WO2023122999A1 - 发光器件及其制备方法、显示面板、显示装置 - Google Patents

发光器件及其制备方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2023122999A1
WO2023122999A1 PCT/CN2021/142221 CN2021142221W WO2023122999A1 WO 2023122999 A1 WO2023122999 A1 WO 2023122999A1 CN 2021142221 W CN2021142221 W CN 2021142221W WO 2023122999 A1 WO2023122999 A1 WO 2023122999A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
light
auxiliary layer
group
Prior art date
Application number
PCT/CN2021/142221
Other languages
English (en)
French (fr)
Inventor
王好伟
张晓远
张渊明
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/142221 priority Critical patent/WO2023122999A1/zh
Priority to US17/921,091 priority patent/US20240224560A1/en
Priority to CN202180004249.8A priority patent/CN116686406A/zh
Publication of WO2023122999A1 publication Critical patent/WO2023122999A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present disclosure relates to the field of display technology, in particular to a light-emitting device, a manufacturing method thereof, a display panel, and a display device.
  • Quantum dots are an important fluorescent nanomaterial. Quantum dots are used as light-emitting layer materials in the fields of flat-panel lighting and optoelectronic displays, and more and more attention has been paid to them. So far, in terms of device performance, the external quantum efficiency (EQE) of quantum dot light emitting diodes (Quantum Dot Light Emitting Diodes, QLED) has reached more than 20%.
  • the patterning process of quantum dots in the light-emitting layer is a key step in determining full-color, high-resolution QLED devices. At present, transfer printing, inkjet printing, and photolithography have been used to realize the patterning process of quantum dots.
  • the disclosure provides a light-emitting device, a preparation method thereof, a display panel, and a display device.
  • the present disclosure provides a light emitting device, comprising:
  • an auxiliary layer and a quantum dot layer are arranged in sequence;
  • the auxiliary layer has a first group and a second group, the first group and the surface group of the substrate can be combined with each other through a chemical reaction, the second group and the quantum dot layer
  • the ligands of the quantum dots can be combined with each other through chemical reactions, and the binding force between the auxiliary layer and the substrate is smaller than the binding force between the quantum dots and the auxiliary layer.
  • the second group is combined with the ligands of the quantum dots in the quantum dot layer through ligand exchange or cross-linking reaction.
  • the first group is disposed close to the substrate, and the second group is disposed close to the quantum dot layer.
  • the auxiliary layer is an organic material with a thickness of 0.1-1 nm.
  • the auxiliary layer includes at least one of the compounds represented by structural formula (1) and structural formula (2),
  • R1 includes at least one of a benzene ring-conjugated double bond, a carbon-oxygen double bond, a carbon-carbon double bond, a carbon-nitrogen double bond, a hydroxyl group, a carboxyl group, and a mercapto group
  • R2 is a carbon with a saturated or unsaturated bond chain
  • R3 includes at least one of alkoxy, acetoxy and halogen
  • R4 includes at least one of alkoxy, acetoxy and halogen
  • R5 includes at least one of alkoxy, acetoxy and halogen A sort of.
  • the auxiliary layer includes:
  • 3-Mercaptopropyltrimethoxysilane 3-Mercaptopropyltriethoxysilane, 3-Mercaptopropylmethyldimethoxysilane, 3-Mercaptopropylmethyldiethoxysilane, Mercaptopropyl At least one of silane, 3-mercaptopropyltrimethylsilane, and bis-[3-(triethoxysilyl)propyl]-tetrasulfide.
  • the light-emitting device has a plurality of pixels arranged in an array, each of which includes a first sub-pixel and a second sub-pixel, and a spacer structure is arranged on the substrate, and adjacent to the spacer structure is surrounded by The minimum area formed constitutes a sub-pixel;
  • the quantum dot layer includes first quantum dots and second quantum dots, the first quantum dots are disposed in the first sub-pixel, the second quantum dots are disposed in the second sub-pixel, the The emission wavelengths of the first quantum dots and the second quantum dots are different.
  • the substrate further includes a first electrode and a first carrier transport layer arranged in a stack, and the first carrier transport layer is arranged closer to the auxiliary layer.
  • the substrate further includes a backplane, and the backplane includes a light-emitting unit, and the light emitted by the light-emitting unit becomes light in the second wavelength band after passing through the first quantum dot;
  • the bonding force between the auxiliary layer and the substrate is greater than the bonding force between the auxiliary layer and the spacer structure.
  • the pixel further includes a third sub-pixel, the quantum dot layer is correspondingly provided with a third quantum dot, the third quantum dot is arranged in the third sub-pixel, the first quantum dot, the The emission wavelengths of the second quantum dot and the third quantum dot are different.
  • the bonding force between the auxiliary layer and the substrate is greater than the bonding force between the auxiliary layer and the spacer structure.
  • the light emitting device also includes:
  • a second carrier transport layer disposed on a side of the quantum dot layer away from the substrate
  • the second electrode is disposed on a side of the second carrier transport layer away from the substrate.
  • the present disclosure provides a method for preparing a light-emitting device, including:
  • the auxiliary layer has a first group and a second group, the first group and the surface group of the substrate can be combined with each other through a chemical reaction, the second group and the quantum The ligands of the quantum dots in the dot layer can be combined with each other through chemical reactions, and the binding force between the auxiliary layer and the substrate is smaller than the binding force between the quantum dots and the auxiliary layer.
  • the second group is combined with the ligands of the quantum dots in the quantum dot layer through ligand exchange or cross-linking reaction.
  • the step of sequentially forming an auxiliary layer and a quantum dot layer on one side of the substrate includes:
  • each of the pixels includes a first sub-pixel and a second sub-pixel
  • the quantum dot layer includes a first quantum dot and a second quantum dot
  • the first quantum dot is formed on the first sub-pixel
  • the second quantum dots are formed in the second sub-pixels, and the minimum area surrounded by adjacent spacing structures on the substrate forms a sub-pixel, and the first quantum dots and the second quantum dots The dots emit light at different wavelengths.
  • the pixel further includes a third sub-pixel, the quantum dot layer is correspondingly provided with a third quantum dot, the third quantum dot is formed in the third sub-pixel, the first quantum dot, the The emission wavelengths of the second quantum dot and the third quantum dot are different.
  • the bonding force between the auxiliary layer and the substrate is greater than the bonding force between the auxiliary layer and the spacer structure.
  • the present disclosure provides a display panel, including the light emitting device described in the above embodiments.
  • the present disclosure provides a display device, including the display panel described in the above embodiments.
  • FIG. 1 is a schematic structural diagram of a light emitting device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a light emitting device according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a light emitting device according to another embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a light emitting device according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a light emitting device according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a light emitting device according to another embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of the surface of the substrate with surface groups
  • Figure 8 is a schematic flow chart of forming an auxiliary layer on a substrate with surface groups
  • Fig. 9 is another schematic flow chart of forming an auxiliary layer on a substrate with surface groups
  • Fig. 10 is a schematic diagram of the cross-linking of the ligand on the quantum dot and the auxiliary layer;
  • Fig. 11 is a schematic flow chart of forming different quantum dot layers in the pixel region
  • Fig. 12 is a schematic flow chart of forming different quantum dot layers in the pixel area on the blue backplane
  • Fig. 13 is a schematic flow chart of forming different quantum dot layers in the pixel area on the white backplane
  • Fig. 14 is another schematic flow chart of forming different quantum dot layers in the pixel area on the blue light backplane.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the term “comprises” or “comprises”, when used in this specification, indicates the presence of stated features, regions, integers, steps, operations, elements, and/or components, but does not exclude the presence or addition of an or multiple other features, regions, integers, steps, operations, elements, components and/or collections thereof.
  • Photolithography is usually used to realize the patterning of electronic materials (quantum dots). During the development process in the photolithography process, some quantum dots that should have been developed will remain in the pixel area, resulting in color mixing problems.
  • the light-emitting device of the present disclosure includes: a substrate 10; an auxiliary layer 20 and a quantum dot layer 30 arranged in sequence on one side of the substrate 10, the auxiliary layer 20 has a first group and a second group , the first group and the surface group of the substrate 10 can be combined with each other through a chemical reaction, the second group and the ligands of the quantum dots in the quantum dot layer 30 can be combined with each other through a chemical reaction, the combination of the auxiliary layer 20 and the substrate 10
  • the force is smaller than the bonding force of the quantum dots and the auxiliary layer 20 .
  • the auxiliary layer 20 is set between the substrate 10 and the quantum dot layer 30, the first group and the surface group of the substrate 10 can be combined with each other through a chemical reaction, and the second group and the quantum dot layer 30
  • the ligands of the quantum dots in the quantum dots can be combined with each other through chemical reactions, so that the quantum dots in the quantum dot layer 30 can be stably connected to the auxiliary layer 20 .
  • the quantum dots in the pixel area are stably and firmly connected through the auxiliary layer, and the quantum dots not connected with the auxiliary layer are easy to remove, because the binding force between the auxiliary layer 20 and the substrate 10 is smaller than the combination of the quantum dots and the auxiliary layer 20 Force, when the auxiliary layer is used as a sacrificial layer, it is easy to be washed away, and the quantum dots on the residual auxiliary layer are taken away by the way, and it is not easy to remain in the pixel area, which can ensure the purity of the quantum dots in the pixel area and avoid remaining other colors in the pixel area Quantum dots can avoid the problem of mixing in light-emitting devices, improve the luminous effect, and help improve the performance of full-color QLEDs.
  • the light emitting device can be an inverted structure, an upright structure, a top emission device and a bottom emission device.
  • the substrate 10 may include a first electrode 12, and the side of the quantum dot layer 30 away from the auxiliary layer 20 may be provided with a second electrode 40.
  • the first electrode 12 may be a cathode
  • the second electrode 40 may be an anode. Applying a voltage between the first electrode 12 and the second electrode 40 can make the quantum dots in the quantum dot layer 30 emit light.
  • the substrate 10 can be a backplane, which contains a light-emitting unit, and the light emitted by the light-emitting unit can emit light of a desired wavelength after being converted by the quantum dots in the quantum dot layer 30, that is, the quantum dots in the quantum dot layer 30 Can be used as a wavelength conversion layer.
  • the light-emitting unit in the backplane can emit blue light
  • the quantum dots in the quantum dot layer 30 can include first quantum dots and second quantum dots
  • the blue light can be converted into second-waveband light (for example, red Light) converts blue light into red light
  • the blue light can be converted into third-band light (such as green light) after passing through the second quantum dot
  • full-color display can be realized through the cooperation of red, blue and green sub-pixels.
  • the substrate 10 further includes a first electrode and a first carrier transport layer 50 arranged in a stack, and the first carrier transport layer 50 is arranged closer to the auxiliary layer 20 .
  • the surface of the first carrier transport layer 50 close to the auxiliary layer 20 has surface groups, and the first group of the auxiliary layer 20 and the surface group of the first carrier transport layer 50 can be combined with each other through a chemical reaction,
  • the second group of the auxiliary layer 20 and the ligands of the quantum dots in the quantum dot layer 30 can be combined with each other through a chemical reaction, so that the quantum dots in the quantum dot layer 30 can be stably connected to the auxiliary layer 20, and the auxiliary layer 20 and the second A binding force of the carrier transport layer 50 is smaller than that of the quantum dots and the auxiliary layer 20 .
  • the quantum dots in the pixel area are connected stably and firmly through the auxiliary layer, and the quantum dots not connected with the auxiliary layer are easy to remove, because the binding force between the auxiliary layer 20 and the first carrier transport layer 50 is smaller than that between the quantum dots and the auxiliary layer 50.
  • the substrate 10 can include a first electrode 12, the first electrode 12 can be arranged on the substrate, the substrate can be glass, the glass with the first electrode 12 can be conductive glass, and the first electrode 12 can be formed on the first electrode 12.
  • a carrier transport layer 50, the first electrode 12 can be a cathode, the first carrier transport layer 50 can be an electron transport layer, and the electron transport layer can include at least one of ZnO, ZnMgO and TiO 2 materials, such as electron
  • the transport layer may include ZnO
  • the first carrier transport layer 50 may have surface groups, the surface groups may be hydroxyl groups, an auxiliary layer 20 may be formed on the first carrier transport layer, and the auxiliary layer 20 may be a single molecule layer, the auxiliary layer 20 has a second group, and the second group is a group that can cross-link with the ligand of the quantum dot.
