WO2023065968A1 - 发光器件及其制备方法 - Google Patents

发光器件及其制备方法 Download PDF

Info

Publication number
WO2023065968A1
WO2023065968A1 PCT/CN2022/120905 CN2022120905W WO2023065968A1 WO 2023065968 A1 WO2023065968 A1 WO 2023065968A1 CN 2022120905 W CN2022120905 W CN 2022120905W WO 2023065968 A1 WO2023065968 A1 WO 2023065968A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
patterned
layer
electrode
emitting device
Prior art date
Application number
PCT/CN2022/120905
Other languages
English (en)
French (fr)
Inventor
林雄风
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023065968A1 publication Critical patent/WO2023065968A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technology, in particular to a light emitting device and a preparation method thereof.
  • Embodiments of the present application provide a light-emitting device and a manufacturing method thereof, so as to solve the problem of unbalanced injection of holes and electrons.
  • the application provides a light emitting device, comprising:
  • the first functional layer is disposed on the patterned first electrode
  • a patterned insulating layer is disposed on the first functional layer
  • Patterning the second electrode, the patterned second electrode is disposed on the patterned insulating layer;
  • a light-emitting layer covering the patterned second functional layer and the first functional layer
  • the third functional layer is disposed on the light-emitting layer
  • the third electrode is disposed on the third functional layer
  • one of the first electrode and the patterned second electrode is an anode, and the other is a cathode, and the first electrode is the same as the third electrode; one of the first functional layer and the patterned second functional layer is an electron functional layer, the other is a hole functional layer, when the first functional layer is a hole functional layer, the third functional layer is a hole functional layer; when the first functional layer is an electronic functional layer, the third functional layer is an electronic functional layer layer, and the electronic functional layer is close to the cathode, and the hole functional layer is close to the anode.
  • the orthographic projection of the patterned second functional layer on the first functional layer is located at the position of the patterned insulating layer corresponding to the patterned second functional layer on the first functional layer. within the orthographic projection.
  • the edge of the orthographic projection of the patterned second functional layer on the first functional layer is connected to the patterned insulating layer corresponding to the patterned second functional layer on the first functional layer.
  • the distance on the edge of the orthographic projection is greater than 5 nm.
  • the edge of the orthographic projection of the patterned second electrode on the first functional layer to the edge of the patterned insulating layer corresponding to the patterned second electrode on the first functional layer The distance of the edge of the orthographic projection is greater than 20nm-105nm.
  • the orthographic projection of the patterned second electrode on the first functional layer is located at the orthographic projection of the patterned insulating layer corresponding to the patterned second electrode on the first functional layer within.
  • the edge of the orthographic projection of the patterned second functional layer on the first functional layer is connected to the patterned insulating layer corresponding to the patterned second functional layer on the first functional layer.
  • the distance on the edge of the orthographic projection is greater than 5 nm.
  • the edge of the orthographic projection of the patterned second electrode on the first functional layer to the edge of the patterned insulating layer corresponding to the patterned second electrode on the first functional layer The distance of the edge of the orthographic projection is greater than 20nm-105nm.
  • the thickness of the patterned insulating layer is 30 nm-100 nm.
  • the anode material is selected from one or more combinations of Pt, Ni, Cu, Ag, Al and Au;
  • the cathode material is selected from one or more combinations of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag;
  • the hole functional layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, cuprous thiocyanate, polyvinylcarbazole, poly(N,N'bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine)(Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl- 1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl ( CBP), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) and N,N' -One or more combinations of diphenyl-N,
  • Electronic functional layer materials are selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO, AlZnMgO, Li-doped TiO 2 , Ru-doped TiO 2 , doped graphene, non-doped graphene, C60, GaZnO and One or several combinations of ZnMgLiO;
  • the light-emitting layer is a quantum dot light-emitting layer.
  • the material of the quantum dot light-emitting layer is selected from one or more of single-structure quantum dots and core-shell structure quantum dots.
  • the single-structure quantum dots are selected from II-VI group compounds and III-V group compounds.
  • One or more of compound, I-III-VI group compound, II-VI group compound is selected from CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, One or more of CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, III-V group compounds selected from InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP, InAlNP
  • I-III-VI group compounds are selected from one or more of CuInS 2 , CuInSe 2 , AgInS 2 , and the core layer of quantum dots with core-shell structure is selected from the above-mentioned single-
  • the present application provides a method for preparing a light-emitting device, including:
  • the patterned insulating layer at least partially exposes the first functional layer
  • one of the first electrode and the patterned second electrode is an anode, and the other is a cathode, and the first electrode is the same as the third electrode; one of the first functional layer and the patterned second functional layer is an electron functional layer, the other is a hole functional layer, when the first functional layer is a hole functional layer, the third functional layer is a hole functional layer; when the first functional layer is an electronic functional layer, the third functional layer is an electronic functional layer layer, and the electronic functional layer is close to the cathode, and the hole functional layer is close to the anode.
  • the step of forming a patterned second electrode on the patterned insulating layer includes:
  • the step of forming a patterned insulating layer on the first functional layer includes:
  • first photoresist layer with several through holes on the first functional layer, the through holes penetrate through the first photoresist layer to expose part of the first functional layer;
  • the step of forming a patterned second electrode on the patterned insulating layer includes:
  • a patterned second electrode is formed in the via hole, wherein the orthographic projection of the patterned second electrode on the first functional layer is located within the orthographic projection of the patterned insulating layer on the first functional layer.
  • the step of forming a patterned second functional layer on the patterned second electrode includes:
  • the correspondingly arranged patterned insulating layer is within the orthographic projection on the first functional layer.
  • the patterned second electrode material includes a conductive material
  • the patterned second functional layer material includes an oxide of the conductive material
  • the second electrode is an anode
  • the patterned second functional layer is a hole functional layer
  • the anode material is selected from one or a combination of Ni and Cu
  • the hole function is selected from one or a combination of nickel oxide and copper oxide.
  • the second electrode is a cathode
  • the second functional layer is an electronic functional layer
  • the cathode material is selected from one or a combination of Ti, Zn and Sn
  • the electronic functional layer material One or two combinations selected from TiO 2 , ZnO and SnO 2 .
  • the step of forming a patterned second functional layer on the patterned second electrode includes:
  • a patterned second functional layer material is deposited on the patterned insulating layer and the patterned second electrode to form a patterned second functional layer, wherein the orthographic projection of the patterned second functional layer on the first functional layer is located in the patterned second functional layer
  • the patterned insulating layer corresponding to the second functional layer is within the orthographic projection on the first functional layer
  • the patterned second electrode is an anode
  • the patterned second functional layer is a hole functional layer
  • the anode material is selected from Pt, Ni, Cu, Ag, Al and Au.
  • the hole functional layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, cuprous thiocyanate, polyvinylcarbazole, Poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), poly(9,9-dioctylfluorene-co-bis- N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9 -carbazole)biphenyl (CBP), N
  • the patterned second electrode is a cathode
  • the second functional layer is an electronic functional layer
  • the material of the second cathode is selected from ITO, FTO, Fe, Cu, Al, Sn, Zn, and One or several combinations of Ag
  • the electronic functional layer material is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO, AlZnMgO, Li-doped TiO 2 , Ru-doped TiO 2 , doped graphene, One or a combination of non-doped graphene, C 60 , GaZnO and ZnMgLiO.
  • the embodiment of the present application discloses a light-emitting device and a preparation method thereof.
  • the light-emitting device includes a first electrode, a first functional layer, a patterned insulating layer, a patterned second electrode, a patterned second functional layer, a light-emitting layer, a third A functional layer and a third electrode, the first functional layer is arranged on the first electrode, the patterned insulating layer is arranged on the first functional layer, the patterned second electrode is arranged on the patterned insulating layer, and the patterned second function
  • the layer covers the patterned second electrode, the light-emitting layer covers the patterned second functional layer and the first functional layer, and the third functional layer is disposed on the light-emitting layer; wherein, one of the first electrode and the patterned second electrode is an anode , the other is a cathode, and the first electrode is the same as the third electrode; one of the first functional layer and the patterned second functional layer is an electronic functional layer, and the other is
  • Fig. 1 is a schematic diagram of a first structure of a light emitting device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the second structure of the light emitting device provided by the embodiment of the present application.
  • Fig. 3 is a flowchart of a method for preparing a light-emitting device provided in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a light emitting device in the prior art.
  • FIG. 5 is a voltage-brightness comparison diagram of light emitting devices provided by Example 1 and Comparative Example 1 of the present application.
  • FIG. 6 is a comparison chart of brightness and external quantum efficiency of the light emitting devices provided in Example 1 and Comparative Example 1 of the present application.
  • Fig. 7 is a schematic diagram of brightness-time of a light emitting device provided by an embodiment of the present application.
  • FIG. 8 is a voltage-brightness comparison diagram of light emitting devices provided by Example 2 and Comparative Example 1 of the present application.
  • FIG. 9 is a comparison chart of brightness and external quantum efficiency of the light emitting devices provided in Example 2 and Comparative Example 1 of the present application.
  • Fig. 10 is a schematic diagram of leakage current data of a light emitting device provided in Embodiment 3 of the present application.
  • FIG. 11 is a schematic diagram of leakage current data of a light emitting device provided in Comparative Example 1.
  • FIG. 11 is a schematic diagram of leakage current data of a light emitting device provided in Comparative Example 1.
  • FIG. 12 is a voltage-brightness comparison diagram of light emitting devices provided by Example 4 and Comparative Example 2 of the present application.
  • Fig. 13 is a comparison chart of the luminance and external quantum efficiency of the light-emitting devices provided in Example 4 and Comparative Example 2 of the present application.
  • Embodiments of the present application provide a light emitting device and a manufacturing method thereof. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • An embodiment of the present application provides a light-emitting device.
  • the light-emitting device includes a first electrode, a first functional layer, a patterned insulating layer, a patterned second electrode, a patterned second functional layer, a light-emitting layer, a third functional layer, and a third electrode, the first functional layer is disposed on the first electrode, the patterned insulating layer is disposed on the first functional layer, the patterned second electrode is disposed on the patterned insulating layer, and the patterned second functional layer covers the patterned first Two electrodes, the light-emitting layer covers the patterned second functional layer and the first functional layer, the third functional layer is arranged on the light-emitting layer, and the third electrode is arranged on the third functional layer; wherein, the first electrode and the patterned second electrode One of them is an anode, the other is a cathode, and the first electrode is the same as the third electrode; one of the first functional layer and the patterned second functional layer is an electronic functional layer,
  • the third functional layer is arranged on the light-emitting layer, which improves the transport efficiency of carriers, and then balances the injection of electrons and holes in the light-emitting layer, thereby improving the performance of the light-emitting device.
  • FIG. 1 is a schematic diagram of a first structure of a light emitting device provided by an embodiment of the present application.
  • the present application provides a light emitting device 10 .
  • the light emitting device 10 includes a first functional layer 100, a patterned insulating layer 200, a patterned second electrode 300, a patterned second functional layer 400, a light emitting layer 500, a third functional layer 700, a first electrode 600 and a third electrode 800 .
  • the first electrode is the first cathode
  • the first functional layer is the first electronic functional layer
  • the patterned second functional layer is the patterned second hole functional layer
  • the pattern The second electrode is patterned as a second anode.
  • the first electrode is the first anode
  • the first functional layer is the first hole functional layer
  • the second functional layer is the patterned second electronic functional layer
  • the second electrode is the second cathode .
  • the hole functional layer may include at least one of a hole transport layer and a hole injection layer.
  • the electron functional layer includes at least one of an electron transport layer and an electron injection layer.
  • the third functional layer is arranged on the light-emitting layer, which improves the transport efficiency of carriers, and then balances the injection of electrons and holes in the light-emitting layer, thereby improving the performance of the light-emitting device.
  • the first electrode 600 may be a first cathode or a first anode.
  • the thickness H of the first electrode 600 is greater than 100 nanometers. Specifically, the thickness H of the first electrode 600 may be 100 nanometers, 150 nanometers, 350 nanometers, 800 nanometers or 900 nanometers and so on.
  • setting the thickness H of the first electrode 600 to be greater than 100 nanometers can improve the conductivity of the first electrode 600 .
  • the first electrode 600 is a first cathode.
  • the first cathode material is a cathode material.
  • the cathode material is selected from one or a combination of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag.
  • the first electrode 600 is a first anode.
  • the first anode material is an anode material, and the anode material is selected from one or a combination of Pt, Ni, Cu, Ag, Al and Au.
  • the first functional layer 100 is disposed on the first electrode 600 .
  • the thickness h of the first functional layer 100 is 20 nm-60 nm. Specifically, the thickness h of the first functional layer 100 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers or 60 nanometers.
  • the thickness h of the first functional layer 100 is set to 20 nanometers to 60 nanometers to ensure the carrier transport performance and/or carrier injection performance of the first functional layer 100, thereby ensuring the normal display of the light emitting device 10. .
  • the carriers include electrons and holes.
  • the first functional layer 100 is a first electronic functional layer
  • the first electrode 600 is a first cathode.
  • the first electronic functional layer is disposed on the first cathode.
  • the first electron functional layer includes at least one of a first electron transport layer and a first electron injection layer.
  • the first electronic functional layer material is an electronic functional layer material.
  • the material of the electronic functional layer is nanoparticles, and the particle size of the nanoparticles is 5 nm to 20 nm, and the material of the electronic functional layer is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO, AlZnMgO, doped graphene, One or a combination of non-doped graphene, C 60 , GaZnO and ZnMgLiO.
  • the first functional layer 100 is the first electronic functional layer
  • the first electrode 600 is the first cathode
  • the material of the first electronic functional layer is the material of the electronic functional layer
  • the material of the electronic functional layer is an inorganic metal compound
  • the inorganic metal The compound is selected from one or more combinations of TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, CsCO 3 , ZrO, AlZnMgO, GaZnO and ZnMgLiO.
  • the first functional layer 100 is the first electronic functional layer
  • the first electrode 600 is the first cathode
  • the first electronic functional layer is formed of an inorganic compound to avoid damage to other film layers formed subsequently. If an organic compound is used to form the first electronic functional layer, a photoresist layer is required when forming the subsequent film layer. When the photoresist layer is removed, part of the first electronic functional layer will also be removed, resulting in the first electronic functional layer The damage affects the performance of the light emitting device 10.
  • the first functional layer 100 is a first hole functional layer
  • the first electrode 600 is a first anode.
  • the first hole functional layer is disposed on the first anode.
  • the first hole functional layer includes at least one of a first hole transport layer and a first hole injection layer.
  • the first hole function layer material is a hole function layer material.
  • the hole functional layer material is nanoparticles, and the particle size of the nanoparticles is 5 nanometers to 20 nanometers.
  • the hole functional layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene Sulfonate, cuprous thiocyanate, polyvinylcarbazole, poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), Poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl ) Triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1 , 1'-biphenyl-4,4'-diamine (TPD) and N,N'-diphenyl-N,N'-(
  • the first functional layer 100 is a first hole functional layer
  • the first electrode 600 is a first anode.
  • the first hole functional layer is disposed on the first anode.
  • the first hole functional layer includes at least one of a first hole transport layer and a first hole injection layer.
  • the first hole function layer material is a hole function layer material.
  • the hole function layer material is nano particles, the particle size of which is 5nm-20nm, the hole function layer material is an inorganic metal compound, and the inorganic metal compound is selected from one or more combinations of nickel oxide and copper oxide.
  • the first functional layer 100 is the first hole functional layer
  • the first electrode 600 is the first anode
  • the first hole functional layer is formed of an inorganic metal compound to avoid damage to other film layers formed subsequently.
  • an organic compound is used to form the first hole functional layer
  • a photoresist layer is required when forming subsequent film layers. When the photoresist layer is removed, a part of the first hole functional layer will also be removed, resulting in the first hole Damage to the hole functional layer affects the performance of the light emitting device 10 .
  • the patterned insulating layer 200 is disposed on the first functional layer 100 .
  • the patterned insulating layer 200 is divided into a plurality of patterned insulating layer segments and a patterned insulating layer connecting segment connected to the patterned insulating layer segments, that is, the shape of the patterned insulating layer 200 is similar to that of the interdigitated structure.
  • the patterned insulating layer 200 exposes part of the first functional layer 100 .
  • the material of the patterned insulating layer 200 includes one of the latter combinations of aluminum oxide, silicon oxide, and silicon oxynitride.
  • interfinger structure refers to a palm structure in which multiple fingers are connected to a palm.
  • the thickness D of the patterned insulating layer 200 is 30 nm-100 nm. Specifically, the thickness D of the patterned insulating layer 200 may be 30 nm, 34 nm, 44 nm, 58 nm, 70 nm, 80 nm, 94 nm or 100 nm.
  • the thickness D of the patterned insulating layer 200 is set to 30 nanometers to 100 nanometers, so as to prevent the subsequent patterned second functional layer 400 from contacting the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10, Further, normal display of the light emitting device 10 is ensured.
  • the patterned second electrode 300 is disposed on the patterned insulating layer 200 .
  • the patterned second electrode 300 is divided into a plurality of patterned second electrode 300 segments and a patterned second electrode 300 connecting segment connected to the plurality of patterned second electrode 300 segments, that is, the patterned second electrode 300
  • the planar shape of the patterned second electrode 300 is similar to the shape of the finger structure, and the connecting section of the patterned second electrode 300 is used to connect to the external circuit; each patterned second electrode 300 section is correspondingly arranged with a patterned insulating layer 200 section, and a patterned
  • the connection section of the second electrode 300 is set corresponding to the connection section of a patterned insulating layer 200, and the orthographic projection of each patterned second electrode 300 section on the first functional layer 100 is located corresponding to a patterned second electrode 300 section Within the orthographic projection of the set patterned insulating layer 200 section on the first energy layer 100, the orthographic projection of a patterned second electrode 300 connection section on the first functional layer 100 is located in
  • the corresponding arrangement means that one film layer structure is located below or above another film layer structure.
  • the patterned second electrode 300 is disposed under the patterned insulating layer 200 , etc., which are the same below, and will not be repeated here.
  • the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is set to be located between the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100 In this way, the subsequent patterned second functional layer 400 is prevented from being in contact with the first functional layer 100 , thereby avoiding the leakage current problem of the light emitting device 10 , thereby ensuring the normal display of the light emitting device 10 .
  • the thickness d of the patterned second electrode 300 is 50 nm-100 nm. Specifically, the thickness d of the patterned second electrode 300 may be 50 nanometers, 60 nanometers, 75 nanometers, 90 nanometers or 100 nanometers.
  • the thickness d of the patterned second electrode 300 is set to 50 nanometers to 100 nanometers, and the resistance of the patterned second electrode 300 with the thickness d of the patterned second electrode 300 within this range is small, and the current The hindering effect is small, thereby improving the conductivity of the patterned second electrode 300 .
