发光二极管的远离基底一侧的量子点转换层,所述量子点转换层为如上所述的量子点膜;所述蓝光有机发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的蓝色发光层;所述量子点转换层包括红色量子点转换层和绿色量子点转换层,所述红色量子点转换层包括红色量子点膜和残留绿色量子点膜,所述绿色量子点转换层包括绿色量子点膜和残留红色量子点膜。
图7为本公开示例性实施例的QD-正置蓝光OLED器件的结构示意图。如图7所示,QD-正置蓝光OLED器件包括蓝光OLED和设置在所述OLED的远离基底10一侧的量子点转换层;所述蓝光OLED包括设置在基底10上的阳极100、设置在阳极100远离基底10一侧的空穴注入层200、设置在空穴注入层200远离基底10一侧的空穴传输层300、设置在空穴传输层300远离基底10一侧的蓝色发光层800、设置在蓝色发光层800远离基底10一侧的电子传输层500、设置在电子传输层500远离基底10一侧的电子注入层900、设置在电子注入层900远离基底10一侧的阴极600;所述量子点转换层包括红色量子点转换层和绿色量子点转换层,所述红色量子点转换层包括设置在阴极600远离基底10一侧的红色量子点膜30、设置在红色量子点膜30远离基底10一侧的残留绿色量子点膜40”,所述绿色量子点转换层包括设置在阴极600远离基底10一侧的残留红色量子点膜30”、设置在残留红色量子点膜30”远离基底10一侧的绿色量子点膜40。
图8为本公开示例性实施例的QD-倒置蓝光OLED器件的结构示意图。如图8所示,QD-倒置蓝光OLED器件包括蓝光OLED和设置在所述OLED的远离基底10一侧的量子点转换层;所述蓝光OLED包括设置在基底10上 的阴极600、设置在阴极600远离基底10一侧的电子注入层900、设置在电子注入层900远离基底10一侧的电子传输层500、设置在电子传输层500远离基底10一侧的蓝色发光层800、设置在蓝色发光层800远离基底10一侧的空穴传输层300、设置在空穴传输层300远离基底10一侧的空穴注入层200、设置在空穴注入层200远离基底10一侧的阴极600;所述量子点转换层包括红色量子点转换层和绿色量子点转换层,所述红色量子点转换层包括设置在阴极600远离基底10一侧的红色量子点膜30、设置在红色量子点膜30远离基底10一侧的残留绿色量子点膜40”,所述绿色量子点转换层包括设置在阴极600远离基底10一侧的残留红色量子点膜30”、设置在残留红色量子点膜30”远离基底10一侧的绿色量子点膜40。
在示例性实施例中,所述红色量子点转换层包括红色量子点膜、功能红色量子点膜和残留绿色量子点膜,所述绿色量子点转换层包括绿色量子点膜、功能绿色量子点膜和残留红色量子点膜。
图9为本公开另一示例性实施例的QD-正置蓝光OLED器件的结构示意图。如图9所示,QD-正置蓝光OLED器件包括蓝光OLED和设置在所述OLED的远离基底10一侧的量子点转换层;所述蓝光OLED包括设置在基底10上的阳极100、设置在阳极100远离基底10一侧的空穴注入层200、设置在空穴注入层200远离基底10一侧的空穴传输层300、设置在空穴传输层300远离基底10一侧的蓝色发光层800、设置在蓝色发光层800远离基底10一侧的电子传输层500、设置在电子传输层500远离基底10一侧的电子注入层900、设置在电子注入层900远离基底10一侧的阴极600;所述量子点转换层包括红色量子点转换层和绿色量子点转换层,所述红色量子点转换层包括设置在阴极600远离基底10一侧的红色量子点膜30、设置在红色量子点膜30远离基底10一侧的功能红色量子点膜30”’、设置在功能红色量子点膜30”’远离基底10一侧的残留绿色量子点膜40”,所述绿色量子点转换层包括设置在阴极600远离基底10一侧的残留红色量子点膜30”、设置在残留红色量子点膜30”远离基底10一侧的绿色量子点膜40、设置在绿色量子点膜40远离基底10一侧的功能绿色量子点膜40”’。本公开实施例还提供一种显示装置,所述显示装置包括多个如上所述的量子点光电器件。
所述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、智能手表、智能手环等任何具有显示功能的产品或部件。
在示例性实施例中,多个所述量子点光电器件包括分别发射红光、绿光和蓝光的量子点发光二极管,所述量子点发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的量子点发光层,其中,
发射红光的量子点发光二极管的量子点发光层包括目标红色量子点膜、残留绿色量子点膜和残留蓝色量子点膜,所述目标红色量子点膜的目标红色量子点的配体为油溶性配体,所述残留绿色量子点膜的残留绿色量子点的配体为第一配体,所述残留蓝色量子点膜的残留蓝色量子点的配体为第二配体;
发射绿光的量子点发光二极管的量子点发光层包括目标绿色量子点膜、残留红色量子点膜和残留蓝色量子点膜,所述目标绿色量子点膜的目标绿色量子点的配体为油溶性配体,所述残留红色量子点膜的残留红色量子点的配体为第三配体,所述残留蓝色量子点膜的残留蓝色量子点的配体为第二配体;
发射蓝光的量子点发光二极管的量子点发光层包括目标蓝色量子点膜、残留红色量子点膜和残留绿色量子点膜,所述目标蓝色量子点膜的目标蓝色量子点的配体为油溶性配体,所述残留红色量子点膜的残留红色量子点的配体为第三配体,所述残留绿色量子点膜的残留绿色量子点的配体为第一配体;
其中,所述第一配体、所述第二配体、所述第三配体各自独立地选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
在示例性实施例中,如图3所示,多个所述量子点光电器件包括分别发射红光、绿光和蓝光的量子点发光二极管,所述量子点发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的量子点发光层,其中,
发射红光的量子点发光二极管的量子点发光层包括红色量子点膜、残留绿色量子点膜和残留蓝色量子点膜,其中,所述目标红色量子点膜设置在前膜层的远离基底的一侧,所述残留绿色量子点膜设置在所述目标红色量子点膜的远离基底的一侧,所述残留蓝色量子点膜设置在所述残留绿色量子点膜的远离基底的一侧;
发射绿光的量子点发光二极管的量子点发光层包括绿色量子点膜、残留红色量子点膜和残留蓝色量子点膜,其中,所述残留红色量子点膜设置在前膜层的远离基底的一侧,所述目标绿色量子点膜设置在所述残留红色量子点膜远离基底的一侧,所述残留蓝色量子点膜设置在所述目标绿色量子点膜的远离基底的一侧;
发射蓝光的量子点发光二极管的量子点发光层包括蓝色量子点膜、残留红色量子点膜和残留绿色量子点膜,其中,所述残留红色量子点膜设置在前膜层的远离基底的一侧,所述残留绿色量子点膜设置在所述残留红色量子点膜的远离基底的一侧,所述目标蓝色量子点膜设置在所述残留绿色量子点膜的远离基底的一侧。
在示例性实施例中,如图4所示,
发射红光的量子点发光二极管的量子点发光层包括红色量子点膜、功能红色量子点膜、残留绿色量子点膜和残留蓝色量子点膜,其中,所述红色量子点膜设置在前膜层的远离基底的一侧,所述功能红色量子点膜设置在所述红色量子点膜的远离基底的一侧,所述残留绿色量子点膜设置在所述功能红色量子点膜的远离基底的一侧,所述残留蓝色量子点膜设置在所述残留绿色量子点膜的远离基底的一侧;
发射绿光的量子点发光二极管的量子点发光层包括绿色量子点膜、功能绿色量子点膜、残留红色量子点膜和残留蓝色量子点膜,其中,所述残留红色量子点膜设置在前膜层的远离基底的一侧,所述绿色量子点膜设置在所述残留红色量子点膜远离基底的一侧,所述功能绿色量子点膜设置在所述绿色量子点膜的远离基底的一侧,所述残留蓝色量子点膜设置在所述功能绿色量子点膜的远离基底的一侧;
发射蓝光的量子点发光二极管的量子点发光层包括蓝色量子点膜、功能蓝色量子点膜、残留红色量子点膜和残留绿色量子点膜,其中,所述残留红色量子点膜设置在前膜层的远离基底的一侧,所述残留绿色量子点膜设置在所述残留红色量子点膜的远离基底的一侧,所述蓝色量子点膜设置在所述残留绿色量子点膜的远离基底的一侧,所述功能蓝色量子点膜设置在所述蓝色量子点膜的远离基底的一侧。
在示例性实施例中,所述第一配体、所述第二配体、所述第三配体可以是相同的或不同的。
在示例性实施例中,所述第一配体、所述第二配体、所述第三配体可以各自独立地选自I -、Br -、Cl -、羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
在示例性实施例中,
所述第一配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
所述第二配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
所述第三配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
在示例性实施例中,所述残留红色量子点的第三配体可以包括第一卤素离子、第二卤素离子和第三卤素离子,所述第一卤素离子的粒径大于所述第二卤素离子的粒径,所述第二卤素离子的粒径大于所述第三卤素离子的粒径。
在示例性实施例中,所述第一卤素离子为I -,所述第二卤素离子为Br -,所述第三卤素离子为Cl -
本公开实施例还提供一种量子点膜图案化的方法,所述量子点膜图案化的方法包括:
S100:采用带有油溶性配体的量子点在整个像素区形成量子点膜,除去不保留像素区的量子点膜,得到图案化的量子点膜;该图案化的量子点膜可以发出期望颜色的光;
S200:采用交换配体的前驱物与不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为交换配体,在不保留像素区得到残留量子点膜;该残留量子点膜不发光或发出的光的强度相对于配体交换之前明显降低;
其中,所述交换配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