  • this method can be used to print AMQLED (Active-Matrix Quantum dot Light Emitting Diodes, active-matrix quantum dot light-emitting diodes), which can improve the morphology of quantum dot films.
  • AMQLED Active-Matrix Quantum dot Light Emitting Diodes, active-matrix quantum dot light-emitting diodes
  • AMQLED used in photolithography can effectively solve the problem of color mixing.
  • an auxiliary layer 20 can be formed on the first electrode or the electron transport layer on the surface of the first electrode, the auxiliary layer 20 can be a monomolecular layer, and there can be a silane reagent of mercapto in the auxiliary layer 20, such as The silane reagent may be 3-mercaptopropyltrimethoxysilane.
  • a solution of 3-mercaptopropyltrimethoxysilane in ethanol (3-mercaptopropyltrimethoxysilane 0.5mL, ethanol 4.5mL) was prepared, and a small amount of Ammonia water (0.1mL), 90uL of the above solution was added dropwise on the above-mentioned conductive glass, spin-coated to form a film at a rotation speed of 1000-4000rpm, and left at room temperature for 1-2h. Afterwards, rinse the above-mentioned conductive glass with ultra-dry absolute ethanol for 2-3 times.
  • This step can be done in the air, which can get rid of the dependence on expensive glove boxes.
  • 3-mercaptopropyltrimethoxysilane is used
  • concentration of the silane solution and the spin-coating speed a dense silane-coupled silicon oxide film is formed on the upper film layer.
  • silane reagents with mercapto groups can be selected: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyl At least one of diethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane and bis-[3-(triethoxysilyl)propyl]-tetrasulfide.
  • Graphical quantum dots can be printed on the auxiliary layer 20, quantum dots can be printed on the pixel area of the auxiliary layer 20, and the quantum dots can be fixed on the auxiliary layer 20 by cross-linking or ligand exchange. After the quantum dots are printed to the corresponding position, The second group exposed in the monolayer, such as mercapto, can chemically react with the ligands of the quantum dots, so that the quantum dots are fixed on the auxiliary layer 20, which can prevent the climbing of the quantum dots and increase the quantum dot layer. The flatness of the film optimizes the film morphology of printed quantum dots.
  • an auxiliary layer 20 is provided between the substrate 10 and the quantum dot layer 30, the auxiliary layer 20 has a second group, and the second group communicates with the ligand of the quantum dot in the quantum dot layer 30.
  • the chemical bond connection through the auxiliary layer 20 can make the quantum dots in the quantum dot layer 30 stable and firm.
  • the connection of the quantum dots in the pixel area through the auxiliary layer 20 is stable and firm.
  • the fabrication process of the light-emitting device can be as follows:
  • An electron transport layer is formed on the first electrode on the conductive glass: the electron transport layer can be a zinc oxide-based nanoparticle film or a zinc oxide film, and the surface of the electron transport layer has surface groups;
  • Form the auxiliary layer 20 on the surface of the electron transport layer equip the ethanol solution of silane reagent (0.5mL of silane reagent, ethanol 4.5mL), the structural formula of silane reagent can be shown in structural formula (3), and add a small amount of ammonia water (0.1mL), Add 90uL of the above solution dropwise to the electron transport layer, spin-coat to form a film, and leave it at room temperature for 1-2h.
  • the surface groups of the electron transport layer react chemically with the silane reagent, and then rinse the above-mentioned conductive glass with ultra-dry absolute ethanol. Patterning quantum dots by setting an auxiliary layer does not require dry etching, but only needs to be cleaned to reduce damage to the film layer;
  • Patterned quantum dots (QD):
  • the electron transport layer has formed an auxiliary layer 20, the surface of the auxiliary layer 20 has a second group, the second group can include a double bond cross-linkable group, such as hydroxyl, mercapto, in the auxiliary layer
  • the first quantum dots (such as red light quantum dots) are coated on the pixel area, and the ligands of the deposited first quantum dots have a third group, the third group can be cross-linked with the second group, and the third group can be Including double bonds, triple bonds, hydroxyl groups, carboxyl groups, etc., exposing the corresponding pixel area with the first light can cause the ligands of the first quantum dots to undergo a crosslinking reaction with the second group of the auxiliary layer 20, and the unexposed part
  • the first quantum dots are eluted by developing, and the first quantum dot layer 31 is formed in the corresponding pixel area.
  • the above steps can be repeated to form patterned second quantum dots (such as green light quantum dots) and third quantum dots (such as blue light quantum dots) in corresponding pixel areas, and then form patterned second quantum dots in corresponding pixel areas.
  • the dot layer 32 and the third quantum dot layer 33 can remove other quantum dots remaining in the non-exposed area, prevent color mixing, and then form a full-color QLED; the red light quantum dots, green light quantum dots, and blue light quantum dots can also be adjusted as required. patterning order.
  • auxiliary layer 20 it is also possible to sequentially form a hole transport layer, a hole injection layer, and a second electrode on the quantum dot layer, and finally obtain a quantum dot light-emitting device through packaging.
  • other quantum dots remaining in the non-exposed area can be removed by forming the auxiliary layer 20.
  • the quantum dots not connected to the auxiliary layer 20 are easy to remove and are not easy to remain in the pixel area, which can ensure the purity of the quantum dots in the pixel area. , avoid remaining quantum dots of other colors in the pixel area, avoid the problem of mixing light-emitting devices, improve the luminous effect, and help improve the performance of full-color QLED.
  • the preparation process does not require the use of photoresist lithography, avoiding the destruction of quantum dots by photolithography solvents, avoiding the hydroxide ions in the lye developer from destroying the coordination of surface ligands and quantum dot dangling bonds, and preventing quantum dots from being damaged. Surface defect sites are re-exposed to ensure device efficiency.
  • the auxiliary layer 20 is connected between the substrate/first carrier transport layer and the quantum dot layer, which can adjust the carrier transport rate to a certain extent, and further improve the performance of the full-color QLED.
  • the second group and the ligands of the quantum dots in the quantum dot layer 30 can combine with each other through ligand exchange or cross-linking reaction.
  • the first group is arranged close to the substrate 10, so that the first group is connected with the surface group of the substrate 10 through a chemical reaction
  • the second group is arranged near the quantum dot layer 30, so that the second group and the quantum dot layer
  • the ligands of the quantum dots in 30 are linked by chemical reactions.
  • the surface group can include a hydroxyl group or a carboxyl group
  • the first group can include a hydroxyl group, a carboxyl group or a double bond
  • the hydroxyl group can react with a carboxyl group or a double bond, so that the first group and the surface group can be connected by a chemical bond, so that the substrate 10 and the auxiliary layer 20 are stably and firmly connected together.
  • the ligand of the quantum dot may have a third group, and the second group and the third group may be connected by a chemical bond.
  • the third group can include at least one of amino, hydroxyl and carboxyl
  • the second group can include at least one of mercapto, amino, hydroxyl, carboxyl and double bond
  • the hydroxyl can react with carboxyl or double bond
  • the second group and the third group can carry out a chemical reaction, so that the second group and the third group can be connected by chemical bonds
  • the ligands of the auxiliary layer 20 and the quantum dots in the quantum dot layer 30 are firmly connected by chemical bonds.
  • the auxiliary layer 20 may stabilize the quantum dots in the quantum dot layer 30 .
  • the auxiliary layer 20 can be made of organic material, and the thickness can be 0.1-1 nm.
  • the thickness of the auxiliary layer 20 can be 0.5 nm, which is relatively small.
  • the auxiliary layer 20 may include at least one of the compounds represented by the structural formula (1) and the structural formula (2), and the structural formula (1) and the structural formula (2) are specifically as follows:
  • R1 may include at least one of a benzene ring-conjugated double bond, a carbon-oxygen double bond, a carbon-carbon double bond, a carbon-nitrogen double bond, a hydroxyl group, a carboxyl group, and a mercapto group
  • R2 may be a carbon with a saturated or unsaturated bond chain
  • R3 may include at least one of alkoxy, acetoxy and halogen
  • R4 may include at least one of alkoxy, acetoxy and halogen
  • R5 may include alkoxy, acetoxy and halogen at least one of the
  • the auxiliary layer 20 may include: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, At least one of propylmethyldiethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane and bis-[3-(triethoxysilyl)propyl]-tetrasulfide,
  • the auxiliary layer 20 may include: 3-mercaptopropyltrimethoxysilane, the mercapto group can form coordination bonds with the surface of the quantum dots, and improve the surface defects of the quantum dots by forming coordination bonds.
  • the mercapto group can also be used as the second group, and the ligand of the quantum dot can be connected with the second group through a chemical bond. This makes the connection between the quantum dots and the auxiliary layer 20 stable.
  • the light-emitting device may have a plurality of pixels arranged in an array, each pixel may include a first sub-pixel 101 and a second sub-pixel 102, and a spacer structure 11 is provided on the substrate 10. , the minimum area surrounded by adjacent spacer structures 11 can constitute a sub-pixel.
  • the quantum dot layer 30 may include a first quantum dot and a second quantum dot, the first quantum dot is arranged in the first sub-pixel 101, the second quantum dot is arranged in the second sub-pixel 102, the first quantum dot and the second quantum dot
  • the emission wavelengths of the dots are different.
  • the first quantum dot can emit red light
  • the second quantum dot can emit green light.
  • the auxiliary layer 20 can have a first pixel area and a second pixel area, the first sub-pixel 101 is correspondingly arranged in the first pixel area, and the second sub-pixel 102 is correspondingly arranged in In the second pixel area, the first quantum dots can be disposed in the first pixel area to form the first quantum dot layer 31 , and the second quantum dots can be disposed in the second pixel area to form the second quantum dot layer 32 .
  • the substrate 10 also includes a backplane, and the backplane may include a light-emitting unit, and the light of the first wavelength band emitted by the light-emitting unit passes through the first quantum dots, and becomes light of the second wavelength band to be emitted; the light emitted by the light-emitting unit The light of the first waveband, after passing through the second quantum dot, becomes the light of the third waveband and exits.
  • the backplane may include a light-emitting unit, and the light of the first wavelength band emitted by the light-emitting unit passes through the first quantum dots, and becomes light of the second wavelength band to be emitted; the light emitted by the light-emitting unit
  • the light of the first waveband after passing through the second quantum dot, becomes the light of the third waveband and exits.
  • the light emitted by the backplane can be converted into the light of the required wavelength through the conversion of the quantum dots in the quantum dot layer 30.
  • the quantum dots in the quantum dot layer 30 can be used as light conversion quantum dots, and the quantum dots convert the light emitted by the backplane into the desired wavelength. light of the desired wavelength.
  • the backplane can emit blue light
  • the quantum dots in the quantum dot layer 30 can include first quantum dots and second quantum dots. After the blue light passes through the first quantum dots, the first quantum dots convert the blue light into red light, and the blue light passes through the second quantum dots. After the quantum dots, the second quantum dot converts blue light into green light, and the backlight itself emits blue light. Through the cooperation of red light, blue light and green light, full-color display can be realized.
  • the pixel may further include a third sub-pixel 103, the quantum dot layer 30 is correspondingly provided with a third quantum dot, the third quantum dot is arranged in the third sub-pixel 103, and the first quantum dot 1.
  • the emission wavelengths of the second quantum dot and the third quantum dot are different, for example, the first quantum dot can emit red light, the second quantum dot can emit green light, and the third quantum dot can emit blue light.
  • the auxiliary layer 20 may have a third pixel area, the third sub-pixel 103 in each pixel may be correspondingly disposed in the third pixel area, and the third quantum dot may be disposed in the third pixel area to form the third quantum dot layer 33 .
  • the substrate 10 may include a stacked first electrode 12 and an electron transport layer 52, the auxiliary layer 20 is disposed on the side of the electron transport layer 52 away from the first electrode 12, and the spacer structure 11 on the substrate 10 may be
  • the first electrode 12 , the electron transport layer 52 and the organic layer are spaced apart, and different quantum dots can be spaced apart by the spacer structure 11 to form different sub-pixels.
  • the light emitted by the backplane can emit the light of the desired wavelength through the conversion of the quantum dots in the quantum dot layer 30, and the quantum dots in the quantum dot layer 30 can be used as light conversion quantum dots, and the quantum dots will convert the backplane The emitted light is converted to light of the desired wavelength.