  • the thickness d of the patterned second electrode 300 is set to be less than 50 nanometers, the resistance of the patterned second electrode 300 is too large, thereby affecting the conductivity of the patterned second electrode 300, so that the light emitting device 10 cannot display normally; if The thickness d of the patterned second electrode 300 is set to be greater than 100 nanometers, so that the resistance of the patterned second electrode 300 is too small, causing damage to the light emitting device 10 .
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100
  • the distance between the edges is greater than 20nm-105nm.
  • the distance between the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 and the edge of the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100 The distance may be greater than 20 nanometers, 30 nanometers, 60 nanometers, 80 nanometers, 90 nanometers, or 105 nanometers, among others.
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100
  • the edge distance is set to be greater than 20nm-105nm, to further prevent the subsequent patterned second functional layer 400 from contacting the first functional layer 100, further avoid the leakage current problem of the light emitting device 10, and further ensure the normal display of the light emitting device 10.
  • the first electrode 600 is a first cathode
  • the first functional layer 100 is a first electronic functional layer
  • the patterned second electrode 300 is a patterned second anode
  • the patterned second anode material is an anode material
  • the anode material is selected from one or a combination of Pt, Ni, Cu, Ag, Al and Au.
  • the conductivity of Ag is 6.3x10 7 S/m, that of Al is 3.77x10 7 S/m, that of Au is 4.42x10 7 S/m, and that of Ni is 1.4 ⁇ 10 7 S/m. If Ag, Al and Au are used to form the patterned second anode, since the conductivity of Ag, Al and Au is greater than that of Ni and Cu, the performance of the light emitting device 10 can be improved.
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole functional layer
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second cathode material is a cathode Material
  • the cathode material is selected from one or more combinations of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag.
  • the patterned second functional layer 400 covers the patterned second electrode 300 .
  • the patterned second functional layer 400 is divided into a plurality of patterned second functional layer 400 segments and a patterned second functional layer 400 connecting segment connected to the plurality of patterned second functional layer 400 segments, the patterned second functional layer 400 is divided into The connection section of the second functional layer 400 can be connected to an external circuit.
  • the patterned second functional layer 400 section is arranged on the patterned insulating layer 200 section and the patterned second electrode 300 section, and the patterned second functional layer 400 connecting section is arranged on the patterned insulating layer 200 connecting section and the pattern
  • the second electrode 300 is connected to the segment.
  • the orthographic projection of the patterned second functional layer 400 section on the first functional layer 100 is located in the patterned insulating layer 200 section corresponding to the patterned second functional layer 400 section in the first functional Within the orthographic projection on the layer 100; the orthographic projection of the connecting segment of the patterned second functional layer 400 on the first functional layer 100 is located at the connecting segment of the patterned insulating layer 200 corresponding to the connecting segment of the patterned second functional layer 400 Within the orthographic projection on the first functional layer 100; the orthographic projection of the patterned second electrode 300 segment on the patterned insulating layer 200 segment is located in the patterned second functional layer corresponding to the patterned second electrode 300 segment The orthographic projection of the section of the layer 400 on the section of the patterned insulating layer 200; the orthographic projection of the connecting section of the patterned second electrode 300 on the section of the patterned insulating layer 200 is located corresponding to the connecting section of the patterned second electrode 300 The set patterned second functional layer 400 connecting segment is within the orthographic projection of the patterned insulating layer 200
  • the patterned insulating layer 200 corresponding to the functional layer 400 is within the orthographic projection on the first functional layer 100 , and the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is located corresponding to the patterned second electrode 300 The disposed patterned second functional layer 400 is within the orthographic projection on the patterned insulating layer 200 .
  • the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 is set to be located at the position of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100 Within the orthographic projection, and the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is located in the orthographic projection of the patterned second functional layer 400 on the patterned insulating layer 200 corresponding to the patterned second electrode 300 Within, further avoiding the contact between the patterned second functional layer 400 and the first functional layer 100 , further avoiding the leakage current problem of the light emitting device 10 , and ensuring the normal display of the light emitting device 10 .
  • the edge of the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 to the edge of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100 The distance W of the edge of the orthographic projection is greater than 5 nanometers, and the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is connected to the patterned insulating layer corresponding to the patterned second electrode 300 in the first functional layer.
  • the distance of the edges of the orthographic projection on layer 100 is greater than 20nm-105nm.
  • the distance W of the edge can be greater than 5 nanometers, 10 nanometers, 15 nanometers, 50 nanometers or 100 nanometers, etc.
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 corresponds to the patterned second electrode 300
  • the distance of the edge of the orthographic projection of the set patterned insulating layer on the first functional layer 100 may be greater than 20 nanometers, 25 nanometers, 50 nanometers, 80 nanometers, 100 nanometers or 105 nanometers.
  • the distance W of the edge of the orthographic projection is set to be greater than 5 nanometers, and the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the patterned insulating layer corresponding to the patterned second electrode 300 in the first
  • the distance between the edges of the orthographic projection on the functional layer 100 is greater than 20 nanometers to 105 nanometers, so as to avoid the contact between the patterned second functional layer 400 and the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10, thereby ensuring the normal operation of the light emitting device 10 show.
  • the first electrode 600 is a first cathode
  • the first functional layer 100 is a first electronic functional layer
  • the patterned second electrode 300 is a patterned second anode
  • the patterned second functional layer 400 is a patterned
  • the second hole functional layer, the patterned second hole functional layer includes at least one of the patterned second hole transport layer and the patterned second hole injection layer
  • the material of the patterned second functional layer 400 is hole Functional layer material.
  • the hole functional layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS), cuprous thiocyanate and polyvinylcarbazole, poly( N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine)(Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N, N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carb Azole) biphenyl (CBP), N, N'-diphenyl-N, N'-di(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) , N, N'-diphenyl
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole functional layer
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is Patterning the second electronic functional layer
  • patterning the second electronic functional layer includes at least one of patterning the second electron transport layer and patterning the second electron injection layer
  • the material of the patterning second functional layer 400 is the electronic functional layer material .
  • the light emitting layer 500 covers the patterned second functional layer 400 and the first functional layer 100 .
  • the light emitting layer 500 may be a quantum dot light emitting layer.
  • the light emitting layer 500 includes a red quantum dot light emitting layer, a blue quantum dot light emitting layer and a green quantum dot light emitting layer.
  • the material of the light-emitting layer 500 is a quantum dot material known in the art for quantum dot light-emitting layers of optoelectronic devices.
  • the material of the light-emitting layer 500 includes at least one of quantum dots with a single structure and quantum dots with a core-shell structure.
  • the single-structure quantum dots include at least one of II-VI compound, III-V compound and I-III-VI compound.
  • the band gap of the shell layer of the quantum dot is larger than the band gap of the core layer of the quantum dot.
  • the group II-VI compound includes at least one of CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe ;
  • Group III-V compounds may include at least one of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP;
  • Group I-III-VI compounds include CuInS 2 , CuInSe 2 And at least one of AgInS 2 .
  • the core layer of the quantum dot of the core-shell structure includes at least one of the above-mentioned single-structure quantum dots
  • the shell layer of the quantum dot of the core-shell structure includes CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS and ZnS at least one.
  • quantum dots with a core-shell structure include CdZnSe/CdZnS/ZnS, CdZnSe/ZnSe/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS, InP/ZnSe/ At least one of ZnS and InP/ZnSeS/ZnS.
  • the material of the light-emitting layer 500 is a quantum dot material with a core-shell structure, and the band gap of the shell layer is larger than that of the core layer, so that the light-emitting layer 500 expands the range of the photon collection spectrum while avoiding the core layer
  • the other film layers of the light emitting device 10 are formed first, and then the light emitting layer 500 is formed last, so as to avoid damage to the light emitting layer 500 caused by other film layers during material deposition, and at the same time avoid the possibility of the light emitting layer 500 being wrapped in the light emitting device 10
  • the fluorescence of the light emitting layer 500 will be shielded by other film layers, which improves the display effect of the light emitting device 10 and improves the performance of the light emitting device 10 .
  • the third functional layer 700 and the third electrode 800 are sequentially stacked on the light emitting layer 500 .
  • the third functional layer 700 and the third electrode 800 are arranged on the light-emitting layer to increase the effective contact area between the electron functional layer or hole functional layer and the light-emitting layer 500, that is, to increase the first functional layer 100 and the third electrode 800.
  • the effective contact area between the three-functional layer 700 and the light-emitting layer 500 improves the carrier transport efficiency of the light-emitting device 10, balances the hole transport efficiency and the electron transport efficiency, and helps to balance the charge inside the light-emitting device 10, thereby improve device performance.
  • the first electrode 600 is a first cathode
  • the first functional layer 100 is a first electronic functional layer
  • the patterned second electrode 300 is a patterned second anode
  • the patterned second functional layer 400 is a patterned
  • the second hole functional layer, the patterned second hole functional layer includes at least one of the patterned second hole transport layer and the patterned second hole injection layer
  • the material of the patterned second functional layer 400 is hole Functional layer materials
  • the third functional layer 700 is the third electronic functional layer
  • the third electrode 800 is the third cathode.
  • the material of the third functional layer 700 is an electronic functional layer material, and the electronic functional layer material is selected from one or more combinations of TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, CsCO 3 , ZrO, AlZnMgO, GaZnO and ZnMgLiO.
  • the material of the third electrode 800 is a cathode material, and the cathode material is selected from one or a combination of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag.
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole functional layer
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is Patterning the second electronic functional layer
  • patterning the second electronic functional layer includes at least one of patterning the second electron transport layer and patterning the second electron injection layer
  • the material of the patterning second functional layer 400 is the electronic functional layer material
  • the third functional layer 700 is a third hole functional layer
  • the third electrode 800 is a third anode
  • the material of the third functional layer 700 is a hole function layer material
  • the third anode material is an anode material.
  • the light emitting device further includes an encapsulation structure.
  • the encapsulation structure is disposed on the third electrode 800 .
  • the encapsulation structure is formed by overlapping inorganic layers and organic layers.
  • the encapsulation structure provided on the third electrode 800 can prevent the light emitting layer 500 from being corroded by water and oxygen, thereby improving the performance of the light emitting device 10 .
  • the embodiment of the present application discloses a light-emitting device 10.
  • a third functional layer 700 and a third electrode 800 are arranged on the light-emitting layer to increase the effective contact area between the electron function layer or the hole function layer and the light-emitting layer 500, that is, to increase
  • the effective contact area between the first functional layer 100 and the third functional layer 700 and the light-emitting layer 500 improves the carrier transport efficiency of the light-emitting layer 500 region in the light-emitting device 10, so that the hole transport efficiency of the light-emitting layer region and the electron
  • the transfer efficiency is balanced, which is beneficial to balance the charge inside the light emitting device 10, thereby improving the performance of the device.
  • the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is set to be located in the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100, avoiding the pattern
  • the second functional layer 400 is in contact with the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10.
  • the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is set to be within the orthographic projection of the patterned second functional layer 400 corresponding to the patterned second electrode 300 on the patterned insulating layer 200, to avoid The patterned second functional layer 400 is in contact with the first functional layer 100 , thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • the first electrode 600 is the first cathode
  • the first functional layer 100 is the first electronic functional layer
  • the patterned second electrode 300 is the patterned second anode
  • the patterned second functional layer 400 is the patterned second hole functional layer
  • the patterned second hole functional layer includes at least one of the patterned second hole transport layer and the patterned second hole injection layer
  • the material of the patterned second functional layer 400 is the material of the hole functional layer
  • the third The functional layer 700 is the third electronic functional layer
  • the third electrode 800 is the third cathode
  • the material of the third functional layer 700 is the electronic functional layer material
  • the third electronic functional layer includes the third electron transport layer and the third electron injection layer.
  • At least one material of the third cathode 800 is a cathode material, and preferably the light emitting layer 500 is a blue quantum dot light emitting layer. Since the electrons in the light-emitting device 10 of the blue quantum dots are minority carriers, that is, the number of electrons is less than the number of holes, the third electron functional layer and the third cathode are added, thereby improving the injection of electrons, balancing electrons and holes, and improving device efficiency.
  • the third functional layer 700 is set on the light-emitting layer as the third electronic functional layer and the third electrode 800 is the third cathode, so as to increase the effective contact area between the electronic functional layer and the light-emitting layer 500, that is, to increase the first
  • the effective contact area between the electronic functional layer and the third electronic functional layer and the light-emitting layer 500 improves the electron transport efficiency in the light-emitting layer 500 region of the light-emitting device 10, so that the hole transport efficiency and the electron transport efficiency are balanced, thereby facilitating the balance Charges inside the light emitting device 10, thereby improving the performance of the device.
  • the orthographic projection of the patterned second anode on the first electronic functional layer is set to be located in the orthographic projection of the patterned insulating layer 200 on the first electronic functional layer, avoiding the patterned second hole functional layer and the first electron functional layer.
  • the functional layers are in contact, thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • the orthographic projection of the patterned second hole functional layer on the first electronic functional layer is set to be located between the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second hole functional layer on the first electronic functional layer In this way, the contact between the patterned second hole functional layer and the first electronic functional layer is further avoided, thereby further avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • FIG. 2 is a second structural schematic view of the light emitting device provided by the embodiment of the present application. It should be noted that the differences between Example 2 and Example 1 are:
  • the third functional layer and the third electrode are not provided in the inverted light emitting device, that is, the third functional layer and the third electrode are not provided on the light emitting layer 500 .
  • the third functional layer and the third electrode are not provided in the inverted light-emitting device, that is, the third functional layer and the third electrode are not provided on the light-emitting layer 500, so as to avoid forming the third functional layer and the third electrode.
  • the electrode damages the luminescent layer 500, and at the same time avoids the effect that other film layers will block the fluorescence of the luminescent layer 500 due to the luminescent layer 500 being wrapped in the middle of other film layers of the light-emitting device 10, thereby improving the The display effect of the light emitting device 10 improves the performance of the light emitting device 10 .
  • Example 3 Please continue with Figure 1. It should be noted that the differences between Example 3 and Example 1 are:
  • the light emitting device 10 is a positive light emitting device
  • the third functional layer 700 is a third hole functional layer
  • the third electrode 800 is a third anode
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole function layer.
  • the hole functional layer, the patterned second electrode 300 is a patterned second cathode, the patterned second functional layer 400 is a patterned second electronic functional layer, and the patterned second electronic functional layer includes a patterned second electron transport layer and a pattern At least one of the second electron injection layer is patterned, the material of the second electronic functional layer is the material of the electronic functional layer, the material of the third functional layer 700 is the material of the hole functional layer, and the material of the third anode is the anode material.
  • the light emitting layer 500 is a red quantum dot light emitting layer. Since holes in the light-emitting device 10 of red quantum dots are minority carriers, that is, the number of holes is less than the number of electrons, the third hole functional layer and the third anode are added, thereby improving the injection of holes and balancing electrons and holes. improve device efficiency.
  • the third functional layer 700 is set on the light-emitting layer as the third hole functional layer and the third electrode 800 is the third anode, so as to increase the effective contact area between the hole function layer and the light-emitting layer 500, that is, increase
  • the effective contact area between the first hole functional layer 100 and the third hole functional layer 600 and the light-emitting layer 500 improves the hole transport efficiency of the red quantum dot light-emitting device 10, so that the hole transport efficiency and electron transport efficiency are balanced , so that it is beneficial to balance the charge inside the light emitting device 10, thereby improving the performance of the device.
  • the orthographic projection of the patterned second cathode on the first hole functional layer is set to be located in the orthographic projection of the patterned insulating layer 200 on the first hole functional layer, avoiding the patterning of the second electronic functional layer from the first hole functional layer.
  • the hole functional layer is in contact, thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • the orthographic projection of the patterned second electronic functional layer on the first hole functional layer is set to be located between the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electronic functional layer on the first hole functional layer In this way, the contact between the patterned second electron functional layer and the first hole functional layer is further avoided, thereby further avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • Example 4 Please continue with Figure 2. It should be noted that the differences between Example 4 and Example 3 are:
  • the third functional layer and the third electrode are not provided on the light emitting layer 500 .
  • the third functional layer and the third electrode are not provided in the positive light-emitting device, that is, the third functional layer and the third electrode are not provided on the light-emitting layer 500, so as to avoid the formation of the third functional layer and the third electrode.
  • the damage to the light-emitting layer 500 is avoided, and at the same time, the effect of blocking the fluorescence of the light-emitting layer 500 by other film layers due to the light-emitting layer 500 being wrapped in the middle of other film layers of the light-emitting device 10 is avoided, and the improvement is improved.
  • the display effect of the light emitting device 10 is improved, and the performance of the light emitting device 10 is improved.
  • the embodiment of the present application discloses a light-emitting device 10.
  • a third functional layer 700 and a third electrode 800 are arranged on the light-emitting layer to increase the effective contact area between the electron function layer and the hole function layer and the light-emitting layer 500, that is, to increase
  • the effective contact area between the first functional layer 100 and the third functional layer 700 and the light-emitting layer 500 improves the carrier transport efficiency of the light-emitting device 10, so that the hole transport efficiency and electron transport efficiency in the light-emitting device 10 are balanced, which is beneficial
  • the charge inside the light emitting device 10 is balanced, thereby improving the performance of the device.
  • the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is set to be located in the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100, avoiding the pattern
  • the second functional layer 400 is in contact with the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10.
  • the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 is set to be within the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100, And the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is set to be within the orthographic projection of the patterned second functional layer 400 corresponding to the patterned second electrode 300 on the patterned insulating layer 200, This further prevents the patterned second functional layer 400 from contacting the first functional layer 100 , thereby further avoiding the problem of leakage current in the light emitting device 10 and improving the performance of the light emitting device 10 .
  • the third functional layer and the third electrode are not provided in the light-emitting device 10, that is, the third functional layer and the third electrode are not provided on the light-emitting layer 500, so as to avoid the formation of the third functional layer and the third electrode during material deposition. damage to the light emitting layer 500, while avoiding the effect of blocking the fluorescence of the light emitting layer 500 by other film layers due to the light emitting layer 500 being wrapped in the middle of other film layers of the light emitting device 10, and improving the display effect of the light emitting device 10 , the performance of the light emitting device 10 is improved.
  • the present application also provides a method for preparing a light-emitting device, including:
  • one of the first electrode and the second electrode is an anode, and the other is a cathode, and the first electrode is the same as the third electrode; one of the first functional layer and the second functional layer is an electronic functional layer, and the other is an electronic functional layer.
  • the third functional layer is arranged on the light-emitting layer, which improves the transport efficiency of carriers, and then balances the injection of electrons and holes in the light-emitting layer, thereby improving the performance of the light-emitting device.
  • FIG. 3 is a flowchart of a method for manufacturing a light-emitting device provided in an embodiment of the present application.
  • the present application provides a method for preparing a light-emitting device, comprising:
  • the first electrode 600 may be a first cathode or a first anode.
  • the first electrode 600 may be a first cathode or a first anode.
  • the thickness H of the first electrode 600 is greater than 100 nanometers. Specifically, the thickness H of the first electrode 600 may be 100 nanometers, 150 nanometers, 350 nanometers, 800 nanometers or 900 nanometers and so on.
