WO2022126382A1 - 量子点膜层、量子点发光器件和制作方法 - Google Patents

量子点膜层、量子点发光器件和制作方法 Download PDF

Info

Publication number
WO2022126382A1
WO2022126382A1 PCT/CN2020/136556 CN2020136556W WO2022126382A1 WO 2022126382 A1 WO2022126382 A1 WO 2022126382A1 CN 2020136556 W CN2020136556 W CN 2020136556W WO 2022126382 A1 WO2022126382 A1 WO 2022126382A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
film layer
group
dot film
fluorine
Prior art date
Application number
PCT/CN2020/136556
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080003337.1A priority Critical patent/CN114946045A/zh
Priority to PCT/CN2020/136556 priority patent/WO2022126382A1/zh
Priority to US18/031,737 priority patent/US20230389406A1/en
Publication of WO2022126382A1 publication Critical patent/WO2022126382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present disclosure relates to the field of semiconductor technology, and in particular, to a quantum dot film layer, a quantum dot light-emitting device and a fabrication method.
  • QLED Quantum Dots Light Emitting Doide Display
  • OLED organic light-emitting diode display devices
  • QLEDs have the advantages of narrow emission peaks, high color saturation, and wide color gamut.
  • Embodiments of the present disclosure provide a quantum dot film layer, including:
  • binding structure one end of the binding structure is connected with the quantum dot
  • a fluorine-containing arene structure is connected to the other end of the binding structure, so as to be connected to the quantum dot through the binding structure.
  • the general formula of the fluorine-containing aromatic structure is one or a combination of the following:
  • n1 ⁇ 6, n2 ⁇ 6 n1 ⁇ 6, n2 ⁇ 6.
  • the binding structure includes one of the following:
  • the connecting structure is formed by a first group and a second group through a grafting reaction, wherein the first group is connected to the quantum before the grafting reaction
  • the second group is a group attached to the fluorine-containing aromatic hydrocarbon structure before the grafting reaction.
  • the first group is one of the following:
  • the second group is one of the following:
  • the quantum dot film layer further includes: a coordinating group connected to the quantum dot, and the binding structure is connected to the quantum dot through the coordinating group.
  • the coordinating group is one of the following:
  • the quantum dot film layer further comprises: an aliphatic chain connected between the coordinating group and the binding structure.
  • the carbon atoms of the carbon chain of the aliphatic chain main chain are greater than 0 and not greater than 8.
  • the quantum dot film layer includes the following structure:
  • the maximum distance between the quantum dot and the fluorine-containing aromatic hydrocarbon structure is greater than a first distance, and the first distance is that before the grafting reaction, the first group is far away from the quantum The distance between one end of the dot and the quantum dot.
  • the distance between adjacent quantum dots is greater than a second distance, where the second distance is the distance between two adjacent quantum dots before the grafting reaction.
  • Embodiments of the present disclosure further provide a quantum dot light-emitting device, which includes the quantum dot film layer provided by the embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a method for fabricating a quantum dot film layer, including:
  • a first quantum dot film layer is formed on one side of the base substrate, wherein the first quantum dot film layer includes: quantum dots, and a first group connected to the quantum dots;
  • a solution containing modified ligands is formed on the side of the first quantum dot film layer away from the base substrate, wherein the modified ligands include: a fluorine-containing arene structure, and a fluorine-containing arene structure connected to the fluorine-containing arene structure. the second group;
  • the first group and the second group undergo a grafting reaction to form a binding structure, so that the fluorine-containing aromatic hydrocarbon structure is connected to the quantum dots through the binding structure.
  • the forming the first quantum dot film layer on one side of the base substrate includes: forming a first quantum dot film layer containing the following structural formula on one side of the base substrate:
  • R 1 —R 2 —R 3 wherein R1 is a ligand group connected to the quantum dot, R2 is an aliphatic chain, and R3 is the first group.
  • the forming the first quantum dot film layer on one side of the base substrate includes: forming all the first groups containing one of the following first groups on one side of the base substrate Describe the first quantum dot film layer:
  • the forming the solution containing the modified ligand on the side of the first quantum dot film layer away from the base substrate includes: on the side of the first quantum dot film layer away from the base substrate A modified ligand containing the following structural formula is formed on one side of the base substrate:
  • the forming the solution containing the modified ligand on the side of the first quantum dot film layer away from the base substrate includes: on the side of the first quantum dot film layer away from the base substrate A modified ligand containing the second group described below is formed on one side of the base substrate:
  • the grafting reaction of the first group and the second group under preset conditions includes:
  • the first group and the second group are reacted by light or heat.
  • FIG. 1 is one of the structures contained in the quantum dot film layer provided by the embodiment of the present disclosure
  • FIG. 2 is the second structure contained in the quantum dot film layer provided by the embodiment of the present disclosure.
  • FIG. 3 is the third structure contained in the quantum dot film layer provided by the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram comparing the chain lengths of quantum dots before and after the grafting reaction according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram comparing the distances between adjacent quantum dots before and after the grafting reaction according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a method for fabricating a quantum dot film layer provided by an embodiment of the present disclosure.
  • the luminescence yield of quantum dot solution in QLED devices is relatively high, which can basically reach more than 80%.
  • the quantum yield tends to drop sharply after the thin film is prepared from solution, which is mainly due to the large active range of solution quantum dots and the long distance between each other;