  • the backplane can emit white light
  • the quantum dots in the quantum dot layer 30 can include first quantum dots, second quantum dots and third quantum dots. After the white light passes through the first quantum dots, the first quantum dots emit red light, and the white light passes through the first quantum dots. After the second quantum dot, the second quantum dot emits green light, and after the white light passes through the first quantum dot, the first quantum dot emits blue light. Through the cooperation of red light, blue light and green light, full-color display can be realized.
  • the bonding force between the auxiliary layer 20 and the substrate 10 is greater than the bonding force between the auxiliary layer 20 and the spacer structure 11 .
  • the bonding force between the auxiliary layer 20 and the substrate 10 is greater than the bonding force between the auxiliary layer 20 and the spacer structure 11, the bonding force between the auxiliary layer 20 and the substrate 10 is smaller than the bonding force between the quantum dots and the auxiliary layer 20, and the auxiliary layer 20
  • the substrate 10 may include a first electrode, and the light emitting device may further include:
  • the second carrier transport layer 60 and the second electrode 40, the second carrier transport layer 60 is arranged on the side of the quantum dot layer 30 away from the substrate 10, and the second electrode 40 is arranged on the side away from the second carrier transport layer 60.
  • the second carrier transport layer 60 is beneficial to improve carrier transport efficiency, and the quantum dots in the quantum dot layer 30 can be made to emit light by applying a voltage between the first electrode and the second electrode 40 .
  • the first electrode can be a cathode
  • the cathode can be arranged on a glass substrate
  • the first carrier transport layer 50 can include at least one of an electron injection layer 51 and an electron transport layer 52
  • the second A carrier transport layer 50 may include an electron injection layer 51 and an electron transport layer 52
  • the electron injection layer 51 is arranged near the first electrode
  • the electron transport layer may include at least one of ZnO, ZnMgO and TiO 2 materials, such as electron transport
  • the layer may include ZnO
  • the surface of the electron transport layer 52 away from the first electrode may have surface groups, such as hydroxyl groups, so that the surface groups and the first groups in the auxiliary layer 20 can be chemically bonded.
  • the second electrode can be an anode
  • the second carrier transport layer 60 can include at least one of a hole injection layer 61 and a hole transport layer 62
  • the second carrier transport layer 60 can include a hole injection layer 61 and a hole injection layer 62.
  • the hole transport layer 62 and the hole injection layer 61 are arranged close to the second electrode.
  • the first electrode can be an anode
  • the first carrier transport layer can include at least one of a hole injection layer and a hole transport layer
  • the first carrier transport layer can include a hole injection layer and a hole transport layer.
  • the hole transport layer, the hole injection layer is arranged close to the first electrode.
  • the second electrode can be a cathode, and the cathode can be arranged on a glass substrate.
  • the second carrier transport layer can include at least one of an electron injection layer and an electron transport layer, and the second carrier transport layer can include an electron injection layer and an electron transport layer.
  • the electron transport layer and the electron injection layer are arranged close to the second electrode.
  • the present disclosure provides a method for preparing a light-emitting device, including:
  • the substrate 10 includes a first electrode or a backplane, and the backplane may include a light emitting unit;
  • An auxiliary layer 20 and a quantum dot layer 30 are sequentially formed on one side of the substrate 10;
  • the auxiliary layer 20 has a first group and a second group, the first group and the surface group of the substrate 10 can be combined with each other through a chemical reaction, and the second group and the ligand of the quantum dot in the quantum dot layer 30
  • the bonding force between the auxiliary layer 20 and the substrate 10 is smaller than the bonding force between the quantum dots and the auxiliary layer 20 through chemical reaction.
  • An auxiliary layer 20 is set between the substrate 10 and the quantum dot layer 30, and the ligands of the second group and the quantum dots in the quantum dot layer 30 can be combined with each other through chemical reactions, so that the quantum dots in the quantum dot layer 30 can be stably connected on the auxiliary layer 20.
  • the quantum dots in the pixel area are stably and firmly connected through the auxiliary layer, and the quantum dots not connected to the auxiliary layer are easy to remove. Since the binding force between the auxiliary layer 20 and the substrate 10 is smaller than the binding force between the quantum dots and the auxiliary layer 20, When the auxiliary layer is used as a sacrificial layer, it is easy to be washed away, and the quantum dots on the residual auxiliary layer are taken away by the way, and it is not easy to remain in the pixel area, which can ensure the purity of the quantum dots in the pixel area and avoid remaining quantum dots of other colors in the pixel area. Point, to avoid the problem of mixing of light-emitting devices, improve the luminous effect, and help to improve the performance of full-color QLED.
  • the second group and the ligands of the quantum dots in the quantum dot layer 30 may combine with each other through ligand exchange or cross-linking reaction.
  • the first group can be arranged close to the substrate 10, so that the first group is connected with the surface group of the substrate 10 through a chemical reaction
  • the second group can be arranged near the quantum dot layer 30, so that the second group can be connected with the quantum dot layer 30.
  • the ligands of the quantum dots in the dot layer 30 are connected through chemical reactions.
  • the step of sequentially forming the auxiliary layer 20 and the quantum dot layer 30 on one side of the substrate 10 may include:
  • each pixel includes a first sub-pixel 101 and a second sub-pixel 102
  • the quantum dot layer includes a first quantum dot and a second quantum dot
  • the first quantum dot is formed in the first sub-pixel 101
  • the second quantum dot is formed in the second sub-pixel 102
  • the minimum area surrounded by the adjacent spacing structures 11 on the substrate 10 forms a sub-pixel
  • the emission wavelengths of the first quantum dot and the second quantum dot are different, for example,
  • the first quantum dot can emit red light
  • the second quantum dot can emit green light.
  • Different sub-pixels may be formed in corresponding pixel areas, for example, there may be a first pixel area and a second pixel area on the auxiliary layer 20, the first sub-pixel 101 is formed correspondingly in the first pixel area, and the second sub-pixel 102 is formed correspondingly In the second pixel area, first quantum dots can be formed in the first pixel area to form the first quantum dot layer 31 , and second quantum dots can be formed in the second pixel area to form the second quantum dot layer 32 .
  • an auxiliary layer 20 is provided between the substrate 10 and the quantum dot layer 30, the auxiliary layer 20 has a second group, and the second group and the ligand of the quantum dot in the quantum dot layer 30 pass through
  • the chemical bond connection can make the quantum dots in the quantum dot layer 30 stable and firm through the auxiliary layer 20 .
  • the quantum dots in the pixel area are stably and firmly connected through the auxiliary layer 20, and the quantum dots not connected to the auxiliary layer 20 are easy to remove and are not easy to remain in the pixel area, which can ensure the purity of the quantum dots in the pixel area and avoid Quantum dots of other colors remain in the pixel area.
  • the substrate may include a backplane, and the backplane may include a light-emitting unit.
  • the light of the first wavelength band emitted by the light-emitting unit passes through the first quantum dots, and then becomes light of the second waveband and exits; the light of the first waveband emitted by the light-emitting unit passes through the second quantum dot. After the point, it becomes the third waveband light emission.
  • the light-emitting unit can emit blue light. After the blue light passes through the first quantum dot, the first quantum dot converts the blue light into red light. After the blue light passes through the second quantum dot, the second quantum dot converts the blue light into green light.
  • the backlight itself emits blue light.
  • the substrate 10 may further include a stacked first electrode 12 and a first carrier transport layer 50 , and the first carrier transport layer 50 is arranged closer to the auxiliary layer 20 .
  • the first electrode 12 and the first carrier transport layer 50 can be sequentially formed on the substrate, and then the auxiliary layer 20 is formed on the first carrier transport layer 50, and then A quantum dot layer 30 is formed on the auxiliary layer 20, and a second electrode 40 is formed on the quantum dot layer 30.
  • the first carrier transport layer 50 may include at least one of an electron injection layer 51 and an electron transport layer 52, for example, the first carrier transport layer 50 may include an electron injection layer 51 and an electron transport layer 52, and the electron injection layer 51 is set close to the first electrode.
  • the second electrode 40 Before forming the second electrode 40, it may also include: on the side of the quantum dot layer 30 away from the substrate 10, a second carrier transport layer 60 may be formed, and then on the side of the second carrier transport layer 60 far away from the quantum dot layer 30 One side of the second electrode 40 can be formed, the second carrier transport layer 60 is conducive to improving the transport efficiency of carriers, by applying a voltage between the first electrode and the second electrode 40, the quantum dot layer 30 can be made Quantum dots emit light.
  • the second carrier transport layer 60 may include at least one of a hole injection layer 61 and a hole transport layer 62, for example, the second carrier transport layer 60 may include a hole injection layer 61 and a hole transport layer 62 , the hole injection layer 61 may be disposed close to the second electrode 40 .
  • the pixel may further include a third sub-pixel 103, the quantum dot layer is correspondingly provided with a third quantum dot, the third quantum dot is formed in the third sub-pixel 103, the first quantum dot, the second quantum dot and the second quantum dot
  • the emission wavelengths of the three quantum dots are different.
  • there may be a third pixel area on the auxiliary layer 20 the third sub-pixel 103 is correspondingly formed in the third pixel area
  • the third quantum dots may be formed in the third pixel area to form the third quantum dot layer 31, the first quantum dots It can emit red light, the second quantum dot can emit green light, and the third quantum dot can emit blue light. Through the cooperation of red light, blue light and green light, full-color display can be realized.
  • the bonding force between the auxiliary layer 20 and the substrate 10 is greater than the bonding force between the auxiliary layer 20 and the spacer structure 11 .
  • the auxiliary layer 20 is set between the substrate 10 and the quantum dot layer 30, the quantum dots in the pixel area are stably and firmly connected through the auxiliary layer, and the quantum dots not connected with the auxiliary layer are easy to remove, because the auxiliary layer 20 is connected to the substrate
  • the binding force of 10 is smaller than the binding force of quantum dots and auxiliary layer 20.
  • the auxiliary layer When the auxiliary layer is used as a sacrificial layer, it is easy to be washed away, and the quantum dots on the residual auxiliary layer are taken away by the way, and it is not easy to remain in the pixel area, so avoid residual in the pixel area. Quantum dots in other colors.
  • the auxiliary layer 20 may be an organic material with a thickness of 0.1-1 nm.
  • the surface group can include a hydroxyl group or a carboxyl group
  • the first group can include a hydroxyl group, a carboxyl group or a double bond
  • the hydroxyl group can react with the carboxyl group or a double bond, so that the first group and the surface group can be chemically bonded. connection, so that the substrate 10 and the auxiliary layer 20 are stably and firmly connected together.
  • the ligand of the quantum dot may include a third group, the third group may include at least one of amino, hydroxyl and carboxyl, the second group may include mercapto, amino, hydroxyl, carboxyl and at least one of the double bonds, the hydroxyl group can react with the carboxyl group or the double bond, the second group and the third group can undergo a chemical reaction, so that the second group and the third group can be connected by a chemical bond, and the auxiliary layer 20
  • the ligands of the quantum dots in the quantum dot layer 30 are firmly connected by chemical bonds, and the quantum dots in the quantum dot layer 30 can be stabilized by the auxiliary layer 20 .
  • the auxiliary layer 20 may include: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyl At least one of methyldiethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane and bis-[3-(triethoxysilyl)propyl]-tetrasulfide, such as,
  • the auxiliary layer 20 may include: 3-mercaptopropyltrimethoxysilane, the mercapto group can form coordination bonds with the surface of the quantum dots, and the surface defects of the quantum dots can be improved by forming coordination bonds. .
  • the mercapto group can also be used as the second group, and the ligand of the quantum dot can be connected with the second group through a chemical bond,
  • the step of forming a quantum dot layer on the auxiliary layer 20 may include:
  • Quantum dots are printed on the pixel area of the auxiliary layer 20 to form the quantum dot layer 30 .
  • the substrate 10 may include a first electrode, the first electrode may be disposed on the substrate, the substrate may be glass, the glass with the first electrode may be conductive glass, and the first carrier may be formed on the first electrode.