  • setting the thickness H of the first electrode 600 to be greater than 100 nanometers can improve the conductivity of the first electrode 600 .
  • the first electrode 600 is a first cathode
  • the first cathode material is a cathode material
  • the cathode material is selected from one or more combinations of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag .
  • the first electrode 600 is a first anode
  • the first anode material is an anode material
  • the anode material is selected from one or a combination of Pt, Ni, Cu, Ag, Al and Au.
  • the spin-coat 30 mg/mL of the first functional layer 100 nanoparticles On the first electrode 600, spin-coat 30 mg/mL of the first functional layer 100 nanoparticles, the spin-coating speed is 3000 rpm, and the spin-coating time is 30 seconds; then, heat at 80 degrees Celsius for 30 minutes to form the first functional layer 100.
  • the first functional layer 100 is disposed on the first electrode 600 .
  • the thickness h of the first functional layer 100 is 20 nm-60 nm. Specifically, the thickness h of the first functional layer 100 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers or 60 nanometers.
  • the thickness h of the first functional layer 100 is set to 20 nanometers to 60 nanometers to ensure the carrier transport performance and/or carrier injection performance of the first functional layer 100, thereby ensuring the normal display of the light emitting device 10. .
  • the carriers include electrons and holes.
  • the first functional layer 100 is a first electronic functional layer
  • the first electrode 600 is a first cathode.
  • the first electronic functional layer is disposed on the first cathode.
  • the first electron functional layer includes at least one of a first electron transport layer and a first electron injection layer.
  • the first electronic functional layer material is an electronic functional layer material.
  • the material of the electronic functional layer is nanoparticles, and the particle size of the nanoparticles is 5 nm to 20 nm, and the material of the electronic functional layer is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO, AlZnMgO, doped graphene, One or a combination of non-doped graphene, C 60 , GaZnO and ZnMgLiO.
  • the first functional layer 100 is the first electronic functional layer
  • the first electrode 600 is the first cathode
  • the material of the first electronic functional layer is the material of the electronic functional layer
  • the material of the electronic functional layer is an inorganic metal compound
  • the inorganic metal The compound is selected from one or more combinations of TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, CsCO 3 , ZrO, AlZnMgO, GaZnO and ZnMgLiO.
  • the first functional layer 100 is the first electronic functional layer
  • the first electrode 600 is the first cathode
  • the first electronic functional layer is formed of an inorganic compound to avoid damage during subsequent formation of other film layers. If an organic compound is used to form the first electronic functional layer, a photoresist layer is required when forming the subsequent film layer. When the photoresist layer is removed, part of the first electronic functional layer will also be removed, resulting in the first electronic functional layer The damage affects the performance of the light emitting device 10.
  • the first functional layer 100 is a first hole functional layer
  • the first electrode 600 is a first anode.
  • the first hole functional layer is disposed on the first anode.
  • the first hole functional layer includes at least one of a first hole transport layer and a first hole injection layer.
  • the first hole function layer material is a hole function layer material.
  • the hole functional layer material is nanoparticles, and the particle size of the nanoparticles is 5 nanometers to 20 nanometers.
  • the hole functional layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene Sulfonate, cuprous thiocyanate, polyvinylcarbazole, poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), Poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl ) Triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1 , 1'-biphenyl-4,4'-diamine (TPD) and N,N'-diphenyl-N,N'-(
  • the first functional layer 100 is a first hole functional layer
  • the first electrode 600 is a first anode.
  • the first hole functional layer is disposed on the first anode.
  • the first hole functional layer includes at least one of a first hole transport layer and a first hole injection layer.
  • the first hole function layer material is a hole function layer material.
  • the hole function layer material is nano particles, the particle size of which is 5nm-20nm, the hole function layer material is an inorganic metal compound, and the inorganic metal compound is selected from one or more combinations of nickel oxide and copper oxide.
  • the first functional layer 100 is the first hole functional layer
  • the first electrode 600 is the first anode
  • the first hole functional layer is formed of an inorganic metal compound to avoid damage to other film layers formed subsequently.
  • an organic compound is used to form the first hole functional layer
  • a photoresist layer is required when forming subsequent film layers. When the photoresist layer is removed, a part of the first hole functional layer will also be removed, resulting in the first hole Damage to the hole functional layer affects the performance of the light emitting device 10 .
  • first photoresist layer with several through holes on the first functional layer, the through holes penetrate through the first photoresist layer to expose part of the first functional layer; then, in the through holes forming a patterned insulating layer; then, removing the first photoresist layer.
  • the material of the first photoresist layer was spin-coated on the first functional layer 100 at a spin-coating speed of 3000 rpm for 30 seconds, and then heat-treated at 110 degrees Celsius for 2 minutes.
  • the material of the first photoresist layer is exposed under the ultraviolet lamp, and the exposure time is 5 seconds.
  • the first photoresist layer is AZ1512 photoresist layer.
  • the through hole penetrates through the first photoresist layer to expose part of the first functional layer 100 .
  • the through holes are correspondingly disposed on the first functional layer 100 , and the through holes are located above the first functional layer 100 .
  • the material of the patterned insulating layer is evaporated in the through hole by electron beam, the evaporation rate is 1 Angstrom/second, the evaporation time is 300 seconds, and the evaporation thickness is 30 nm to form a patterned insulating layer 200 .
  • the patterned insulating layer 200 is divided into a plurality of patterned insulating layer segments and a patterned insulating layer connection segment connected to the plurality of patterned insulating layer segments, and every two adjacent patterned insulating layer segments are arranged at intervals, That is, the shape of the patterned insulating layer 200 is similar to that of the finger structure.
  • the patterned insulating layer 200 exposes part of the first functional layer 100 .
  • the material of the patterned insulating layer 200 includes one or a combination of aluminum oxide, silicon oxide and silicon oxynitride.
  • the thickness D of the patterned insulating layer 200 is 30 nm-100 nm. Specifically, the thickness D of the patterned insulating layer 200 may be 30 nm, 34 nm, 44 nm, 58 nm, 70 nm, 80 nm, 94 nm or 100 nm.
  • the thickness D of the patterned insulating layer 200 is set to 30 nanometers to 100 nanometers, so as to prevent the subsequent patterned second functional layer 400 from contacting the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10, Further, normal display of the light emitting device 10 is ensured.
  • the material of the second photoresist layer is spin-coated on the first functional layer 100 and the patterned insulating layer 200, and the spin-coating speed is 3000 Spin-coating time is 30 seconds per minute; then, heat treatment at 110 degrees Celsius for 2 minutes.
  • the material of the second photoresist layer is exposed under the ultraviolet lamp by using the second photolithography mask, and the exposure time is 5 seconds.
  • the second photoresist layer is AZ1512 photoresist layer.
  • the conductive material is evaporated in the via hole by electron beam, the evaporation speed is 1 Angstrom/second, the evaporation time is 900 seconds, and the evaporation thickness is 90 nanometers. , forming a patterned second electrode 300 .
  • the patterned second electrode 300 is divided into a plurality of patterned second electrode 300 segments and a patterned second electrode 300 connecting segment connected with the plurality of patterned second electrode 300 segments, that is, the patterned second electrode 300
  • the planar shape of the electrode 300 is similar to the shape of the finger structure, and the connecting section of the patterned second electrode 300 is used to connect to an external circuit; each section of the patterned second electrode 300 corresponds to a section of the patterned insulating layer 200, and one
  • the connecting section of the patterned second electrode 300 is set correspondingly to the connecting section of a patterned insulating layer 200, and the orthographic projection of each patterned second electrode 300 section on the first energy layer 100 is located in a patterned second electrode 300 area Within the orthographic projection of the segment of the patterned insulating layer 200 corresponding to the segment on the first energy layer 100, the orthographic projection of the connecting segment of a patterned second electrode 300 on the first functional layer 100 is located in the same position as a patterned second electrode 300.
  • connection section of the electrode 300 corresponding to the connection section of the patterned insulating layer 200 is within the orthographic projection on the first functional layer 100, that is, the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is located in the same position as the patterned second electrode 300.
  • the electrode 300 is within the orthographic projection of the patterned insulating layer 200 disposed corresponding to the first functional layer 100 .
  • the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is set to be located between the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100 In this way, the subsequent patterned second functional layer 400 is prevented from being in contact with the first functional layer 100 , thereby avoiding the leakage current problem of the light emitting device 10 , thereby ensuring the normal display of the light emitting device 10 .
  • the thickness d of the patterned second electrode 300 is 50 nm-100 nm. Specifically, the thickness d of the patterned second electrode 300 may be 50 nanometers, 60 nanometers, 75 nanometers, 90 nanometers or 100 nanometers.
  • the thickness d of the patterned second electrode 300 is set to 50 nanometers to 100 nanometers, and the resistance of the patterned second electrode 300 with the thickness d of the patterned second electrode 300 within this range is small, and the current The hindering effect is small, thereby improving the conductivity of the patterned second electrode 300 .
  • the thickness d of the patterned second electrode 300 is set to be less than 50 nanometers, the resistance of the patterned second electrode 300 is too large, thereby affecting the conductivity of the patterned second electrode 300, so that the light emitting device 10 cannot display normally; if The thickness d of the patterned second electrode 300 is set to be greater than 100 nanometers, so that the resistance of the patterned second electrode 300 is too small, causing damage to the light emitting device 10 .
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100
  • the distance between the edges is greater than 20nm-105nm.
  • the distance between the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 and the edge of the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100 The distance may be greater than 20 nanometers, 30 nanometers, 60 nanometers, 80 nanometers, 90 nanometers, or 105 nanometers, among others.
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second electrode 300 on the first functional layer 100
  • the edge distance is set to be greater than 20nm-105nm, further avoiding the contact between the subsequent second functional layer 400 and the first functional layer 100, further avoiding the leakage current problem of the light emitting device 10, and further ensuring the normal display of the light emitting device 10.
  • the patterned second electrode material includes a conductive material.
  • the first electrode 600 is a first cathode
  • the first functional layer 100 is a first electronic functional layer
  • the patterned second electrode 300 is a patterned second anode
  • the patterned second anode material is an anode material
  • the anode material is selected from one or a combination of Pt, Ni, Cu, Ag, Al and Au.
  • the conductivity of Ag is 6.3x10 7 S/m, that of Al is 3.77x10 7 S/m, that of Au is 4.42x10 7 S/m, and that of Ni is 1.4 ⁇ 10 7 S/m. If Ag, Al and Au are used to form the patterned second anode, since the conductivity of Ag, Al and Au is greater than that of Ni and Cu, the performance of the light emitting device 10 can be improved.
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole functional layer
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second cathode material is a cathode Material
  • the cathode material is selected from one or more combinations of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag.
  • the first method is: first remove the second photoresist layer; then, perform oxidation treatment on the patterned second electrode to form a patterned second functional layer on the surface of the patterned second electrode, wherein the patterned second functional layer is The orthographic projection on the first functional layer is located within the orthographic projection on the first functional layer of the patterned insulating layer corresponding to the patterned second functional layer.
  • the first electrode 600, the first functional layer 100, the patterned insulating layer 200 and the patterned second electrode 300 are placed on a hot stage for heat treatment, and the surface of the patterned second electrode 300 forms a patterned second functional layer,
  • the heat treatment temperature is 300 degrees centigrade, and the heat treatment time is 30 minutes.
  • the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 is located within the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100 .
  • the patterned second functional layer 400 is divided into a plurality of patterned second functional layer segments and a patterned second functional layer connecting segment connected to the plurality of patterned second functional layer segments, that is, the patterned second functional layer
  • the planar shape of the layer is the shape of the interdigitated structure.
  • the orthographic projection of the patterned second functional layer 400 section on the first functional layer 100 is located in the patterned insulating layer 200 section corresponding to the patterned second functional layer 400 section in the first functional Within the orthographic projection on the layer 100, the orthographic projection of the connecting segment of the patterned second functional layer 400 on the first functional layer 100 is located at the connecting segment of the patterned insulating layer 200 corresponding to the connecting segment of the patterned second functional layer 400.
  • the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 is located in the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first Within the orthographic projection on the functional layer 100, and the orthographic projection of the patterned second electrode 300 segment on the patterned insulating layer 200 segment is located in the patterned second functional layer corresponding to the patterned second electrode 300 segment Within the orthographic projection of the 400 segment on the patterned insulating layer 200 segment, the orthographic projection of the connecting segment of the patterned second electrode 300 on the connecting segment of the patterned insulating layer 200 is located corresponding to the connecting segment of the patterned second electrode 300 The orthographic projection of the connecting segment of the patterned second functional layer 400 on the connecting segment of the patterned insulating layer 200 is within, that is, the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is located in the same position as the patterned second electrode 300 The corresponding patterned second functional layer 400 is within the orthographic
  • the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 is set to be located at the position of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100 Within the orthographic projection, and the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is located in the orthographic projection of the patterned second functional layer 400 on the patterned insulating layer 200 corresponding to the patterned second electrode 300 Within, further avoiding the contact between the patterned second functional layer 400 and the first functional layer 100 , further avoiding the leakage current problem of the light emitting device 10 , and ensuring the normal display of the light emitting device 10 .
  • the edge of the orthographic projection of the patterned second functional layer 400 on the first functional layer 100 to the edge of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100 The distance W of the edge of the orthographic projection is greater than 5 nanometers, and the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is connected to the patterned insulating layer corresponding to the patterned second electrode 300 in the first functional layer.
  • the distance of the edges of the orthographic projection on layer 100 is greater than 20nm-105nm.
  • the distance W of the edge can be greater than 5 nanometers, 10 nanometers, 15 nanometers, 50 nanometers or 100 nanometers, etc.
  • the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 corresponds to the patterned second electrode 300
  • the distance of the edge of the orthographic projection of the set patterned insulating layer on the first functional layer 100 may be greater than 20 nanometers, 25 nanometers, 50 nanometers, 80 nanometers, 100 nanometers or 105 nanometers.
  • the distance W of the edge of the orthographic projection is set to be greater than 5 nanometers, and the edge of the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is to the patterned insulating layer corresponding to the patterned second electrode 300 in the first
  • the distance between the edges of the orthographic projection on the functional layer 100 is greater than 20 nanometers to 105 nanometers, so as to avoid the contact between the patterned second functional layer 400 and the first functional layer 100, thereby avoiding the leakage current problem of the light emitting device 10, thereby ensuring the normal operation of the light emitting device 10 show.
  • the material of the patterned second electrode 300 is a conductive material
  • the material of the patterned second functional layer 400 is an oxide of the conductive material
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second functional layer is a patterned second electronic functional layer
  • the patterned second cathode material is a cathode material
  • the cathode material is selected from Ti One or two combinations of Zn and Sn
  • the patterned second functional layer material is an electronic functional layer material
  • the electronic functional layer material is selected from one or a combination of TiO 2 , ZnO and SnO 2 .
  • the patterned second functional layer 400 is a patterned second hole functional layer, and patterning the second hole functional layer includes patterning At least one of the second hole transport layer and the patterned second hole injection layer, the material of the patterned second electrode 300 is an anode material, and the anode material is selected from one or a combination of Ni and Cu, patterned
  • the material of the second hole function layer is the material of the hole function layer, and the material of the hole function layer is selected from one or a combination of nickel oxide and copper oxide.
  • the surface of the patterned second electrode 300 is oxidized to form a patterned second functional layer 400, and the formed patterned second functional layer 400 is on the first functional layer 100
  • the orthographic projection of is located within the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second functional layer 400 on the first functional layer 100, avoiding the contact between the patterned second functional layer 400 and the first functional layer 100, further The leakage current problem of the light emitting device 10 is avoided, thereby ensuring the normal display of the light emitting device 10 .
  • the second method is: first deposit a patterned second functional layer material on the patterned insulating layer and the patterned second electrode to form a patterned second functional layer, wherein the patterned second functional layer is on the first functional layer
  • the orthographic projection of is located within the orthographic projection of the patterned insulating layer corresponding to the patterned second functional layer on the first functional layer; then, the second photoresist layer is removed.
  • the patterned second functional layer is formed on the patterned second electrode 300 by using an electrochemical deposition method or an evaporation method.
  • the specific description is as follows:
  • the patterned second functional layer 400 is formed by electrochemical deposition method: the first electrode 600, the first functional layer 100, the patterned insulating layer 200 and the patterned second electrode 300 are placed in 0.1 moles per liter of the second functional layer material
  • a saturated calomel electrode was used as a reference electrode to apply a voltage of 1.1 volts on the patterned second electrode 300 for 120 seconds to form a patterned second functional layer 400; then, the second photoresist layer was removed.
  • Form the patterned second functional layer by evaporation method evaporate the patterned second functional layer material on the patterned second electrode 300 and the patterned insulating layer 200 to form the patterned second functional layer; then, remove the second photoresist layer.
  • the patterned second electrode is a patterned second anode
  • the patterned second functional layer is a patterned second hole functional layer
  • the patterned second anode material is an anode material
  • the anode material is selected from Pt , Ni, Cu, Ag, Al and Au in one or several combinations
  • patterned second hole function layer material is hole function layer material
  • hole function layer material is selected from nickel oxide, copper oxide, poly( 3,4-ethylenedioxythiophene): polystyrene sulfonate, cuprous thiocyanate, polyvinylcarbazole, poly(N,N'bis(4-butylphenyl)-N,N'-bis (phenyl)benzidine) (Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4 ', 4"-tris(carbazol-9-yl)tripheny
  • the patterned second electrode is a patterned second cathode
  • the patterned second functional layer is a patterned second electronic functional layer
  • the patterned second cathode material is a conductive material
  • the conductive material is selected from ITO , FTO, Fe, Cu, Al, Sn, Zn and Ag in one or more combinations
  • the patterned second cathode is selected from one of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag or several combinations
  • the patterned second electronic functional layer material is the electronic functional layer material
  • the electronic functional layer material is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO, AlZnMgO, Li-doped TiO 2 , Ru-doped One or a combination of doped TiO 2 , doped graphene, non-doped graphene, C 60 , GaZnO and ZnMgLiO.
  • the patterned second functional layer 400 is formed in the via hole by electrochemical deposition or evaporation, and finally, the second photoresist layer is removed. It can avoid that there are many defects on the surface of the nickel oxide patterned second functional layer 400 or the copper oxide patterned second functional layer 400 prepared by heating and oxidizing the patterned second electrode 300 in air, and the degree of oxidation is not easy to control, which is harmful to the load. Transport of carriers is disadvantageous, thereby improving the performance of the light emitting device 10 .
  • the orthographic projection of the patterned second electrode 300 on the patterned insulating layer 200 is set to be located at the orthographic projection of the patterned second functional layer 400 corresponding to the patterned second electrode 300 on the patterned insulating layer 200 Within the projection, the contact between the patterned second functional layer 400 and the first functional layer 100 is avoided, thereby avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • the spin-coating speed was 2000 rpm
  • the spin-coating time was 30 seconds to form the light-emitting layer 500, which was a blue light-emitting layer.
  • the material of the light-emitting layer 500 is a quantum dot material known in the art for quantum dot light-emitting layers of optoelectronic devices.