  • the probability of special energy transfer increases, and some of them are released in the form of non-radiative recombination, which reduces the fluorescence quantum yield of quantum dot films; in response to this phenomenon, some studies have increased the thickness of the outer shell of quantum dots The distance between each other, but the shell layer is too thick to easily hinder the transport of carriers, resulting in a decrease in device efficiency.
  • an embodiment of the present disclosure provides a quantum dot film layer, including:
  • Binding structure X one end of the binding structure X is connected to the quantum dot QD;
  • the fluorine-containing arene structure Y is connected to the other end of the binding structure X to connect with the quantum dot QD through the binding structure X.
  • the quantum dot film layer includes a fluorine-containing aromatic hydrocarbon structure Y connected with the binding structure X and the quantum dot QD.
  • the compact structure of the outer electron cloud is difficult to affect the external field, and the induction effect caused by the proximity of other molecules is also the smallest, so the molecules show strong repulsion.
  • the large steric hindrance effect has two functions, which can increase the distance between adjacent quantum dots in the quantum dot film layer, and avoid the problem of energy transfer due to the proximity of the quantum dots, resulting in a decrease in the luminous yield.
  • the quantum dot film layer in the embodiments of the present disclosure may be a light-emitting layer in a quantum dot light-emitting device.
  • the quantum dot light-emitting device can be a quantum dot light-emitting device that emits monochromatic light, for example, a quantum dot light-emitting device that emits monochromatic red light, such as a quantum dot light-emitting device that emits green light, and a quantum dot light-emitting device that emits blue light.
  • the quantum dot light-emitting device can also be a display device that emits multiple light colors, and the quantum dot film layer is used as the light-emitting layer, which can specifically include a variety of quantum dot light-emitting parts that emit a variety of different light colors.
  • the quantum dot film layer includes : A red quantum dot light-emitting portion that emits red light, a green quantum dot light-emitting portion that emits green light, and a blue quantum dot light-emitting portion that emits blue light.
  • the general formula of the fluorine-containing aromatic structure Y is one or a combination of the following:
  • fluorine-containing aromatic hydrocarbon structure Y is
  • the fluorine-containing aromatic hydrocarbon structure Y is
  • n1 ⁇ 6, n2 ⁇ 6 the more aromatic rings, the greater the steric hindrance, which is beneficial to increase the spacing between quantum dots, but too much fluorine-containing aromatic ring structure will affect the transport rate of carriers in the quantum dot film layer , it is also not conducive to making the quantum dot film layer have a higher luminous yield.
  • n1 ⁇ 6, n2 ⁇ 6, can make the quantum dot film layer have a larger distance between adjacent quantum dots, The problem of energy transfer caused by the proximity of the quantum dots and the decrease of the luminous yield can be avoided, and the quantum dot film layer can have a better carrier transmission rate at the same time.
  • the binding structure X includes one of the following:
  • the binding structure X can be directly connected to the quantum dot QD, as shown in FIG. 1 .
  • a connecting structure Z may also be connected between the binding structure X and the quantum dot QD.
  • the binding structure X is connected with the quantum dot QD through the coordination group R1; for another example, as shown in FIG.
  • the connecting structure Z can also include: the coordination group R1 connected with the quantum dot QD, and The aliphatic chain R2 connected with the coordinating group R1, the aliphatic chain R2 is connected between the coordinating group R1 and the binding structure X, and the binding structure X is connected with the quantum dot QD through the aliphatic chain R2 and the ligand group R1.
  • the connecting structure X can be formed by a first group R3 and a second group R5 through a grafting reaction, wherein the first group R3 is a group connected to the quantum dot QD before the grafting reaction, and the first group R3 is a group connected to the quantum dot QD before the grafting reaction.
  • a digroup is a group attached to the fluoroaromatic structure prior to the grafting reaction.
  • R1 is a ligand group connected to the quantum dot QD, specifically a sulfhydryl group (-SH), an amino group (-NH2), or a carboxyl group (-COOH), which is a group that can coordinate with the quantum dot QD.
  • R2 is aliphatic chain 0 ⁇ n3 ⁇ 8, the length of the carbon chain of the main chain of the aliphatic chain R2 does not exceed 8 carbon atoms, so that the carrier has a better transmission rate in the quantum dot film layer;
  • R3 is the first group, specifically, R3 is a group capable of photoreaction or thermal reaction, for example, an epoxy group Azide (—N 3 ), alkene or alkyne
  • the overall structural formula connected to the fluorine-containing aromatic hydrocarbon structure Y can be: Y—R 5 , wherein, Y is a fluorine-containing aromatic hydrocarbon structure, specifically, can be hexafluorobenzene, decafluorobiphenyl, hexafluorobenzene Bisphenol A, R5 is the second group, R5 is a group capable of reacting with the R3 group, including azide (—N 3 ) reacting with alkynes, hydroxyl (—OH) reacting with epoxy ;
  • -SH- is the ligand group R1
  • R3 For the first group R3, -SH- and The structure between is aliphatic chain R2;
  • the side structure with the fluorine-containing aromatic structure is in is the fluorine-containing aromatic hydrocarbon structure Y, -OH is the second group R5;
  • the structure contained in the finally formed quantum dot film layer is:
  • the quantum dot film layer may also contain specific forms of other forms, and the embodiments of the present disclosure are not limited thereto.
  • the original structure of quantum dot QDs generally contains aliphatic hydrocarbons.
  • the aliphatic chain When forming a thin film state, the aliphatic chain generally forms a curved and surrounding structure. If the fluorine-containing aromatic hydrocarbon structure provided in the embodiment of the present disclosure is grafted, the same The ligand chains between the quantum dots will no longer be entangled with each other due to the repulsion of the fluorine atoms; the ligand chains between the quantum dots are also separated as much as possible, and the large steric hindrance effect of the aromatic ring also prevents the quantum dots between the quantum dots. After combining the two factors, the mutual distance between the quantum dots is comprehensively enlarged, which reduces the probability of Förster energy transfer between the quantum dots.