  • transport layer the first electrode can be a cathode
  • the first carrier transport layer can be an electron transport layer
  • the electron transport layer can include at least one of ZnO, ZnMgO and TiO 2 materials, such as the electron transport layer can include ZnO
  • the second A carrier transport layer may have a surface group, the surface group may be a hydroxyl group
  • an auxiliary layer 20 may be formed on the first carrier transport layer
  • the auxiliary layer 20 may be a monomolecular layer
  • the auxiliary layer 20 may have a second One group
  • the first group is a cross-linking group that can be cross-linked with the ligand of the quantum dot.
  • this method can be used to print AMQLED (Active-Matrix Quantum dot Light Emitting Diodes, active-matrix quantum dot light-emitting diodes), which can improve the morphology of quantum dot films.
  • AMQLED Active-Matrix Quantum dot Light Emitting Diodes, active-matrix quantum dot light-emitting diodes
  • AMQLED used in photolithography can effectively solve the problem of color mixing.
  • an auxiliary layer 20 can be formed on the first electrode or the electron transport layer on the surface of the first electrode, the auxiliary layer 20 can be a monomolecular layer, and there can be a silane reagent of mercapto in the auxiliary layer 20, such as The silane reagent may be 3-mercaptopropyltrimethoxysilane.
  • a solution of 3-mercaptopropyltrimethoxysilane in ethanol (3-mercaptopropyltrimethoxysilane 0.5mL, ethanol 4.5mL) was prepared, and a small amount of Ammonia water (0.1mL), 90uL of the above solution was added dropwise on the above-mentioned conductive glass, spin-coated to form a film at a rotation speed of 1000-4000rpm, and left at room temperature for 1-2h. Afterwards, rinse the above-mentioned conductive glass with ultra-dry absolute ethanol for 2-3 times.
  • This step can be done in the air, which can get rid of the dependence on expensive glove boxes.
  • 3-mercaptopropyltrimethoxysilane is used
  • concentration of the silane solution and the spin-coating speed a dense silane-coupled silicon oxide film is formed on the upper film layer.
  • silane reagents with mercapto groups can be selected: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyl At least one of diethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane and bis-[3-(triethoxysilyl)propyl]-tetrasulfide.
  • Graphical quantum dots can be printed on the auxiliary layer 20, quantum dots can be printed on the pixel area of the auxiliary layer 20, and the quantum dots can be fixed on the auxiliary layer 20 by cross-linking or ligand exchange. After the quantum dots are printed to the corresponding position, The second group exposed in the monomolecular layer, such as thiol, can react with the ligand of the quantum dot, so that the quantum dot is fixed on the auxiliary layer 20, preventing the climbing of the quantum dot, and increasing the smoothness of the quantum dot layer to optimize the film morphology of printed quantum dots.
  • the second group exposed in the monomolecular layer such as thiol
  • the step of forming a plurality of pixels arranged in an array on the auxiliary layer 20 may include:
  • the step of forming a plurality of pixels arranged in an array on the auxiliary layer 20 may include:
  • the unexposed area is flood-exposed and developed with the second light, so as to form the second quantum dot layer 32 in the second pixel area.
  • the residual second quantum dots in the unexposed area can be removed by flood exposure and development to avoid color mixing.
  • the step of forming a plurality of pixels arranged in an array on the auxiliary layer 20 may include:
  • the emission wavelengths of the first quantum dots, the second quantum dots and the third quantum dots may be different;
  • the unexposed area is flood-exposed and developed with the second light to form the third quantum dot layer 33 in the third pixel area.
  • the ligands of the quantum dots can be cross-linked with the second groups in the auxiliary layer 20 through chemical bonds.
  • the ligands of the quantum dots and the second groups in the auxiliary layer 20 can be Cross-linking is performed so that the ligands of the quantum dots can be cross-linked with the second group in the auxiliary layer 20 through chemical bonds.
  • the specific preparation process can be as follows:
  • the electron transport layer can be a zinc oxide-based nanoparticle film or a zinc oxide film
  • the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, Ga-doped magnesium oxide nanoparticles, etc., uniform
  • the speed of the melter can be set at 500-2500rpm to adjust the thickness of the film layer;
  • silane reagent 0.5mL, ethanol 4.5mL
  • the structural formula of silane reagent can be shown in structural formula (3), and add a small amount of ammonia water (0.1mL), remove 90uL of the above solution and add it dropwise to the above conductive glass
  • spin-coat to form a film at a speed of 1000-4000rpm, and place it at room temperature for 1-2h, then rinse the above-mentioned conductive glass with ultra-dry absolute ethanol for 2-3 times, this step can be done in the air, It can get rid of the dependence on the expensive glove box; by setting the auxiliary layer to pattern the quantum dots, no dry etching is required, only cleaning is required, which reduces the damage to the film layer.
  • the electron transport layer has been modified on the upper monomolecular layer (auxiliary layer 20), and the surface of the auxiliary layer 20 has a second group, the second group can include a double bond cross-linkable group, such as hydroxyl, mercapto, in the pixel of the auxiliary layer
  • the first quantum dot (such as red light quantum dot) is coated on the area, and the ligand of the deposited first quantum dot has a third group, the third group can be cross-linked with the second group, and the third group can include double Bonds, triple bonds, hydroxyl groups, carboxyl groups, etc., the corresponding pixel area is exposed to the first light, so that the ligands of the first quantum dots and the second groups of the auxiliary layer 20 undergo a cross-linking reaction, and the first quantum dots in the unexposed part
  • the quantum dots are eluted by developing, and the first quantum dot layer 31 is formed in the corresponding pixel area.
  • the deep ultraviolet (wavelength between 200nm and 350nm) light (the first quantum dot layer 31 can be used)
  • Two light exposures perform pan exposure to dissociate the monomolecular layer from the lower film layer, and then develop the monomolecular layer to eliminate the remaining first quantum dots and prevent color mixing;
  • the above steps can be repeated to form patterned second quantum dots (such as green light quantum dots) and third quantum dots (such as blue light quantum dots) in corresponding regions, and then form patterned second quantum dot layers 32 in corresponding regions And the third quantum dot layer 33, can remove other quantum dots remaining in the non-exposed area, prevent color mixing, and then form a full-color QLED; also can adjust the patterning sequence of red light quantum dots, green light quantum dots and blue light quantum dots as required ;
  • a hole transport layer can be formed on the quantum dot layer by spin coating or evaporation, and the hole transport layer can be selected from TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl ) diphenylamine)), PVK (polyvinyl carbazole) or hole transport compounds, etc.
  • the film-forming conditions of TFB can be: 130-150°C in an inert gas to form a film, the film thickness can be adjusted according to the speed of the homogenizer, and the evaporated hole transport material can also be used in this step;
  • the hole injection layer can be formed by spin coating or evaporation, and the hole injection layer can choose PEDOT:PSS 4083 (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate) or other suitable for hole
  • PEDOT:PSS 4083 poly 3,4-ethylenedioxythiophene/polystyrene sulfonate
  • the compound of the injection layer, etc., the film-forming condition of PEDOT can be 130-150°C in the air, the thickness of the film layer can be adjusted according to the speed of the homogenizer, and the hole-injection material evaporated can also be used in this step;
  • anode materials can be introduced, such as vapor-deposited aluminum film, silver film or sputtered indium zinc oxide (IZO) film to prepare QLED devices;
  • the packaging cover plate is added, and the device is packaged with ultraviolet curing glue to prepare a quantum dot light-emitting device.
  • the substrate 10 can be a backplane
  • the backplane can include a light-emitting unit
  • the light-emitting unit can emit blue light
  • the backplane can emit blue light.
  • the backplane blue light OLED substrate
  • the first quantum dot layer 31 red light quantum dots
  • the second quantum dot layer can be formed in the second pixel area.
  • the second quantum dot layer 32 green light quantum dots).
  • the OLED itself emits blue light
  • it is only necessary to prepare patterned red and green pixel regions for example, to form the first quantum dot layer 31 (red light quantum dots), the second quantum dot layer 32 (green light quantum dots) is formed in the second pixel area, the blue light emitted by the back plate passes through the first quantum dots, and the first quantum dots can emit red light, and the blue light emitted by the back plate passes through the second quantum dots
  • the second quantum dot behind the point can emit green light
  • the quantum dot layer can be used as a light conversion layer to convert blue light into light of other colors, thereby forming a full-color light-emitting device.
  • the substrate 10 can be a backplane
  • the backplane can include a light-emitting unit
  • the light-emitting unit can emit blue light
  • the backplane can emit white light.
  • the backplane (white light OLED substrate) can be prepared first, and the 10, and then a quantum dot layer is formed on the corresponding pixel area on the auxiliary layer by the method in the present disclosure. Since the OLED itself emits white light, when using the method in the present disclosure to prepare the quantum dot layer, the quantum dot layer can be formed in the first pixel area, the second pixel area and the third pixel area respectively, and the first pixel area is first formed in the first pixel area.
  • quantum dots red light quantum dots
  • quantum dots green light quantum dots
  • quantum dots blue light quantum dots
  • the first quantum dots can emit red light after the white and blue light emitted by the back plate passes through the first quantum dots
  • the second quantum dots can emit red light after the white light emitted by the back plate passes through the second quantum dots
  • Quantum dots can emit green light
  • the white light emitted by the backplane can emit blue light after passing through the third quantum dot.
  • the quantum dot layer can be used as a light conversion layer to convert white light into light of other colors, thereby forming a full-color display. Light emitting devices.
  • the substrate 10 can be a backplane
  • the backplane can include a light-emitting unit
  • the light-emitting unit can emit blue light
  • the backplane can emit blue light.
  • the backplane blue light Micro LED substrate
  • the luminescent material in the Micro LED can include gallium nitride (GaN)
  • an auxiliary layer is formed on the substrate 10
  • a quantum dot layer is formed on the corresponding pixel area on the auxiliary layer, which can be obtained in the first
  • a first quantum dot layer 31 red light quantum dots
  • a second quantum dot layer 32 green light quantum dots
  • the Micro LED itself emits blue light
  • the first quantum dots are formed in the first pixel area to form the first Quantum dot layer 31 (red light quantum dots), forming second quantum dots in the second pixel area to form the second quantum dot layer 32 (green light quantum dots)
  • the blue light emitted by the back plate passes through the first quantum dots after the first quantum dots can It emits red light
  • the blue light emitted by the backplane passes through the second quantum dot
  • the second quantum dot can emit green light.
  • the quantum dot layer can be used as a light conversion layer to convert blue light into light of other colors, and then a full-color light-emitting device can be formed. .
  • the present disclosure provides a display panel including the light emitting device described in the above embodiments.
  • the display panel with the light emitting device in the above embodiment has good display effect, is not prone to color mixing, and can improve user experience.
  • the present disclosure provides a display device including the display panel described in the above embodiments.