  • the material of the light-emitting layer 500 includes at least one of quantum dots with a single structure and quantum dots with a core-shell structure.
  • the single-structure quantum dots include at least one of II-VI compound, III-V compound and I-III-VI compound.
  • the quantum dot with core-shell structure has a core-shell structure in which the shell covers the core layer, and the band gap of the quantum dot shell layer is larger than the band gap of the quantum dot core layer.
  • the group II-VI compound includes at least one of CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe ;
  • Group III-V compounds may include at least one of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP;
  • Group I-III-VI compounds include CuInS 2 , CuInSe 2 And at least one of AgInS 2 .
  • the core layer of the quantum dot of the core-shell structure includes at least one of the above-mentioned single-structure quantum dots
  • the shell layer of the quantum dot of the core-shell structure includes CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS and ZnS at least one.
  • quantum dots with a core-shell structure include CdZnSe/CdZnS/ZnS, CdZnSe/ZnSe/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS, InP/ZnSe/ At least one of ZnS and InP/ZnSeS/ZnS.
  • the third electrode material is evaporated by electron beam, the evaporation rate is 1 Angstrom/second, the evaporation time is 200 seconds, and the evaporation thickness is 20 nanometers to form the first electrode material.
  • the first electrode 600 is a first cathode
  • the first functional layer 100 is a first electronic functional layer
  • the patterned second electrode 300 is a patterned second anode
  • the patterned second functional layer 400 is a patterned
  • the second hole functional layer, the patterned second hole functional layer includes at least one of the patterned second hole transport layer and the patterned second hole injection layer
  • the patterned second hole functional layer material is hole Material for the hole functional layer
  • the third functional layer 700 is the third electronic functional layer
  • the third electrode 800 is the third cathode.
  • the material of the third functional layer 700 is an electronic functional layer material, and the electronic functional layer material is selected from one or more combinations of TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, CsCO 3 , ZrO, AlZnMgO, GaZnO and ZnMgLiO.
  • the material of the third electrode 800 is a cathode material, and the cathode material is selected from one or a combination of ITO, FTO, Fe, Cu, Al, Sn, Zn and Ag.
  • the first electrode 600 is a first anode
  • the first functional layer 100 is a first hole functional layer
  • the patterned second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is Patterning the second electronic functional layer
  • patterning the second electronic functional layer includes at least one of patterning the second electron transport layer and patterning the second electron injection layer
  • the material of the patterning second functional layer 400 is the electronic functional layer material
  • the third functional layer 700 is a third hole functional layer
  • the third electrode 800 is a third anode
  • the third functional layer material 600 is a hole function layer material
  • the third anode material is an anode material.
  • step B18 it also includes:
  • An encapsulation structure is formed on the third electrode 800 .
  • the encapsulation structure is formed by alternately stacking organic layers and inorganic layers.
  • test the current, voltage and brightness data of the light emitting device 10 to determine the electrical performance of the device
  • the working life data of the light emitting device 10 is tested, and the working life of the light emitting device 10 is determined by driving with a constant current of 2 mA.
  • the first electrode 600 is the first cathode
  • the first functional layer 100 is the first electronic functional layer
  • the patterned second electrode 300 is the patterned second anode
  • the patterned second functional layer 400 is the patterned second hole functional layer , that is, the light emitting device 10 is an inverted light emitting device.
  • ZnO nanoparticles with a concentration of 30 mg/mL and a particle size of 10 nanometers are spin-coated at a speed of 3000 rpm and a spin-coating time of 30 seconds; then, heated at 80 degrees Celsius for 30 minutes to form The first electron-transport layer of the first electron-functional layer with a thickness h of 10 nm.
  • the material of the first photoresist layer is spin-coated on the first electron transport layer, the spin-coating speed is 3000 rpm, and the spin-coating time is 30 seconds, and then heat treatment at 110 degrees Celsius for 2 Minutes; Then, use the first photolithography mask under the ultraviolet lamp, the material of the first photoresist layer is exposed, the exposure time is 5 seconds; Then, it is placed in AZ726 developing solution (3:1 to water) developing in 25 seconds to form a first photoresist layer with several through holes.
  • a patterned insulating layer 200 is formed; then, soak the first cathode, the first electron transport layer and the patterned insulating layer 200 in acetone, and ultrasonically remove the first photoresist layer.
  • the material of the second photoresist layer is spin-coated on the first electron transport layer and the patterned insulating layer 200. It is 3000 revolutions per minute, and the spin coating time is 30 seconds; then, heat treatment at 110 degrees Celsius for 2 minutes; then, use the second photolithography mask to expose the material of the second photoresist layer under ultraviolet light, and expose The time is 5 seconds; then, it is developed in AZ726 developer solution (3:1 to water), and the development time is 25 seconds, that is, the material of the second photoresist layer forms a second photoresist with several via holes layer.
  • the via hole penetrates through the second photoresist layer to expose part of the patterned insulating layer 200 .
  • the via holes are correspondingly arranged on the second photoresist layer; then, under the condition of a vacuum degree of 3 ⁇ 10 -4 Pa, the conductive material Ni is evaporated in the via holes by electron beams, and the evaporation speed is 1 angstroms/second.
  • the plating time was 900 seconds, and the evaporation thickness was 90 nanometers to form a patterned second electrode 300, which was a patterned second anode.
  • the first cathode, the first electron transport layer, the patterned insulating layer 200, the patterned anode, and the second photoresist layer in acetone, and ultrasonically remove the second photoresist layer; then, the first cathode, the second photoresist layer
  • An electron transport layer, a patterned insulating layer 200, and a patterned anode are placed on a hot stage for heat treatment, that is, the surface of the patterned anode is oxidized, and the conductive material Ni is oxidized to form an oxide of the conductive material Nickel oxide, the oxide of the conductive material That is, the second hole transport layer of the patterned second hole functional layer, the heat treatment temperature is 300 degrees centigrade, and the heat treatment time is 30 minutes.
  • an encapsulation structure is formed on the patterned second anode.
  • the packaging structure is formed by overlapping inorganic layers and organic layers; then, test the current, voltage and brightness data of the light emitting device 10 to determine the electrical performance of the device; then, test the working life data of the light emitting device 10, use a constant current drive of 2mA to determine The working life of the light emitting device 10.
  • the cathode material Ag is evaporated by electron beam, the evaporation rate is 1 Angstrom/second, the evaporation time is 200 seconds, and the evaporation thickness is 20 nanometers to form the third cathode.
  • test the current, voltage and brightness data of the light emitting device 10 to determine the electrical performance of the device
  • the working life data of the light emitting device 10 is tested, and the working life of the light emitting device 10 is determined by driving with a constant current of 2 mA.
  • step B18 before testing the light-emitting device 10, further include:
  • An encapsulation structure is formed on the third cathode.
  • the encapsulation structure is formed by alternately stacking organic layers and inorganic layers.
  • the surface of the patterned second anode is oxidized to form the patterned second hole transport layer, that is, the patterned second hole transport layer is formed by oxidation treatment, and the patterned second hole transport layer is formed.
  • the orthographic projection of the patterned second hole transport layer on the first electron transport layer is within the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second hole transport layer on the first electron transport layer, Avoiding the contact between the patterned second hole transport layer and the first electron transport layer prevents the leakage current problem of the light emitting device 10 , thereby ensuring the normal display of the light emitting device 10 .
  • the orthographic projection of the patterned second hole transport layer on the first electron transport layer is set to be located between the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second hole transport layer on the first electron transport layer In this way, the contact between the patterned second functional layer 400 and the first electron transport layer is further avoided, thereby further avoiding the leakage current problem of the light emitting device 10 and improving the performance of the light emitting device 10 .
  • step B15 the electrochemical deposition method in the second method is used to form a patterned insulating layer 200 and a patterned second anode.
  • the second hole transport layer, the patterned second anode material is an anode material, and the anode material is selected from one or more combinations of Pt, Ni, Cu, Ag, Al and Au, and the second hole transport layer material is patterned It is the hole function layer material, and the hole function layer material is selected from nickel oxide, copper oxide, poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, cuprous thiocyanate, polyvinylcarbazole, Poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), poly(9,9-dioctylfluorene-co-bis- N,N-phenyl-1,
  • the first cathode, the first electron transport layer, the patterned insulating layer 200 and the patterned second anode are placed in 0.1 mole per liter of polystyrene sodium sulfonate (PSSNa ) and 0.015 moles per liter of 3,4-ethylenedioxythiophene (EDOT) aqueous solution, using a saturated calomel electrode as a reference electrode to apply a voltage of 1.1 volts on the patterned second anode 300 for 120 seconds to form a pattern Thin the second hole transport layer; then remove the second photoresist layer.
  • PSSNa polystyrene sodium sulfonate
  • EDOT 3,4-ethylenedioxythiophene
  • the patterned second hole transport layer is formed in the via hole by electrochemical deposition, and finally, the second photoresist layer is removed. It can avoid that there are many defects on the surface of the nickel oxide patterned second hole transport layer or the copper oxide patterned second hole transport layer prepared by heating and oxidizing the second anode in air, and the degree of oxidation is not easy to control, which is harmful to the holes. The transmission of is unfavorable, thereby improving the performance of the light emitting device 10 .
  • Embodiment 3 Please continue with Figure 2. It should be noted that the difference between Embodiment 3 and Embodiment 1 lies in that the third functional layer and the third electrode are not formed after step B16. Other steps are the same as in Embodiment 1, and will not be repeated here.
  • the third functional layer and the third electrode are not provided on the light-emitting layer 500, so as to avoid damage to the light-emitting layer 500 during the material deposition of the third electron transport layer and the third anode, and at the same time avoid the damage caused by the light-emitting layer 500.
  • Wrapped among other film layers of the light-emitting device 10 other film layers will block the fluorescence of the light-emitting layer 500 , which improves the display effect of the light-emitting device 10 and improves the performance of the light-emitting device 10 .
  • Embodiment 4 Please continue with Figure 2. It should be noted that the difference between Embodiment 4 and Embodiment 2 lies in: after step B16 , the third functional layer and the third electrode are not formed. Other steps are the same as those in Embodiment 2, and will not be repeated here.
  • Example 5 lies in that in step B15 , the patterned second hole transport layer of the patterned second hole functional layer is formed by evaporation.
  • Other steps are the same as those in Embodiment 2, and will not be repeated here.
  • the difference between Embodiment 6 and Embodiment 1 is that the light-emitting device is an upright light-emitting device, that is, the first electrode 600 is the first anode, the first functional layer 100 is the first hole functional layer, and the pattern
  • the second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is a patterned second electronic functional layer
  • the material of the patterned second electrode 300 is a cathode material
  • the cathode material is a conductive material
  • the conductive material is selected from Ti One or both of Zn and Sn
  • the patterned second functional layer material is an electronic functional layer material
  • the electronic functional layer material is an oxide of a conductive material
  • the oxide of the conductive material is selected from TiO 2 , ZnO and SnO 2 or a combination of both.
  • Other steps are the same as in Embodiment 1, and will not be repeated here.
  • Embodiment 7 differs in that the third functional layer and the third electrode are not formed after step B16. Other steps are the same as those in Embodiment 6, and will not be repeated here.
  • the difference between Embodiment 8 and Embodiment 2 is that the light-emitting device is an upright light-emitting device, that is, the first electrode 600 is the first anode, the first functional layer 100 is the first hole functional layer, and the pattern
  • the second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is a patterned second electronic functional layer
  • the material of the patterned second electrode 300 is a cathode material
  • the conductive material is selected from ITO, FTO, Fe, Cu
  • the patterned second functional layer material is an electronic functional layer material
  • the electronic functional layer material is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO , AlZnMgO, Li-doped TiO 2 , Ru-doped TiO 2 , doped graphene, non-doped graphene, C 60 , GaZ
  • the difference between Embodiment 9 and Embodiment 5 is that the light-emitting device is an upright light-emitting device, that is, the first electrode 600 is the first anode, the first functional layer 100 is the first hole functional layer, and the pattern
  • the second electrode 300 is a patterned second cathode
  • the patterned second functional layer 400 is a patterned second electronic functional layer
  • the material of the patterned second electrode 300 is a cathode material
  • the cathode material is selected from ITO, FTO, Fe, Cu
  • the patterned second functional layer material is an electronic functional layer material
  • the electronic functional layer material is selected from TiO 2 , ZnO, SnO, ZnMgO, AlZnO, ZnSnO, ZrO , AlZnMgO, Li-doped TiO 2 , Ru-doped TiO 2 , doped graphene, non-doped graphene, C 60 ,
  • Embodiment 10 differs from Embodiment 9 in that: after step B16 , no third functional layer and third electrode are formed. Other steps are the same as those in Embodiment 9, and will not be repeated here.
  • FIG. 4 is a schematic structural diagram of a light emitting device in the prior art.
  • the difference between Comparative Example 1 and Example 1 is that in Comparative Example 1, after the step of using the first photoresist layer to form a patterned insulating layer in Example 1, the first photoresist layer is retained, and the pattern is directly formed.
  • the edge of the orthographic projection of the patterned second anode 301 on the first electron transport layer 101 coincides with the edge of the orthographic projection of the patterned insulating layer 201 on the first electron transport layer 101; then, it Placed on a hot stage for heat treatment, part of Ni is oxidized to form a patterned second hole transport layer 401, the orthographic projection of the patterned second hole transport layer 401 on the first electron transport layer 101 is larger than the patterned insulating layer 201 on the second Orthographic projection on an electron transport layer 101 .
  • Other steps are the same as in Embodiment 1, and will not be repeated here.
  • the difference between Comparative Example 2 and Example 1 is that the light-emitting device is a conventional light-emitting device, that is, the light-emitting device includes an anode, an electron transport layer, a light-emitting layer, a hole transport layer and a cathode stacked in sequence. Other steps are the same as in Embodiment 1, and will not be repeated here.
  • FIG. 5 is a voltage-brightness comparison diagram of light emitting devices provided by Example 1 and Comparative Example 1 of the present application.
  • FIG. 6 is a comparison chart of brightness and external quantum efficiency of the light emitting devices provided in Example 1 and Comparative Example 1 of the present application.
  • the third electron transport layer and the third cathode are arranged on the light emitting layer 500, and the orthographic projection of the patterned second electrode 300 on the first electron transport layer is set to be located corresponding to the patterned second electrode 300
  • the highest brightness of the light emitting device 10 can reach greater than 10 4 ; when the brightness of the light emitting device 10 is 10 4 , the external quantum efficiency can reach 9 %, and the service life can be as long as 15 hours, which improves the display effect of the light emitting device 10.
  • the brightness of the light-emitting device is less than 10 4 ; in the prior art, when the brightness of the light-emitting device is 10 4 , the highest external quantum efficiency can only reach 4%. Therefore, disposing the third electron transport layer and the third cathode on the light-emitting layer 500 increases the effective contact area between the first electron transport layer and the third electron transport layer and the light-emitting layer 500, increases the injection amount of electrons, and makes luminescence The injection of holes and electrons in layer 500 is balanced, improving the performance and lifetime of light emitting device 10 .
  • the patterned second hole transport can be effectively reduced.
  • the contact probability between the layer and the first electron transport layer avoids the problem of leakage current in the light emitting device 10 , thereby improving the performance of the light emitting device 10 .
  • FIG. 8 is a voltage-brightness comparison diagram of light emitting devices provided by Example 2 and Comparative Example 1 of the present application.
  • FIG. 9 is a comparison chart of brightness and external quantum efficiency of the light emitting devices provided in Example 2 and Comparative Example 1 of the present application.
  • the third electron transport layer and the third cathode are arranged on the light-emitting layer 500, and the orthographic projection of the patterned second anode on the first electron transport layer is set to be located on the patterned insulating layer 200 in the first electron transport layer.
  • the brightness of the light emitting device 10 can reach a maximum of greater than 10 4 ; when the brightness of the light emitting device 10 is 10 4 , its external quantum efficiency can reach 18% , the display effect of the light emitting device 10 is improved.
  • the brightness of the light emitting device is less than 10 4 , and when the brightness of the light emitting device is 10 4 , the highest external quantum efficiency can only reach 3%. Therefore, disposing the third electron transport layer and the third cathode on the light-emitting layer 500 increases the effective contact area between the first electron transport layer and the third electron transport layer and the light-emitting layer 500, increases the injection amount of electrons, and makes the space The balance between hole and electron injection improves the performance and lifetime of the light emitting device 10 .
  • the patterned second hole transport layer can be effectively reduced.
  • the probability of contact with the first electron transport layer avoids the problem of leakage current in the light emitting device 10 , thereby improving the performance of the light emitting device 10 .
  • the transport efficiency of holes can be improved, thereby improving the performance of the light emitting device 10 .
  • the patterned second hole transport layer can be prepared by electrochemical deposition, and the material of the patterned second hole transport layer can be prepared by electrochemical deposition, which has wider selectivity. For example, if the cost budget is not high, you can choose Inexpensive materials, which in turn reduce costs.
  • FIG. 10 is a schematic diagram of leakage current data of a light emitting device provided in Embodiment 3 of the present application.
  • FIG. 11 is a schematic diagram of leakage current data of a light emitting device provided in Comparative Example 1.
  • Example 3-1, Example 3-2, Example 3-3 and Example 3-4 in FIG. 10 indicate that the device has been measured four times.
  • the orthographic projection of the patterned second anode on the first electron transport layer is set to be within the orthographic projection of the patterned insulating layer 200 on the first electron transport layer, the current flow of the light emitting device 10 of the present application Stable, that is, the light emitting device 10 provided by the present application does not have the problem of leakage current.
  • the edge of the patterned second electrode 301 coincides with the edge of the patterned insulating layer 201, which heats Ni in the air to oxidize Ni to form nickel oxide.
  • the orthographic projection of the patterned second anode on the first electron transport layer is set to be located in the orthographic projection of the patterned insulating layer 200 corresponding to the patterned second anode on the first electron transport layer.
  • FIG. 12 is a voltage-brightness comparison diagram of light emitting devices provided by Example 4 and Comparative Example 2 of the present application.
  • Fig. 13 is a comparison chart of the luminance and external quantum efficiency of the light-emitting devices provided in Example 4 and Comparative Example 2 of the present application.
  • the orthographic projection of the patterned second anode on the first electron transport layer is set to be located in the orthographic projection of the patterned insulating layer 200 on the first electron transport layer, and Ag is used to form the patterned second anode , the highest brightness of the light emitting device 10 can reach greater than 10 4 ; when the brightness of the light emitting device 10 is 10 4 , the external quantum efficiency can reach 16%, which improves the display effect of the light emitting device 10 .
  • the light emitting device 10 provided has a brightness less than 10 4 ; in the prior art, the edge of the patterned second electrode 301 coincides with the edge of the patterned insulating layer 201, and the brightness of the light emitting device is 10 4 , the highest external quantum efficiency can only reach 9%, therefore, the light-emitting device 10 of the present application can effectively reduce the contact probability between the patterned second hole transport layer and the first electron transport layer, and avoid the leakage current problem of the light-emitting device 10 , so as to improve the performance of the light emitting device 10, and at the same time, due to the good conductivity of Ag, the transport efficiency of holes can be improved, thereby improving the performance of the light emitting device 10.