本公开实施例的量子点膜图案化的方法,采用交换配体对不保留像素区(即不期望保留某一颜色的量子点膜的像素区)残留的量子点进行配体交换,将不保留像素区残留的量子点表面的油溶性配体交换为交换配体,使残留量子点的发光复合区被改变,进而使残留量子点的载流子离域,但保留像素区的量子点表面的油溶性配体仍然保留下来,使得不保留像素区残留的量子点的载流子更容易转移到保留像素区的量子点上,从而使得不保留像素区残留的量子点不发光或发出的光的强度较低,可以避免不保留像素区残留的量子点的带来混色问题。当采用本公开实施例的量子点膜图案化的方法对QLED的发光层进行图案化时,不会影响全彩QLED的色域;而且,不保留像素区残留的量子点表面的交换配体可以达到修饰残留量子点与实现电荷传输层界面修饰的作用,减少量子点和电荷传输层在其界面处的淬灭,进而提升QLED的性能。
图10为本公开示例性实施例中单个颜色量子点膜的图案化的流程配体示意图。如图10所示,以保留像素区为红色像素区为例,红色像素区的前膜层20上为可以发红色光的红色量子点膜30;在进行配体交换前,绿色像素区和蓝色像素区(不保留像素区)的残留发光红色量子点膜30’也可以发红色光;在进行配体交换后,绿色像素区和蓝色像素区(不保留像素区)的残留红色量子点被交换配体修饰后得到的是不发光或发出的光的强度较低的残留红色量子点膜30”。
图11为本公开示例性实施例中多个颜色量子点膜的图案化的流程示意图。如图11所示,在示例性实施例中,所述量子点膜图案化的方法可以包括:
S101:采用带有油溶性配体的红色量子点在整个像素区的前膜层20上形成红色量子点膜30,除去绿色像素区和蓝色像素区的红色量子点膜,得到图案化的红色量子点膜30;
S201:采用第三交换配体的前驱物与绿色像素区和蓝色像素区残留的红色量子点(形成残留发光红色量子点膜30’)进行配体交换反应,使绿色像素区和蓝色像素区残留的红色量子点表面的油溶性配体被交换为第三交换配体,在绿色像素区和蓝色像素区得到的残留红色量子点膜30”,该残留红色量子点膜30”不发光或发出的光的强度相对于残留发光红色量子点膜30’明 显降低;
S102:采用带有油溶性配体的绿色量子点在整个像素区形成绿色量子点膜40,除去红色像素区和蓝色像素区的绿色量子点膜,得到图案化的发光的绿色量子点膜40;
S202:采用第一交换配体的前驱物与红色像素区和蓝色像素区残留的绿色量子点(形成残留发光绿色量子点膜40’)进行配体交换反应,使红色像素区和蓝色像素区残留的绿色量子点表面的油溶性配体被交换为第一交换配体,在红色像素区和蓝色像素区得到残留绿色量子点膜40”,该残留绿色量子点膜40”不发光或发出的光的强度相对于残留发光绿色量子点膜40’明显降低;
S103:采用带有油溶性配体的蓝色量子点在整个像素区形成蓝色量子点膜50,除去红色像素区和绿色像素区的蓝色量子点膜,得到图案化的蓝色量子点膜50;
S203:采用第二交换配体的前驱物与红色像素区和绿色像素区残留的蓝色量子点(形成残留发光蓝色量子点膜50’)进行配体交换反应,使红色像素区和绿色像素区残留的蓝色量子点表面的油溶性配体被交换为第二交换配体,在红色像素区和绿色像素区得到残留蓝色量子点膜50”,该残留蓝色量子点膜50”不发光或发出的光的强度相对于残留发光蓝色量子点膜50’明显降低。
在示例性实施例中,在步骤S201中,在对绿色像素区和蓝色像素区残留的红色量子点进行配体交换时,可能也会使红色像素区的少量分红色量子点的油溶性配体被交换为第三交换配体,形成功能红色量子点膜;同样地,在步骤S202中,绿色像素区的少量绿色量子点的油溶性配体被交换为第一交换配体,形成功能绿色量子点膜;以及在步骤S203中,蓝色像素区的少量蓝色量子点的油溶性配体被交换为第二交换配体,形成功能蓝色量子点膜。所述功能红色量子点膜、所述功能绿色量子点膜、所述功能蓝色量子点膜可以作为功能膜层存在于量子点膜中,例如可以提高其相邻两侧的膜层的相容性。在示例性实施例中,所述卤素离子可以选自I -、Br -和Cl -中的任意一种或多种。
在示例性实施例中,所述短链有机配体可以选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
在示例性实施例中,所述短链有机配体的碳链长度可以在2个碳至8个碳范围内。
在示例性实施例中,所述羧酸类短链有机配体可以选自乙酸、丙酸、巯基丙酸、丁酸和1,4-丁二酸中的任意一种或多种。
在示例性实施例中,所述磺酸类短链有机配体可以选自甲磺酸、乙磺酸、丙磺酸和丁磺酸中的任意一种或多种。
在示例性实施例中,所述硫醇类短链有机配体可以选自1,2-乙二硫醇、乙硫醇、1-丙硫醇、1-丁硫醇、1-辛硫醇、1-十二硫醇、1-十八硫醇和1,2-苯二甲硫醇中的任意一种或多种。
在示例性实施例中,所述胺类短链有机配体可以选自乙二胺、乙胺、丙胺和丁胺中的任意一种或多种。
在示例性实施例中,第一交换配体、第二交换配体和第三交换配体可以是相同的或不同的。
在示例性实施例中,所述第一交换配体、所述第二交换配体、所述第三交换配体可以各自独立地选自I -、Br -、Cl -、羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
在示例性实施例中,
所述第一交换配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
所述第二交换配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
所述第三交换配体可以选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
在示例性实施例中,步骤S200可以包括:采用多种交换配体的前驱物依次与不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为多种第三交换配体,在不保留像素区得 到残留量子点膜。
在示例性实施例中,步骤S200可以包括:
采用第一卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保留像素区得到表面配体包括第一卤素离子的第一残留量子点膜;
若不保留像素区还有表面配体为油溶性配体的残留的量子点,继续采用第二卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保留像素区得到表面配体包括第一卤素离子和第二卤素离子的第二残留量子点膜;
若不保留像素区还有表面配体为油溶性配体的残留的量子点,继续采用第三卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保留像素区得到表面配体包括第一卤素离子、第二卤素离子和第三卤素离子的第三残留量子点膜;
其中,所述第一卤素离子的粒径大于所述第二卤素离子的粒径,所述第二卤素离子的粒径大于所述第三卤素离子的粒径。
在示例性实施例中,所述第一卤素离子为I -,所述第二卤素离子为Br -,所述第三卤素离子为Cl -
在示例性实施例中,步骤S201可以包括:
采用碘的有机盐与绿色像素区和蓝色像素区残留的红色量子点进行配体交换反应,在绿色像素区和蓝色像素区得到表面配体包括I -的第一残留红色量子点膜;
若绿色像素区和蓝色像素区还有表面配体为油溶性配体的残留的红色量子点,继续采用溴的有机盐与绿色像素区和蓝色像素区残留的红色量子点进行配体交换反应,在绿色像素区和蓝色像素区得到表面配体包括I -和Br -的第二残留红色量子点膜;
若绿色像素区和蓝色像素区还有表面配体为油溶性配体的残留的红色量子点,继续采用氯的有机盐与绿色像素区和蓝色像素区残留的红色量子点进行配体交换反应,在绿色像素区和蓝色像素区得到表面配体包括I -、Br -和Cl -的第三残留红色量子点膜。
在示例性实施例中,步骤S202可以包括:
采用碘的有机盐与红色像素区和蓝色像素区残留的绿色量子点进行配体交换反应,在红色像素区和蓝色像素区得到表面配体包括I -的第一残留绿色量子点膜;
若红色像素区和蓝色像素区还有表面配体为油溶性配体的残留的绿色量子点,继续采用溴的有机盐与红色像素区和蓝色像素区残留的绿色量子点进行配体交换反应,在红色像素区和蓝色像素区得到表面配体包括I -和Br -的第二残留绿色量子点膜。
在示例性实施例中,步骤S203可以包括:
采用碘的有机盐与红色像素区和绿色像素区残留的蓝色量子点进行配体交换反应,在红色像素区和绿色像素区得到表面配体包括I -的第一残留蓝色量子点膜。
由于红色量子点可以吸收来自绿色量子点和蓝色量子点发射的光,并发射出红光,所以红色量子点的残留对绿色像素区和蓝色像素区影响较大;同理,绿色量子点的残留对蓝色像素区有较大影响。因此,在示例性实施例中,可以依次采用I -、Br -和Cl -对绿色像素区和蓝色像素区残留的红色量子点表面的油溶性配体进行配体交换,以使绿色像素区和蓝色像素区残留的红色量子点表面的油溶性配体得到更加充分地交换;可以依次采用I -和Br -对红色像素区和蓝色像素区残留的绿色量子点表面的油溶性配体进行配体交换,以使红色像素区和蓝色像素区残留的绿色量子点表面的油溶性配体得到更加充分地交换;可以采用I -对红色像素区和绿色像素区残留的蓝色量子点表面的油溶性配体进行配体交换,以使红色像素区和绿色像素区残留的蓝色量子点表面的油溶性配体得到更加充分地交换。
在示例性实施例中,步骤S200中的所述配体交换反应可以包括:
将交换配体的前驱物溶解在溶剂中制成含有交换配体前驱物的溶液;
将所述含有交换配体前驱物的溶液滴在不保留像素区残留的量子点膜上,静置第一时间段后旋干;或者,将不保留像素区残留的量子点膜浸泡在所述含有交换配体前驱物的溶液中,静置第二时间段后取出不保留像素区残留的 量子点膜并旋干;
用与配制所述含有交换配体前驱物的溶液相同的溶剂清洗旋干后的不保留像素区的量子膜表面。
在示例性实施例中,
第一卤素为碘,所述第一卤素的有机盐可以选自四丁基碘化铵、四丙基碘化铵和四戊基碘化铵中的任意一种或多种;
第二卤素为溴,所述第二卤素的有机盐可以选自四丁基溴化铵、四丙基溴化铵和四戊基溴化铵中的任意一种或多种;