  • the display device with the display panel in the above embodiment has good display effect, no color mixing, and good user experience.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

公开了一种发光器件及其制备方法、显示面板、显示装置,发光器件包括:基底;在基底的一侧,依次设置的辅助层与量子点层;辅助层具有第一基团和第二基团,第一基团与基底的表面基团可通过化学反应相互结合,第二基团与量子点层中的量子点的配体可通过化学反应相互结合,辅助层与基底的结合力小于量子点与辅助层的结合力。

Description

发光器件及其制备方法、显示面板、显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种发光器件及其制备方法、显示面板、显示装置。
背景技术
半导体量子点是一种重要的荧光纳米材料,将量子点作为发光层材料,应用于平板照明和光电显示领域,越来越受到关注。截止目前,在器件性能方面,量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)的外量子效率(EQE)已经达到了20%以上。发光层量子点的图形化工艺是决定全彩、高分辨QLED器件的关键步骤,目前已有转印、喷墨打印以及光刻等方式实现量子点的图形化工艺。
发明内容
本公开提供了一种发光器件及其制备方法、显示面板、显示装置。
第一方面,本公开提供了一种发光器件,包括:
基底;
在所述基底的一侧,依次设置的辅助层与量子点层;
所述辅助层具有第一基团和第二基团,所述第一基团与所述基底的表面基团可通过化学反应相互结合,所述第二基团与所述量子点层中的量子点的配体可通过化学反应相互结合,所述辅助层与所述基底的结合力小于所述量子点与所述辅助层的结合力。
可选地,所述第二基团与所述量子点层中的量子点的配体通过配体交换或交联反应相互结合。
可选地,所述第一基团靠近所述基底设置,所述第二基团靠近所述量子点层设置。
可选地,所述辅助层为有机材料,厚度为0.1-1nm。
可选地,所述辅助层中包括结构式(1)和结构式(2)所示的化合物中的至少一种,
Figure PCTCN2021142221-appb-000001
可选地,R1包括苯环-共轭双键、碳氧双键、碳碳双键、碳氮双键、羟基、羧基、巯基中的至少一种,R2为具有饱和或不饱和键的碳链,R3包括烷氧基、乙酰氧基和卤素中的至少一种,R4包括烷氧基、乙酰氧基和卤素中的至少一种,R5包括烷氧基、乙酰氧基和卤素中的至少一种。
可选地,所述辅助层包括:
3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双-[3-(三乙氧基硅)丙基]-四硫化物中的至少一种。
可选地,所述发光器件具有阵列排布的多个像素,每个所述像素包含第一子像素和第二子像素,在所述基底上设置有间隔结构,相邻所述间隔结构围成的最小面积构成一个子像素;
所述量子点层包括第一量子点与第二量子点,所述第一量子点设置于所述第一子像素内,所述第二量子点设置于所述第二子像素内,所述第一量子点与所述第二量子点的发光波长不同。
可选地,所述基底还包括层叠设置的第一电极和第一载流子传输层,所述第一载流子传输层更靠近所述辅助层设置。
可选地,所述基底还包括背板,所述背板包括发光单元,所述发光单元发出的第一波段光,经过所述第一量子点后,变为第二波段光出射;所述发光单元发出的第一波段光,经过所述第二量子点后,变为第三波段光出射;
所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
可选地,所述像素还包含第三子像素,所述量子点层对应设置第三量子 点,所述第三量子点设置于所述第三子像素内,所述第一量子点、所述第二量子点与所述第三量子点的发光波长不同。
可选地,所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
可选地,所述发光器件还包括:
第二载流子传输层,设置在所述量子点层远离所述基底的一侧;
第二电极,设置在所述第二载流子传输层远离所述基底的一侧。
第二方面,本公开提供一种发光器件的制备方法,包括:
提供基底;
在所述基底的一侧依次形成辅助层与量子点层;
可选地,所述辅助层具有第一基团和第二基团,所述第一基团与所述基底的表面基团可通过化学反应相互结合,所述第二基团与所述量子点层中的量子点的配体可通过化学反应相互结合,所述辅助层与所述基底的结合力小于所述量子点与所述辅助层的结合力。
可选地,所述第二基团与所述量子点层中的量子点的配体通过配体交换或交联反应相互结合。
可选地,在所述基底的一侧依次形成辅助层与量子点层的步骤包括:
在所述基底的一侧形成辅助层;
在辅助层上形成阵列排布的多个像素;
可选地,每个所述像素包含第一子像素和第二子像素,所述量子点层包括第一量子点与第二量子点,所述第一量子点形成于所述第一子像素内,所述第二量子点形成于所述第二子像素内,在所述基底上的相邻间隔结构围成的最小面积形成一个子像素,所述第一量子点与所述第二量子点的发光波长不同。
可选地,所述像素还包含第三子像素,所述量子点层对应设置第三量子点,所述第三量子点形成于所述第三子像素内,所述第一量子点、所述第二量子点与所述第三量子点的发光波长不同。
可选地,所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
第三方面,本公开提供了一种显示面板,包括上述实施例中所述的发光器件。
第四方面,本公开提供了一种显示装置,包括上述实施例中所述的显示面板。
附图说明
图1为本公开一个实施例的发光器件的结构示意图;
图2为本公开另一个实施例的发光器件的结构示意图;
图3为本公开又一实施例的发光器件的结构示意图;
图4为本公开又一实施例的发光器件的结构示意图;
图5为本公开又一实施例的发光器件的结构示意图;
图6为本公开又一实施例的发光器件的结构示意图;
图7为基底的表面具有表面基团的一个示意图;
图8为在具有表面基团的基底上形成辅助层的一个流程示意图;
图9为在具有表面基团的基底上形成辅助层的另一个流程示意图;
图10为量子点上的配体与辅助层交联的一个示意图;
图11为在像素区域形成不同量子点层的一个流程示意图;
图12在蓝光背板上的像素区域形成不同量子点层的一个流程示意图;
图13在白光背板上的像素区域形成不同量子点层的一个流程示意图;
图14在蓝光背板上的像素区域形成不同量子点层的另一个流程示意图。
具体实施方式
下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描 述的那些以外的顺序实施。
下面结合附图1至图14所示,通过具体的实施例及其应用场景对本公开提供的发光器件进行详细地说明。在附图中,为了清楚,放大了层、膜、面板、区域等的厚度。在本文中参照作为理想化实施方式的示意图的横截面图描述示例性实施方式。这样,将预计到作为例如制造技术和/或公差的结果的与图的形状的偏差。因而,本文中描述的实施方式不应解释为限于如本文中所示的区域的具体形状,而是包括由例如制造所导致的形状方面的偏差。例如,图示或描述为平坦的区域可典型地具有粗糙的和/或非线性的特征。此外,所图示的尖锐的角可为圆形的。因而,图中所示的区域在本质上是示意性的,并且它们的形状不意图图示区域的精确形状,且不意图限制本权利要求的范围。
如本文中使用的,术语“和/或”包括相关列举项目的一个或多个的任意和全部组合。将进一步理解,术语“包含”或“包括”当用在本说明书中时,表明存在所陈述的特征、区域、整体、步骤、操作、元件、和/或组分,但是不排除存在或添加一个或多个其它特征、区域、整体、步骤、操作、元件、组分和/或其集合。
通常采用光刻方式实现电子材料(量子点)的图形化,在光刻工艺中的显影过程中,会有一部分本该显影掉的量子点残留在像素区,导致混色问题。
如图1至图6所示,本公开的发光器件包括:基底10;在基底10的一侧依次设置的辅助层20与量子点层30,辅助层20具有第一基团和第二基团,第一基团与基底10的表面基团可通过化学反应相互结合,第二基团与量子点层30中的量子点的配体可通过化学反应相互结合,辅助层20与基底10的结合力小于量子点与辅助层20的结合力。在本公开的发光器件中,在基底10与量子点层30之间设置辅助层20,第一基团与基底10的表面基团可以通过化学反应相互结合,第二基团与量子点层30中的量子点的配体可以通过化学反应相互结合,可以使得量子点层中30的量子点稳定连接在辅助层20上。在制备过程中,像素区域的量子点通过辅助层的连接稳定牢固,未与辅助层连接的量子点容易去除,由于辅助层20与基底10的结合力小于所述量子点与辅助层20的结合力,辅助层作为牺牲层时,容易被冲洗掉,顺便带走残留 辅助层上的量子点,不容易残留在像素区域,可以保证像素区域中的量子点的纯度,避免在像素区域残留其他颜色的量子点,避免发光器件出现混合的问题,提高发光效果,有利于提升全彩QLED的性能。
发光器件可以为倒置结构、正置结构、顶发射器件和底发射器件。基底10可以包括第一电极12,量子点层30的远离辅助层20的一侧可以设有第二电极40,比如,第一电极12可以为阴极,第二电极40可以为阳极,通过在第一电极12与第二电极40之间施加电压,可以使得量子点层30中的量子点发光。
基底10可以为背板,背板中包含发光单元,发光单元发出的光经过量子点层30中的量子点的转换可以发出所需波长的光,也即是,量子点层30中的量子点可以作为波长转换层。比如,背板中的发光单元可以发出蓝光,量子点层30中的量子点可以包括第一量子点和第二量子点,蓝光经过第一量子点后可被转换为第二波段光(例如红光)将蓝光转换成红光,蓝光经过第二量子点后可被转换为第三波段光(例如绿光),通过红、蓝和绿子像素的配合可以实现全彩显示。
基底10还包括层叠设置的第一电极和第一载流子传输层50,第一载流子传输层50更靠近辅助层20设置。第一载流子传输层50的靠近辅助层20的一侧表面具有表面基团,辅助层20的第一基团与第一载流子传输层50的表面基团可通过化学反应相互结合,辅助层20的第二基团与量子点层30中的量子点的配体可通过化学反应相互结合,可以使得量子点层中30的量子点稳定连接在辅助层20上,辅助层20与第一载流子传输层50的结合力小于量子点与辅助层20的结合力。在制备过程中,像素区域的量子点通过辅助层的连接稳定牢固,未与辅助层连接的量子点容易去除,由于辅助层20与第一载流子传输层50的结合力小于量子点与辅助层20的结合力,辅助层20作为牺牲层时,容易被冲洗掉,顺便带走残留辅助层上的量子点,不容易残留在像素区域,避免在像素区域残留其他颜色的量子点。
在制备发光器件的过程中,可以在辅助层20的像素区域打印量子点以形成量子点层30。在制备过程中,基底10可以包括第一电极12,第一电极12可以设置于基板上,基板可以为玻璃,具有第一电极12的玻璃可以为导电玻 璃,在第一电极12上可以形成第一载流子传输层50,第一电极12可以为阴极,第一载流子传输层50可以为电子传输层,电子传输层可以包括ZnO、ZnMgO和TiO 2材料中的至少一种,比如电子传输层可以包括ZnO,第一载流子传输层50上可以具有表面基团,表面基团可以为羟基,可以在第一载流子传输层上形成辅助层20,辅助层20可以为单分子层,辅助层20中具有第二基团,第二基团为可与量子点的配体交联的基团。在制备发光器件的过程中,通过引入辅助层,将该方法用到打印AMQLED(Active-Matrix Quantum dot Light Emitting Diodes,主动矩阵量子点发光二极管)中,可以起到改善量子点薄膜形貌的作用,用到光刻法的AMQLED中可以有效的解决混色问题。
如图7至图9所示,可以在第一电极或第一电极表面的电子传输层上形成辅助层20,辅助层20可以为单分子层,辅助层20中可以具有巯基的硅烷试剂,比如硅烷试剂可以为3-巯丙基三甲氧基硅烷。以3-巯丙基三甲氧基硅烷单分子层为例,配备3-巯丙基三甲氧基硅烷的乙醇溶液(3-巯丙基三甲氧基硅烷0.5mL,乙醇4.5mL),并加入少量氨水(0.1mL),取90uL的上述溶液滴加到上述导电玻璃上,旋涂成膜,转速1000-4000rpm,并室温放置1-2h。之后用超干无水乙醇冲洗上述导电玻璃,冲洗2-3遍,此步可以在空气中完成,可以摆脱对成本昂贵的手套箱的依赖,此方法中以3-巯丙基三甲氧基硅烷为例,通过控制硅烷溶液的浓度和旋涂转速,让其在上膜层上形成一层致密的硅烷偶联的氧化硅薄膜。此外,具有巯基的硅烷试剂可以选择:3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双-[3-(三乙氧基硅)丙基]-四硫化物中的至少一种。
可以在辅助层20上打印图形化的量子点,可以在辅助层20的像素区域打印量子点,通过交联或者配体交换使量子点固定在辅助层20上,量子点打印至相应位置后,单分子层裸漏的第二基团,比如巯基,可以与量子点的配体发生化学反应,使得量子点被固定在辅助层20上,可以防止量子点的爬坡,增加量子点层膜层的平整度,优化打印量子点的膜形貌。