  • the maximum distance L2 from the quantum dots QD to the fluorine-containing aromatic hydrocarbon structure Y is greater than the first distance L1, and the first distance L1 is the first group R3 before the grafting reaction.
  • the distance between the end away from the quantum dot QD and the quantum dot QD can be understood as the distance between the end of the fluorine-containing arene structure Y far away from the quantum dot QD and the quantum dot QD.
  • the distance L4 between adjacent quantum dots QDs is greater than the second distance L3 , which is the distance between two adjacent quantum dots QDs before the grafting reaction.
  • an embodiment of the present disclosure also provides a quantum dot light-emitting device, which includes the quantum dot film layer provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a method for fabricating a quantum dot film layer, including:
  • Step S100 forming a first quantum dot film layer on one side of the base substrate, wherein the first quantum dot film layer includes: quantum dots, a first group connected to the quantum dots;
  • step S100 forming a first quantum dot film layer on one side of the base substrate includes: forming a first quantum dot film layer containing the following structural formula on one side of the base substrate:
  • R 1 is a ligand group connected to the quantum dot
  • R2 is an aliphatic chain
  • R3 is a first group
  • step S100 forming a first quantum dot film layer on one side of the base substrate includes: forming a first quantum dot film layer containing one of the following first groups on one side of the base substrate:
  • step S100 forming a first quantum dot film layer on one side of the base substrate includes:
  • Step S101 get the solution containing the quantum dot body and place it in a three-necked flask;
  • Step S102 adding a toluene solution of oleic acid in an atmosphere of nitrogen;
  • Step S103 stirring at room temperature for a third period of time to complete the exchange
  • Step S104 after the reaction, sink the solution into ethanol to precipitate the precipitate, perform centrifugation, and discard the supernatant;
  • Step S105 adding toluene to dissolve and then sinking into ethanol again to precipitate the precipitate, discarding the supernatant after centrifugation, and adding toluene to prepare a solution of quantum dot solution;
  • Step S106 coating the quantum dot solution on one side of the base substrate
  • Step S200 forming a solution containing modified ligands on the side of the first quantum dot film layer away from the base substrate, wherein the modified ligands include: a fluorine-containing arene structure, and a second group connected to the fluorine-containing arene structure;
  • step S200 forming a solution containing modified ligands on the side of the first quantum dot film layer away from the base substrate includes: forming a solution containing the following structural formula on the side of the first quantum dot film layer away from the base substrate Modified ligand: Y—R 5 , wherein, Y is a fluorine-containing aromatic hydrocarbon structure, and R5 is a second group; further, in step S200 , the first quantum dot film layer is formed on the side away from the substrate substrate containing modified
  • the solution of the ligand includes: forming a modified ligand containing the following second group on the side of the first quantum dot film layer away from the substrate:
  • a solution containing modified ligands is formed on the side of the first quantum dot film layer away from the base substrate, including: adding perfluoromethylcyclohexane containing 1-hydroxydecafluorobiphenyl and PAG to The solution is dropped on the first quantum dot film layer; wherein, the 1-hydroxydecafluorobiphenyl includes a second group -OH, and a fluorine-containing aromatic hydrocarbon structure
  • step S300 the first group and the second group are subjected to a graft reaction under preset conditions to form a bonding structure, so that the fluorine-containing aromatic hydrocarbon structure is connected to the quantum dots through the bonding structure.
  • the first group and the second group are subjected to a graft reaction to form a combined structure, which may include: reacting the first group and the second group by light or heating, specifically, using ultraviolet light The light is irradiated for a first period of time to cause a graft reaction between the first group and the second group.
  • the first group and the second group are groups that can undergo a photoreaction or a thermal reaction.
  • the preparation method further includes: the preparation method further includes: after the irradiation is completed, the excess The solvent was spin-coated to remove and annealed for a second period of time after washing with ethanol at least three times.
  • the original quantum dots QD can be CdSe/ZnS quantum dots, the ligand molecule A is oleic acid, the solvent is toluene, and the concentration is 10mg/ml; take 100mg of quantum dots, 10ml is placed in a 50ml three-necked flask, and added under a nitrogen atmosphere
  • the precipitate was precipitated in ethanol, the supernatant was discarded after centrifugation, and toluene was added to prepare a solution of 15 mg/ml;
  • QLED device preparation spin-coat PEDOT on the substrate (the substrate substrate can be formed with indium tin oxide ITO), anneal at 4000rpm, 120 degrees for 5 minutes; then spin-coat hole transport material, 3000rpm, 230 degrees after spin-coating Annealing for 20 minutes; spin coating the prepared quantum dot solution, 2000rpm; drop the perfluoromethylcyclohexane solution containing 1-hydroxydecafluorobiphenyl (30%) and PAG (1%) on the quantum dot film layer , irradiate 200mj with 365nm UV light, remove excess solvent by spin coating after irradiation, wash three times with ethanol and anneal at 150°C for 20 minutes; spin-coat 30mg/ml zinc oxide nanoparticle solution after completion, anneal at 2000rpm, 120°C 10 minutes. A 150nm aluminum electrode was vacuum evaporated, and finally a QLED device was formed by encapsulation.
  • ITO indium tin oxide
  • spin-coat hole transport material 3000rpm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供一种量子点膜层、量子点发光器件和制作方法。所述量子点膜层包括:量子点;结合结构,所述结合结构的一端与所述量子点连接;含氟芳烃结构,所述含氟芳烃结构与所述结合结构的另一端连接,以通过所述结合结构与所述量子点连接。