  • the patterned second hole transport layer can be prepared by electrochemical deposition, and the patterned second hole transport layer material can be prepared by electrochemical deposition, which has wider selectivity. For example, if the cost budget is not high, you can choose Inexpensive materials, which in turn reduce costs.
  • the embodiment of the present application discloses a light-emitting device 10 and its preparation method.
  • the third functional layer 700 and the third electrode 800 are arranged on the light-emitting layer 500, and the first functional layer 100 and the third functional layer 700 are added to the light-emitting layer 500.
  • the effective contact area between them increases the injection amount of carriers, balances the injection of holes and electrons, and improves the performance and lifespan of the light emitting device 10 .
  • the orthographic projection of the patterned second electrode 300 on the first functional layer 100 is set to be within the orthographic projection of the patterned insulating layer 200 on the first functional layer 100 corresponding to the patterned second electrode 300, It can effectively reduce the contact probability between the patterned second functional layer 400 and the first functional layer 100 , avoid the problem of leakage current in the light emitting device 10 , and thus improve the performance of the light emitting device 10 .
  • the other film layers of the light-emitting device 10 are formed first, and the light-emitting layer 500 is finally formed, so as to avoid damage to the light-emitting layer 500 when other film layers are deposited, and at the same time avoid the fact that the light-emitting layer 500 is wrapped in the middle of other film layers of the light-emitting device 10 , and cause other film layers to have a blocking effect on the fluorescence of the light-emitting layer 500 , which improves the display effect of the light-emitting device 10 and improves the performance of the light-emitting device 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种发光器件及其制备方法,发光器件包括第一电极、第一功能层、图案化绝缘层、图案化第二电极、图案化第二功能层、发光层、第三功能层和第三电极。

Description

发光器件及其制备方法
相关申请的交叉引用
本申请要求于2021年10月20日在中国专利局提交的、申请号为202111222071.2、申请名称为“发光器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种发光器件及其制备方法。
背景技术
近些年,随着对量子点发光二极管器件性能研究的深入,器件的电流效率和寿命方面取得了很大进展,电流效率和外量子效率(External Quantum Efficiency,EQE)成正比,但是,现有的量子点发光二极管器件结构,电子和空穴的注入往往不平衡,进而导致量子点发光器件的显示效果不佳。
技术问题
因此,目前急需一种可以解决空穴和电子注入不平衡的发光器件。
技术解决方案
本申请实施例提供一种发光器件及其制备方法,以解决空穴和电子注入不平衡的问题。
本申请提供一种发光器件,包括:
第一电极;
第一功能层,第一功能层设置于图案化第一电极上;
图案化绝缘层,图案化绝缘层设置于第一功能层上;
图案化第二电极,图案化第二电极设置于图案化绝缘层上;
图案化第二功能层,图案化第二功能层覆盖图案化第二电极;
发光层,发光层覆盖图案化第二功能层以及第一功能层;
第三功能层,第三功能层设置于发光层上;以及
第三电极,第三电极设置于第三功能层上;
其中,第一电极与图案化第二电极中的一者为阳极,另一者为阴极,第一电极与第三电极相同;第一功能层与图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,第一功能层为空穴功能层时,第三功能层为空穴功能层;第一功能层为电子功能层时,第三功能层为电子功能层,且电子功能层靠近阴极,空穴功能层靠近阳极。
可选的,在本申请的一些实施例中,图案化第二功能层在第一功能层上的正投影位于与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影之内。
可选的,在本申请的一些实施例中,图案化第二功能层在第一功能层上的正投影的边缘到与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影的边缘的距离大于5纳米。
可选的,在本申请的一些实施例中,图案化第二电极在第一功能层上的正投影的边缘到与图案化第二电极对应设置的图案化绝缘层在第一功能层上的正投影的边缘的距离大于20纳米-105纳米。
可选的,在本申请的一些实施例中,图案化第二电极在第一功能层上的正投影位于与图案化第二电极对应设置的图案化绝缘层在第一功能层上的正投影之内。
可选的,在本申请的一些实施例中,图案化第二功能层在第一功能层上的正投影的边缘到与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影的边缘的距离大于5纳米。
可选的,在本申请的一些实施例中,图案化第二电极在第一功能层上的正投影的边缘到与图案化第二电极对应设置的图案化绝缘层在第一功能层上的正投影的边缘的距离大于20纳米-105纳米。
可选的,在本申请的一些实施例中,图案化绝缘层的厚度为30纳米-100纳米。
可选的,在本申请的一些实施例中,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合;
阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合;
空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合;
电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C60、GaZnO和ZnMgLiO中的一种或几种组合;
发光层为量子点发光层,量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,单一结构量子点选自II-VI族化合物、III-V族化合物、I-III-VI族化合物中的一种或多种,II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、 ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe中的一种或多种,III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP中的一种或多种;I-III-VI族化合物选自CuInS 2、CuInSe 2、AgInS 2中的一种或多种,核壳结构的量子点的核层选自上述单一结构量子点中的任意一种,核壳结构的量子点的壳层选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS、ZnS中的一种或多种。
另外,本申请提供一种发光器件的制备方法,包括:
提供第一电极;
在第一电极上形成第一功能层;
在第一功能层上形成图案化绝缘层,图案化绝缘层至少部分露出第一功能层;
在图案化绝缘层上形成图案化第二电极;
在图案化第二电极上形成图案化第二功能层;
在第一功能层和图案化第二功能层上形成发光层;
在发光层上形成第三功能层;
在第三功能层上形成第三电极;
其中,第一电极与图案化第二电极中的一者为阳极,另一者为阴极,第一电极与第三电极相同;第一功能层与图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,第一功能层为空穴功能层时,第三功能层为空穴功能层;第一功能层为电子功能层时,第三功能层为电子功能层,且电子功能层靠近阴极,空穴功能层靠近阳极。
可选的,在本申请的一些实施例中,在图案化绝缘层上形成图案化第二电极的步骤包括:
在第一功能层以及图案化绝缘层上形成具有若干个过孔的第二光阻层,过孔与图案化绝缘层对应,过孔贯穿第二光阻层以暴露部分图案化绝缘层;
在过孔中形成图案化第二电极,其中,图案化第二电极在第一功能层上的正投影位于与图案化第二电极对应设置的图案化绝缘层在第一功能层上的正投影之内。
可选的,在本申请的一些实施例中,在第一功能层上形成图案化绝缘层的步骤,包括:
在第一功能层上形成具有若干个通孔的第一光阻层,通孔贯穿第一光阻层以暴露部分第一功能层;
在通孔中形成图案化绝缘层;
去除第一光阻层。
可选的,在本申请的一些实施例中,在图案化绝缘层上形成图案化第二电极的步骤包括:
在第一功能层以及图案化绝缘层上形成具有若干个过孔的第二光阻层,过孔与图案化绝缘层对应,过孔贯穿第二光阻层以暴露部分图案化绝缘层;
在过孔中形成图案化第二电极,其中,图案化第二电极在第一功能层上的正投影位于图案化绝缘层在第一功能层上的正投影之内。
可选的,在本申请的一些实施例中,在图案化第二电极上形成图案化第二功能层的步骤中,包括:
去除第二光阻层;
对图案化第二电极进行氧化处理,在图案化第二电极表面形成图案化第二功能层,其中,图案化第二功能层在第一功能层上的正投影位于与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影之内。
可选的,在本申请的一些实施例中,图案化第二电极材料包括导电材料,图案化第二功能层材料包括导电材料的氧化物。
可选的,在本申请的一些实施例中,第二电极为阳极,图案化第二功能层为空穴功能层,阳极材料选自Ni和Cu中的一种或两种组合,空穴功能层材料选自氧化镍和氧化铜中的一种或两种组合。
可选的,在本申请的一些实施例中,第二电极为阴极,第二功能层为电子功能层,阴极材料选自Ti、Zn和Sn中的一种或两种组合,电子功能层材料选自TiO 2、ZnO和SnO 2的一种或两种组合。
可选的,在本申请的一些实施例中,在图案化第二电极上形成图案化第二功能层的步骤中,包括:
在图案化绝缘层以及图案化第二电极上沉积图案化第二功能层材料,形成图案化第二功能层,其中,图案化第二功能层在第一功能层上的正投影位于与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影之内;
去除第二光阻层。
可选的,在本申请的一些实施例中,图案化第二电极为阳极,图案化第二功能层为空穴功能层,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合,空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。
可选的,在本申请的一些实施例中,图案化第二电极为阴极,第二功能层为电子功能层,第阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn、和Ag中的一种或几种组合,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂 石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。
有益效果
本申请实施例公开了一种发光器件及其制备方法,发光器件包括第一电极、第一功能层、图案化绝缘层、图案化第二电极、图案化第二功能层、发光层、第三功能层和第三电极,第一功能层设置于所述第一电极上,图案化绝缘层设置于第一功能层上,图案化第二电极设置于图案化绝缘层上,图案化第二功能层覆盖图案化第二电极,发光层覆盖图案化第二功能层以及第一功能层,第三功能层设置于发光层上;其中,第一电极与图案化第二电极中的一者为阳极,另一者为阴极,第一电极与第三电极相同;第一功能层与图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,第一功能层为空穴功能层时,第三功能层为空穴功能层;第一功能层为电子功能层时,第三功能层为电子功能层,且电子功能层靠近阴极,空穴功能层靠近阳极。在本申请中,在发光层上设置第三功能层,提高了电子的传输效率,进而使得发光层中的电子和空穴注入平衡,提高发光器件的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的发光器件的第一种结构示意图。
图2是本申请实施例提供的发光器件的第二种结构示意图。
图3是本申请实施例提供的发光器件的制备方法流程图。
图4是现有技术中的发光器件的结构示意图。
图5是本申请实施例1和对比例1提供的发光器件电压-亮度对比图。
图6是本申请实施例1和对比例1提供的发光器件的亮度和外量子效率对比图。
图7是本申请实施例提供的发光器件亮度-时间示意图。
图8是本申请实施例2和对比例1提供的发光器件电压-亮度对比图。
图9是本申请实施例2和对比例1提供的发光器件的亮度和外量子效率对比图。
图10是本申请实施例3提供的发光器件漏电流数据示意图。
图11是对比例1提供的发光器件漏电流数据示意图。
图12是本申请实施例4和对比例2提供的发光器件电压-亮度对比图。
图13是本申请实施例4和对比例2提供的发光器件的亮度和外量子效率对比图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种发光器件及其制备方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
本申请实施例提供一种发光器件,发光器件包括第一电极、第一功能层、图案化绝缘层、图案化第二电极、图案化第二功能层、发光层、第三功能层和第三电极,第一功能层设置于所述第一电极上,图案化绝缘层设置于第一功能层上,图案化第二电极设置于图案化绝缘层上,图案化第二功能层覆盖图案化第二电极,发光层覆盖图案化第二功能层以及第一功能层,第三功能层设置于发光层上,第三电极设置于第三功能层上;其中,第一电极与图案化第二电极中的一者为阳极,另一者为阴极,第一电极与第三电极相同;第一功能层与图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,第一功能层为空穴功能层时,第三功能层为空穴功能层;第一功能层为电子功能层时,第三功能层为电子功能层,且电子功能层靠近阴极,空穴功能层靠近阳极。
在本申请中,在发光层上设置第三功能层,提高了载流子的传输效率,进而使得发光层中的电子和空穴注入平衡,提高发光器件的性能。
以下进行具体说明:
请参阅图1,图1是本申请实施例提供的发光器件的第一种结构示意图。本申请提供一种发光器件10。发光器件10包括第一功能层100、图案化绝缘层200、图案化第二电极300、图案化第二功能层400、发光层500、第三功能层700、第一电极600和第三电极800。
在本申请中,当发光器件为倒置发光器件时,第一电极为第一阴极,第一功能层为第一电子功能层,图案化第二功能层为图案化第二空穴功能层,图案化第二电极为图案化第二阳极。当发光器件为正置发光器件时,第一电极为第一阳极,第一功能层为第一空穴功能层,第二功能层为图案化第二电子功能层,第二电极为第二阴极。
空穴功能层可以包括空穴传输层和空穴注入层中的至少一种。电子功能层包括电子传输层和电子注入层中的至少一种。
在本申请中,在发光层上设置第三功能层,提高了载流子的传输效率,进而使得发光层中的电子和空穴注入平衡,提高发光器件的性能。
具体描述如下。
第一电极600可以为第一阴极或第一阳极。第一电极600的厚度H大于100纳米。具体的,第一电极600的厚度H可以为100纳米、150纳米、350纳米、800纳米或900纳米等。
在本申请中,将第一电极600的厚度H设置为大于100纳米可以提高第一电极600的导电性能。
在一实施例中,第一电极600为第一阴极。第一阴极材料为阴极材料。阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
在另一实施例中,第一电极600为第一阳极。第一阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合。
第一功能层100设置于第一电极600上。第一功能层100的厚度h为20纳米-60纳米。具体的,第一功能层100的厚度h可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。
在本申请中,将第一功能层100的厚度h设置为20纳米-60纳米,保证第一功能层100的载流子传输性能和/或载流子注入性能,进而保证发光器件10正常显示。
需要说明的是,载流子包括电子和空穴。
在一实施例中,第一功能层100为第一电子功能层,第一电极600为第一阴极。第一电子功能层设置于第一阴极上。第一电子功能层包括第一电子传输层和第一电子注入层中的至少一种。第一电子功能层材料为电子功能层材料。电子功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,且电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。
在一实施例中,第一功能层100为第一电子功能层,第一电极600为第一阴极,第一电子功能层材料为电子功能层材料,电子功能层材料为无机金属化合物,无机金属化合物选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、CsCO 3、ZrO、AlZnMgO、GaZnO和ZnMgLiO中的一种或几种组合。
在本申请中,第一功能层100为第一电子功能层,第一电极600为第一阴极,第一电子功能层采用无机化合物形成,避免后续形成的其他的膜层时受到损伤。若采用有机化合物形成第一电子功能层,在形成后续的膜层时,需要用到光阻层,在去除光阻层时,第一电子功能层也会去除一部分,造成了第一电子功能层的损伤,影响发光器件10的性能。
在另一实施例中,第一功能层100为第一空穴功能层,第一电极600为第一阳极。第一空穴功能层设置于第一阳极上。第一空穴功能层包括第一空穴传输层和第一空穴注入层中的至少一种。第一空穴功能层材料为空穴功能层材料。空穴功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。
在另一实施例中,第一功能层100为第一空穴功能层,第一电极600为第一阳极。第一空穴功能层设置于第一阳极上。第一空穴功能层包括第一空穴传输层和第一空穴注入层中的至少一种。第一空穴功能层材料为空穴功能层材料。空穴功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,空穴功能层材料为无机金属化合物,无机金属化合物选自氧化镍和氧化铜的一种或几种组合。
在本申请中,第一功能层100为第一空穴功能层,第一电极600为第一阳极,第一空穴功能层采用无机金属化合物形成,避免后续形成的其他的膜层时受到损伤。若采用有机化合物形成第一空穴功能层,在形成后续的膜层时,需要用到光阻层,在去除光阻层时,第一空穴功能层也会去除一部分,造成了第一空穴功能层的损伤,影响发光器件10的性能。
图案化绝缘层200设置于第一功能层100上。图案化绝缘层200被区分为多个图案化绝缘层区段和一与图案化绝缘层区段连接的图案化绝缘层连接段,即图案化绝缘层200的形状类似于插指结构的形状。图案化绝缘层200暴露部分第一功能层100。图案化绝缘层200材料包括氧化铝、氧化硅和氮氧化硅中的一种后几种组合。
需要说明的是,插指结构是指多个手指与一掌心连接的手掌结构。
在一实施例中,图案化绝缘层200的厚度D为30纳米-100纳米。具体的,图案化绝缘层200的厚度D可以为30纳米、34纳米、44纳米、58纳米、70纳米、80纳米、94纳米或100纳米等。
在本申请中,将图案化绝缘层200的厚度D设置为30纳米-100纳米,避免后续的图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
图案化第二电极300设置于图案化绝缘层200上。图案化第二电极300被区分为多个图案化第二电极300区段和一与多个图案化第二电极300区段连接的图案化第二电极300连接段,即图案化第二电极300的平面形状类似插指结构的形状,图案化第二电极300连接段用于接入外接电路;每一图案化第二电极300区段与一图案化绝缘层200区段对应设置,一图案化第二电极300连接段与一图案化绝缘层200连接段对 应设置,每一图案化第二电极300区段在第一功能层100上的正投影位于与一图案化第二电极300区段对应设置的图案化绝缘层200区段在第一能层100上的正投影之内,一图案化第二电极300连接段在第一功能层100上的正投影位于与一图案化第二电极300连接段对应设置的图案化绝缘层200连接段在第一功能层100上的正投影之内,即图案化第二电极300在第一功能层100上的正投影位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影之内。
需要说明的是,对应设置是指一膜层结构位于另一膜层结构的下方或上方。如图案化第二电极300设置于图案化绝缘层200的下方等,以下如同,此处不再赘述。
在本申请中,图案化第二电极300在第一功能层100上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影之内,避免后续的图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,图案化第二电极300的厚度d为50纳米-100纳米。具体的,图案化第二电极300的厚度d可以为50纳米、60纳米、75纳米、90纳米或100纳米等。