在本公开的发光器件中,在基底10与量子点层30之间设置辅助层20,辅助层20中具有第二基团,第二基团与量子点层30中的量子点的配体通过 化学键连接,通过辅助层20可以使得量子点层30中的量子点稳定牢固,在制备过程中,像素区域的量子点通过辅助层20的连接稳定牢固。
如图11所示,发光器件的制备过程可以如下:
在导电玻璃上的第一电极上形成电子传输层:电子传输层可以是氧化锌基纳米粒子薄膜或氧化锌薄膜,电子传输层的表面具有表面基团;
在电子传输层的表面形成辅助层20:配备硅烷试剂的乙醇溶液(硅烷试剂0.5mL,乙醇4.5mL),硅烷试剂的结构式可以为结构式(3)所示,并加入少量氨水(0.1mL),去90uL的上述溶液滴加到电子传输层上,旋涂成膜,室温放置1-2h,电子传输层的表面基团与硅烷试剂发生化学反应,然后用超干无水乙醇冲洗上述导电玻璃,通过设置辅助层来图形化量子点不需要干刻,只需要清洗即可,减小对于膜层的破坏;
Figure PCTCN2021142221-appb-000002
图案化量子点(QD):电子传输层已形成辅助层20,辅助层20的表面具有第二基团,第二基团可以包括双键可交联基团,比如羟基、巯基,在辅助层的像素区域上涂布第一量子点(比如红光量子点),沉积的第一量子点的配体具有第三基团,第三基团可以与第二基团交联,第三基团可以包括双键、三键、羟基、羧基等,对相应像素区域利用第一光照进行曝光,可使得第一量子点的配体与辅助层20的第二基团发生交联反应,未曝光部分的第一量子点通过显影洗脱掉,在相应像素区域形成第一量子点层31,然而在非曝光区域会有部分残留的第一量子点,随后可以利用深紫外(波长在200nm~350nm)光(第二光照)进行泛曝光,将单分子层与下膜层解离,随后进行单分子层的显影,消除残留的第一量子点,防止出现混色;
可以重复以上步骤,在对应的像素区域分别形成图案化的第二量子点(比如绿光量子点)和第三量子点(比如蓝光量子点),进而在对应的像素区域形 成图案化的第二量子点层32和第三量子点层33,可以除去非曝光区域残留的其他量子点,防止出现混色,进而形成全彩QLED;也可以根据需要,调整红光量子点、绿光量子点和蓝光量子点的图案化顺序。
还可以在量子点层依次上形成空穴传输层、空穴注入层、第二电极,最后经过封装制备得到量子点发光器件。在制备过程中,通过形成辅助层20可以除去非曝光区域残留的其他量子点,未与辅助层20连接的量子点容易去除,不容易残留在像素区域,可以保证像素区域中的量子点的纯度,避免在像素区域残留其他颜色的量子点,避免发光器件出现混合的问题,提高发光效果,有利于提升全彩QLED的性能。制备过程不需要利用光刻胶光刻,避免光刻溶剂对量子点的破坏,避免碱液显影液中的氢氧根离子破坏表面配体和量子点悬挂键的配位作用,防止量子点的表面缺陷位点重新暴露,保证器件效率。另外,辅助层20在基底/第一载流子传输层与量子点层之间连接,可在一定程度上调节载流子传输速率,进一步提升全彩QLED的性能。
第二基团与量子点层30中的量子点的配体可以通过配体交换或交联反应相互结合。其中,第一基团靠近基底10设置,以便于第一基团与基底10的表面基团通过化学反应连接,第二基团靠近量子点层30设置,以便于第二基团与量子点层30中量子点的配体通过化学反应连接。比如,表面基团可以包括羟基或羧基,第一基团可以包括羟基、羧基或双键,羟基可以与羧基或双键反应,从而使得第一基团与表面基团可以通过化学键连接,使得基底10与辅助层20稳定牢固地连接在一起。
可选地,量子点的配体可以具有第三基团,第二基团与第三基团可以通过化学键连接。比如,第三基团可以包括氨基、羟基和羧基中的至少一种,第二基团可以包括巯基、氨基、羟基、羧基和双键中的至少一种,羟基可以与羧基或双键反应,第二基团与第三基团可以进行化学反应,使得第二基团与第三基团可以通过化学键连接,辅助层20与量子点层30中的量子点的配体通过化学键牢固连接,通过辅助层20可以使量子点层30中的量子点稳定。
可选地,辅助层20可以为有机材料,厚度可以为0.1-1nm,比如,辅助层20的厚度可以为0.5nm,厚度较小。
在本公开的实施例中,辅助层20中可以包括结构式(1)和结构式(2) 所示的化合物中的至少一种,结构式(1)和结构式(2)具体如下:
Figure PCTCN2021142221-appb-000003
其中,R1可以包括苯环-共轭双键、碳氧双键、碳碳双键、碳氮双键、羟基、羧基、巯基中的至少一种,R2可以为具有饱和或不饱和键的碳链,R3可以包括烷氧基、乙酰氧基和卤素中的至少一种,R4可以包括烷氧基、乙酰氧基和卤素中的至少一种,R5可以包括烷氧基、乙酰氧基和卤素中的至少一种。
在一些实施例中,辅助层20中可以包括:3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双-[3-(三乙氧基硅)丙基]-四硫化物中的至少一种,比如,辅助层20中可以包括:3-巯丙基三甲氧基硅烷,巯基可以与量子点的表面形成配位键,通过形成配位键改善量子点的表面缺陷。巯基还可以作为第二基团,量子点的配体与第二基团可以通过化学键连接。使得量子点与辅助层20之间稳定连接。
在一些实施例中,如图6所示,发光器件可以具有阵列排布的多个像素,每个像素可以包含第一子像素101和第二子像素102,在基底10上设置有间隔结构11,相邻间隔结构11围成的最小面积可以构成一个子像素。量子点层30可以包括第一量子点与第二量子点,第一量子点设置于第一子像素101内,第二量子点设置于第二子像素102内,第一量子点与第二量子点的发光波长不同,比如,第一量子点可以发红光,第二量子点可以发绿光。
不同的子像素可以设置于对应的像素区域,比如,辅助层20上可以具有第一像素区域和第二像素区域,第一子像素101对应设置于第一像素区域,第二子像素102对应设置于第二像素区域,第一量子点可以设置于第一像素区域以形成第一量子点层31,第二量子点可以设置于第二像素区域以形成第二量子点层32。
在本公开的实施例中,基底10还包括背板,背板可以包括发光单元,发光单元发出的第一波段光,经过第一量子点后,变为第二波段光出射;发光单元发出的第一波段光,经过第二量子点后,变为第三波段光出射。
背板发出的光经过量子点层30中的量子点的转换可以发出所需波长的光,量子点层30中的量子点可以作为光转换量子点,量子点将背板发出的光转换成所需波长的光。比如,背板可以发出蓝光,量子点层30中的量子点可以包括第一量子点和第二量子点,蓝光经过第一量子点后第一量子点将蓝光转换成红光,蓝光经过第二量子点后第二量子点将蓝光转换成绿光,背光板自身发出蓝光,通过红光、蓝光和绿光的配合可以实现全彩显示。
在一些实施例中,如图6所示,像素还可以包含第三子像素103,量子点层30对应设置第三量子点,第三量子点设置于第三子像素103内,第一量子点、第二量子点与所述第三量子点的发光波长不同,比如,第一量子点可以发红光,第二量子点可以发绿光,第三量子点可以发蓝光。辅助层20上可以具有第三像素区域,每个像素中的第三子像素103可以对应设置于第三像素区域,第三量子点可以设置于第三像素区域以形成第三量子点层33。以倒置器件为例,基底10可以包括层叠设置的第一电极12与电子传输层52,辅助层20设置于电子传输层52的远离第一电极12的一侧,基底10上的间隔结构11可以将第一电极12、电子传输层52以及有机层间隔开,通过间隔结构11可以将不同的量子点间隔开以构成不同的子像素。
在一些实施例中,背板发出的光经过量子点层30中的量子点的转换可以发出所需波长的光,量子点层30中的量子点可以作为光转换量子点,量子点将背板发出的光转换成所需波长的光。比如,背板可以发出白光,量子点层30中的量子点可以包括第一量子点、第二量子点和第三量子点,白光经过第一量子点后第一量子点发出红光,白光经过第二量子点后第二量子点发出绿光,白光经过第一量子点后第一量子点发出蓝光,通过红光、蓝光和绿光的配合可以实现全彩显示。
在本公开的实施例中,辅助层20与基底10的结合力大于辅助层20与间隔结构11的结合力。在制备过程中,由于辅助层20与基底10的结合力大于辅助层20与间隔结构11的结合力,辅助层20与基底10的结合力小于量子 点与辅助层20的结合力,辅助层20作为牺牲层时,容易被冲洗掉,顺便带走残留辅助层上的量子点,不容易残留在像素区域,可以保证像素区域中的量子点的纯度,避免在像素区域残留其他颜色的量子点,避免发光器件出现混色的问题。
在本公开的实施例中,如图3所示,基底10可以包括第一电极,发光器件还可以包括:
第二载流子传输层60与第二电极40,第二载流子传输层60设置于量子点层30远离基底10的一侧,第二电极40设置在第二载流子传输层60远离基底10的一侧。,第二载流子传输层60有利于提高载流子的传输效率,通过在第一电极与第二电极40之间施加电压,可以使得量子点层30中的量子点发光。
如图3和图5所示,第一电极可以为阴极,阴极可以设置于玻璃基板上,第一载流子传输层50可以包括电子注入层51与电子传输层52中的至少一种,第一载流子传输层50可以包括电子注入层51与电子传输层52,电子注入层51靠近第一电极设置,电子传输层可以包括ZnO、ZnMgO和TiO 2材料中的至少一种,比如电子传输层可以包括ZnO,电子传输层52的远离第一电极的一侧表面可以具有表面基团,比如羟基,以便于表面基团与辅助层20中的第一基团通过化学键连接。第二电极可以为阳极,第二载流子传输层60可以包括空穴注入层61与空穴传输层62中的至少一种,第二载流子传输层60可以包括空穴注入层61与空穴传输层62,空穴注入层61靠近第二电极设置。
可选地,第一电极可以为阳极,第一载流子传输层可以包括空穴注入层与空穴传输层中的至少一种,第一载流子传输层可以包括空穴注入层与空穴传输层,空穴注入层靠近第一电极设置。第二电极可以为阴极,阴极可以设置于玻璃基板上,第二载流子传输层可以包括电子注入层与电子传输层中的至少一种,第二载流子传输层可以包括电子注入层与电子传输层,电子注入层靠近第二电极设置。
本公开提供一种发光器件的制备方法,包括:
提供基底10,基底10包括第一电极或背板,背板可以包括发光单元;
在基底10的一侧依次形成辅助层20与量子点层30;
其中,辅助层20具有第一基团和第二基团,第一基团与基底10的表面基团可通过化学反应相互结合,第二基团与量子点层30中的量子点的配体可通过化学反应相互结合,辅助层20与基底10的结合力小于量子点与辅助层20的结合力。在基底10与量子点层30之间设置辅助层20,第二基团与量子点层30中的量子点的配体可以通过化学反应相互结合,可以使得量子点层中30的量子点稳定连接在辅助层20上。在制备过程中,像素区域的量子点通过辅助层的连接稳定牢固,未与辅助层连接的量子点容易去除,由于辅助层20与基底10的结合力小于量子点与辅助层20的结合力,辅助层作为牺牲层时,容易被冲洗掉,顺便带走残留辅助层上的量子点,不容易残留在像素区域,可以保证像素区域中的量子点的纯度,避免在像素区域残留其他颜色的量子点,避免发光器件出现混合的问题,提高发光效果,有利于提升全彩QLED的性能。
在一些实施例中,第二基团与量子点层30中的量子点的配体可以通过配体交换或交联反应相互结合。其中,第一基团可以靠近基底10设置,以便于第一基团与基底10的表面基团通过化学反应连接,第二基团可以靠近量子点层30设置,以便于第二基团与量子点层30中量子点的配体通过化学反应连接。
在基底10的一侧依次形成辅助层20与量子点层30的步骤可以包括:
在基底10的一侧形成辅助层20;
在辅助层20上形成阵列排布的多个像素;
其中,如图6所示,每个像素包含第一子像素101和第二子像素102,量子点层包括第一量子点与第二量子点,第一量子点形成于第一子像素101内,第二量子点形成于第二子像素102内,在基底10上的相邻间隔结构11围成的最小面积形成一个子像素,第一量子点与第二量子点的发光波长不同,比如,第一量子点可以发红光,第二量子点可以发绿光。不同的子像素可以形成于对应的像素区域,比如,辅助层20上可以具有第一像素区域和第二像素区域,第一子像素101对应形成于第一像素区域,第二子像素102对应形成于第二像素区域,第一量子点可以形成于第一像素区域以形成第一量子点层31,第二量子点可以形成于第二像素区域以形成第二量子点层32。
通过上述方法制备的发光器件,在基底10与量子点层30之间设置辅助层20,辅助层20中具有第二基团,第二基团与量子点层30中的量子点的配体通过化学键连接,通过辅助层20可以使得量子点层30中的量子点稳定牢固。在制备过程中,像素区域的量子点通过辅助层20的连接稳定牢固,未与辅助层20连接的量子点容易去除,不容易残留在像素区域,可以保证像素区域中的量子点的纯度,避免在像素区域残留其他颜色的量子点。
基底可以包括背板,背板可以包括发光单元,发光单元发出的第一波段光,经过第一量子点后,变为第二波段光出射;发光单元发出的第一波段光,经过第二量子点后,变为第三波段光出射。比如发光单元可以发出蓝光,蓝光经过第一量子点后第一量子点将蓝光转换成红光,蓝光经过第二量子点后第二量子点将蓝光转换成绿光,背光板自身发出蓝光,通过红光、蓝光和绿光的配合可以实现全彩显示。如图4所示,基底10还可以包括层叠设置的第一电极12和第一载流子传输层50,第一载流子传输层50更靠近辅助层20设置。在制备过程中,在形成辅助层20之前,可以先在基板上依次形成第一电极12和第一载流子传输层50,然后在第一载流子传输层50上形成辅助层20,再在辅助层20上形成量子点层30,在量子点层30上形成第二电极40,通过在第一电极12与第二电极40之间施加电压,可以使得量子点层30中的量子点发光。第一载流子传输层50可以包括电子注入层51与电子传输层52中的至少一种,比如,第一载流子传输层50可以包括电子注入层51与电子传输层52,电子注入层51靠近第一电极设置。