Description

量子点膜层、量子点发光器件和制作方法 技术领域
本公开涉及半导体技术领域,尤其涉及一种量子点膜层、量子点发光器件和制作方法。
背景技术
量子点发光二极管显示器(Quantum Dots Light Emitting Doide Display,QLED)是基于有机发光显示器的基础上发展起来的一种新型显示技术。而两者存在的区别是QLED里的发光层为量子点层,它的原理是电子/空穴通过电子/空穴传输层注入到量子点层,电子和空穴在量子点层中复合发光。与有机发光二极管显示器件(OLED)相比,QLED具有发光峰窄,色彩饱和度高,色域宽等优点。
发明内容
本公开实施例提供一种量子点膜层,其中,包括:
量子点;
结合结构,所述结合结构的一端与所述量子点连接;
含氟芳烃结构,所述含氟芳烃结构与所述结合结构的另一端连接,以通过所述结合结构与所述量子点连接。
在一种可能的实施方式中,所述含氟芳烃结构的通式为以下之一或组合:
Figure PCTCN2020136556-appb-000001
Figure PCTCN2020136556-appb-000002
其中,n1≤6,n2≤6。
在一种可能的实施方式中,所述结合结构包括以下之一:
Figure PCTCN2020136556-appb-000003
——O——。
在一种可能的实施方式中,所述连接结构由第一基团和第二基团经接枝反应形成,其中,所述第一基团为在所述接枝反应之前连接于所述量子点的基团,所述第二基团为在所述接枝反应之前连接于所述含氟芳烃结构的基团。
在一种可能的实施方式中,所述第一基团为以下之一:
Figure PCTCN2020136556-appb-000004
——N 3
Figure PCTCN2020136556-appb-000005
在一种可能的实施方式中,所述第二基团为以下之一:
——OH;
——N 3
在一种可能的实施方式中,所述量子点膜层还包括:与所述量子点连接的配位基团,所述结合结构通过所述配位基团与所述量子点连接。
在一种可能的实施方式中,所述配位基团为以下之一:
巯基;
氨基;
羧基。
在一种可能的实施方式中,所述量子点膜层还包括:连接在所述配位基团与所述结合结构之间的脂肪链。
在一种可能的实施方式中,所述脂肪链主链碳链的碳原子大于0且不超过8。
在一种可能的实施方式中,所述量子点膜层包括以下结构:
Figure PCTCN2020136556-appb-000006
在一种可能的实施方式中,所述量子点至所述含氟芳烃结构的最大间距大于第一距离,所述第一距离为在所述接枝反应之前,所述第一基团远离量子点的一端与所述量子点之间的间距。
在一种可能的实施方式中,相邻量子点之间的间距大于第二距离,所述第二距离为在所述接枝反应之前,相邻两个所述量子点之间的距离。
本公开实施例还提供一种量子点发光器件,其中,包括如本公开实施例提供的所述量子点膜层。
本公开实施例还提供一种量子点膜层的制作方法,其中,包括:
在衬底基板的一侧形成第一量子点膜层,其中,所述第一量子点膜层包括:量子点,与所述量子点连接的第一基团;
在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,其中,所述修饰配体包括:含氟芳烃结构,以及与所述含氟芳烃结构连接的第二基团;
在预设条件下使所述第一基团和所述第二基团发生接枝反应,形成结合结构,以使所述含氟芳烃结构通过所述结合结构与所述量子点连接。
在一种可能的实施方式中,所述在衬底基板的一侧形成第一量子点膜层,包括:在所述衬底基板的一侧形成含有如下结构式的第一量子点膜层:
R 1——R 2——R 3,其中,R1为与所述量子点连接的配体基团,R2为脂肪链,R3为所述第一基团。
在一种可能的实施方式中,所述在衬底基板的一侧形成第一量子点膜层,包括:在所述衬底基板的一侧形成含有如下之一所述第一基团的所述第一量子点膜层:
Figure PCTCN2020136556-appb-000007
——N 3
Figure PCTCN2020136556-appb-000008
在一种可能的实施方式中,所述在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,包括:在所述第一量子点膜层的背离所述衬底基板的一面形成含有如下结构式的修饰配体:
Y——R 5,其中,Y为所述含氟芳烃结构,R5为所述第二基团。
在一种可能的实施方式中,所述在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,包括:在所述第一量子点膜层的背离所述衬底基板的一面形成含有如下所述第二基团的修饰配体:
——OH;
——N 3
在一种可能的实施方式中,所述在预设条件下使所述第一基团和所述第二基团发生接枝反应,包括:
通过光照或加热,使所述第一基团和所述第二基团发生反应。
附图说明
图1为本公开实施例提供的量子点膜层含有的结构之一;
图2为本公开实施例提供的量子点膜层含有的结构之二;
图3为本公开实施例提供的量子点膜层含有的结构之三;
图4为本公开实施例提供的发生接枝反应前后,与量子点的链长比较示意图;
图5为本公开实施例提供的发生接枝反应前后,相邻量子点之间的间距比较示意图;
图6为本公开实施例提供的量子点膜层的制作方法示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
目前QLED器件中量子点溶液发光产率较高,基本能够达到80%以上。但是由溶液制备成薄膜后量子产率往往发生大幅下降,这主要是由于溶液态量子点活动范围大,相互之间距离较远;形成致密的薄膜后量子点之间距离减小,发生福斯特能量转移的几率增大,有部分以非辐射复合的形式释放掉,降低了量子点薄膜的荧光量子产率;针对这种现象,有部分研究通过增大量子点外围壳层厚度实现增大相互之间距离,但是壳层太厚容易阻碍载流子的传输,造成器件效率下降。