第三卤素为氯,所述第三卤素的有机盐可以选自四丁基氯化铵、四丙基氯化铵和四戊基氯化铵中的任意一种或多种。
在示例性实施例中,在所述含有交换配体前驱物的溶液中,交换配体的前驱物的浓度可以为2mg/mL至50mg/ml,例如,可以为2mg/mL、5mg/mL、10mg/mL、15mg/mL、25mg/mL、30mg/mL、35mg/mL、40mg/mL、45mg/mL、50。
当交换配体为卤素离子时,在所述含有交换配体前驱物的溶液中,交换配体的前驱物的浓度可以为2mg/mL至50mg/ml;当交换配体为交换有机配体时,在所述含有交换配体前驱物的溶液中,交换配体的前驱物的浓度可以为2mg/mL至30mg/ml。
在示例性实施例中:
在采用第一交换配体的前驱物、第二交换配体的前驱物、第三交换配体的前驱物进行配体交换反应前,分别将第一交换配体的前驱物、第二交换配体的前驱物、第三交换配体的前驱物溶解在溶剂中制成含有第一交换配体前驱物的溶液、含有第二交换配体前驱物的溶液、含有第三交换配体前驱物的溶液;
在含有第一交换配体前驱物的溶液中,第一交换配体的前驱物的浓度为C 1
在含有第二交换配体前驱物的溶液中,第二交换配体的前驱物的浓度为C 2
在含有第三交换配体前驱物的溶液中,第三交换配体的前驱物的浓度为C 2
C 1、C 2、C 3均在2mg/mL至50mg/ml范围内,C 1、C 2、C 3可以是相同的或不同的。
由于红色量子点的残留对绿色像素区和蓝色像素区影响较大,绿色量子点的残留对蓝色像素区有较大影响,也可以通过调控交换配体的浓度和配体交换的时间,以使绿色像素区和蓝色像素区残留的红色量子点表面的油溶性配体得到更加充分地交换、以及使蓝色像素区残留的绿色量子点表面的油溶性配体得到更加充分地交换,从而达到更佳的效果。
在示例性实施例中,当采用相同的交换配体对残留的红色、绿色、蓝色量子点表面的油溶性配体进行配体交换时,以交换配体为Br -为例,可以采用四丁基溴化铵浓度为30mg/ml的四丁基溴化铵甲醇溶液与残留的红色量子点表面的油溶性配体进行配体交换反应,配体交换反应的时间可以为50秒;采用四丁基溴化铵浓度为20mg/ml的四丁基溴化铵甲醇溶液与残留的绿色量子点表面的油溶性配体进行配体交换反应,配体交换反应的时间可以为40秒;采用四丁基溴化铵浓度为10mg/ml的四丁基溴化铵甲醇溶液与残留的蓝色量子点表面的油溶性配体进行配体交换反应,配体交换反应的时间可以为30秒。
在示例性实施例中,所述溶剂可以选自去离子水、乙腈、甲醇和乙醇中的任意一种或多种。
在示例性实施例中,所述第一时间段可以为5秒至60秒,例如,可以为5秒、10秒、20秒、30秒、40秒、50秒、60秒;所述第二时间段可以为10秒至120秒,例如,可以为10秒、20秒、30秒、40秒、50秒、60秒、70秒、80秒、90秒、100秒、110秒、120秒。
当交换配体为卤素离子时,所述第一时间段可以为5秒至60秒;当交换配体为交换有机配体时,第一时间段可以为10秒至60秒。
在示例性实施例中,所述量子点可以选自CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge和C中 的任意一种或多种。
在示例性实施例中,所述量子点为不含镉的量子点。
在示例性实施例中,所述油溶性配体可以为油酸、油胺、十二硫醇、三辛基膦、三辛基氧膦中的任意一种。
本公开实施例还提供一种量子点发光器件的制备方法,所述制备方法包括:
形成第一电极;
采用如上所述的量子点膜图案化的方法形成图案化的量子点膜,作为量子点发光层;
形成第二电极。
在示例性实施例中,所述量子点发光器件可以为正置结构或倒置结构,正置结构包括正置顶发射结构和正置底发射结构,倒置结构包括倒置顶发射结构和倒置底发射结构。
在示例性实施例中,所述量子点发光器件为正置结构,此时所述第一电极为阳极,所述第二电极为阴极;
在形成第一电极之后,形成量子点发光层之前,所述制备方法还包括:在所述第一电极上依次形成空穴注入层和空穴传输层;
所述形成量子点发光层包括:在所述空穴传输层上形成所述量子点发光层;
在形成量子点发光层之后,形成第二电极之前,所述制备方法还包括:在所述量子点发光层上形成电子传输层;
所述形成第二电极包括:在所述电子传输层上形成所述第二电极。
在示例性实施例中,在正置结构的QLED器件中,
所述阳极100可以采用底发射基板导电玻璃或者采用沉积有导电层的普通玻璃基板,导电层可以由氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)、氟掺杂氧化锡(F-doped Tin Oxide,FTO)等导 电透明材料形成;
所述空穴注入层200可以通过旋涂、蒸镀或喷墨打印等方式制备;其中,有机空穴注入层可以选择PEDOT:PSS 4083(聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐)或者其它商业化适用于形成空穴注入层的化合物等,例如,NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN、Cu:NiO等;PEDOT的成膜温度可以为130℃至150℃,成膜时匀胶机转速可以设置为500rpm至2500rpm,以调整膜层的厚度;
所述空穴传输层300可以通过旋涂、蒸镀或喷墨打印等方式制备空穴传输层,空穴传输层的材料可以选自例如聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯基咔唑(PVK)、N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-联苯-4,4′-二胺(TPD)、4,4'-二(9-咔唑)联苯(CBP)等成熟的商用材料;旋涂形成空穴传输层300时,匀胶机转速可以设置为2000rpm至4000rpm,在235℃退火30分钟成膜;
所述量子点发光层400中的带有油溶性配体的量子点形成的目标颜色量子点膜可以通过旋涂、蒸镀或喷墨打印等方式制备,所采用的量子点可以包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片;
以CdSe量子点合成目标颜色量子点膜为例,具体的合成方法是:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜(也可以通过打印、印刷、电喷印等方式成膜);
之后采用本公开实施例提供的量子点膜图案化的方法对不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为交换配体,在不保留像素区得到残留量子点膜;
所述电子传输层500的材料可以选自氧化铝、氟化钡、二氧化钛、硫化锌、氧化锆、硒化锌、氧化镁、氧化锌、氧化钇和氟化铝中的任意一种或多种;例如,所述电子传输层500可以选择氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜等;
(a)氧化锌纳米粒子薄膜的制备:例如,将90μL至120μL浓度为10mg/mL至30mg/mL的氧化锌纳米粒子溶解在醇类溶剂(例如,甲醇、乙醇、异丙醇等)中得到的溶液滴加至量子点发光层上,设置匀胶机转速为500rpm至4000rpm并旋涂成膜,在室温或加热(温度可以为25℃至250℃,例如为80℃至120℃)下成膜,以调整氧化锌纳米粒子薄膜的厚度,氧化锌纳米粒子薄膜的厚度可以在20nm至100nm范围内;
(b)氧化锌溶胶凝胶薄膜的制备:将1g醋酸锌加入至5mL乙醇胺和正丁醇的混合溶剂中,制成锌的前驱体溶液;取90μL至120μL锌的前驱体溶液滴加到量子点发光层上,旋涂成膜,设置匀胶机转速为1000rpm至4000rpm,并于180℃至300℃(例如,250℃至300℃)的热台上加热蒸发溶剂;
电子传输层500的材料还可以选择离子掺杂型氧化锌纳米粒子,例如,Mg、In、Al或Ga掺杂的氧化锌纳米粒子等;
阴极600可以通过蒸镀或溅射的方法制备,可以为金属膜(例如铝膜、银膜)或IZO膜。
在示例性实施例中,所述量子点发光器件为倒置结构,此时所述第一电极为阴极,所述第二电极为阳极;
在形成第一电极之后,形成量子点发光层之前,所述制备方法还可以包括:在所述第一电极上形成电子传输层;
所述形成量子点发光层包括:在所述电子传输层上形成所述量子点发光层;
在形成量子点发光层之后,形成第二电极之前,所述制备方法还可以包括:在所述量子点发光层上依次形成空穴传输层和空穴注入层;
所述形成第二电极包括:在所述空穴注入层上形成所述第二电极。
在示例性实施例中,在倒置结构的QLED器件中,
阴极600可以采用底发射基板导电玻璃或者采用沉积有导电层的普通玻璃基板,导电层可以由ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、FTO(F-doped Tin Oxide)等导电透明材料形成;
阳极100可以通过蒸镀或溅射的方法制备,可以为金属膜(例如Al膜)或IZO膜;
空穴注入层200、空穴传输层300、量子点发光层400、电子传输层500可以选择与正置结构的QLED器件相同的材料和方法制备得到。
本公开的示例性实施例提供一种具有如图6所示倒置结构的QLED器件的制备方法。在该示例性实施例中,采用卤素离子对残留的量子点表面的油溶性配体进行配体交换,制备过程可以包括:
(1)准备阴极:采用导电玻璃(在玻璃基板沉积ITO或FTO等导电层形成)作为阴极,分别采用水和异丙醇超声清洗导电玻璃,并在紫外UV下处理5min至10min;
(2)在阴极上制备电子传输层:在导电玻璃阴极上制备电子传输层,电子传输层可以是氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜等;