在本申请中,将图案化第二电极300的厚度d设置为50纳米-100纳米,图案化第二电极300的厚度d在此范围之内的图案化第二电极300的电阻小,对电流的阻碍作用小,从而提高图案化第二电极300的导电性能。若将图案化第二电极300的厚度d设置为小于50纳米,使得图案化第二电极300的电阻过大,从而影响图案化第二电极300的导电性,使得发光器件10无法正常显示;若将图案化第二电极300的厚度d设置为大于100纳米,使得图案化第二电极300的电阻过小,造成发光器件10的损伤。
在一实施例中,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离大于20纳米-105纳米。具体的,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离可以大于20纳米、30纳米、60纳米、80纳米、90纳米或105纳米等。
在本申请中,将图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离设置为大于20纳米-105纳米,进一步避免后续的图案化第二功能层400与第一功能层100接触,进一步避免发光器件10出现漏电流问题,进一步保证发光器件10正常显示。
在一实施例中,第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合。
Ag的导电性为6.3x10 7S/m,Al的导电性为3.77x10 7S/m,Au的导电性为4.42x10 7S/m,Ni的导电性为1.4×10 7S/m,若采用Ag、Al和Au形成图案化第二阳极,因Ag、Al和Au的导电性大于Ni和Cu的导电性,可以提高发光器件10的性能。
在另一实施例中,第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二阴极材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
图案化第二功能层400覆盖图案化第二电极300。图案化第二功能层400被区分为多个图案化第二功能层400区段和一与多个图案化第二功能层400区段连接的图案化第二功能层400连接段,图案化第二功能层400连接段可以接入外接电路。图案化第二功能层400区段设置于图案化绝缘层200区段以及图案化第二电极300区段上,且图案化第二功能层400连接段设置于图案化绝缘层200连接段以及图案化第二电极300连接段上。
在一实施例中,图案化第二功能层400区段在第一功能层100上的正投影位于与图案化第二功能层400区段对应设置的图案化绝缘层200区段在第一功能层100上的正投影之内;图案化第二功能层400连接段在第一功能层100上的正投影位于与图案化第二功能层400连接段对应设置的图案化绝缘层200连接段在第一功能层100上的正投影之内;图案化第二电极300区段在图案化绝缘层200区段上的正投影位于与图案化第二电极300区段对应设置的图案化第二功能层400区段在图案化绝缘层200区段上的正投影之内;图案化第二电极300连接段在图案化绝缘层200连接段上的正投影位于与图案化第二电极300连接段对应设置的图案化第二功能层400连接段在图案化绝缘层200连接段上的正投影之内;即图案化第二功能层400在第一功能层100上的正投影位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,且图案化第二电极300在图案化绝缘层200上的正投影位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内。
在本申请中,将图案化第二功能层400在第一功能层100上的正投影设置为位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,且图案化第二电极300在图案化绝缘层200上的正投影位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内,进一步避免图案化第二功能层400与第一功能层100接触,进一步避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W为大于5纳米,且图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一 功能层100上的正投影的边缘的距离大于20纳米-105纳米。具体的,图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W可以为大于5纳米、10纳米、15纳米、50纳米或100纳米等,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一功能层100上的正投影的边缘的距离可以大于20纳米、25纳米、50纳米、80纳米、100纳米或105纳米等。
在本申请中,将图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W设置为大于5纳米,且图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一功能层100上的正投影的边缘的距离大于20纳米-105纳米,避免图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,图案化第二空穴功能层包括图案化第二空穴传输层和图案化第二空穴注入层中的至少一种,图案化第二功能层400材料为空穴功能层材料。空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、硫氰酸亚铜和聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯和C 60中的一种或几种组合。
在另一实施例中,第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电子功能层包括图案化第二电子传输层和图案化第二电子注入层中的至少一种,图案化第二功能层400材料为电子功能层材料。
发光层500覆盖图案化第二功能层400以及第一功能层100。发光层500可以为量子点发光层。发光层500包括红色量子点发光层、蓝色量子点发光层和绿色量子点发光层。
发光层500的材料为本领域已知用于光电器件的量子点发光层的量子点材料。发光层500的材料包括单一结构量子点及核壳结构量子点中的至少一种。单一结构量子点包括II-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种。为壳层包覆核层的核壳结构。量子点的壳层的带隙大于量子点的核层的带隙。如,II-VI族化合物包括CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的至少一种;III-V族化合物可包括InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的至少一种;I-III-VI族化合物包括CuInS 2、CuInSe 2及AgInS 2中的至少一种。核壳结构的量子点的核层包括上述单一结构量子点中的至少一种,核壳结构的量子点的壳层包括CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种。作为示例,核壳结构的量子点包括CdZnSe/CdZnS/ZnS、CdZnSe/ZnSe/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的至少一种。
在本申请中,发光层500的材料为核壳结构的量子点材料,且,壳层的带隙大于核层的带隙,使得发光层500扩展了光子收集光谱的范围的同时,避免核层的缺陷对发光层500发光的影响;因发光层500的材料为壳层包覆壳层的核壳结构,可以通过调节壳层的厚度,避免核层的耦合特性受到影响,进而提高了发光器件10的发光效果,并提高发光器件10显示的稳定性。
在本申请中,先形成发光器件10的其他膜层,最后才形成发光层500,避免其他膜层在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
第三功能层700和第三电极800依次层叠设置于发光层500上。
在本申请中,在发光层上设置第三功能层700和第三电极800,增加电子功能层或空穴功能层与发光层500之间的有效接触面积,即增加第一功能层100和第三功能层700与发光层500之间的有效接触面积,提高了发光器件10的载流子传输效率,使得空穴传输效率和电子传输效率平衡,从而有利于平衡发光器件10内部的电荷,从而提高器件的性能。
在一实施例中,第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,图案化第二空穴功能层包括图案化第二空穴传输层和图案化第二空穴注入层中的至少一种,图案化第二功能层400材料为空穴功能层材料,第三功能层700为第三电子功能层,第三电极800为第三阴极。第三功能层700材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、CsCO 3、ZrO、AlZnMgO、GaZnO和ZnMgLiO中的一种或几种组合。第三电极800材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
在另一实施例中,第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电子功能层包括图案化第二电子传输层和图案化第二电子注入层中的至少一种,图案化第二功能层400材料为电子功能层材料,第三功能层700为第三空穴功能层,第三电极800为第三阳极,第三功能层700材料为空穴功能层 材料,第三阳极材料为阳极材料。
在一实施例中,发光器件还包括封装结构。封装结构设置于第三电极800上。封装结构由无机层和有机层交叠形成。在第三电极800上设置封装结构,可以避免发光层500受到水氧的侵蚀,进而提高发光器件10的性能。
本申请实施例公开了一种发光器件10,在发光层上设置第三功能层700和第三电极800,增加电子功能层或空穴功能层与发光层500之间的有效接触面积,即增加第一功能层100和第三功能层700与发光层500之间的有效接触面积,提高了发光器件10中发光层500区域的载流子传输效率,使得发光层区域的空穴传输效率和电子传输效率平衡,从而有利于平衡发光器件10内部的电荷,从而提高器件的性能。将图案化第二电极300在第一功能层100上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影中,避免了图案化第二功能层400与第一功能层100接触,进而避免了发光器件10出现漏电流问题,提高了发光器件10的性能。图案化第二电极300在图案化绝缘层200上的正投影设置为位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内,避免了图案化第二功能层400与第一功能层100接触,进而进避免了发光器件10出现漏电流问题,提高了发光器件10的性能。将图案化第二功能层400在第一功能层100上的正投影设置为位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,进一步避免了图案化第二功能层400与第一功能层100接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。
示例1
第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,图案化第二空穴功能层包括图案化第二空穴传输层和图案化第二空穴注入层中的至少一种,图案化第二功能层400材料为空穴功能层材料,第三功能层700为第三电子功能层,第三电极800为第三阴极,第三功能层700材料为电子功能层材料,第三电子功能层包括第三电子传输层和第三电子注入层中的至少一种,第三阴极800材料为阴极材料,优选发光层500为蓝色量子点发光层。由于蓝色量子点的发光器件10中电子属于为少子,即电子数量少于空穴数量,增加第三电子功能层和第三阴极,从而提高了电子的注入,使电子和空穴平衡,提高器件的效率。
在本申请中,在发光层上设置第三功能层700为第三电子功能层和第三电极800为第三阴极,增加电子功能层与发光层500之间的有效接触面积,即增加第一电子功能层和第三电子功能层与发光层500之间的有效接触面积,提高了发光器件10中发光层500区域的电子传输效率,使得空穴传输效率和电子传输效率平衡,从而有利于平衡发光器件10内部的电荷,从而提高器件的性能。将图案化第二阳极在第一电子功能层上的正投影设置为位于图案化绝缘层200在第一电子功能层上的正投影中,避免了图案化第二空穴功能层与第一电子功能层接触,进而避免了发光器件10出现漏电流问题,提高了发光器件10的性能。将图案化第二空穴功能层在第一电子功能层上的正投影设置为位于与图案化第二空穴功能层对应设置的图案化绝缘层200在第一电子功能层上的正投影之内,进一步避免了图案化第二空穴功能层与第一电子功能层接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。
示例2
请参阅图2,图2是本申请实施例提供的发光器件的第二种结构示意图。需要说明的是,示例2与示例1的不同之处在于:
在倒置发光器件中不设置有第三功能层和第三电极,即在发光层500上不设置有第三功能层和第三电极。
在本申请中,在倒置发光器件中不设置有第三功能层和第三电极,即在发光层500上不设置有第三功能层和第三电极,避免在形成第三功能层和第三电极在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
示例3
请继续参阅图1。需要说明的是,示例3与示例1的不同之处在于:
发光器件10为正置发光器件,第三功能层700为第三空穴功能层,第三电极800为第三阳极,且第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电子功能层包括图案化第二电子传输层和图案化第二电子注入层中的至少一种,图案化第二电子功能层材料为电子功能层材料,第三功能层700材料为空穴功能层材料,第三阳极材料为阳极材料。优选发光层500为红色量子点发光层。由于红色量子点的发光器件10中空穴属于为少子,即空穴数量少于电子数量,增加第三空穴功能层和第三阳极,从而提高了空穴的注入,使电子和空穴平衡,提高器件的效率。
在本申请中,在发光层上设置第三功能层700为第三空穴功能层和第三电极800为第三阳极,增加空穴功能层与发光层500之间的有效接触面积,即增加第一空穴功能层100和第三空穴功能层600与发光层500之间的有效接触面积,提高了红色量子点发光器件10的空穴传输效率,使得空穴传输效率和电子传输效率平衡,从而有利于平衡发光器件10内部的电荷,从而提高器件的性能。将图案化第二阴极在第 一空穴功能层上的正投影设置为位于图案化绝缘层200在第一空穴功能层上的正投影中,避免了图案化第二电子功能层与第一空穴功能层接触,进而避免了发光器件10出现漏电流问题,提高了发光器件10的性能。将图案化第二电子功能层在第一空穴功能层上的正投影设置为位于与图案化第二电子功能层对应设置的图案化绝缘层200在第一空穴功能层上的正投影之内,进一步避免了图案化第二电子功能层与第一空穴功能层接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。
示例4
请继续参阅图2。需要说明的是,示例4与示例3的不同之处在于:
在发光层500上不设置有第三功能层和第三电极。
在本申请中,在正置发光器件中不设置有第三功能层和第三电极,即在发光层500上不设置有第三功能层和第三电极,避免在形成第三功能层和第三电极在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
本申请实施例公开了一种发光器件10,在发光层上设置第三功能层700和第三电极800,增加电子功能层以及空穴功能层与发光层500之间的有效接触面积,即增加第一功能层100和第三功能层700与发光层500之间的有效接触面积,提高了发光器件10载流子传输效率,使得发光器件10中空穴传输效率和电子传输效率平衡,从而有利于平衡发光器件10内部的电荷,从而提高器件的性能。将图案化第二电极300在第一功能层100上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影中,避免了图案化第二功能层400与第一功能层100接触,进而避免了发光器件10出现漏电流问题,提高了发光器件10的性能。将图案化第二功能层400在第一功能层100上的正投影设置为位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,且图案化第二电极300在图案化绝缘层200上的正投影设置为位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内,进一步避免了图案化第二功能层400与第一功能层100接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。发光器件10中不设置有第三功能层和第三电极,即在发光层500上不设置有第三功能层和第三电极,避免在形成第三功能层和第三电极在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
本申请还提供一种发光器件的制备方法,包括:
B11、提供第一电极。
B12、在第一电极上形成第一功能层。
B13、在第一功能层上形成图案化绝缘层。
B14、在图案化绝缘层上形成图案化第二电极。
B15、在图案化第二电极上形成图案化第二功能层。
B16、在第一功能层和图案化第二功能层上形成发光层第三功能层。
其中,第一电极与第二电极中的一者为阳极,另一者为阴极,第一电极与第三电极相同;第一功能层与第二功能层中的一者为电子功能层,另一者为空穴功能层,第一功能层为空穴功能层时,第三功能层为空穴功能层;第一功能层为电子功能层时,第三功能层为电子功能层,且电子功能层靠近阴极,空穴功能层靠近阳极。
在本申请中,在发光层上设置第三功能层,提高了载流子的传输效率,进而使得发光层中的电子和空穴注入平衡,提高发光器件的性能。
以下进行具体说明:
请参阅图1和图3,图3是本申请实施例提供的发光器件的制备方法流程图。本申请提供一种发光器件的制备方法,包括。
B11、提供第一电极。
第一电极600可以为第一阴极或第一阳极。
第一电极600可以为第一阴极或第一阳极。第一电极600的厚度H大于100纳米。具体的,第一电极600的厚度H可以为100纳米、150纳米、350纳米、800纳米或900纳米等。
在本申请中,将第一电极600的厚度H设置为大于100纳米可以提高第一电极600的导电性能。
在一实施例中,第一电极600为第一阴极,第一阴极材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
在另一实施例中,第一电极600为第一阳极,第一阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合。
B12、在第一电极上形成第一功能层。
在第一电极600上旋涂30mg/mL的第一功能层100纳米颗粒,旋涂转速为3000转每分,旋涂时间为30秒;然后,80摄氏度下加热30分钟,形成第一功能层100。
第一功能层100设置于第一电极600上。第一功能层100的厚度h为20纳米-60纳米。具体的,第一功能层100的厚度h可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。
在本申请中,将第一功能层100的厚度h设置为20纳米-60纳米,保证第一功能层100的载流子传输 性能和/或载流子注入性能,进而保证发光器件10正常显示。
需要说明的是,载流子包括电子和空穴。
在一实施例中,第一功能层100为第一电子功能层,第一电极600为第一阴极。第一电子功能层设置于第一阴极上。第一电子功能层包括第一电子传输层和第一电子注入层中的至少一种。第一电子功能层材料为电子功能层材料。电子功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,且电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。
在一实施例中,第一功能层100为第一电子功能层,第一电极600为第一阴极,第一电子功能层材料为电子功能层材料,电子功能层材料为无机金属化合物,无机金属化合物选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、CsCO 3、ZrO、AlZnMgO、GaZnO和ZnMgLiO中的一种或几种组合。
在本申请中,第一功能层100为第一电子功能层,第一电极600为第一阴极,第一电子功能层采用无机化合物形成,避免后续形成其他的膜层时受到损伤。若采用有机化合物形成第一电子功能层,在形成后续的膜层时,需要用到光阻层,在去除光阻层时,第一电子功能层也会去除一部分,造成了第一电子功能层的损伤,影响发光器件10的性能。
在另一实施例中,第一功能层100为第一空穴功能层,第一电极600为第一阳极。第一空穴功能层设置于第一阳极上。第一空穴功能层包括第一空穴传输层和第一空穴注入层中的至少一种。第一空穴功能层材料为空穴功能层材料。空穴功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。
在另一实施例中,第一功能层100为第一空穴功能层,第一电极600为第一阳极。第一空穴功能层设置于第一阳极上。第一空穴功能层包括第一空穴传输层和第一空穴注入层中的至少一种。第一空穴功能层材料为空穴功能层材料。空穴功能层材料为纳米颗粒,其纳米颗粒的粒径为5纳米-20纳米,空穴功能层材料为无机金属化合物,无机金属化合物选自氧化镍和氧化铜的一种或几种组合。
在本申请中,第一功能层100为第一空穴功能层,第一电极600为第一阳极,第一空穴功能层采用无机金属化合物形成,避免后续形成的其他的膜层时受到损伤。若采用有机化合物形成第一空穴功能层,在形成后续的膜层时,需要用到光阻层,在去除光阻层时,第一空穴功能层也会去除一部分,造成了第一空穴功能层的损伤,影响发光器件10的性能。
B13、在第一功能层上形成图案化绝缘层。
在所述第一功能层上形成具有若干个通孔的第一光阻层,所述通孔贯穿所述第一光阻层以暴露部分所述第一功能层;然后,在所述通孔中形成图案化绝缘层;然后,去除所述第一光阻层。
其中一种实施方式:
在黄光洁净室内,在第一功能层100上旋涂第一光阻层的材料,旋涂转速为3000转每分,旋涂时间为30秒,然后,在110摄氏度下热处理2分钟。
然后,使用第一光刻掩膜在紫外光灯下,对第一光阻层的材料进行曝光,曝光时间为5秒。
然后,将其置于AZ726显影液(3:1对水)中进行显影,显影时间为25秒,形成具有通孔的第一光阻层。第一光阻层为AZ1512光阻层。通孔贯穿第一光阻层以暴露部分第一功能层100。通孔对应设置于第一功能层100上,且通孔位于第一功能层100的上方。
然后,在真空度为3×10 -4Pa的条件下,通过电子束在通孔中蒸镀图案化绝缘层材料,蒸镀速度为1埃/秒,蒸镀时间300秒,蒸镀厚度为30纳米,形成图案化绝缘层200。
然后,将第一电极600、第一功能层100以及图案化绝缘层200泡至丙酮当中,超声去除第一光阻层。
图案化绝缘层200被区分为多个图案化绝缘层区段和一与多个图案化绝缘层区段连接的图案化绝缘层连接段,每两相邻的图案化绝缘层区段间隔设置,即图案化绝缘层200的形状类似于插指结构的形状。图案化绝缘层200暴露部分第一功能层100。图案化绝缘层200材料包括氧化铝、氧化硅和氮氧化硅中的一种或几种组合。
图案化绝缘层200的厚度D为30纳米-100纳米。具体的,图案化绝缘层200的厚度D可以为30纳米、34纳米、44纳米、58纳米、70纳米、80纳米、94纳米或100纳米等。
在本申请中,将图案化绝缘层200的厚度D设置为30纳米-100纳米,避免后续的图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
B14、在图案化绝缘层上形成图案化第二电极。