有鉴于此,参见图1所示,本公开实施例提供一种量子点膜层,包括:
量子点QD;
结合结构X,结合结构X的一端与量子点QD连接;
含氟芳烃结构Y,含氟芳烃结构Y与结合结构X的另一端连接,以通过结合结构X与量子点QD连接。
本公开实施例中,量子点膜层包括结合结构X与量子点QD连接的含氟芳烃结构Y,一方面,利用含氟芳烃结构Y中含氟基团相互排斥的作用力,即,氟原子外层电子云的紧密结构难以影响外界场,对其它分子的接近所引起的诱导效应也最小,所以分子间表现出较强的排斥力,另一方面,利用含氟芳烃结构Y中芳香单元的大位阻效应,两个方面的作用,可以增加量子点膜层内相邻量子点之间的距离,避免因为量子点靠近而产生能量转移,造成 发光产率的下降的问题。
在具体实施时,本公开实施例中的量子点膜层可以为量子点发光器件中的发光层。量子点发光器件可以为出射单色光的量子点发光器件,例如,出射单色红光的量子点发光器件,例如,出射绿光的量子点发光器件,出射蓝光的量子点发光器件。量子点发光器件也可以为出射多种光色的显示器件,量子点膜层作为其中的发光层,具体可以包括出射多种不同光色的多种量子点发光部,例如,量子点膜层包括:出射红光的红色量子点发光部,出射绿光的绿色量子点发光部,以及出射蓝光的蓝色量子点发光部。
在具体实施时,含氟芳烃结构Y的通式为以下之一或组合:
Figure PCTCN2020136556-appb-000009
例如,n1=1时,为六氟苯,含氟芳烃结构Y为
Figure PCTCN2020136556-appb-000010
n1=2时,为十氟联苯,含氟芳烃结构Y为
Figure PCTCN2020136556-appb-000011
Figure PCTCN2020136556-appb-000012
其中,n1≤6,n2≤6。在具体 实施时,芳环越多,位阻越大,有利于增大量子点之间的间距,但过多的含氟芳环结构,会影响载流子在量子点膜层中的传输速率,也不利于使量子点膜层具有较高的发光产率,本公开实施例中,n1≤6,n2≤6,可以使量子点膜层内相邻量子点之间具有较大的距离,避免因为量子点靠近而产生能量转移,造成发光产率的下降的问题,同时可以使量子点膜层具有较佳的载流子传输速率。
在具体实施时,结合结构X包括以下之一:
Figure PCTCN2020136556-appb-000013
——O——。
具体的,结合结构X可以直接与量子点QD连接,如图1所示。具体的,参见图2和图3所示,结合结构X与量子点QD之间还可以连接有连接结构Z,例如,结合图2所示,连接结构Z可以为包括与量子点QD连接的配位基团R1,结合结构X通过配位基团R1与量子点QD连接;又例如,结合图3所示,连接结构Z还可以是包括:与量子点QD连接的配位基团R1,以及与配位基团R1连接的脂肪链R2,脂肪链R2连接在配位基团R1与结合结构X之间,结合结构X通过脂肪链R2、配体基团R1与量子点QD连接。
在具体实施时,连接结构X可以由第一基团R3和第二基团R5经接枝反应形成,其中,第一基团R3为在接枝反应之前连接于量子点QD的基团,第二基团为在接枝反应之前连接于含氟芳烃结构的基团。具体的,例如,在接枝反应之前,与量子点连接的结构为
Figure PCTCN2020136556-appb-000014
其中,R1为与 量子点QD连接的配体基团,具体可以为巯基(-SH),氨基(-NH2),或羧基(-COOH),为能够实现与量子点QD进行配位的基团;R2为脂肪链
Figure PCTCN2020136556-appb-000015
0<n3≤8,脂肪链R2主链碳链长度不超过8个碳原子,以使载流子在量子点膜层中具有较佳的传输速率;R3为第一基团,具体的,R3为能够进行光反应或者热反应的基团,例如,为环氧基
Figure PCTCN2020136556-appb-000016
叠氮(——N 3),烯烃
Figure PCTCN2020136556-appb-000017
或炔烃
Figure PCTCN2020136556-appb-000018
在接枝反应之前,与含氟芳烃结构Y连接的整体结构式可以为:Y——R 5,其中,Y为含氟芳烃结构,具体的,可以为六氟苯,十氟联苯,六氟双酚A,R5为第二基团,R5为能够与R3基团进行反应的基团,包括与炔烃反应的叠氮(——N 3),与环氧反应的羟基(——OH);
具体的,例如,在接枝反应之前,与量子点连接的结构为
Figure PCTCN2020136556-appb-000019
其中,-SH-为配体基团R1,
Figure PCTCN2020136556-appb-000020
为第一基团R3,-SH-与
Figure PCTCN2020136556-appb-000021
之间的结构为脂肪链R2;
在接枝反应之前,具有含氟芳烃结构的一侧结构为
Figure PCTCN2020136556-appb-000022
其中,
Figure PCTCN2020136556-appb-000023
为含氟芳烃结构Y,——OH为第二基团R5;
经发生如下接枝反应:
Figure PCTCN2020136556-appb-000024
最终形成的量子点膜层中含有的结构为:
Figure PCTCN2020136556-appb-000025
当然,以上给出的:
Figure PCTCN2020136556-appb-000026
仅是一种具体的接枝反应形成的量子点膜层中含有的结构,在具体实施时,量子点膜层中还可以是含有其它形式的具体形式,本公开实施例不以此为限。