在形成第二电极40之前还可以包括:在量子点层30的远离基底10的一侧可以形成第二载流子传输层60,然后在第二载流子传输层60的远离量子点层30的一侧可以形成第二电极40,第二载流子传输层60有利于提高载流子的传输效率,通过在第一电极与第二电极40之间施加电压,可以使得量子点层30中的量子点发光。第二载流子传输层60可以包括空穴注入层61与空穴传输层62中的至少一种,比如,第二载流子传输层60可以包括空穴注入层61与空穴传输层62,空穴注入层61可以靠近第二电极40设置。
在一些实施例中,像素还可以包含第三子像素103,量子点层对应设置第三量子点,第三量子点形成于第三子像素103内,第一量子点、第二量子 点与第三量子点的发光波长不同。比如,辅助层20上可以具有第三像素区域,第三子像素103对应形成于第三像素区域,第三量子点可以形成于第三像素区域以形成第三量子点层31,第一量子点可以发出红光,第二量子点可以发出绿光,第三量子点发出蓝光,通过红光、蓝光和绿光的配合可以实现全彩显示。
在本公开的实施例中,辅助层20与基底10的结合力大于辅助层20与间隔结构11的结合力。在制备过程中,在基底10与量子点层30之间设置辅助层20,像素区域的量子点通过辅助层的连接稳定牢固,未与辅助层连接的量子点容易去除,由于辅助层20与基底10的结合力小于量子点与辅助层20的结合力,辅助层作为牺牲层时,容易被冲洗掉,顺便带走残留辅助层上的量子点,不容易残留在像素区域,避免在像素区域残留其他颜色的量子点。
可选地,辅助层20可以为有机材料,厚度为0.1-1nm。
在一些实施例中,表面基团可以包括羟基或羧基,第一基团可以包括羟基、羧基或双键,羟基可以与羧基或双键反应,从而使得第一基团与表面基团可以通过化学键连接,使得基底10与辅助层20稳定牢固地连接在一起。
在本公开的实施例中,量子点的配体可以包括第三基团,第三基团可以包括氨基、羟基和羧基中的至少一种,第二基团可以包括巯基、氨基、羟基、羧基和双键中的至少一种,羟基可以与羧基或双键反应,第二基团与第三基团可以进行化学反应,使得第二基团与第三基团可以通过化学键连接,辅助层20与量子点层30中的量子点的配体通过化学键牢固连接,通过辅助层20可以使量子点层30中的量子点稳定。
辅助层20中可以包括结构式(1)和结构式(2)所示的化合物中的至少一种。可选地,辅助层20中可以包括:3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双-[3-(三乙氧基硅)丙基]-四硫化物中的至少一种,比如,辅助层20中可以包括:3-巯丙基三甲氧基硅烷,巯基可以与量子点的表面形成配位键,通过形成配位键可以改善量子点的表面缺陷。。巯基还可以作为第二基团,量子点的配体与第二基团可以通过化学键连接,使得量子点与辅助层20之间稳定连接。
在一些实施例中,在辅助层20上形成量子点层的步骤可以包括:
在辅助层20的像素区域打印量子点以形成量子点层30。
在制备过程中,基底10可以包括第一电极,第一电极可以设置于基板上,基板可以为玻璃,具有第一电极的玻璃可以为导电玻璃,在第一电极上可以形成第一载流子传输层,第一电极可以为阴极,第一载流子传输层可以为电子传输层,电子传输层可以包括ZnO、ZnMgO和TiO 2材料中的至少一种,比如电子传输层可以包括ZnO,第一载流子传输层上可以具有表面基团,表面基团可以为羟基,可以在第一载流子传输层上形成辅助层20,辅助层20可以为单分子层,辅助层20中具有第一基团,第一基团为可与量子点的配体交联的交联基团。在制备发光器件的过程中,通过引入辅助层,将该方法用到打印AMQLED(Active-Matrix Quantum dot Light Emitting Diodes,主动矩阵量子点发光二极管)中,可以起到改善量子点薄膜形貌的作用,用到光刻法的AMQLED中可以有效的解决混色问题。
如图7至图9所示,可以在第一电极或第一电极表面的电子传输层上形成辅助层20,辅助层20可以为单分子层,辅助层20中可以具有巯基的硅烷试剂,比如硅烷试剂可以为3-巯丙基三甲氧基硅烷。以3-巯丙基三甲氧基硅烷单分子层为例,配备3-巯丙基三甲氧基硅烷的乙醇溶液(3-巯丙基三甲氧基硅烷0.5mL,乙醇4.5mL),并加入少量氨水(0.1mL),取90uL的上述溶液滴加到上述导电玻璃上,旋涂成膜,转速1000-4000rpm,并室温放置1-2h。之后用超干无水乙醇冲洗上述导电玻璃,冲洗2-3遍,此步可以在空气中完成,可以摆脱对成本昂贵的手套箱的依赖,此方法中以3-巯丙基三甲氧基硅烷为例,通过控制硅烷溶液的浓度和旋涂转速,让其在上膜层上形成一层致密的硅烷偶联的氧化硅薄膜。此外,具有巯基的硅烷试剂可以选择:3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双-[3-(三乙氧基硅)丙基]-四硫化物中的至少一种。
可以在辅助层20上打印图形化的量子点,可以在辅助层20的像素区域打印量子点,通过交联或者配体交换使量子点固定在辅助层20上,量子点打印至相应位置后,单分子层裸漏的第二基团,比如巯基,可以与量子点的配 体发生反应,使得量子点被固定在辅助层20上,防止量子点的爬坡,增加量子点层膜层的平整度,优化打印量子点的膜形貌。
在另一些实施例中,在辅助层20上形成阵列排布的多个像素的步骤可以包括:
在辅助层20上沉积具有配体的第一量子点;
对第一像素区域的第一量子点利用第一光照进行曝光,以使辅助层20中的第二基团与所述第一量子点的配体通过化学键连接;
对未曝光区域的第一量子点进行显影;
对未曝光区域利用第二光照进行泛曝光并显影,以在所述第一像素区域形成第一量子点层31,通过泛曝光并显影可以去除未曝光区域残留的第一量子点,避免出现混色。
可选地,在辅助层20上形成阵列排布的多个像素的步骤可以包括:
在辅助层20上沉积具有配体的第二量子点,第一量子点与第二量子点的发光波长不同;
对第二像素区域的第二量子点利用第一光照进行曝光,以使辅助层20中的第二基团与所述第二量子点的配体通过化学键连接;
对未曝光区域的第二量子点进行显影;
对未曝光区域利用第二光照进行泛曝光并显影,以在所述第二像素区域形成第二量子点层32。通过泛曝光并显影可以去除未曝光区域残留的第二量子点,避免出现混色。
可选地,在辅助层20上形成阵列排布的多个像素的步骤可以包括:
在辅助层20上沉积具有配体的第三量子点,第一量子点、第二量子点与第三量子点的发光波长可以不同;
对第三像素区域的第三量子点利用第一光照进行曝光,以使辅助层20中的第二基团与第三量子点的配体通过化学键连接;
对未曝光区域的第三量子点进行显影;
对未曝光区域利用第二光照进行泛曝光并显影,以在第三像素区域形成第三量子点层33。
量子点的配体可以与辅助层20中的第二基团通过化学键交联连接,比 如,如图10所示,量子点的配体与辅助层20中的第二基团在光照曝光下可以进行交联,以使得量子点的配体可以与辅助层20中的第二基团通过化学键交联连接。如图11所示,具体的制备过程可以如下:
(1)清洗:导电玻璃上具有第一电极,将导电玻璃(ITO或FTO等)分别采用水、异丙醇超声清洗,并紫外UV处理5-10min;
(2)引入电子传输层:电子传输层可以是氧化锌基纳米粒子薄膜或氧化锌薄膜;
(a)制备氧化锌基纳米粒子薄膜
旋涂氧化锌纳米粒子,之后在80-120℃加热成膜;电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg、In、Al、Ga掺杂氧化镁纳米粒子等,匀胶机转速可以设置为500-2500rpm,以调整膜层的厚度;
(b)制备氧化锌薄膜
将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,将上述导电玻璃置于匀胶机,将90-120μL锌的前驱体溶液滴加到导电玻璃上,旋涂,将上述导电玻璃置于250-300度的热台上,加热并发溶剂;
(3)形成辅助层20,也即是在电子传输层上修饰单分子层
配备硅烷试剂的乙醇溶液(硅烷试剂0.5mL,乙醇4.5mL),硅烷试剂的结构式可以为结构式(3)所示,并加入少量氨水(0.1mL),去90uL的上述溶液滴加到上述导电玻璃上的电子传输层上,旋涂成膜,转速1000-4000rpm,并室温放置1-2h,之后用超干无水乙醇冲洗上述导电玻璃,冲洗2-3遍,此步可以在空气中完成,可以摆脱对成本昂贵的手套箱的依赖;通过设置辅助层来图形化量子点不需要干刻,只需要清洗即可,减小对于膜层的破坏。
Figure PCTCN2021142221-appb-000004
(4)图案化量子点(QD)
电子传输层已修饰上单分子层(辅助层20),辅助层20的表面具有第二基团,第二基团可以包括双键可交联基团,比如羟基、巯基,在辅助层的像素区域上涂布第一量子点(比如红光量子点),沉积的第一量子点的配体具有第三基团,第三基团可以与第二基团交联,第三基团可以包括双键、三键、羟基、羧基等,对相应像素区域利用第一光照进行曝光,可使得第一量子点的配体与辅助层20的第二基团发生交联反应,未曝光部分的第一量子点通过显影洗脱掉,在相应像素区域形成第一量子点层31,然而在非曝光区域会有部分残留的第一量子点,随后可以利用深紫外(波长在200nm~350nm)光(第二光照)进行泛曝光,将单分子层与下膜层解离,随后进行单分子层的显影,消除残留的第一量子点,防止出现混色;
可以重复以上步骤,在对应的区域形成图案化的第二量子点(比如绿光量子点)和第三量子点(比如蓝光量子点),进而在对应的区域形成图案化的第二量子点层32和第三量子点层33,可以除去非曝光区域残留的其他量子点,防止出现混色,进而形成全彩QLED;也可以根据需要,调整红光量子点、绿光量子点和蓝光量子点的图案化顺序;
(5)引入空穴传输层
通过旋涂或蒸镀等方式可以在量子点层上形成空穴传输层,空穴传输层可以选择TFB(聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺))、PVK(聚乙烯咔唑)或者空穴传输化合物等。其中,TFB的成膜条件可以为:130-150℃惰性气体中成膜,膜层厚度可以根据匀胶机转速调控,此步骤中也可以使用蒸镀的空穴传输材料;
(6)引入空穴注入层
旋通过旋涂或蒸镀等方式可以形成空穴注入层,空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它适用于空穴注入层的化合物等,PEDOT的成膜条件可以为在空气中130-150℃,膜层厚度可以根据匀胶机转速调控,此步骤中也可以使用蒸镀的空穴注入材料;
(7)引入阳极
最后可以引入阳极材料,例如蒸镀铝膜、银膜或溅射铟锌氧化物(IZO)膜制备QLED器件;
(8)封装
加盖封装盖板,采用紫外固化胶对器件进行封装,制备量子点发光器件。
如图12所示,基底10可以为背板,背板可以包括发光单元,发光单元可以发出蓝光,背板可以发出蓝光,在制备过程中,可以先制备背板(蓝光OLED基板),在基底10上形成辅助层,然后在辅助层上的对应的像素区域形成量子点层,可以通过上述制备方法在第一像素区域形成第一量子点层31(红光量子点),在第二像素区域形成第二量子点层32(绿光量子点)。由于OLED本身发蓝光,在运用本公开中的方法制备量子点层时,只需要制备图案化的红色和绿色像素区即可,比如,在第一像素区域形成第一量子点层31(红光量子点),在第二像素区域形成第二量子点层32(绿光量子点),背板发出的蓝光经过第一量子点后第一量子点可以发出红光,背板发出的蓝光经过第二量子点后第二量子点可以发出绿光,量子点层可以作为光转换层,将蓝光转换成其他颜色的光,进而可以形成全彩的发光器件。
如图13所示,基底10可以为背板,背板可以包括发光单元,发光单元可以发出蓝光,背板可以发出白光,在制备过程中,可以先制备背板(白光OLED基板),在基底10上形成辅助层,然后通过本公开中的方法在辅助层上的对应的像素区域形成量子点层。由于OLED本身发白光,在运用本公开中的方法制备量子点层时,可以在第一像素区域、第二像素区域和第三像素区域分别形成量子点层,先在第一像素区域形成第一量子点(红光量子点)以形成第一量子点层31,然后在第二像素区域形成第二量子点(绿光量子点)以形成第二量子点层32,最后在第三像素区域形成第三量子点(蓝光量子点)以形成第三量子点层33,背板发出的白蓝光经过第一量子点后第一量子点可以发出红光,背板发出的白光经过第二量子点后第二量子点可以发出绿光,背板发出的白光经过第三量子点后第三量子点可以发出蓝光,量子点层可以作为光转换层,将白光转换成其他颜色的光,进而可以形成全彩的发光器件。