(a)氧化锌纳米粒子薄膜的制备:例如,将90μL至120μL浓度为10mg/mL至30mg/mL的氧化锌纳米粒子溶解在醇类溶剂(例如,甲醇、乙醇、异丙醇等)中得到的溶液滴加至阴极上,设置匀胶机转速为500rpm至4000rpm并旋涂成膜,在室温或加热(温度可以为25℃至250℃,例如为80℃至120℃)下成膜,以调整氧化锌纳米粒子薄膜的厚度,氧化锌纳米粒子薄膜的厚度可以在20nm至100nm范围内;电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg、In、Al、或Ga掺杂的氧化镁纳米粒子等;
(b)氧化锌溶胶凝胶薄膜的制备:将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,制成锌的前驱体溶液;将步骤(1)的导电玻璃置于匀胶机上,将90μL至120μL锌的前驱体溶液滴加到导电玻璃上,旋涂成膜,设置匀胶机转速为1000rpm至4000rpm,将上述导电玻璃置于250℃至300℃的热台上,加热蒸发溶剂;
(3)在电子传输层上制备图案化的红色量子点膜,并进行卤素原子修饰:
在电子传输层上,通过旋涂、蒸镀或喷墨打印等方式制备红色量子点膜,所采用的量子点可以包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片;
以CdSe量子点制备红色量子点膜为例,具体的合成方法例如:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜(也可以通过打印、印刷、电喷印等方式成膜);
之后曝光绿色和蓝色像素区的量子点膜,形成图案化的红色量子点膜,但在绿色和蓝色像素区会残留有红色量子点,这会直接影响QLED的性能,可以采用卤素离子对绿色和蓝色像素区残留的红色量子点的油溶性配体进行配体交换,以溴离子的配体交换为例,可以包括:配制浓度为2mg/mL至50mg/ml的四丁基溴化铵的甲醇溶液,在形成图案化的红色量子点膜之后,在红色量子点膜上滴加四丁基溴化铵的甲醇溶液,静置5s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在绿色和蓝色像素区的红色量子点不发光即可以达到改善其色域的效果,效果如图3所示;
(4)在红色量子点膜上制备图案化的绿色量子点膜和蓝色量子点膜,并分别进行卤素原子修饰:
分别旋涂形成绿色量子点膜和蓝色量子点薄膜,并曝光相应区域的量子点膜,分别得到图案化的绿色量子点膜和图案化的蓝色量子点膜;随后采用卤素离子对红色和蓝色像素区残留的绿色量子点的油溶性配体进行配体交换,以及采用卤素离子对红色和绿色像素区残留的蓝色量子点的油溶性配体进行配体交换,以溴离子的配体交换为例,可以包括:配制浓度为2mg/mL至 50mg/ml的四丁基溴化铵的甲醇溶液,分别在形成图案化的绿色量子点膜和图案化的蓝色量子点膜之后,在量子点膜上滴加四丁基溴化铵的甲醇溶液,静置5s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在红色和蓝色像素区的绿色量子点以及残留在红色和绿色像素区的蓝色量子点不发光,工艺流程图图如图4所示;
在其他的实施例中,对残留的红色量子点、绿色量子点、蓝色量子点表面的油溶性配体进行配体交换时采用的交换配体可以是相同的,也可以是不同的;例如,对残留在绿色和蓝色像素区的红色量子点使用四丁基溴化铵进行配体交换反应,对残留在红色和蓝色像素区的绿色量子点使用四丁基碘化铵进行配体交换反应,对残留在红色和绿色像素区的蓝色量子点使用四丁基氯化铵进行配体交换反应;
(5)在量子点发光层上依次制备空穴传输层和空穴注入层:
在量子点发光层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴传输层,空穴传输层的材料可以选自例如TFB、PVK、TPD、CBP等成熟的商用材料;以采用TFB旋涂形成空穴传输层为例,可以包括:将5mg/ml至30mg/ml的TFB溶于氯苯溶液中,以2000rpm至4000rpm的速度旋涂于量子点发光层上,在235℃退火30分钟成膜;
在空穴传输层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴注入层;其中,有机空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于形成空穴注入层的化合物等,例如,NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN、Cu:NiO等;PEDOT的成膜温度可以为130℃至150℃,成膜时匀胶机转速可以设置为500rpm至2500rpm,以调整膜层的厚度;
(6)在空穴注入层上制备阳极:在空穴注入层上引入电极材料制备阳极,,例如蒸镀铝膜、银膜或溅射铟锌氧化物(IZO)膜形成阳极;
(7)封装:加盖封装盖板,采用紫外固化胶对器件进行封装,得到量子点发光二极管。
本公开的示例性实施例提供一种具有如图5所示正置结构的QLED器件的制备方法。在该示例性实施例中,采用卤素离子对残留的量子点表面的油溶性配体进行配体交换,制备过程可以包括:
(1)准备阳极:采用导电玻璃作为阳极,分别采用异丙醇、水和丙酮超声清洗导电玻璃,并在紫外UV下处理5min至10min;
(2)在阳极上制备空穴注入层:在上述导电玻璃上,通过旋涂、蒸镀或喷墨打印等方式制备空穴注入层;其中,有机空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于形成空穴注入层的化合物等,例如,NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN、Cu:NiO等;PEDOT的成膜温度可以为130℃至150℃,成膜时匀胶机转速可以设置为500rpm至2500rpm,以调整膜层的厚度;
(3)在空穴注入层上制备空穴传输层:在空穴注入层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴传输层,空穴传输层的材料可以选自例如TFB、PVK、TPD、CBP等成熟的商用材料;以采用TFB旋涂形成空穴传输层为例,可以包括:将5mg/ml至30mg/ml的TFB溶于氯苯溶液中,以2000rpm至4000rpm的速度旋涂于量子点发光层上,在235℃退火30分钟成膜;
(4)在空穴传输层上制备图案化的红色量子点膜,并进行卤素原子修饰:
在空穴传输层上,通过旋涂、蒸镀或喷墨打印等方式制备红色量子点膜,所采用的量子点可以包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片;
以CdSe量子点制备红色量子点膜为例,具体的合成方法例如:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜(也可以通过打印、印刷、电喷印等方式成膜);
之后曝光绿色和蓝色像素区的量子点膜,形成图案化的红色量子点膜,但在绿色和蓝色像素区会残留有红色量子点,这会直接影响QLED的性能,可以采用卤素离子对绿色和蓝色像素区残留的红色量子点的油溶性配体进行配体交换,以溴离子的配体交换为例,可以包括:配制浓度为2mg/mL至50mg/ml的四丁基溴化铵的甲醇溶液,在形成图案化的红色量子点膜之后,在红色量子点膜上滴加四丁基溴化铵的甲醇溶液,静置5s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在绿色和蓝色像素区的红色量子点不发光即可以达到改善其色域的效果,效果如图3所示;
(5)在红色量子点膜上制备图案化的绿色量子点膜和蓝色量子点膜,并分别进行卤素原子修饰:
分别旋涂形成绿色量子点膜和蓝色量子点薄膜,并曝光相应区域的量子点膜,分别得到图案化的绿色量子点膜和图案化的蓝色量子点膜;随后采用卤素离子对红色和蓝色像素区残留的绿色量子点的油溶性配体进行配体交换,以及采用卤素离子对红色和绿色像素区残留的蓝色量子点的油溶性配体进行配体交换,以溴离子的配体交换为例,可以包括:配制浓度为2mg/mL至50mg/ml的四丁基溴化铵的甲醇溶液,分别在形成图案化的绿色量子点膜和图案化的蓝色量子点膜之后,在量子点膜上滴四丁基溴化铵的甲醇溶液,静置5s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在红色和蓝色像素区的绿色量子点以及残留在红色和绿色像素区的蓝色量子点不发光,工艺流程图图如图4所示;
在其他的实施例中,对残留的红色量子点、绿色量子点、蓝色量子点表面的油溶性配体进行配体交换时采用的交换配体可以是相同的,也可以是不同的;例如,对残留在绿色和蓝色像素区的红色量子点使用四丁基溴化铵进行配体交换反应,对残留在红色和蓝色像素区的绿色量子点使用四丁基碘化铵进行配体交换反应,对残留在红色和绿色像素区的蓝色量子点使用四丁基氯化铵进行配体交换反应;
(6)在量子点发光层上制备电子传输层:在量子点发光层上制备电子传输层,电子传输层可以是氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜等;
(a)氧化锌纳米粒子薄膜的制备:例如,将90μL至120μL浓度为10mg/mL至30mg/mL的氧化锌纳米粒子溶解在醇类溶剂(例如,甲醇、乙醇、异丙醇等)中得到的溶液滴加至量子点发光层上,设置匀胶机转速为500rpm至4000rpm并旋涂成膜,在室温或加热(温度可以为25℃至250℃,例如为80℃至120℃)下成膜,以调整氧化锌纳米粒子薄膜的厚度,氧化锌纳米粒子薄膜的厚度可以在20nm至100nm范围内;电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg、In、Al、或Ga掺杂的氧化镁纳米粒子等;
(b)氧化锌溶胶凝胶薄膜的制备:将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,制成锌的前驱体溶液;将步骤(1)的导电玻璃置于匀胶机上,将90μL至120μL锌的前驱体溶液滴加到量子点发光层上,旋涂成膜,设置匀胶机转速为1000rpm至4000rpm,将上述导电玻璃置于250℃至300℃的热台上,加热蒸发溶剂;