由以上的反应式可知,量子点QD的原始结构中一般含有脂肪烃,在形成薄膜态时,脂肪链一般会形成弯曲环绕结构,如果接枝上本公开实施例提供的含氟芳烃结构,同一量子点之间的配体链会由于氟原子的排斥而不再相互缠绕;量子点之间的配体链也尽可能的分离,同时芳环的大位阻效应,也阻止了量子点之间的相互渗透;综合两方面因素后,量子点之间的相互距离被全面拉大,减小了量子点间发生福斯特能量转移的几率。
在具体实施时,参见图4所示,量子点QD至含氟芳烃结构Y的最大间距L2大于第一距离L1,第一距离L1为在接枝反应之前,第一基团R3
Figure PCTCN2020136556-appb-000027
远离量子点QD的一端与量子点QD之间的间距。具体的,结合图4所示,量子点QD至含氟芳烃结构Y的最大间距,可以理解为含氟芳烃结构Y远离量子点QD的一端距量子点QD之间的距离。
在具体实施时,参见图5所示,相邻量子点QD之间的间距L4大于第二距离L3,第二距离L3为在接枝反应之前,相邻两个量子点QD之间的距离。
基于同一发明构思,本公开实施例还提供一种量子点发光器件,其中,包括如本公开实施例提供的量子点膜层。
基于同一发明构思,参见图6所示,本公开实施例还提供一种量子点膜层的制作方法,其中,包括:
步骤S100、在衬底基板的一侧形成第一量子点膜层,其中,第一量子点膜层包括:量子点,与量子点连接的第一基团;
具体的,该步骤S100、在衬底基板的一侧形成第一量子点膜层,包括:在衬底基板的一侧形成含有如下结构式的第一量子点膜层:
R 1——R 2——R 3,其中,R1为与量子点连接的配体基团,R2为脂肪链,R3为第一基团;
进一步的,该步骤S100、在衬底基板的一侧形成第一量子点膜层,包括:在衬底基板的一侧形成含有如下之一第一基团的第一量子点膜层:
Figure PCTCN2020136556-appb-000028
——N 3
Figure PCTCN2020136556-appb-000029
该步骤S100、在衬底基板的一侧形成第一量子点膜层,包括:
步骤S101、取含有量子点本体的溶液置于三口烧瓶中;
步骤S102、在通氮气的氛围下加入油酸的甲苯溶液;
步骤S103、室温下搅拌第三时长,使交换完全;
步骤S104、反应后将溶液沉入乙醇中析出沉淀,进行离心,丢弃上清液;
步骤S105、加入甲苯溶解后再次沉入乙醇中析出沉淀,离心后丢弃上清液,加入甲苯配制成量子点溶液的溶液;
步骤S106、将量子点溶液涂覆在衬底基板的一侧;
步骤S200、在第一量子点膜层的背离衬底基板的一面形成含有修饰配体的溶液,其中,修饰配体包括:含氟芳烃结构,以及与含氟芳烃结构连接的第二基团;
具体的,该步骤S200、在第一量子点膜层的背离衬底基板的一面形成含有修饰配体的溶液,包括:在第一量子点膜层的背离衬底基板的一面形成含有如下结构式的修饰配体:Y——R 5,其中,Y为含氟芳烃结构,R5为第二基团;进一步的,该步骤S200、在第一量子点膜层的背离衬底基板的一面形成含有修饰配体的溶液,包括:在第一量子点膜层的背离衬底基板的一面形成含有如下第二基团的修饰配体:
——OH;
——N 3
具体的,该步骤S200、在第一量子点膜层的背离衬底基板的一面形成含有修饰配体的溶液,包括:将含有1-羟基十氟联苯和PAG的全氟甲基环己烷溶液滴在第一量子点膜层;其中,1-羟基十氟联苯中包括第二基团-OH,以及含氟芳烃结构
Figure PCTCN2020136556-appb-000030
步骤S300、在预设条件下使第一基团和第二基团发生接枝反应,形成结合结构,以使含氟芳烃结构通过结合结构与量子点连接,具体的,该步骤S300、在预设条件下使第一基团和第二基团发生接枝反应,形成结合结构,可以包括:通过光照或加热,使第一基团和第二基团发生反应,具体的,可以是使用紫外光照射第一时长,以使第一基团和第二基团发生接枝反应。相应的,第一基团和第二基团为可以发生光反应或发生热反应的基团。
在具体实施时,在步骤S300之后,即,在预设条件下使第一基团和第二基团发生接枝反应之后,制作方法还包括:述制作方法还包括:照射完成后, 将多余溶剂旋涂去除,并用乙醇洗涤至少三次后退火第二时长。
为了更清楚地理解本公开实施例提供的量子点膜层的制作方法,以下进行进一步说明如下:
制备QLED器件的量子点:
原始量子点QD可以为CdSe/ZnS量子点,配体分子A为油酸,溶剂为甲苯,浓度为10mg/ml;取量子点100mg,10ml置于50ml三口烧瓶中,在通氮气的氛围下加入配体分子A的甲苯溶液(浓度100mg/ml)5ml,室温下搅拌24小时使交换完全;反应后将溶液沉入乙醇中析出沉淀,8000rpm进行离心,丢弃上清液;加入甲苯溶解后再次沉入乙醇中析出沉淀,离心后丢弃上清液,加入甲苯配制成15mg/ml的溶液;
QLED器件制备:在衬底基板(衬底基板具体可以形成有氧化铟锡ITO)上旋涂PEDOT,4000rpm,120度退火5分钟;接着旋涂空穴传输材料,3000rpm,旋涂完成后230度退火20分钟;旋涂配置好的量子点溶液,2000rpm;将含有1-羟基十氟联苯(30%)和PAG(1%)的全氟甲基环己烷溶液滴在量子点膜层上,使用365nm的UV光进行照射200mj,照射完成后将多余溶剂旋涂去除,并用乙醇洗涤三次后150度退火20分钟;完成后旋涂30mg/ml的氧化锌纳米粒子溶液,2000rpm,120度退火10分钟。真空蒸镀铝电极150nm,最后封装形成QLED器件。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种量子点膜层,其中,包括:
    量子点;
    结合结构,所述结合结构的一端与所述量子点连接;
    含氟芳烃结构,所述含氟芳烃结构与所述结合结构的另一端连接,以通过所述结合结构与所述量子点连接。
  2. 如权利要求1所述的量子点膜层,其中,所述含氟芳烃结构的通式为以下之一或组合:
    Figure PCTCN2020136556-appb-100001
    Figure PCTCN2020136556-appb-100002
    其中,n1≤6,n2≤6。
  3. 如权利要求1所述的量子点膜层,其中,所述结合结构包括以下之一:
    Figure PCTCN2020136556-appb-100003
    ——o——。
  4. 如权利要求1所述的量子点膜层,其中,所述连接结构由第一基团和第二基团经接枝反应形成,其中,所述第一基团为在所述接枝反应之前连接 于所述量子点的基团,所述第二基团为在所述接枝反应之前连接于所述含氟芳烃结构的基团。
  5. 如权利要求4所述的量子点膜层,其中,所述第一基团为以下之一:
    Figure PCTCN2020136556-appb-100004
    ——N 3
    Figure PCTCN2020136556-appb-100005
  6. 如权利要求4所述的量子点膜层,其中,所述第二基团为以下之一:
    ——OH;
    ——N 3
  7. 如权利要求1所述的量子点膜层,其中,所述量子点膜层还包括:与所述量子点连接的配位基团,所述结合结构通过所述配位基团与所述量子点连接。
  8. 如权利要求7所述的量子点膜层,其中,所述配位基团为以下之一:
    巯基;
    氨基;
    羧基。
  9. 如权利要求7所述的量子点膜层,其中,所述量子点膜层还包括:连接在所述配位基团与所述结合结构之间的脂肪链。
  10. 如权利要求9所述的量子点膜层,其中,所述脂肪链主链碳链的碳原子大于0且不超过8。
  11. 如权利要求1所述的量子点膜层,其中,所述量子点膜层包括以下结构:
    Figure PCTCN2020136556-appb-100006
  12. 如权利要求1所述的量子点膜层,其中,所述量子点至所述含氟芳烃结构的最大间距大于第一距离,所述第一距离为在所述接枝反应之前,所述第一基团远离量子点的一端与所述量子点之间的间距。
  13. 如权利要求1所述的量子点膜层,其中,相邻量子点之间的间距大于第二距离,所述第二距离为在所述接枝反应之前,相邻两个所述量子点之间的距离。
  14. 一种量子点发光器件,其中,包括如权利要求1-13任一项所述的量子点膜层。
  15. 一种量子点膜层的制作方法,其中,包括:
    在衬底基板的一侧形成第一量子点膜层,其中,所述第一量子点膜层包括:量子点,与所述量子点连接的第一基团;
    在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,其中,所述修饰配体包括:含氟芳烃结构,以及与所述含氟芳烃结构 连接的第二基团;
    在预设条件下使所述第一基团和所述第二基团发生接枝反应,形成结合结构,以使所述含氟芳烃结构通过所述结合结构与所述量子点连接。
  16. 如权利要求15所述的制作方法,其中,所述在衬底基板的一侧形成第一量子点膜层,包括:在所述衬底基板的一侧形成含有如下结构式的第一量子点膜层:
    R 1——R 2——R 3,其中,R1为与所述量子点连接的配体基团,R2为脂肪链,R3为所述第一基团。
  17. 如权利要求16所述的制作方法,其中,所述在衬底基板的一侧形成第一量子点膜层,包括:在所述衬底基板的一侧形成含有如下之一所述第一基团的所述第一量子点膜层:
    Figure PCTCN2020136556-appb-100007
    ——N 3
    Figure PCTCN2020136556-appb-100008
  18. 如权利要求15所述的制作方法,其中,所述在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,包括:在所述第一量子点膜层的背离所述衬底基板的一面形成含有如下结构式的修饰配体:
    Y——R 5,其中,Y为所述含氟芳烃结构,R5为所述第二基团。
  19. 如权利要求18所述的制作方法,其中,所述在所述第一量子点膜层的背离所述衬底基板的一面形成含有修饰配体的溶液,包括:在所述第一量子点膜层的背离所述衬底基板的一面形成含有如下所述第二基团的修饰配体:
    ——OH;
    ——N 3
  20. 如权利要求15-19任一项所述的制作方法,其中,所述在预设条件下 使所述第一基团和所述第二基团发生接枝反应,包括:
    通过光照或加热,使所述第一基团和所述第二基团发生反应。
PCT/CN2020/136556 2020-12-15 2020-12-15 量子点膜层、量子点发光器件和制作方法 WO2022126382A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080003337.1A CN114946045A (zh) 2020-12-15 2020-12-15 量子点膜层、量子点发光器件和制作方法
PCT/CN2020/136556 WO2022126382A1 (zh) 2020-12-15 2020-12-15 量子点膜层、量子点发光器件和制作方法
US18/031,737 US20230389406A1 (en) 2020-12-15 2020-12-15 Quantum dot film layer, quantum dot light-emitting device, and fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136556 WO2022126382A1 (zh) 2020-12-15 2020-12-15 量子点膜层、量子点发光器件和制作方法

Publications (1)

Publication Number Publication Date
WO2022126382A1 true WO2022126382A1 (zh) 2022-06-23

Family

ID=82059891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136556 WO2022126382A1 (zh) 2020-12-15 2020-12-15 量子点膜层、量子点发光器件和制作方法

Country Status (3)

Country Link
US (1) US20230389406A1 (zh)
CN (1) CN114946045A (zh)
WO (1) WO2022126382A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552241A (zh) * 2016-01-13 2016-05-04 京东方科技集团股份有限公司 可交联量子点及其制备方法、阵列基板及其制备方法
CN107955597A (zh) * 2016-10-19 2018-04-24 苏州星烁纳米科技有限公司 量子点膜及其应用
CN108129661A (zh) * 2018-01-03 2018-06-08 京东方科技集团股份有限公司 一种聚合物、量子点膜层及其制备方法
CN109148699A (zh) * 2017-06-19 2019-01-04 Tcl集团股份有限公司 量子点与聚合物交联的混合薄膜及制备方法与qled

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065285B2 (en) * 2003-12-01 2006-06-20 Lucent Technologies Inc. Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same
CN106531860B (zh) * 2016-12-22 2019-10-11 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN106957650A (zh) * 2017-03-22 2017-07-18 深圳市华星光电技术有限公司 一种修饰量子点的制备方法及修饰量子点薄膜
CN109935709A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点薄膜及其制备方法、qled器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552241A (zh) * 2016-01-13 2016-05-04 京东方科技集团股份有限公司 可交联量子点及其制备方法、阵列基板及其制备方法
CN107955597A (zh) * 2016-10-19 2018-04-24 苏州星烁纳米科技有限公司 量子点膜及其应用
CN109148699A (zh) * 2017-06-19 2019-01-04 Tcl集团股份有限公司 量子点与聚合物交联的混合薄膜及制备方法与qled
CN108129661A (zh) * 2018-01-03 2018-06-08 京东方科技集团股份有限公司 一种聚合物、量子点膜层及其制备方法

Also Published As

Publication number Publication date
US20230389406A1 (en) 2023-11-30
CN114946045A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
Li et al. Quantum‐dot light‐emitting diodes for outdoor displays with high stability at high brightness
WO2019196778A1 (zh) 量子点发光二极管及其制作方法、显示设备
JP7265893B2 (ja) 電界発光素子及び表示装置
US20220194969A1 (en) Metal halide perovskite light emitting device and method for manufacturing same
US20220165952A1 (en) Nanoparticle, method for patterning nanoparticle layer and light emitting device
Li et al. Enhanced efficiency of InP-based red quantum dot light-emitting diodes
Ko et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands
CN111416053B (zh) 一种量子点发光器件及其制备方法、显示面板、显示装置
WO2016004662A1 (zh) Oled像素结构
JP2008214363A5 (ja) ナノ粒子発光材料、これを用いた電界発光素子、及び表示装置
JP2009087760A (ja) エレクトロルミネッセンス素子の製造方法
Kim et al. High-resolution colloidal quantum dot film photolithography via atomic layer deposition of ZnO
US11530350B2 (en) Ligand and method of manufacturing the same, quantum dot film and method of manufacturing the same, and display apparatus
KR20180035279A (ko) 백색광 양자점 발광 소자 및 이의 제조 방법
US11296294B2 (en) Display device comprising quantum dot emission layer
Kang et al. Highly efficient white light-emitting diodes based on quantum dots and polymer interface
Wang et al. Tailoring nanostructures of quantum dots toward efficient and stable all-solution processed quantum dot light-emitting diodes
US20180175319A1 (en) Spectral emission modification using localized surface plasmon of metallic nanoparticles
WO2022126382A1 (zh) 量子点膜层、量子点发光器件和制作方法
Lee et al. High-Resolution Multicolor Patterning of InP Quantum Dot Films by Atomic Layer Deposition of ZnO
WO2022143676A1 (zh) 一种复合材料及其制备方法、量子点发光二极管
WO2023173417A1 (zh) 量子点混合物、量子点发光层及制作方法
WO2023005611A1 (zh) 量子点材料、发光器件、显示装置和制作方法
WO2020121398A1 (ja) 表示装置およびその製造方法
WO2022252049A1 (zh) 发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18031737

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965400

Country of ref document: EP

Kind code of ref document: A1