在第一功能层以及图案化绝缘层上形成具有若干个过孔的第二光阻层,过孔与图案化绝缘层对应,过孔贯穿第二光阻层以暴露部分图案化绝缘层;然后,在过孔中形成图案化第二电极,其中,图案化第二电极在第一功能层上的正投影位于与图案化第二电极对应设置的图案化绝缘层在第一功能层上的正投影之内。
其中一种实施方式:
将第一电极600、第一功能层100以及图案化绝缘层200进行干燥处理后,在第一功能层100以及图案化绝缘层200上旋涂第二光阻层的材料,旋涂转速为3000转每分,旋涂时间为30秒;然后,在110摄氏度下热处理2分钟。
然后,使用第二光刻掩膜在紫外光灯下,对第二光阻层的材料进行曝光,曝光时间为5秒。
然后,将其在AZ726显影液(3:1对水)中进行显影,显影时间为25秒,即,第二光阻层的材料形成具有若干个过孔的第二光阻层。过孔贯穿第二光阻层以暴露部分图案化绝缘层200。过孔对应设置于第二光阻层。第二光阻层为AZ1512光阻层。
然后,在真空度为3×10 -4Pa的条件下,通过电子束在过孔中蒸镀导电材料,蒸镀速度为1埃/秒,蒸镀时间为900秒,蒸镀厚度为90纳米,形成图案化第二电极300。其中,图案化第二电极300被区分为多个图案化第二电极300区段和一与多个图案化第二电极300区段连接的图案化第二电极300连接段,即图案化第二电极300的平面形状类似插指结构的形状,图案化第二电极300连接段用于接入外接电路;每一图案化第二电极300区段与一图案化绝缘层200区段对应设置,一图案化第二电极300连接段与一图案化绝缘层200连接段对应设置,每一图案化第二电极300区段在第一能层100上的正投影位于与一图案化第二电极300区段对应设置的图案化绝缘层200区段在第一能层100上的正投影之内,一图案化第二电极300连接段在第一功能层100上的正投影位于与一图案化第二电极300连接段对应设置的图案化绝缘层200连接段在第一功能层100上的正投影之内,即图案化第二电极300在第一功能层100上的正投影位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影之内。
在本申请中,图案化第二电极300在第一功能层100上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影之内,避免后续的图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,图案化第二电极300的厚度d为50纳米-100纳米。具体的,图案化第二电极300的厚度d可以为50纳米、60纳米、75纳米、90纳米或100纳米等。
在本申请中,将图案化第二电极300的厚度d设置为50纳米-100纳米,图案化第二电极300的厚度d在此范围之内的图案化第二电极300的电阻小,对电流的阻碍作用小,从而提高图案化第二电极300的导电性能。若将图案化第二电极300的厚度d设置为小于50纳米,使得图案化第二电极300的电阻过大,从而影响图案化第二电极300的导电性,使得发光器件10无法正常显示;若将图案化第二电极300的厚度d设置为大于100纳米,使得图案化第二电极300的电阻过小,造成发光器件10的损伤。
在一实施例中,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离大于20纳米-105纳米。具体的,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离可以大于20纳米、30纳米、60纳米、80纳米、90纳米或105纳米等。
在本申请中,将图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离设置为大于20纳米-105纳米,进一步避免后续的第二功能层400与第一功能层100接触,进一步避免发光器件10出现漏电流问题,进一步保证发光器件10正常显示。
图案化第二电极材料包括导电材料。
在一实施例中,第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合。
Ag的导电性为6.3x10 7S/m,Al的导电性为3.77x10 7S/m,Au的导电性为4.42x10 7S/m,Ni的导电性为1.4×10 7S/m,若采用Ag、Al和Au形成图案化第二阳极,因Ag、Al和Au的导电性大于Ni和Cu的导电性,可以提高发光器件10的性能。
在另一实施例中,第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二阴极材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
B15、在图案化第二电极上形成图案化第二功能层。
其中,在所述图案化第二电极上形成图案化第二功能层有两种方法:
第一种方法是:先去除第二光阻层;然后,对图案化第二电极进行氧化处理,在图案化第二电极表面形成图案化第二功能层,其中,图案化第二功能层在第一功能层上的正投影位于与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影之内。
其中一种实施方式:
将第一电极600、第一功能层100、图案化绝缘层200、图案化第二电极300和第二光阻层泡至丙酮当中,超声去除第二光阻层。
然后,将第一电极600、第一功能层100、图案化绝缘层200和图案化第二电极300置于热台上进行热处理,图案化第二电极300的表面形成图案化第二功能层,热处理温度为300摄氏度,热处理时间为30分钟。图案化第二功能层400在第一功能层100上的正投影位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内。图案化第二功能层400被区分为多个图案化 第二功能层区段和一与多个图案化第二功能层区段连接的图案化第二功能层连接段,即图案化第二功能层的平面形状为插指结构的形状。
在一实施例中,图案化第二功能层400区段在第一功能层100上的正投影位于与图案化第二功能层400区段对应设置的图案化绝缘层200区段在第一功能层100上的正投影之内,图案化第二功能层400连接段在第一功能层100上的正投影位于与图案化第二功能层400连接段对应设置的图案化绝缘层200连接段在第一功能层100上的正投影之内,即图案化第二功能层400在第一功能层100上的正投影位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,且图案化第二电极300区段在图案化绝缘层200区段上的正投影位于与图案化第二电极300区段对应设置的图案化第二功能层400区段在图案化绝缘层200区段上的正投影之内,图案化第二电极300连接段在图案化绝缘层200连接段上的正投影位于与图案化第二电极300连接段对应设置的图案化第二功能层400连接段在图案化绝缘层200连接段上的正投影之内,即图案化第二电极300在图案化绝缘层200上的正投影位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内。
在本申请中,将图案化第二功能层400在第一功能层100上的正投影设置为位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,且图案化第二电极300在图案化绝缘层200上的正投影位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内,进一步避免图案化第二功能层400与第一功能层100接触,进一步避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W为大于5纳米,且图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一功能层100上的正投影的边缘的距离大于20纳米-105纳米。具体的,图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W可以为大于5纳米、10纳米、15纳米、50纳米或100纳米等,图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一功能层100上的正投影的边缘的距离可以大于20纳米、25纳米、50纳米、80纳米、100纳米或105纳米等。
在本申请中,将图案化第二功能层400在第一功能层100上的正投影的边缘到与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影的边缘的距离W设置为大于5纳米,且图案化第二电极300在第一功能层100上的正投影的边缘到与图案化第二电极300对应设置的图案化绝缘层在第一功能层100上的正投影的边缘的距离大于20纳米-105纳米,避免图案化第二功能层400与第一功能层100接触,进而避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
在一实施例中,图案化第二电极300材料为导电材料,图案化第二功能层400材料为导电材料的氧化物。
在一实施例中,当图案化第二电极300为图案化第二阴极,图案化第二功能层为图案化第二电子功能层,图案化第二阴极材料为阴极材料,阴极材料选自Ti、Zn和Sn中的一种或两种组合,图案化第二功能层材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO和SnO 2的一种或两种组合。
在另一实施例中,当图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,且图案化第二空穴功能层包括图案化第二空穴传输层和图案化第二空穴注入层中的至少一种,图案化第二电极300材料为阳极材料,阳极材料选自Ni和Cu中的一种或两种组合,图案化第二空穴功能层材料为空穴功能层材料,空穴功能层材料选自氧化镍和氧化铜的一种或两种组合。
在本申请中,在第二光阻层去除后,将图案化第二电极300表面进行氧化形成图案化第二功能层400,且形成的图案化第二功能层400在第一功能层100上的正投影位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,避免图案化第二功能层400与第一功能层100接触,进一步避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。
第二种方法是:先在图案化绝缘层以及图案化第二电极上沉积图案化第二功能层材料,形成图案化第二功能层,其中,图案化第二功能层在第一功能层上的正投影位于与图案化第二功能层对应设置的图案化绝缘层在第一功能层上的正投影之内;然后,去除第二光阻层。
其中一种实施方式:
采用电化学沉积方法或蒸镀方法在图案化第二电极300上形成图案化第二功能层。具体描述如下:
采用电化学沉积方法形成图案化第二功能层400:将第一电极600、第一功能层100、图案化绝缘层200和图案化第二电极300置于0.1摩尔每升的第二功能层材料的水溶液中,以饱和甘汞电极为参比电极在图案化第二电极300上施加1.1伏电压,时间为120秒,形成图案化第二功能层400;然后,去除第二光阻层。
采用蒸镀方法形成图案化第二功能层:在图案化第二电极300以及图案化绝缘层200上蒸镀图案化第二功能层材料形成图案化第二功能层;然后,去除第二光阻层。
在一实施例中,当图案化第二电极为图案化第二阳极,图案化第二功能层为图案化第二空穴功能层,图案化第二阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合,图案化第二空穴功能层材料为空穴功能层材料,空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺) (Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。
在另一实施例中,当图案化第二电极为图案化第二阴极,图案化第二功能层为图案化第二电子功能层,图案化第二阴极材料为导电材料,导电材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合,即图案化第二阴极选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合,图案化第二电子功能层材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。
在本申请中,在过孔中形成图案化第二电极300后,采用电化学沉积或蒸镀方式在过孔中形成图案化第二功能层400,最后,再去除第二光阻层。可以避免通过在空气中加热氧化图案化第二电极300制备的氧化镍图案化第二功能层400或氧化铜图案化第二功能层400表面存在较多的缺陷,且氧化程度不易控制,对载流子的传输不利,从而提高发光器件10的性能。
在本申请中,图案化第二电极300在图案化绝缘层200上的正投影设置为位于与图案化第二电极300对应设置的图案化第二功能层400在图案化绝缘层200上的正投影之内,避免了图案化第二功能层400与第一功能层100接触,进而进避免了发光器件10出现漏电流问题,提高了发光器件10的性能。将图案化第二功能层400在第一功能层100上的正投影设置为位于与图案化第二功能层400对应设置的图案化绝缘层200在第一功能层100上的正投影之内,进一步避免了图案化第二功能层400与第一功能层100接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。
B16、在第一功能层和图案化第二功能层上形成发光层。
在图案化第二电极300上旋涂20mg/mL的发光层500的材料,旋涂转速为2000转每分,旋涂时间为30秒,形成发光层500,发光层500为蓝色发光层。
发光层500材料为本领域已知用于光电器件的量子点发光层的量子点材料。发光层500的材料包括单一结构量子点及核壳结构量子点中的至少一种。单一结构量子点包括II-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种。核壳结构量子点为壳层包覆核层的核壳结构,量子点壳层的带隙大于量子点核层的带隙。如,II-VI族化合物包括CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的至少一种;III-V族化合物可包括InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的至少一种;I-III-VI族化合物包括CuInS 2、CuInSe 2及AgInS 2中的至少一种。核壳结构的量子点的核层包括上述单一结构量子点中的至少一种,核壳结构的量子点的壳层包括CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种。作为示例,核壳结构的量子点包括CdZnSe/CdZnS/ZnS、CdZnSe/ZnSe/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的至少一种。
B17、在发光层上形成第三功能层。
具体的,在发光层500上旋涂30毫克每升的第三功能层700纳米颗粒,旋涂转速为3000转每分,旋涂时间为30秒,形成第三功能层700。
B18、在第三功能层上形成第三电极。
然后,在真空度为3×10 -4Pa的条件下,通过电子束蒸镀第三电极材料,蒸镀速度为1埃/秒,蒸镀时间200秒,蒸镀厚度为20纳米,形成第三电极800。
在一实施例中,第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,图案化第二空穴功能层包括图案化第二空穴传输层和图案化第二空穴注入层中的至少一种,图案化第二空穴功能层材料为空穴功能层材料,第三功能层700为第三电子功能层,第三电极800为第三阴极。第三功能层700材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、CsCO 3、ZrO、AlZnMgO、GaZnO和ZnMgLiO中的一种或几种组合。第三电极800材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合。
在另一实施例中,第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电子功能层包括图案化第二电子传输层和图案化第二电子注入层中的至少一种,图案化第二功能层400材料为电子功能层材料,第三功能层700为第三空穴功能层,第三电极800为第三阳极,第三功能层材料600为空穴功能层材料,第三阳极材料为阳极材料。
在一实施例中,在步骤B18之后,还包括:
在第三电极800上形成封装结构。封装结构由有机层和无机层交替堆叠形成。
然后,测试发光器件10的电流、电压和亮度数据,确定器件电学性能;
然后,测试发光器件10的工作寿命数据,使用2mA的恒流驱动,确定发光器件10的工作寿命。
实施例1
第一电极600为第一阴极,第一功能层100为第一电子功能层,图案化第二电极300为图案化第二阳极,图案化第二功能层400为图案化第二空穴功能层,即发光器件10为倒置发光器件。
B11、提供第一电极。
B12、在第一电极上形成第一功能层。
具体的,在第一阴极上浓度为30mg/mL以及粒径为10纳米的ZnO纳米颗粒,旋涂转速为3000转每分,旋涂时间为30秒;然后,80摄氏度下加热30分钟,形成厚度h为10纳米的第一电子功能层的第一电子传输层。
B13、在第一功能层上形成图案化绝缘层,图案化绝缘层至少部分露出第一功能层。
具体的,在黄光洁净室内,在第一电子传输层上旋涂第一光阻层的材料,旋涂转速为3000转每分,旋涂时间为30秒,然后,在110摄氏度下热处理2分钟;然后,使用第一光刻掩膜在紫外光灯下,对第一光阻层的材料进行曝光,曝光时间为5秒;然后,将其置于AZ726显影液(3:1对水)中进行显影,显影时间为25秒,形成具有若干个通孔的第一光阻层。然后,在真空度为3×10 -4Pa的条件下,通过电子束在通孔中蒸镀氧化铝,蒸镀速度为1埃/秒,蒸镀时间300秒,蒸镀厚度为30纳米,形成图案化绝缘层200;然后,将第一阴极、第一电子传输层以及图案化绝缘层200泡至丙酮当中,超声去除第一光阻层。
B14、在所述图案化绝缘层上形成图案化第二电极,其中,所述图案化第二电极在所述第一功能层上的正投影位于与所述图案化第二电极对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内。
具体的,将第一阴极、第一电子传输层以及图案化绝缘层200进行干燥处理后,在第一电子传输层以及图案化绝缘层200上旋涂第二光阻层的材料,旋涂转速为3000转每分,旋涂时间为30秒;然后,在110摄氏度下热处理2分钟;然后,使用第二光刻掩膜在紫外光灯下,对第二光阻层的材料进行曝光,曝光时间为5秒;然后,将其在AZ726显影液(3:1对水)中进行显影,显影时间为25秒,即,第二光阻层的材料形成具有若干个过孔的第二光阻层。过孔贯穿第二光阻层以暴露部分图案化绝缘层200。过孔对应设置于第二光阻层;然后,在真空度为3×10 -4Pa的条件下,通过电子束在过孔中蒸镀导电材料Ni,蒸镀速度为1埃/秒,蒸镀时间为900秒,蒸镀厚度为90纳米,形成图案化第二电极300,图案化第二电极300为图案化第二阳极。
B15、在所述图案化第二电极上形成图案化第二功能层。
具体的,将第一阴极、第一电子传输层、图案化绝缘层200、图案化阳极和第二光阻层泡至丙酮当中,超声去除第二光阻层;然后,将第一阴极、第一电子传输层、图案化绝缘层200和图案化阳极置于热台上进行热处理,即对图案化阳极表面进行氧化处理,导电材料Ni氧化形成导电材料的氧化物氧化镍,导电材料的氧化物即为图案化第二空穴功能层的第二空穴传输层,热处理温度为300摄氏度,热处理时间为30分钟。
B16、在第一功能层和图案化第二功能层上设置发光层。
具体的,在图案化第二阳极上旋涂20mg/mL的ZnSeTe/ZnS,旋涂转速为2000转每分,旋涂时间为30秒,形成蓝色量子点发光层。
然后,在图案化第二阳极上形成封装结构。封装结构由无机层和有机层交叠形成;然后,测试发光器件10的电流、电压和亮度数据,确定器件电学性能;然后,测试发光器件10的工作寿命数据,使用2mA的恒流驱动,确定发光器件10的工作寿命。
B17、在发光层上形成第三功能层。
具体的,在发光层500上旋涂30毫克每升的电子功能层材料TiO 2纳米颗粒,旋涂转速为3000转每分,旋涂时间为30秒,形成第三电子功能层的第三电子传输层。
B18、在第三功能层上形成第三电极。
然后,在真空度为3×10 -4Pa的条件下,通过电子束蒸镀阴极材料Ag,蒸镀速度为1埃/秒,蒸镀时间200秒,蒸镀厚度为20纳米,形成第三阴极。
然后,测试发光器件10的电流、电压和亮度数据,确定器件电学性能;
然后,测试发光器件10的工作寿命数据,使用2mA的恒流驱动,确定发光器件10的工作寿命。
在一实施例中,在步骤B18之后,在对发光器件10进行测试之前,还包括:
在第三阴极上形成封装结构。封装结构由有机层和无机层交替堆叠形成。
在本申请中,在第二光阻层去除后,将图案化第二阳极表面进行氧化形成图案化第二空穴传输层,即,采用氧化处理形成图案化第二空穴传输层,且形成的图案化第二空穴传输层在第一电子传输层上的正投影位于与图案化第二空穴传输层对应设置的图案化绝缘层200在第一电子传输层上的正投影之内,避免图案化第二空穴传输层与第一电子传输层接触,避免发光器件10出现漏电流问题,进而保证发光器件10正常显示。将图案化第二空穴传输层在第一电子传输层上的正投影设置为位于与图案化第二空穴传输层对应设置的图案化绝缘层200在第一电子传输层上的正投影之内,进一步避免了图案化第二功能层400与第一电子传输层接触,进而进一步避免了发光器件10出现漏电流问题,提高了发光器件10的性能。
实施例2
需要说明的是,实施例2和实施例1的不同之处在于:在步骤B15中,采用第二种方法中的电化学沉积方式在图案化绝缘层200以及图案化第二阳极上形成图案化第二空穴传输层,图案化第二阳极材料为阳极材料,阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合,图案化第二空穴传输层 材料为空穴功能层材料,空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。优选图案化第二阳极材料为Ag,图案化第二空穴传输层材料为PEDOT:PSS,且在步骤B14之后,先不去除第二光阻层,在步骤B15后,再去除第二光阻层。
具体的,采用Ag形成图案化第二阳极后,将第一阴极、第一电子传输层、图案化绝缘层200和图案化第二阳极置于0.1摩尔每升的聚苯乙烯磺酸钠(PSSNa)以及0.015摩尔每升的3,4-乙烯二氧噻吩(EDOT)水溶液中,以饱和甘汞电极为参比电极在图案化第二阳极300上施加1.1伏电压,时间为120秒,形成图案化第二空穴传输层;然后去除第二光阻层。
在本申请中,在过孔中形成图案化第二阳极后,采用电化学沉积方式在过孔中形成图案化第二空穴传输层,最后,再去除第二光阻层。可以避免通过在空气中加热氧化第二阳极制备的氧化镍图案化第二空穴传输层或氧化铜图案化第二空穴传输层表面存在较多的缺陷,且氧化程度不易控制,对空穴的传输不利,从而提高发光器件10的性能。
实施例3
请继续参阅图2。需要说明的是,实施例3和实施例1的不同之处在于:在步骤B16之后,不形成第三功能层和第三电极。其他步骤与实施例1相同,此处不再赘述。
在本申请中,在发光层500上不设置第三功能层和第三电极,避免其第三电子传输层和第三阳极在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
实施例4
请继续参阅图2。需要说明的是,实施例4和实施例2的不同之处在于:在步骤B16之后,不形成第三功能层和第三电极。其他步骤与实施例2相同,此处不再赘述。
实施例5
需要说明的是,实施例5和实施例2的不同之处在于:在步骤B15中,将图案化第二空穴功能层的图案化第二空穴传输层采用蒸镀方式形成。其他步骤与实施例2相同,此处不再赘述。
实施例6
需要说明的是,实施例6和实施例1的不同之处在于:发光器件为正置发光器件,即第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电极300材料为阴极材料,阴极材料为导电材料,导电材料选自Ti、Zn和Sn中的一种或两种组合,图案化第二功能层材料为电子功能层材料,电子功能层材料为导电材料的氧化物,导电材料的氧化物选自TiO 2、ZnO和SnO 2的一种或两种组合。其他步骤与实施例1相同,此处不再赘述。