(7)在电子传输层上制备阴极:在电子传输层上引入电极材料制备阴极,例如蒸镀铝膜、银膜或溅射铟锌氧化物(IZO)膜形成阳极;
(8)封装:加盖封装盖板,采用紫外固化胶对器件进行封装,得到量子点发光二极管。
本公开的示例性实施例提供一种具有如图6所示倒置结构的QLED器件的制备方法。在该示例性实施例中,采用短链有机配体对残留的量子点表面的油溶性配体进行配体交换,制备过程可以包括:
(1)准备阴极:采用导电玻璃(在玻璃基板沉积ITO或FTO等导电层形成)作为阴极,分别采用水和异丙醇超声清洗导电玻璃,并在紫外UV下处理5min至10min;
(2)在阴极上制备电子传输层:在导电玻璃阴极上制备电子传输层,电子传输层可以是氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜等;
(a)氧化锌纳米粒子薄膜的制备:例如,将90μL至120μL浓度为10mg/mL至30mg/mL的氧化锌纳米粒子溶解在醇类溶剂(例如,甲醇、乙 醇、异丙醇等)中得到的溶液滴加至量子点发光层上,设置匀胶机转速为500rpm至4000rpm并旋涂成膜,在室温或加热(温度可以为25℃至250℃,例如为80℃至120℃)下成膜,以调整氧化锌纳米粒子薄膜的厚度,氧化锌纳米粒子薄膜的厚度可以在20nm至100nm范围内;电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg、In、Al、或Ga掺杂的氧化镁纳米粒子等;
(b)氧化锌溶胶凝胶薄膜的制备:将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,制成锌的前驱体溶液;将步骤(1)的导电玻璃置于匀胶机上,将90μL至120μL锌的前驱体溶液滴加到导电玻璃上,旋涂成膜,设置匀胶机转速为1000rpm至4000rpm,将上述导电玻璃置于250℃至300℃的热台上,加热蒸发溶剂;
(3)在电子传输层上制备图案化的红色量子点膜,并进行短链有机配体修饰:
在电子传输层上,通过旋涂、蒸镀或喷墨打印等方式制备红色量子点膜,所采用的量子点可以包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片;
以CdSe量子点制备红色量子点膜为例,具体的合成方法例如:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜(也可以通过打印、印刷、电喷印等方式成膜);
之后曝光绿色和蓝色像素区的量子点膜,形成图案化的红色量子点膜,但在绿色和蓝色像素区会残留有红色量子点,这会直接影响QLED的性能,可以采用短链有机配体对绿色和蓝色像素区残留的红色量子点的油溶性配体进行配体交换,以乙二硫醇的配体交换为例,可以包括:配制浓度为2mg/mL 至30mg/ml的乙二硫醇的甲醇溶液,在形成图案化的红色量子点膜之后,在红色量子点膜上滴加乙二硫醇的甲醇溶液,静置10s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在绿色和蓝色像素区的红色量子点不发光即可以达到改善其色域的效果,效果如图3所示;
(4)在红色量子点膜上制备图案化的绿色量子点膜和蓝色量子点膜,并分别进行短链有机配体修饰:
分别旋涂形成绿色量子点膜和蓝色量子点薄膜,并曝光相应区域的量子点膜,分别得到图案化的绿色量子点膜和图案化的蓝色量子点膜;随后采用短链有机配体对红色和蓝色像素区残留的绿色量子点的油溶性配体进行配体交换,以及采用短链有机配体对红色和绿色像素区残留的蓝色量子点的油溶性配体进行配体交换,以乙二硫醇的配体交换为例,可以包括:配制浓度为2mg/mL至30mg/ml的乙二硫醇的甲醇溶液,在形成分别在形成图案化的绿色量子点膜和图案化的蓝色量子点膜之后,在量子点膜上滴加乙二硫醇的甲醇溶液,静置10s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在红色和蓝色像素区的绿色量子点以及残留在红色和绿色像素区的蓝色量子点不发光,工艺流程图图如图4所示;在其他的实施例中,还可以采用乙硫醇、乙二胺、乙胺等作为短链有机配体进行配体交换;
(5)在量子点发光层上依次制备空穴传输层和空穴注入层:
在量子点发光层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴传输层,空穴传输层的材料可以选自例如TFB、PVK、TPD、CBP等成熟的商用材料;以采用TFB旋涂形成空穴传输层为例,可以包括:将5mg/ml至30mg/ml的TFB溶于氯苯溶液中,以2000rpm至4000rpm的速度旋涂于量子点发光层上,在235℃退火30分钟成膜;
在空穴传输层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴注入层;其中,有机空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于形成空穴注入层的化合物等,例如,NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN、Cu:NiO等;PEDOT的成 膜温度可以为130℃至150℃,成膜时匀胶机转速可以设置为500rpm至2500rpm,以调整膜层的厚度;
(6)在空穴注入层上制备阳极:在空穴注入层上引入电极材料制备阳极,,例如蒸镀铝膜、银膜或溅射铟锌氧化物(IZO)膜形成阳极;
(7)封装:加盖封装盖板,采用紫外固化胶对器件进行封装,得到量子点发光二极管。
本公开的示例性实施例提供一种具有如图5所示正置结构的QLED器件的制备方法。在该示例性实施例中,采用短链有机配体对残留的量子点表面的油溶性配体进行配体交换,制备过程可以包括:
(1)准备阳极:采用导电玻璃作为阳极,分别采用异丙醇、水和丙酮超声清洗导电玻璃,并在紫外UV下处理5min至10min;
(2)在阳极上制备空穴注入层:在上述导电玻璃上,通过旋涂、蒸镀或喷墨打印等方式制备空穴注入层;其中,有机空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于形成空穴注入层的化合物等,例如,NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN、Cu:NiO等;PEDOT的成膜温度可以为130℃至150℃,成膜时匀胶机转速可以设置为500rpm至2500rpm,以调整膜层的厚度;
(3)在空穴注入层上制备空穴传输层:在空穴注入层上,通过旋涂、蒸镀或喷墨打印等方式制备空穴传输层,空穴传输层的材料可以选自例如TFB、PVK、TPD、CBP等成熟的商用材料;以采用TFB旋涂形成空穴传输层为例,可以包括:将5mg/ml至30mg/ml的TFB溶于氯苯溶液中,以2000rpm至4000rpm的速度旋涂于量子点发光层上,在235℃退火30分钟成膜;
(4)在空穴传输层上制备图案化的红色量子点膜,并进行短链有机配体修饰:
在空穴传输层上,通过旋涂、蒸镀或喷墨打印等方式制备红色量子点膜,所采用的量子点可以包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS 2、ZnO、CsPbCl 3、CsPbBr 3、CsPhI 3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、 InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片;
以CdSe量子点制备红色量子点膜为例,具体的合成方法例如:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜(也可以通过打印、印刷、电喷印等方式成膜);
之后曝光绿色和蓝色像素区的量子点膜,形成图案化的红色量子点膜,但在绿色和蓝色像素区会残留有红色量子点,这会直接影响QLED的性能,可以采用短链有机配体对绿色和蓝色像素区残留的红色量子点的油溶性配体进行配体交换,以乙二硫醇的配体交换为例,可以包括:配制浓度为2mg/mL至30mg/ml的乙二硫醇的甲醇溶液,在形成图案化的红色量子点膜之后,在红色量子点膜上滴加乙二硫醇的甲醇溶液,静置10s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在绿色和蓝色像素区的红色量子点不发光即可以达到改善其色域的效果,效果如图3所示;
(5)在红色量子点膜上制备图案化的绿色量子点膜和蓝色量子点膜,并分别进行短链有机配体修饰:
分别旋涂形成绿色量子点膜和蓝色量子点薄膜,并曝光相应区域的量子点膜,分别得到图案化的绿色量子点膜和图案化的蓝色量子点膜;随后采用短链有机配体对红色和蓝色像素区残留的绿色量子点的油溶性配体进行配体交换,以及采用短链有机配体对红色和绿色像素区残留的蓝色量子点的油溶性配体进行配体交换,以乙二硫醇的配体交换为例,可以包括:配制浓度为2mg/mL至30mg/ml的乙二硫醇的甲醇溶液,在形成分别在形成图案化的绿色量子点膜和图案化的蓝色量子点膜之后,在量子点膜上滴加乙二硫醇的甲醇溶液,静置10s至60s后,旋干,再用甲醇清洗量子点膜表面,重复若干次,使其充分交换,以改变其复合区,使残留在红色和蓝色像素区的绿色量 子点以及残留在红色和绿色像素区的蓝色量子点不发光,工艺流程图图如图4所示;在其他的实施例中,还可以采用乙硫醇、乙二胺、乙胺等作为短链有机配体进行配体交换;
(6)在量子点发光层上制备电子传输层:在量子点发光层上制备电子传输层,电子传输层可以是氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜等;
(a)氧化锌纳米粒子薄膜的制备:例如,将90μL至120μL浓度为10mg/mL至30mg/mL的氧化锌纳米粒子溶解在醇类溶剂(例如,甲醇、乙醇、异丙醇等)中得到的溶液滴加至量子点发光层上,设置匀胶机转速为500rpm至4000rpm并旋涂成膜,在室温或加热(温度可以为25℃至250℃,例如为80℃至120℃)下成膜,以调整氧化锌纳米粒子薄膜的厚度,氧化锌纳米粒子薄膜的厚度可以在20nm至100nm范围内;电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg、In、Al、或Ga掺杂的氧化镁纳米粒子等;
(b)氧化锌溶胶凝胶薄膜的制备:将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,制成锌的前驱体溶液;将步骤(1)的导电玻璃置于匀胶机上,将90μL至120μL锌的前驱体溶液滴加到量子点发光层上,旋涂成膜,设置匀胶机转速为1000rpm至4000rpm,将上述导电玻璃置于250℃至300℃的热台上,加热蒸发溶剂;
(7)在电子传输层上制备阴极:在电子传输层上引入电极材料制备阴极,例如蒸镀铝膜、银膜或溅射铟锌氧化物(IZO)膜形成阳极;
(8)封装:加盖封装盖板,采用紫外固化胶对器件进行封装,得到量子点发光二极管。
在量子点-有机发光二极管(Quantum Dots-Organic Light Emitting Diode,QD-OLED)器件的制备过程中,也可以采用交换配体交换的方法解决量子点残留导致的混色问题。
本公开的示例性实施例提供一种量子点-蓝光有机发光二极管(QD-Blue OLED)器件的制备方法。由于蓝光OLED本身发蓝光,因此在制备量子点 转换层时,只需要制备图案化的红色量子点转换层和图案化的绿色量子点转换层即可。图12为QD-蓝光OLED全彩器件的制备流程示意图。如图12所示,制备过程包括:
(1)在基底10上制备蓝光OLED 2000
(2)在蓝光OLED 2000上制备红色量子点转换层3000,并对红色量子点转换层3000进行图案化,得到图案化的红色量子点转换层3000,对于不保留像素区残留的红色量子点,可以参照如上本公开的示例性实施例制备QLED器件的方法,采用卤素离子或短链有机配体对不保留像素区残留的红色量子点表面的油溶性配体进行配体交换;
(3)制备绿色量子点转换层4000,并对绿色量子点转换层4000进行图案化,得到图案化的绿色量子点转换层4000,以及采用卤素离子或短链有机配体对不保留像素区残留的绿色量子点表面的油溶性配体进行配体交换。
本公开的示例性实施例提供一种量子点-白光有机发光二极管(QD-White OLED)器件的制备方法。图13为QD-白光OLED全彩器件的制备流程示意图。如图13所示,制备过程包括:
(1)在基底10上制备白光OLED 2000’
(2)在白光OLED 2000’上制备红色量子点转换层3000,并对红色量子点转换层3000进行图案化,得到图案化的红色量子点转换层3000,对于不保留像素区残留的红色量子点,可以参照如上本公开的示例性实施例制备QLED器件的方法,采用卤素离子或短链有机配体对不保留像素区残留的红色量子点表面的油溶性配体进行配体交换;
(3)制备绿色量子点转换层4000,并对绿色量子点转换层4000进行图案化,得到图案化的绿色量子点转换层4000,以及采用卤素离子或短链有机配体对不保留像素区残留的绿色量子点表面的油溶性配体进行配体交换;
(4)制备蓝色量子点转换层5000,并对蓝色量子点转换层5000进行图案化,得到图案化的蓝色量子点转换层5000,以及采用卤素离子或短链有机配体对不保留像素区残留的蓝色量子点表面的油溶性配体进行配体交换。
在量子点-微型发光二极管(Quantum Dots-Micro Light-Emitting Diode,QD-Micro LED)器件的制备过程中,也可以采用交换配体交换的方法解决量子点残留导致的混色问题。
本公开的示例性实施例提供一种量子点-蓝光微型发光二极管(QD-Blue Micro LED)的制备方法。由于蓝光Micro LED本身发蓝光,因此在制备量子点转换层时,只需要制备图案化的红色量子点转换层和图案化的绿色量子点转换层即可。图14为QD-蓝光Micro LED全彩器件的制备流程示意图。如图14所示,制备过程包括:
(1)在基底10上制备蓝光Micro LED 2000”;
(2)在蓝光Micro LED 2000”上制备红色量子点转换层3000,并对红色量子点转换层3000进行图案化,得到图案化的红色量子点转换层3000,对于不保留像素区残留的红色量子点,可以参照如上本公开的示例性实施例制备QLED器件的方法,采用卤素离子或短链有机配体对不保留像素区残留的红色量子点表面的油溶性配体进行配体交换;
(3)制备绿色量子点转换层4000,并对绿色量子点转换层4000进行图案化,得到图案化的绿色量子点转换层4000,以及采用卤素离子或短链有机配体对不保留像素区残留的绿色量子点表面的油溶性配体进行配体交换。
以下通过实验说明本公开实施例采用交换配体对残留量子点表面的油溶性配体进行交换的效果。
PL基板的制备过程包括:
(1)准备阴极:采用沉积有ITO的导电玻璃作为阴极,分别采用水和异丙醇超声清洗导电玻璃,并在紫外UV下处理10min;
(2)在阴极上制备电子传输层:在导电玻璃阴极上制备电子传输层,电子传输层为氧化锌纳米粒子薄膜;
氧化锌纳米粒子薄膜的制备:将100μL浓度为20mg/mL的氧化锌纳米粒子的乙醇溶液滴加至阴极上,设置匀胶机转速为2500rpm并旋涂,在200 ℃下烘烤15min加热成膜,形成厚度为45nm的电子传输层;
(3)在电子传输层上制备红色量子点膜:
采用CdSe量子点制备红色量子点膜:在惰性气体以及约100℃条件下,将硒粉溶解在十八烯中,得到硒溶液;将CdO和油酸加入到十八烯中并加热到280℃左右,得到镉的前驱体溶液;将硒溶液加入到镉的前驱体溶液中,降温到250℃左右进行反应,反应结束后冷却到室温,用甲醇-己烷进行萃取以除掉未反应的前驱体,用乙醇进行沉淀,并溶解于辛烷中,得到CdSe量子点溶液,并旋涂成膜;
(4)在红色量子点膜上滴加浓度为10mg/ml的四丁基碘化铵的甲醇溶液,静置60后旋干,再用甲醇清洗红色量子点膜表面,再次将浓度为10mg/ml的四丁基碘化铵的甲醇溶液滴涂在红色量子点膜表面,静置60s后旋干,重复2到10次,使配体交换完全。
测试进行配体交换前后,PL基板的光发射性能。测试结果如图15所示。
图15为本公开示例性实施例的PL基板在进行量子点配体交换前后的光致发光状态对比图。其中,L1表示量子点配体交换前收集的光子数量随波长的变化曲线,L2表示量子点配体交换后收集的光子数量随波长的变化曲线。
可以看出,在进行量子点配体交换之后,PL基板发射的红光的强度明显降低。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (34)

  1. 一种量子点膜,包括目标颜色量子点膜和残留非目标颜色量子点膜,所述目标颜色量子点膜的目标颜色量子点的配体为油溶性配体,所述残留非目标颜色量子点膜的残留非目标颜色量子点的配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
  2. 根据权利要求1所述的量子点膜,其中,所述卤素离子选自I -、Br -和Cl -中的任意一种或多种。
  3. 根据权利要求1所述的量子点膜,其中,所述短链有机配体选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
  4. 根据权利要求3所述的量子点膜,其中,所述短链有机配体的碳链长度在2个碳至8个碳范围内。
  5. 根据权利要求4所述的量子点膜,其中,所述羧酸选自乙酸、丙酸、巯基丙酸、丁酸和1,4-丁二酸中的任意一种或多种;
    所述磺酸选自甲磺酸、乙磺酸、丙磺酸和丁磺酸中的任意一种或多种;
    所述硫醇选自1,2-乙二硫醇、乙硫醇、1-丙硫醇、1-丁硫醇、1-辛硫醇、1-十二硫醇、1-十八硫醇和1,2-苯二甲硫醇中的任意一种或多种;
    所述胺选自乙二胺、乙胺、丙胺和丁胺中的任意一种或多种。
  6. 根据权利要求1至5中任一项所述的量子点膜,还包括设置在所述目标颜色量子点膜一侧的功能量子点膜,所述功能量子点膜的量子点为目标颜色量子点,所述功能量子点膜的量子点的配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
  7. 一种量子点光电器件,
    包括根据权利要求1至6中任一项所述的量子点膜。
  8. 根据权利要求7所述的量子点光电器件,其中,所述量子点光电器件为量子点发光二极管,所述量子点发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的量子点发光层,所述量子点发光层为根据权利要求1至6中任一项所述的量子点膜。
  9. 根据权利要求7所述的量子点光电器件,其中,所述量子点光电器件为量子点-蓝光有机发光二极管,所述量子点-蓝光有机发光二极管包括蓝光有机发光二极管和设置在所述蓝光有机发光二极管一侧的量子点转换层,所述量子点转换层为根据权利要求1至5中任一项所述的量子点膜;所述蓝光有机发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的蓝色发光层;所述量子点转换层包括红色量子点转换层和绿色量子点转换层,所述红色量子点转换层包括红色量子点膜和残留绿色量子点膜,所述绿色量子点转换层包括绿色量子点膜和残留红色量子点膜。
  10. 一种显示装置,包括多个根据权利要求7至9中任一项所述的量子点光电器件。
  11. 根据权利要求10所述的显示装置,其中,多个所述量子点光电器件包括分别发射红光、绿光和蓝光的量子点发光二极管,所述量子点发光二极管包括阳极、阴极、夹设在所述阳极和所述阴极之间的量子点发光层,所述量子点发光层为根据权利要求1至5中任一项所述的量子点膜;其中,
    发射红光的量子点发光二极管的量子点发光层在远离基底的方向上依次包括目标红色量子点膜、残留绿色量子点膜和残留蓝色量子点膜,所述目标红色量子点膜的目标红色量子点的配体为油溶性配体,所述残留绿色量子点膜的残留绿色量子点的配体为第一配体,所述残留蓝色量子点膜的残留蓝色量子点的配体为第二配体;
    发射绿光的量子点发光二极管的量子点发光层在远离基底的方向上依次包括残留红色量子点膜、目标绿色量子点膜和残留蓝色量子点膜,所述目标绿色量子点膜的目标绿色量子点的配体为油溶性配体,所述残留红色量子点膜的残留红色量子点的配体为第三配体,所述残留蓝色量子点膜的残留蓝色量子点的配体为第二配体;
    发射蓝光的量子点发光二极管的量子点发光层在远离基底的方向上依次包括残留红色量子点膜、残留绿色量子点膜和目标蓝色量子点膜,所述目标蓝色量子点膜的目标蓝色量子点的配体为油溶性配体,所述残留红色量子点膜的残留红色量子点的配体为第三配体,所述残留绿色量子点膜的残留绿色量子点的配体为第一配体;
    其中,所述第一配体、所述第二配体、所述第三配体各自独立地选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
  12. 根据权利要求11所述的显示装置,其中,所述第一配体选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
    所述第二配体选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种;
    所述第三配体选自I -、Br -和Cl -中的任意一种或多种,或者选自羧酸、磺酸、硫醇、膦酸和胺中的任意一种或多种。
  13. 根据权利要求12所述的显示装置,其中,所述残留红色量子点的第三配体包括第一卤素离子、第二卤素离子和第三卤素离子,所述第一卤素离子的粒径大于所述第二卤素离子的粒径,所述第二卤素离子的粒径大于所述第三卤素离子的粒径。
  14. 根据权利要求13所述的显示装置,其中,所述第一卤素离子为I -,所述第二卤素离子为Br -,所述第三卤素离子为Cl -
  15. 一种量子点膜图案化的方法,包括:
    S100:采用带有油溶性配体的量子点在整个像素区形成量子点膜,除去不保留像素区的量子点膜,得到图案化的量子点膜;
    S200:采用交换配体的前驱物与不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为交换配体,在不保留像素区得到残留量子点膜;
    其中,所述交换配体选自卤素离子和碳链长度在2个碳至18个碳范围内的短链有机配体中的任意一种或多种。
  16. 根据权利要求15所述的量子点膜图案化的方法,包括:
    S101:采用带有油溶性配体的红色量子点在整个像素区形成红色量子点膜,除去绿色像素区和蓝色像素区的红色量子点膜,得到图案化的红色量子点膜;
    S201:采用第三交换配体的前驱物与绿色像素区和蓝色像素区残留的红色量子点进行配体交换反应,使绿色像素区和蓝色像素区残留的红色量子点表面的油溶性配体被交换为第三交换配体,在绿色像素区和蓝色像素区得到残留红色量子点膜;
    S102:采用带有油溶性配体的绿色量子点在整个像素区形成绿色量子点膜,除去红色像素区和蓝色像素区的绿色量子点膜,得到图案化的绿色量子点膜;
    S202:采用第一交换配体的前驱物与红色像素区和蓝色像素区残留的绿色量子点进行配体交换反应,使红色像素区和蓝色像素区残留的绿色量子点表面的油溶性配体被交换为第一交换配体,在红色像素区和蓝色像素区得到残留绿色量子点膜;
    S103:采用带有油溶性配体的蓝色量子点在整个像素区形成蓝色量子点膜,除去红色像素区和绿色像素区的蓝色量子点膜,得到图案化的蓝色量子点膜;
    S203:采用第二交换配体的前驱物与红色像素区和绿色像素区残留的蓝色量子点进行配体交换反应,使红色像素区和绿色像素区残留的蓝色量子点表面的油溶性配体被交换为第二交换配体,在红色像素区和绿色像素区得到残留蓝色量子点膜。
  17. 根据权利要求15所述的量子点膜图案化的方法,其中,步骤S200包括:采用多种交换配体的前驱物依次与不保留像素区残留的量子点进行配体交换反应,使不保留像素区残留的量子点表面的油溶性配体被交换为多种交换配体,在不保留像素区得到残留量子点膜。
  18. 根据权利要求17所述的量子点膜图案化的方法,其中,步骤S200包括:
    采用第一卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保留像素区得到表面配体包括第一卤素离子的第一残留量子点膜;
    若不保留像素区还有表面配体为油溶性配体的残留的量子点,继续采用第二卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保 留像素区得到表面配体包括第一卤素离子和第二卤素离子的第二残留量子点膜;
    若不保留像素区还有表面配体为油溶性配体的残留的量子点,继续采用第三卤素的有机盐与不保留像素区残留的量子点进行配体交换反应,在不保留像素区得到表面配体包括第一卤素离子、第二卤素离子和第三卤素离子的第三残留量子点膜;
    其中,所述第一卤素离子的粒径大于所述第二卤素离子的粒径,所述第二卤素离子的粒径大于所述第三卤素离子的粒径。
  19. 根据权利要求18所述的量子点膜图案化的方法,其中,所述第一卤素离子为I -,所述第二卤素离子为Br -,所述第三卤素离子为Cl -
  20. 根据权利要求15至19中任一项所述的量子点膜图案化的方法,其中,步骤S200中的所述配体交换反应包括:
    将交换配体的前驱物溶解在溶剂中制成含有交换配体前驱物的溶液;
    将所述含有交换配体前驱物的溶液滴在不保留像素区残留的量子点膜上,静置第一时间段后旋干;或者,将不保留像素区残留的量子点膜浸泡在所述含有交换配体前驱物的溶液中,静置第二时间段后取出不保留像素区残留的量子点膜并旋干;
    用与配制所述含有交换配体前驱物的溶液相同的溶剂清洗旋干后的不保留像素区的量子膜表面。
  21. 根据权利要求20所述的量子点膜图案化的方法,其中,在所述含有交换配体前驱物的溶液中,交换配体的前驱物的浓度为2mg/mL至50mg/ml。
  22. 根据权利要求16所述的量子点膜图案化的方法,其中,
    在采用第一交换配体的前驱物、第二交换配体的前驱物、第三交换配体的前驱物进行配体交换反应前,分别将第一交换配体的前驱物、第二交换配体的前驱物、第三交换配体的前驱物溶解在溶剂中制成含有第一交换配体前驱物的溶液、含有第二交换配体前驱物的溶液、含有第三交换配体前驱物的溶液;
    在含有第一交换配体前驱物的溶液中,第一交换配体的前驱物的浓度为 C 1
    在含有第二交换配体前驱物的溶液中,第二交换配体的前驱物的浓度为C 2
    在含有第三交换配体前驱物的溶液中,第三交换配体的前驱物的浓度为C 2
    C 1、C 2、C 3均在2mg/mL至50mg/ml范围内,C 1、C 2、C 3是相同的或不同的。
  23. 根据权利要求18所述的量子点膜图案化的方法,其中,第一卤素为碘,所述第一卤素的有机盐选自四丁基碘化铵、四丙基碘化铵和四戊基碘化铵中的任意一种或多种;
    第二卤素为溴,所述第二卤素的有机盐选自四丁基溴化铵、四丙基溴化铵和四戊基溴化铵中的任意一种或多种;
    第三卤素为氯,所述第三卤素的有机盐选自四丁基氯化铵、四丙基氯化铵和四戊基氯化铵中的任意一种或多种。
  24. 根据权利要求20所述的量子点膜图案化的方法,其中,所述溶剂选自去离子水、乙腈、甲醇和乙醇中的任意一种或多种。
  25. 一种量子点发光器件的制备方法,包括:
    形成第一电极;
    采用根据权利要求15至24中任一项所述的量子点膜图案化的方法形成图案化的量子点膜,作为量子点发光层;
    形成第二电极。
  26. 根据权利要求25所述的制备方法,其中,所述第一电极为阳极,所述第二电极为阴极;
    在形成第一电极之后,形成量子点发光层之前,所述制备方法还包括:在所述第一电极上依次形成空穴注入层和空穴传输层;
    所述形成量子点发光层包括:在所述空穴传输层上形成所述量子点发光层;
    在形成量子点发光层之后,形成第二电极之前,所述制备方法还包括:在所述量子点发光层上形成电子传输层;
    所述形成第二电极包括:在所述电子传输层上形成所述第二电极。
  27. 根据权利要求25所述的制备方法,其中,所述第一电极为阴极,所述第二电极为阳极;
    在形成第一电极之后,形成量子点发光层之前,所述制备方法还包括:在所述第一电极上形成电子传输层;
    所述形成量子点发光层包括:在所述电子传输层上形成所述量子点发光层;
    在形成量子点发光层之后,形成第二电极之前,所述制备方法还包括:在所述量子点发光层上依次形成空穴传输层和空穴注入层;
    所述形成第二电极包括:在所述空穴注入层上形成所述第二电极。
  28. 根据权利要求26或27所述的制备方法,其中,所述第一电极的材料为导电基板或沉积有第一透明导电氧化物的基板,所述第一透明导电氧化物选自氧化铟锡、氧化铟锌和氟掺杂氧化锡中的任意一种或多种;所述第二电极的材料为金属或第二透明导电氧化物,所述金属为Mg、Ag、Al及其合金,所述第二透明导电氧化物为氧化铟锌,所述第二电极通过蒸镀或溅射的方法形成。
  29. 根据权利要求26或27所述的制备方法,其中,所述空穴注入层的材料选自聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐、NiO、MoO 3、WoO 3、V 2O 5、CuO、CuS、CuSCN和Cu:NiO中的任意一种或多种;所述空穴注入层通过旋涂、蒸镀或喷墨打印的方法形成。
  30. 根据权利要求26或27所述的制备方法,其中,所述空穴注入层的材料为聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐,其中,聚3,4-乙烯二氧噻吩的成膜温度为130℃至150℃,成膜时匀胶机的转速为500rpm至2500rpm。
  31. 根据权利要求26或27所述的制备方法,其中,所述空穴传输层的材料选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯基咔唑、N,N'-双(3-甲基苯基)-N,N′-二苯基-1,1′-联苯-4,4′-二胺和4,4'-二(9-咔唑)联苯中的任 意一种或多种;所述空穴传输层通过旋涂、蒸镀或喷墨打印的方法形成。
  32. 根据权利要求26或27所述的制备方法,其中,所述电子传输层为氧化锌纳米粒子薄膜或氧化锌溶胶凝胶薄膜;所述氧化锌纳米粒子薄膜的材料为氧化锌纳米粒子或掺杂型氧化锌纳米粒子,所述掺杂型氧化锌纳米粒子中掺杂的金属选自Mg、In、Al和Ga中的任意一种或多种。
  33. 根据权利要求32所述的制备方法,其中,所述氧化锌纳米粒子薄膜的制备过程包括:将氧化锌纳米粒子溶解在醇类溶剂中得到氧化锌纳米粒子醇溶液,将所述氧化锌纳米粒子醇溶液旋涂并加热成膜;
    其中,所述氧化锌纳米粒子醇溶液成膜时的温度为25℃至250℃,旋涂速度为500rpm至4000rpm,氧化锌纳米粒子薄膜的厚度为20nm至100nm。
  34. 根据权利要求32所述的制备方法,其中,所述氧化锌溶胶凝胶薄膜的制备过程包括:将锌的前驱体溶解在溶剂中得到含锌前驱体的溶液,将所述含锌前驱体的溶液旋涂并加热成膜;
    其中,所述含锌前驱体的溶液成膜时的温度为180℃至300℃,旋涂速度为1000rpm至4000rpm,锌的前驱体选自醋酸锌和硝酸锌中的任意一种或两种,溶解锌的前驱体的溶剂为乙醇胺与正丁醇的混合溶剂。
PCT/CN2021/131902 2021-11-19 2021-11-19 量子点膜和量子点膜图案化的方法以及它们的应用 WO2023087276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/131902 WO2023087276A1 (zh) 2021-11-19 2021-11-19 量子点膜和量子点膜图案化的方法以及它们的应用
CN202180003489.6A CN116472326A (zh) 2021-11-19 2021-11-19 量子点膜和量子点膜图案化的方法以及它们的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131902 WO2023087276A1 (zh) 2021-11-19 2021-11-19 量子点膜和量子点膜图案化的方法以及它们的应用

Publications (1)

Publication Number Publication Date
WO2023087276A1 true WO2023087276A1 (zh) 2023-05-25

Family

ID=86396010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131902 WO2023087276A1 (zh) 2021-11-19 2021-11-19 量子点膜和量子点膜图案化的方法以及它们的应用

Country Status (2)

Country Link
CN (1) CN116472326A (zh)
WO (1) WO2023087276A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378395A (zh) * 2018-10-18 2019-02-22 京东方科技集团股份有限公司 纳米粒子、显示基板的制备方法及显示装置
CN109970887A (zh) * 2017-12-27 2019-07-05 深圳Tcl工业研究院有限公司 一种聚合物配体、量子点及其制备方法
WO2020228417A1 (zh) * 2019-05-16 2020-11-19 京东方科技集团股份有限公司 显示面板、其制作方法及显示装置
CN112011328A (zh) * 2019-05-31 2020-12-01 Tcl集团股份有限公司 量子点配体交换的方法
US20210043862A1 (en) * 2019-08-08 2021-02-11 Sharp Kabushiki Kaisha Photo-patterned emissive layer containing passivated quantum dots, arrangement of light-emitting devices including same, and method of making same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935725B (zh) * 2017-12-15 2020-08-14 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法和应用
CN112018270B (zh) * 2019-05-31 2021-09-10 Tcl科技集团股份有限公司 量子点薄膜的制备方法和量子点发光二极管的制备方法
CN112300784A (zh) * 2020-10-28 2021-02-02 京东方科技集团股份有限公司 量子点材料、量子点膜层的图案化方法及量子点发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970887A (zh) * 2017-12-27 2019-07-05 深圳Tcl工业研究院有限公司 一种聚合物配体、量子点及其制备方法
CN109378395A (zh) * 2018-10-18 2019-02-22 京东方科技集团股份有限公司 纳米粒子、显示基板的制备方法及显示装置
WO2020228417A1 (zh) * 2019-05-16 2020-11-19 京东方科技集团股份有限公司 显示面板、其制作方法及显示装置
CN112011328A (zh) * 2019-05-31 2020-12-01 Tcl集团股份有限公司 量子点配体交换的方法
US20210043862A1 (en) * 2019-08-08 2021-02-11 Sharp Kabushiki Kaisha Photo-patterned emissive layer containing passivated quantum dots, arrangement of light-emitting devices including same, and method of making same

Also Published As

Publication number Publication date
CN116472326A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
Mei et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach
TWI684635B (zh) 發光體、及具有發光體的發光膜、發光二極體、發光二極體封裝、顯示裝置和發光裝置
US11866628B2 (en) Ligand modified quantum dot material and patterning thereof, and quantum dot material for light emitting and display devices
WO2017140047A1 (zh) 发光器件及其制备方法、显示装置
WO2017190378A1 (zh) 量子点发光二极管显示器的制作方法及量子点发光二极管显示器
WO2015096336A1 (zh) 一种显示面板及显示装置
CN106887449A (zh) 有源矩阵稀释源极实现垂直有机发光晶体管
WO2023039719A1 (zh) 发光基板及其制备方法和发光装置
WO2020148912A1 (ja) 発光素子および電界発光装置並びに発光素子の製造方法
WO2023005756A9 (zh) 量子点膜及其制备方法、光电器件、显示装置、量子点发光器件的制备方法
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
WO2023000962A1 (zh) 核壳型量子点、量子点发光器件、显示装置和制作方法
WO2021254057A1 (zh) 发光基板及其制备方法和发光装置
WO2023123133A1 (zh) 量子点配体、量子点膜层制备方法及量子点发光器件
WO2021136119A1 (zh) 一种量子点发光二极管及其制备方法
WO2022126444A1 (zh) 图案化量子点膜层、量子点发光器件和制作方法
WO2022239107A1 (ja) 発光素子、発光装置、および発光素子の製造方法
WO2023065984A1 (zh) 发光器件及其制备方法
WO2023065153A1 (zh) 量子点材料、量子点膜层的图案化方法及量子点显示器件
WO2022252088A1 (zh) 量子点材料及其制备方法、量子点显示器件、显示装置
WO2023122999A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023016345A1 (zh) 量子点发光器件及其制备方法、显示装置
WO2023065968A1 (zh) 发光器件及其制备方法
WO2023024113A1 (zh) 发光器件及其制备方法、显示基板、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003489.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964430

Country of ref document: EP

Kind code of ref document: A1