如图14所示,基底10可以为背板,背板可以包括发光单元,发光单元可以发出蓝光,背板可以发出蓝光,在制备过程中,可以先制备背板(蓝光Micro LED基板),蓝光Micro LED中的发光材料可以包括氮化镓(GaN),在基底10上形成辅助层,然后在辅助层上的对应的像素区域形成量子点层, 可以通过本公开中的上述制备方法在第一像素区域形成第一量子点层31(红光量子点),然后在第二像素区域形成第二量子点层32(绿光量子点)。由于Micro LED本身发蓝光,在运用本公开中的方法制备量子点层时,只需要制备图案化的红色和绿色像素区即可,比如,在第一像素区域形成第一量子点以形成第一量子点层31(红光量子点),在第二像素区域形成第二量子点以形成第二量子点层32(绿光量子点),背板发出的蓝光经过第一量子点后第一量子点可以发出红光,背板发出的蓝光经过第二量子点后第二量子点可以发出绿光,量子点层可以作为光转换层,将蓝光转换成其他颜色的光,进而可以形成全彩的发光器件。
本公开提供一种显示面板,包括上述实施例中所述的发光器件。具有上述实施例中发光器件的显示面板,显示效果好,不容易出现混色,可以提高用户的使用体验。
本公开提供一种显示装置,包括上述实施例中所述的显示面板。具有上述实施例中显示面板的显示装置,显示效果好,无混色,使用体验好。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (19)

  1. 一种发光器件,包括:
    基底;
    在所述基底的一侧,依次设置的辅助层与量子点层;
    所述辅助层具有第一基团和第二基团,所述第一基团与所述基底的表面基团可通过化学反应相互结合,所述第二基团与所述量子点层中的量子点的配体可通过化学反应相互结合,所述辅助层与所述基底的结合力小于所述量子点与所述辅助层的结合力。
  2. 根据权利要求1所述的发光器件,其中,所述第二基团与所述量子点层中的量子点的配体通过配体交换或交联反应相互结合。
  3. 根据权利要求2所述的发光器件,其中,所述第一基团靠近所述基底设置,所述第二基团靠近所述量子点层设置。
  4. 根据权利要求3所述的发光器件,其中,所述辅助层为有机材料,厚度为0.1-1nm。
  5. 根据权利要求4所述的发光器件,其中,所述辅助层中包括结构式(1)和结构式(2)所示的化合物中的至少一种,
    Figure PCTCN2021142221-appb-100001
    其中,R1包括苯环-共轭双键、碳氧双键、碳碳双键、碳氮双键、羟基、羧基、巯基中的至少一种,R2为具有饱和或不饱和键的碳链,R3包括烷氧基、乙酰氧基和卤素中的至少一种,R4包括烷氧基、乙酰氧基和卤素中的至少一种,R5包括烷氧基、乙酰氧基和卤素中的至少一种。
  6. 根据权利要求5所述的发光器件,其中,所述辅助层包括:
    3-巯丙基三甲氧基硅烷、3-巯丙基三乙氧基硅烷、3-巯丙基甲基二甲氧基硅烷、3-巯丙基甲基二乙氧基硅烷、巯基丙基硅烷、3-巯丙基三甲基硅烷和双 -[3-(三乙氧基硅)丙基]-四硫化物中的至少一种。
  7. 根据权利要求6所述的发光器件,其中,所述发光器件具有阵列排布的多个像素,每个所述像素包含第一子像素和第二子像素,在所述基底上设置有间隔结构,相邻所述间隔结构围成的最小面积构成一个子像素;
    所述量子点层包括第一量子点与第二量子点,所述第一量子点设置于所述第一子像素内,所述第二量子点设置于所述第二子像素内,所述第一量子点与所述第二量子点的发光波长不同。
  8. 根据权利要求7所述的发光器件,其中,所述基底还包括层叠设置的第一电极和第一载流子传输层,所述第一载流子传输层更靠近所述辅助层设置。
  9. 根据权利要求7所述的发光器件,其中,所述基底还包括背板,所述背板包括发光单元,所述发光单元发出的第一波段光,经过所述第一量子点后,变为第二波段光出射;所述发光单元发出的第一波段光,经过所述第二量子点后,变为第三波段光出射;
    所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
  10. 根据权利要求8所述的发光器件,其中,所述像素还包含第三子像素,所述量子点层对应设置第三量子点,所述第三量子点设置于所述第三子像素内,所述第一量子点、所述第二量子点与所述第三量子点的发光波长不同。
  11. 根据权利要求10所述的发光器件,其中,所述发光器件还包括:
    第二载流子传输层,设置在所述量子点层远离所述基底的一侧;
    第二电极,设置在所述第二载流子传输层远离所述基底的一侧。
  12. 根据权利要求7所述的发光器件,其特征在于,所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
  13. 一种发光器件的制备方法,包括:
    提供基底;
    在所述基底的一侧依次形成辅助层与量子点层;
    其中,所述辅助层具有第一基团和第二基团,所述第一基团与所述基底 的表面基团可通过化学反应相互结合,所述第二基团与所述量子点层中的量子点的配体可通过化学反应相互结合,所述辅助层与所述基底的结合力小于所述量子点与所述辅助层的结合力。
  14. 根据权利要求13所述的制备方法,其中,所述第二基团与所述量子点层中的量子点的配体通过配体交换或交联反应相互结合。
  15. 根据权利要求13所述的制备方法,其中,在所述基底的一侧依次形成辅助层与量子点层的步骤包括:
    在所述基底的一侧形成辅助层;
    在辅助层上形成阵列排布的多个像素;
    其中,每个所述像素包含第一子像素和第二子像素,所述量子点层包括第一量子点与第二量子点,所述第一量子点形成于所述第一子像素内,所述第二量子点形成于所述第二子像素内,在所述基底上的相邻间隔结构围成的最小面积形成一个子像素,所述第一量子点与所述第二量子点的发光波长不同。
  16. 根据权利要求15所述的制备方法,其中,所述像素还包含第三子像素,所述量子点层对应设置第三量子点,所述第三量子点形成于所述第三子像素内,所述第一量子点、所述第二量子点与所述第三量子点的发光波长不同。
  17. 根据权利要求15所述的制备方法,其中,所述辅助层与所述基底的结合力大于所述辅助层与所述间隔结构的结合力。
  18. 一种显示面板,包括权利要求1-12中任一项所述的发光器件。
  19. 一种显示装置,包括权利要求18中所述的显示面板。
PCT/CN2021/142221 2021-12-28 2021-12-28 发光器件及其制备方法、显示面板、显示装置 WO2023122999A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/142221 WO2023122999A1 (zh) 2021-12-28 2021-12-28 发光器件及其制备方法、显示面板、显示装置
US17/921,091 US20240224560A1 (en) 2021-12-28 2021-12-28 Light-emitting device and preparation method thereof, display panel, and display device
CN202180004249.8A CN116686406A (zh) 2021-12-28 2021-12-28 发光器件及其制备方法、显示面板、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142221 WO2023122999A1 (zh) 2021-12-28 2021-12-28 发光器件及其制备方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2023122999A1 true WO2023122999A1 (zh) 2023-07-06

Family

ID=86996970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142221 WO2023122999A1 (zh) 2021-12-28 2021-12-28 发光器件及其制备方法、显示面板、显示装置

Country Status (3)

Country Link
US (1) US20240224560A1 (zh)
CN (1) CN116686406A (zh)
WO (1) WO2023122999A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635057A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 量子点器件背板及其制作方法和量子点器件
CN111554820A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 量子点图形结构、量子点的图形化方法和显示装置
CN111769200A (zh) * 2020-07-09 2020-10-13 京东方科技集团股份有限公司 量子点发光器件、量子点层图案化的方法及显示装置
CN112885969A (zh) * 2021-03-26 2021-06-01 京东方科技集团股份有限公司 一种量子点材料、量子点发光器件、显示装置和制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635057A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 量子点器件背板及其制作方法和量子点器件
CN111554820A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 量子点图形结构、量子点的图形化方法和显示装置
CN111769200A (zh) * 2020-07-09 2020-10-13 京东方科技集团股份有限公司 量子点发光器件、量子点层图案化的方法及显示装置
CN112885969A (zh) * 2021-03-26 2021-06-01 京东方科技集团股份有限公司 一种量子点材料、量子点发光器件、显示装置和制作方法

Also Published As

Publication number Publication date
US20240224560A1 (en) 2024-07-04
CN116686406A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US11056650B2 (en) Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same
WO2020228417A1 (zh) 显示面板、其制作方法及显示装置
WO2017190378A1 (zh) 量子点发光二极管显示器的制作方法及量子点发光二极管显示器
JP2009087760A (ja) エレクトロルミネッセンス素子の製造方法
CN111769200B (zh) 量子点发光器件、量子点层图案化的方法及显示装置
CN110289363B (zh) 纳米粒子层图案化的方法、量子点发光器件及显示装置
CN112300784A (zh) 量子点材料、量子点膜层的图案化方法及量子点发光器件
JP2009087781A (ja) エレクトロルミネッセンス素子およびその製造方法
WO2020238390A1 (zh) 量子点电致发光器件及制作方法、显示装置
CN112952014B (zh) 发光二极管及其制备方法、显示面板及其制备方法
WO2020215868A1 (zh) 显示基板及其制造方法、显示装置
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
TW200524475A (en) Thermal transfer of light-emitting dendrimers
WO2018095027A1 (zh) 有机电致发光器件的封装结构、封装方法及显示装置
CN113690378B (zh) 量子点发光器件及其制备方法、显示面板
CN1627869A (zh) 有机电致发光器件及形成该器件的方法
WO2023122999A1 (zh) 发光器件及其制备方法、显示面板、显示装置
CN113921742A (zh) 量子点层图案化的方法、发光器件的制作方法及相关装置
WO2023005840A1 (zh) 量子点材料及其制备方法、量子点显示器件、显示装置、量子点膜图案化的方法、量子点发光器件的制备方法
WO2022126444A1 (zh) 图案化量子点膜层、量子点发光器件和制作方法
WO2021254057A1 (zh) 发光基板及其制备方法和发光装置
WO2022178663A1 (zh) 量子点发光器件及其制作方法、显示装置
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
WO2022160142A1 (zh) 量子点发光器件及其制作方法
WO2021258885A1 (zh) 量子点发光面板、显示装置和制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004249.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17921091

Country of ref document: US