实施例7
需要说明的是,实施例7和实施例6的不同之处在于:在步骤B16之后,不形成第三功能层和第三电极。其他步骤与实施例6相同,此处不再赘述。
实施例8
需要说明的是,实施例8和实施例2的不同之处在于:发光器件为正置发光器件,即第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电极300材料为阴极材料,导电材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合,图案化第二功能层材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。其他步骤与实施例2相同,此处不再赘述。
实施例9
需要说明的是,实施例9和实施例5的不同之处在于:发光器件为正置发光器件,即第一电极600为第一阳极,第一功能层100为第一空穴功能层,图案化第二电极300为图案化第二阴极,图案化第二功能层400为图案化第二电子功能层,图案化第二电极300材料为阴极材料,阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合,图案化第二功能层材料为电子功能层材料,电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。其他步骤与实施例2相同,此处不再赘述。
实施例10
需要说明的是,实施例10和实施例9的不同之处在于:在步骤B16之后,不形成第三功能层和第三电极。其他步骤与实施例9相同,此处不再赘述。
对比例1
请参阅图4,图4是现有技术中的发光器件的结构示意图。对比例1与实施例1的不同之处在于:对比例1将实施例1中采用第一光阻层形成图案化绝缘层的步骤后,在保留第一光阻层的情况下,直接形成图案化第二阳极301,图案化第二阳极301在第一电子传输层101上的正投影的边缘与图案化绝缘层201在第一电子传输层101上的正投影的边缘重合;然后,将其置于热台上进行热处理,部分Ni氧化形成图案化第二空穴传输层401,图案化第二空穴传输层401在第一电子传输层101上的正投影大于图案化绝缘层201在第一电子传输层101上的正投影。其他步骤与实施例1相同,此处不再赘述。
对比例2
对比例2与实施例1的不同之处在于:发光器件为常规的发光器件,即发光器件包括依次层叠设置的阳极、电子传输层、发光层、空穴传输层和阴极。其他步骤与实施例1相同,此处不再赘述。
请参阅图5-图7。图5是本申请实施例1和对比例1提供的发光器件电压-亮度对比图。图6是本申请实施例1和对比例1提供的发光器件的亮度和外量子效率对比图。
在本申请中,在发光层500上设置第三电子传输层和第三阴极,且将图案化第二电极300在第一电子传输层上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一电子传输层上的正投影之内,其发光器件10的亮度最高可以达到大于10 4;当发光器件10的亮度为10 4时,外量子效率可以达到9%,且,使用寿命可以长达15小时,提高了发光器件10的显示效果。而现有技术中,不设置第三电子传输层和第三阴极,其的发光器件亮度小于10 4;现有技术中,当发光器件的亮度为10 4时,其外量子效率最高只可以达到4%。因此,在发光层500上设置第三电子传输层和第三阴极,增加了第一电子传输层以及第三电子传输层与发光层500之间的有效接触面积,提高电子的注入量,使得发光层500中的空穴和电子注入平衡,提高发光器件10的性能以及寿命。另外,因图案化第二电极300在第一电子传输层上的正投影设置为位于图案化绝缘层200在第一电子传输层上的正投影之内,可以有效降低图案化第二空穴传输层与第一电子传输层的接触概率,避免了发光器件10出现漏电流问题,从而提高发光器件10的性能。
请参阅图7-图9。图8是本申请实施例2和对比例1提供的发光器件电压-亮度对比图。图9是本申请实施例2和对比例1提供的发光器件的亮度和外量子效率对比图。
在本申请中,在发光层500上设置第三电子传输层和第三阴极,并将图案化第二阳极在第一电子传输层上的正投影设置为位于图案化绝缘层200在第一电子传输层上的正投影之内,且采用Ag形成图案化第二阳极,其发光器件10的亮度最高可以达到大于10 4;发光器件10的亮度为10 4时,其外量子效率可以达到18%,提高了发光器件10的显示效果。而现有技术中,不设置第三电子传输层和第三阴极,其的发光器件亮度小于10 4,且,其发光器件的亮度为10 4时,其外量子效率最高只可以达到3%。因此,在发光层500上设置第三电子传输层和第三阴极,增加了第一电子传输层以及第三电子传输层与发光层500之间的有效接触面积,提高电子的注入量,使得空穴和电子注入平衡,提高发光器件10的性能以及寿命。另外,因图案化第二阳极在第一功能层100上的正投影设置为位于图案化绝缘层200在第一电子传输层上的正投影之内,可以有效降低图案化第二空穴传输层与第一电子传输层的接触概率,避免了发光器件10出现漏电流问题,从而提高发光器件10的性能。同时,因Ag的导电性好,可以提高空穴的传输效率,进而提高发光器件10的性能。另外,可以以电化学沉积的方式制备图案化第二空穴传输层,用电化学沉积方法制备图案化第二空穴传输层的材料,选择性更广,如,成本预算不高,可以选择便宜的材料,进而降低了成本。
请参阅图7、图10和图11。图10是本申请实施例3提供的发光器件漏电流数据示意图。图11是对比例1提供的发光器件漏电流数据示意图。需要说明的是,图10中的实施例3-1,实施例3-2、实施例3-3以及实施例3-4表示该器件进行了四次测量。
本申请中,将图案化第二阳极在第一电子传输层上的正投影设置为位于图案化绝缘层200在第一电子传输层上的正投影之内,本申请的发光器件10的电流走向平稳,即,本申请提供的发光器件10没有出现漏电流问题。而现有技术中,图案化第二电极301的边缘和图案化绝缘层201的边缘重合,其在空气中加热Ni,氧化Ni形成氧化镍,这个过程中容易在Ni以及下层图案化绝缘层201边缘形成氧化镍,造成空穴传输材料氧化镍与下层的电子传输材料直接接触,导致发光器件出现漏电流问题。因此,将图案化第二阳极在第一电子传输层上的正投影设置为位于与图案化第二阳极对应设置的图案化绝缘层200在第一电子传输层上的正投影中,在此基础上加热,使Ni被氧化形成图案化第二空穴传输层,有效降低图案化第二空穴传输层与第一电子传输层的接触概率,避免了发光器件10出现漏电流问题,从而提高发光器件10的性能。
请参阅图7、图12和图13。图12是本申请实施例4和对比例2提供的发光器件电压-亮度对比图。图13是本申请实施例4和对比例2提供的发光器件的亮度和外量子效率对比图。
在本申请中,将图案化第二阳极在第一电子传输层上的正投影设置为位于图案化绝缘层200在第一电子传输层上的正投影中,且采用Ag形成图案化第二阳极,其发光器件10的亮度最高可以达到大于10 4;发光器件10的亮度为10 4时,其外量子效率可以达到16%,提高了发光器件10的显示效果。而现有技术中,提供的发光器件10,其亮度小于10 4;现有技术中,图案化第二电极301的边缘和图案化绝缘层201的边缘重合,其发光器件的亮度为10 4时,其外量子效率最高只可以达到9%,因此,本申请的发光器件10可以有效降低图案化第二空穴传输层与第一电子传输层的接触概率,避免了发光器件10出现漏电流问题,从而提高发光器件10的性能,同时,因Ag的导电性好,可以提高空穴的传输效率, 进而提高发光器件10的性能。另外,可以以电化学沉积的方式制备图案化第二功空穴传输层,用电化学沉积方法制备图案化第二空穴传输层材料,选择性更广,如,成本预算不高,可以选择便宜的材料,进而降低了成本。
本申请实施例公开了一种发光器件10及其制备方法,在发光层500上设置第三功能层700和第三电极800,增加第一功能层100以及第三功能层700与发光层500之间的有效接触面积,提高载流子的注入量,使得空穴和电子注入平衡,提高发光器件10的性能以及寿命。另外,因图案化第二电极300在第一功能层100上的正投影设置为位于与图案化第二电极300对应设置的图案化绝缘层200在第一功能层100上的正投影之内,可以有效降低图案化第二功能层400与第一功能层100的接触概率,避免了发光器件10出现漏电流问题,从而提高发光器件10的性能。先形成发光器件10的其他膜层,最后才形成发光层500,避免其他膜层在材料沉积时,对发光层500的破坏,同时避免因发光层500被包裹在发光器件10的其他膜层中间,而造成其他膜层对发光层500的荧光将产生遮挡的效果,提高了发光器件10的显示效果,提高了发光器件10的性能。
以上对本申请实施例所提供的一种发光器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种发光器件,其中,包括:
    第一电极;
    第一功能层,所述第一功能层设置于所述图案化第一电极上;
    图案化绝缘层,所述图案化绝缘层设置于所述第一功能层上;
    图案化第二电极,所述图案化第二电极设置于所述图案化绝缘层上;
    图案化第二功能层,所述图案化第二功能层覆盖所述图案化第二电极;
    发光层,所述发光层覆盖所述图案化第二功能层以及所述第一功能层;
    第三功能层,所述第三功能层设置于所述发光层上;以及
    第三电极,所述第三电极设置于所述第三功能层上;
    其中,所述第一电极与所述图案化第二电极中的一者为阳极,另一者为阴极,所述第一电极与所述第三电极相同;所述第一功能层与所述图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,所述第一功能层为空穴功能层时,所述第三功能层为空穴功能层;所述第一功能层为电子功能层时,所述第三功能层为电子功能层,且所述电子功能层靠近所述阴极,所述空穴功能层靠近所述阳极。
  2. 根据权利要求1所述的发光器件,其中,所述图案化第二功能层在所述第一功能层上的正投影位于与所述图案化第二功能层对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内。
  3. 根据权利要求2所述的发光器件,其中,所述图案化第二功能层在所述第一功能层上的正投影的边缘到与所述图案化第二功能层对应设置的所述图案化绝缘层在所述第一功能层上的正投影的边缘的距离大于5纳米。
  4. 根据权利要求2所述的发光器件,其中,所述图案化第二电极在所述第一功能层上的正投影的边缘到与所述图案化第二电极对应设置的所述图案化绝缘层在所述第一功能层上的正投影的边缘的距离大于20纳米-105纳米。
  5. 根据权利要求1所述的发光器件,其中,所述图案化第二电极在所述第一功能层上的正投影位于与所述图案化第二电极对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内。
  6. 根据权利要求5所述的发光器件,其中,所述图案化第二功能层在所述第一功能层上的正投影的边缘到与所述图案化第二功能层对应设置的所述图案化绝缘层在所述第一功能层上的正投影的边缘的距离大于5纳米。
  7. 根据权利要求5所述的发光器件,其中,所述图案化第二电极在所述第一功能层上的正投影的边缘到与所述图案化第二电极对应设置的所述图案化绝缘层在所述第一功能层上的正投影的边缘的距离大于20纳米-105纳米。
  8. 根据权利要求1所述的发光器件,其中,所述图案化绝缘层的厚度为30纳米-100纳米。
  9. 根据权利要求1所述的发光器件,其中,所述阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合;
    所述阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn和Ag中的一种或几种组合;
    所述空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合;
    所述电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C60、GaZnO和ZnMgLiO中的一种或几种组合;
    所述发光层为量子点发光层,所述量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物、I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP中的一种或多种;所述I-III-VI族化合物选自CuInS 2、CuInSe 2、AgInS 2中的一种或多种,所述核壳结构的量子点的核层选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS、ZnS中的一种或多种。
  10. 一种发光器件的制备方法,其中,包括:
    提供第一电极;
    在所述第一电极上形成第一功能层;
    在所述第一功能层上形成图案化绝缘层,所述图案化绝缘层至少部分露出所述第一功能层;
    在所述图案化绝缘层上形成图案化第二电极;
    在所述图案化第二电极上形成图案化第二功能层;
    在所述第一功能层和所述图案化第二功能层上形成发光层;
    在所述发光层上形成第三功能层;
    在所述第三功能层上形成第三电极;
    其中,所述第一电极与所述图案化第二电极中的一者为阳极,另一者为阴极,所述第一电极与所述第三电极相同;所述第一功能层与所述图案化第二功能层中的一者为电子功能层,另一者为空穴功能层,所述第一功能层为空穴功能层时,所述第三功能层为空穴功能层;所述第一功能层为电子功能层时,所述第三功能层为电子功能层,且所述电子功能层靠近所述阴极,所述空穴功能层靠近所述阳极。
  11. 根据权利要求10所述的发光器件的制备方法,其中,在所述图案化绝缘层上形成图案化第二电极的步骤包括:
    在所述第一功能层以及所述图案化绝缘层上形成具有若干个过孔的第二光阻层,所述过孔与所述图案化绝缘层对应,所述过孔贯穿所述第二光阻层以暴露部分所述图案化绝缘层;
    在所述过孔中形成图案化第二电极,其中,所述图案化第二电极在所述第一功能层上的正投影位于与所述图案化第二电极对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内。
  12. 根据权利要求10所述的发光器件的制备方法,其中,在所述第一功能层上形成图案化绝缘层的步骤,包括:
    在所述第一功能层上形成具有若干个通孔的第一光阻层,所述通孔贯穿所述第一光阻层以暴露部分所述第一功能层;
    在所述通孔中形成图案化绝缘层;
    去除所述第一光阻层。
  13. 根据权利要求12所述的发光器件的制备方法,其中,所述在所述图案化绝缘层上形成图案化第二电极的步骤包括:
    在所述第一功能层以及所述图案化绝缘层上形成具有若干个过孔的第二光阻层,所述过孔与所述图案化绝缘层对应,所述过孔贯穿所述第二光阻层以暴露部分所述图案化绝缘层;
    在所述过孔中形成图案化第二电极,其中,所述图案化第二电极在所述第一功能层上的正投影位于所述图案化绝缘层在所述第一功能层上的正投影之内。
  14. 根据权利要求13所述的发光器件的制备方法,其中,在所述图案化第二电极上形成图案化第二功能层的步骤中,包括:
    去除所述第二光阻层;
    对所述图案化第二电极进行氧化处理,在所述图案化第二电极表面形成图案化第二功能层,其中,所述图案化第二功能层在所述第一功能层上的正投影位于与所述图案化第二功能层对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内。
  15. 根据权利要求14所述的发光器件的制备方法,其中,所述图案化第二电极材料包括导电材料,所述图案化第二功能层材料包括所述导电材料的氧化物。
  16. 根据权利要求14所述的发光器件的制备方法,其中,所述第二电极为阳极,所述图案化第二功能层为空穴功能层,所述阳极材料选自Ni和Cu中的一种或两种组合,所述空穴功能层材料选自氧化镍和氧化铜中的一种或两种组合。
  17. 根据权利要求14所述的发光器件的制备方法,其中,所述第二电极为阴极,所述第二功能层为电子功能层,所述阴极材料选自Ti、Zn和Sn中的一种或两种组合,所述电子功能层材料选自TiO 2、ZnO和SnO 2的一种或两种组合。
  18. 根据权利要求13所述的发光器件的制备方法,其中,在所述图案化第二电极上形成图案化第二功能层的步骤中,包括:
    在所述图案化绝缘层以及所述图案化第二电极上沉积图案化第二功能层材料,形成图案化第二功能层,其中,所述图案化第二功能层在所述第一功能层上的正投影位于与所述图案化第二功能层对应设置的所述图案化绝缘层在所述第一功能层上的正投影之内;
    去除所述第二光阻层。
  19. 根据权利要求18所述的发光器件的制备方法,其中,所述图案化第二电极为阳极,所述图案化第二功能层为空穴功能层,所述阳极材料选自Pt、Ni、Cu、Ag、Al和Au中的一种或几种组合,所述空穴功能层材料选自氧化镍、氧化铜、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、硫氰酸亚铜、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)和N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或几种组合。
  20. 根据权利要求18所述的发光器件的制备方法,其中,所述图案化第二电极为阴极,所述第二功能层为电子功能层,所述阴极材料选自ITO、FTO、Fe、Cu、Al、Sn、Zn、和Ag中的一种或几种组合,所述电子功能层材料选自TiO 2、ZnO、SnO、ZnMgO、AlZnO、ZnSnO、ZrO、AlZnMgO、Li掺杂TiO 2、Ru掺杂TiO 2、掺杂石墨烯、非掺杂石墨烯、C 60、GaZnO和ZnMgLiO中的一种或几种组合。
PCT/CN2022/120905 2021-10-20 2022-09-23 发光器件及其制备方法 WO2023065968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111222071.2A CN116017997A (zh) 2021-10-20 2021-10-20 发光器件及其制备方法
CN202111222071.2 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023065968A1 true WO2023065968A1 (zh) 2023-04-27

Family

ID=86030375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120905 WO2023065968A1 (zh) 2021-10-20 2022-09-23 发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN116017997A (zh)
WO (1) WO2023065968A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851953A (zh) * 2005-04-22 2006-10-25 株式会社半导体能源研究所 半导体元件,有机晶体管,发光器件,和电子器件
US20100090202A1 (en) * 2006-12-28 2010-04-15 Dai Nippon Printing Co., Ltd Organic transistor element, its manufacturing method, organic light-emitting transistor, and light-emitting display device
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
CN107346776A (zh) * 2016-12-02 2017-11-14 广东聚华印刷显示技术有限公司 印刷显示器件及其制作方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851953A (zh) * 2005-04-22 2006-10-25 株式会社半导体能源研究所 半导体元件,有机晶体管,发光器件,和电子器件
US20100090202A1 (en) * 2006-12-28 2010-04-15 Dai Nippon Printing Co., Ltd Organic transistor element, its manufacturing method, organic light-emitting transistor, and light-emitting display device
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
CN107346776A (zh) * 2016-12-02 2017-11-14 广东聚华印刷显示技术有限公司 印刷显示器件及其制作方法和应用

Also Published As

Publication number Publication date
CN116017997A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN109713098B (zh) 发光二极管以及包括该发光二极管的发光设备
KR101658691B1 (ko) 안정적이고 모든 용액에 처리 가능한 양자점 발광 다이오드
KR102649297B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
US20080238299A1 (en) Nanodot electroluminescent diode of tandem structure and method for fabricating the same
CN111048671B (zh) 无机发光体、具有该无机发光体的发光二极管和发光装置
CN112349852A (zh) 电子传输材料及其制备方法和应用
US20100283046A1 (en) Organic electroluminescent element
WO2023065968A1 (zh) 发光器件及其制备方法
WO2023065984A1 (zh) 发光器件及其制备方法
US20220359845A1 (en) Light-emitting element, light-emitting device, and method for manufacturing light-emitting element
CN113130794B (zh) 一种量子点发光二极管及其制备方法
TWI791164B (zh) 發光二極體及包含該發光二極體的發光裝置
CN111384263B (zh) 量子点发光二极管及其制备方法
CN109671837B (zh) 发光体以及包括其的发光膜、发光二极管和发光装置
WO2023159993A1 (zh) 量子点材料及制备方法、发光二极管
WO2024114066A1 (zh) 发光器件及其制备方法及显示装置
WO2021176543A1 (ja) 発光素子及びその製造方法
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
CN116193948A (zh) 一种发光二极管的制备方法
CN116997237A (zh) 一种光电器件及其制备方法、显示装置
CN115867064A (zh) 量子点发光二极管及其制备方法、光电装置
WO2023125072A1 (zh) 一种发光二极管及其制备方法
KR20220000303A (ko) 전자 수송층, 이를 포함하는 양자점 발광 소자, 이러한 전자 수송층 평가를 위한 단일 전하 소자 및 그 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE