WO2023173417A1 - 量子点混合物、量子点发光层及制作方法 - Google Patents

量子点混合物、量子点发光层及制作方法 Download PDF

Info

Publication number
WO2023173417A1
WO2023173417A1 PCT/CN2022/081762 CN2022081762W WO2023173417A1 WO 2023173417 A1 WO2023173417 A1 WO 2023173417A1 CN 2022081762 W CN2022081762 W CN 2022081762W WO 2023173417 A1 WO2023173417 A1 WO 2023173417A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
group
ligand
film layer
light
Prior art date
Application number
PCT/CN2022/081762
Other languages
English (en)
French (fr)
Inventor
陈卓
李卓
张迪
袁旭
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000482.3A priority Critical patent/CN117178651A/zh
Priority to PCT/CN2022/081762 priority patent/WO2023173417A1/zh
Publication of WO2023173417A1 publication Critical patent/WO2023173417A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a quantum dot mixture, a quantum dot luminescent layer and a manufacturing method.
  • quantum dot preparation technology With the in-depth development of quantum dot preparation technology, the stability and luminous efficiency of quantum dots continue to improve, and the research on quantum dot electroluminescent diodes (Quantum Dot Light Emitting Diodes, QLED) continues to deepen.
  • QLED Quantum Dot Light Emitting Diodes
  • the application prospects of QLED in the display field are becoming increasingly bright.
  • the efficiency of QLED has not yet reached mass production levels.
  • QLED's high-resolution patterning technology has not yet achieved a breakthrough.
  • the inorganic nanoparticle characteristics of quantum dots prevent them from being filmed and patterned by evaporation; it is difficult to achieve high resolution through inkjet printing.
  • the purpose of this disclosure is to provide a quantum dot mixture, a quantum dot luminescent layer and a manufacturing method.
  • the present disclosure provides a basis for the quantum dot luminescent layer to be formed using a photolithography process.
  • a method for manufacturing a quantum dot luminescent layer including:
  • the material of the quantum dot film layer includes a first quantum dot body-a first ligand and a second quantum dot body-a second ligand;
  • a development process is performed to remove the quantum dot film layer located in non-preset areas of the substrate to obtain the quantum dot light-emitting layer.
  • the first quantum dot body-first ligand is dissolved in a developer
  • the second quantum dot body-second ligand is insoluble in the developer after exposure
  • the first ligand in the first quantum dot body-first ligand includes a cross-linkable group
  • the second ligand in the second quantum dot body-second ligand includes a Z group, and the structure of the Z group is -A-B, A is an imino group, and B is a protecting group;
  • the Z group can remove the protecting group to form an amino group under the action of a photoacid generator, and the formed amino group can cross-link with the cross-linkable group or form an amino group that is insoluble in developing liquid salt.
  • forming a quantum dot film layer on one side of the substrate includes:
  • a mixed solution of the first quantum dot body-first ligand solution, the second quantum dot body-second ligand solution and the photoacid generator is coated on one side of the substrate to form the Quantum dot film layer.
  • forming a quantum dot film layer on one side of the substrate includes:
  • the material of the first quantum dot film layer contains the first quantum dot body-first ligand, and the material of the second quantum dot film layer contains the second quantum dot body-second ligand.
  • the first quantum dot body-first ligand is dissolved in a developer
  • the second quantum dot body-second ligand is insoluble in the developer after exposure.
  • forming at least one first quantum dot film layer and at least one second quantum dot film layer on one side of the substrate includes:
  • the crosslinkable group is selected from carboxylic acid groups or sulfonic acid groups.
  • the protecting group is selected from the group consisting of the following structures:
  • providing a first quantum dot body-first ligand solution includes:
  • the first ligand matrix includes a cross-linkable matrix, and the cross-linkable matrix is selected from a carboxylic acid group or a sulfonic acid group;
  • the cross-linkable group is selected from
  • the activator is selected from the group consisting of 1-ethyl-(3-dimethylaminopropyl)carbodiimide and N-hydroxythiosuccinimide. One or both.
  • the first quantum dot body in the first quantum dot film layer and the second quantum dot body in the second quantum dot film layer are located in the same preset area.
  • the core and shell materials are the same and the particle sizes are basically the same.
  • a quantum dot light-emitting layer is provided, the material of the quantum dot light-emitting layer includes a first quantum dot body, a first ligand, a second quantum dot body and a second ligand;
  • a coordination bond is formed between the first ligand and the first quantum dot body, and a coordination bond is formed between the second ligand and the second quantum dot body;
  • the first ligand and the second ligand are cross-linked or form a salt that is insoluble in the developer.
  • the first ligand includes a first ligand group and a cross-linkable group connected to each other, and the first ligand group and the first quantum dot Coordination bonds are formed between entities;
  • the second ligand includes a second coordination group and an amino group connected to each other, and a coordination bond is formed between the second coordination group and the second quantum dot body;
  • the cross-linkable group may cross-link with the amino group in the second ligand or form a salt insoluble in the developer.
  • the quantum dot luminescent layer includes at least one first luminescent layer and at least one second luminescent layer, and the first luminescent layer and the second luminescent layer are stacked. ;
  • the material of the first luminescent layer includes the first quantum dot body and the first ligand
  • the material of the second luminescent layer includes the second quantum dot body and the second ligand
  • the crosslinkable group is selected from carboxylic acid group, sulfonic acid group,
  • the material of the quantum dot light-emitting layer includes the following structure:
  • Q1 is the first quantum dot body
  • Q2 is the second quantum dot body
  • L 1 is the first coordination group forming a coordination bond with the first quantum dot body
  • L 2 is a second coordination group that forms a coordination bond with the second quantum dot body
  • n1 is selected from any integer from 1 to 7; n2 is selected from any integer from 0 to 8.
  • the core-shell materials of the first quantum dot body and the second quantum dot body are the same, and the particle sizes are substantially the same.
  • a quantum dot mixture including a first quantum dot body, a first ligand, a second quantum dot body and a second ligand:
  • the first ligand includes a first coordination group and a cross-linkable group connected to each other, and a coordination bond is formed between the first coordination group and the first quantum dot body;
  • the second ligand includes a second coordination group and a Z group connected to each other, and a coordination bond is formed between the second coordination group and the second quantum dot body;
  • the structure of the Z group is -A-B, A is imino group, B is protecting group;
  • the first ligand can be ionized in an alkaline solution
  • the Z group can remove the protective group to form an amino group under the action of a photoacid generator
  • the cross-linkable group can cross-link with the amino group formed by removing the protecting group from the Z group or form a salt insoluble in the developer;
  • cross-linkable group after being activated by an activator, can cross-link with the amino group formed by removing the protective group from the Z group or form a salt insoluble in the developer.
  • the crosslinkable group is selected from a carboxylic acid group or a sulfonic acid group
  • the activator is selected from one or both of 1-ethyl-(3-dimethylaminopropyl)carbodiimide and N-hydroxysulfosuccinimide.
  • the first ligand further includes a first linking group connected to the first coordination group and the cross-linkable matrix. between;
  • the second ligand also includes a second linking group, the second linking group is connected between the second coordinating group and the amino group;
  • the first connecting group and the second connecting group are selected from alkylene groups with carbon atoms of 1-8.
  • the first ligand further includes a dissolving group connected between the first coordination group and the crosslinkable matrix, so The solubilizing groups are selected from polar groups.
  • the protecting group is selected from the group consisting of the following structures:
  • the first ligand is selected from the group consisting of:
  • R 1 is selected from amino group, carboxylic acid group, thiol group, phosphine group, phosphineoxy group or bisthiol group;
  • R 2 is selected from carboxylic acid group or sulfonic acid group
  • n3 is selected from any integer from 1 to 7; n4 is selected from any integer from 1 to 100.
  • the second ligand is selected from the following structures:
  • R 3 is selected from amino group, carboxylic acid group, thiol group, phosphine group, phosphineoxy group or bisthiol group;
  • R 4 is selected from the group consisting of:
  • n3 is selected from any integer from 0 to 7.
  • a quantum dot light-emitting device including a functional layer, where the functional layer includes the quantum dot light-emitting layer described in any embodiment of the second aspect.
  • a display device including the quantum dot light-emitting device described in the fourth aspect.
  • the material contained in the quantum dot film layer is cross-linked or forms a salt that is insoluble in the developer.
  • the preset area is The quantum dot film layer in the area is insoluble in the developer, while the quantum dot film layer in the non-preset area is soluble in the developer, thereby providing a basis for the quantum dot light-emitting layer to be formed using a photolithography process.
  • Figure 1 is a schematic flow chart of a method for manufacturing a quantum dot light-emitting layer in an exemplary embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of forming a first quantum dot film layer and a second quantum dot film layer in an exemplary embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the structure of a quantum dot light-emitting layer formed in an exemplary embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of forming a first quantum dot film layer and a second quantum dot film layer in another exemplary embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the structure of a quantum dot light-emitting layer formed in another exemplary embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of forming a first quantum dot film layer and a second quantum dot film layer in yet another exemplary embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the structure of a quantum dot light-emitting layer formed in yet another exemplary embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a quantum dot light-emitting device in an exemplary embodiment of the present disclosure
  • Figure 9 is a schematic structural diagram of a quantum dot light-emitting device in another exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present disclosure.
  • a structure When a structure is "on" another structure, it may mean that the structure is integrally formed on the other structure, or that the structure is “directly” placed on the other structure, or that the structure is “indirectly” placed on the other structure through another structure. on other structures.
  • Quantum Dots are composed of zinc, cadmium, selenium and sulfur atoms. They are nanomaterials with crystal diameters between 2-10nm. They have unique photoelectric properties. After being stimulated by photoelectricity, they will change according to the diameter of the quantum dots. It emits pure monochromatic light of various colors and can change the color of the light source.
  • Quantum dots are generally used to form the quantum dot light-emitting layer of a quantum dot light-emitting device.
  • Quantum dot light-emitting devices generally include an anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode that are stacked in sequence.
  • the two electrodes When voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move toward the quantum dot film layer, and the holes on the anode side also move toward the luminescent layer. The electrons and holes combine in the quantum dot luminescent layer. Excitons are formed, and the excitons release energy in an excited state, thereby causing the quantum dot light-emitting layer to emit light.
  • quantum dots cannot achieve the same evaporation method as self-luminous OLEDs because they are easily affected by heat and moisture.
  • they can only be printed by inkjet printing.
  • higher resolutions are difficult to achieve with inkjet printing.
  • the present disclosure provides a method for making a quantum dot luminescent layer, which includes the following steps:
  • Step S100 providing a substrate
  • Step S200 forming a quantum dot film layer on one side of the substrate.
  • the material of the quantum dot film layer includes a first quantum dot body-first ligand and a second quantum dot body-second ligand;
  • Step S300 exposing a preset area of the substrate to cause the first ligand and the second ligand in the quantum dot film layer located in the preset area to cross-link or form a salt insoluble in the developer;
  • Step S400 perform a development process to remove the quantum dot film layer located in non-preset areas of the substrate to obtain a quantum dot light-emitting layer.
  • the material contained in the quantum dot film layer is cross-linked or forms a salt that is insoluble in the developer.
  • the preset area is The quantum dot film layer in the area is insoluble in the developer, while the quantum dot film layer in the non-preset area is soluble in the developer, thereby providing a basis for the quantum dot light-emitting layer to be formed using a photolithography process.
  • the first quantum dot body-the first ligand is soluble in the developer; the second quantum dot body-the second ligand is insoluble in the developer after exposure; the first quantum dot body-the second ligand is insoluble in the developer after exposure;
  • the first ligand in a ligand includes a cross-linkable group;
  • the second ligand in the second quantum dot body-the second ligand includes a Z group, and the structure of the Z group is -A-B, A is an imino group, and B is a protective group; under light conditions, the Z group can remove the protective group to form an amino group under the action of a photoacid generator, and the formed amino group can interact with the
  • the linking groups produce cross-links or form salts that are insoluble in the developer.
  • Step S100 Provide a substrate.
  • the substrate can be: inorganic materials such as glass substrates, metal substrates; organic materials such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyamide , polyethersulfone, or combinations thereof; silicon wafers; or composite material layers, etc., the disclosure is not specifically limited.
  • Step S200 Form a quantum dot film layer on one side of the substrate.
  • the material of the quantum dot film layer includes a first quantum dot body-first ligand and a second quantum dot body-second ligand.
  • step S200 includes:
  • Step S210 forming at least one first quantum dot film layer and at least one second quantum dot film layer on one side of the substrate, and the first quantum dot film layer and the second quantum dot film layer are stacked;
  • the material of the first quantum dot film layer includes the first quantum dot body and the first ligand
  • the material of the second quantum dot film layer includes the second quantum dot body and the second ligand
  • step S210 includes:
  • Step S211 providing the first quantum dot body-first ligand solution
  • Step S212 Coat the first quantum dot-first ligand solution on one side of the substrate to form a first quantum dot film layer;
  • Step S213 providing a mixed solution of the second quantum dot body-the second ligand solution and the photoacid generator;
  • Step S214 Apply a mixed solution of the second quantum dot body, the second ligand and the photoacid generator on the side of the first quantum dot film layer away from the substrate to form a second quantum dot film layer;
  • the first ligand in the first quantum dot body-first ligand solution includes a cross-linkable group
  • the second ligand in the second quantum dot body-second ligand solution contains a Z group.
  • the structure of the Z group is -A-B, A is an imino group, and B is a protecting group;
  • the Z group can remove the protective group under the action of the photoacid generator to form an amino group, and the formed amino group can cross-link with the cross-linkable group or form a salt that is insoluble in the developer.
  • Quantum dots are inorganic semiconductor nanoparticles synthesized by a solution method and have a size ranging from 1 to 10 nm, which is approximately or smaller than the exciton Bohr radius of the particle. Due to their small size and large specific surface area, quantum dots are prone to agglomeration, and quantum dots have many surface defects. Therefore, when used in applications, the surface of quantum dots is usually covered with organic surface ligands. The organic surface ligands not only play a The protective effect makes the quantum dots have better solubility in the solution. The migration of carriers (electrons and holes) in quantum dots is restricted inside the quantum dots, which gives the quantum dots unique optical and electrical properties. Due to the unique size-dependent properties, the light absorption and luminescence properties of quantum dots can be easily tuned by controlling particle size, shape, or surface structure.
  • the quantum dot body in this disclosure refers to the above-mentioned quantum dots, which can be semiconductor nanocrystals and can have various shapes such as spherical, conical, multi-armed and/or cubic nanoparticles, nanotubes, nanowires, and nanofibers. , nanoplate particles, quantum rods, or quantum sheets.
  • the quantum rod may be a quantum dot body having an aspect ratio (aspect ratio) (length:width ratio) greater than about 1, such as greater than or equal to about 2, greater than or equal to about 3, or greater than or equal to about 5.
  • a quantum rod may have an aspect ratio of less than or equal to about 50, less than or equal to about 30, or less than or equal to about 20.
  • the quantum dot body can have, for example, a particle diameter (for non-spherical shapes, average maximum particle length) of about 1 nm to about 100 nm, about 1 nm to about 80 nm, about 1 nm to about 50 nm, or about 1 nm to 20 nm.
  • a particle diameter for non-spherical shapes, average maximum particle length
  • the energy band gap of the quantum dot body can be controlled depending on the size and composition of the quantum dot body.
  • the quantum dot body may have a narrow energy band gap and therefore be configured to emit light in a relatively long wavelength region, while when the size of the quantum dot body decreases, the quantum dot body may Have a wide energy band gap and are therefore formulated to emit light in a relatively short wavelength region.
  • a quantum dot body may be formulated, depending on its size and/or composition, to emit light in a predetermined wavelength region in the visible light region.
  • the quantum dot body can be formulated to emit a second color light, a third color light, or a first color light.
  • the second color light can have a peak emission wavelength ( ⁇ max), for example, in about 430 nm to about 480 nm
  • the third color light The color light may have a peak emission wavelength ( ⁇ max), for example, in about 600 nm to about 650 nm
  • the first color light may have a peak emission wavelength ( ⁇ max), for example, in about 520 nm to about 560 nm, but is not limited thereto.
  • the average particle size of a quantum dot body formulated to emit light of the second color may be, for example, less than or equal to about 4.5 nm, and, for example, less than or equal to about 4.3 nm, less than or equal to about 4.2 nm, less than or equal to about 4.1 nm, or Less than or equal to about 4.0 nm.
  • the average particle size of the quantum dot body can be about 2.0 nm to about 4.5 nm, such as about 2.0 nm to about 4.3 nm, about 2.0 nm to about 4.2 nm, about 2.0 nm to about 4.1 nm, or about 2.0nm to about 4.0nm.
  • the quantum dot body may have, for example, greater than or equal to about 10%, greater than or equal to about 20%, greater than or equal to about 30%, greater than or equal to about 50%, greater than or equal to about 60%, greater than or equal to about 70%, or greater than Or equal to a quantum yield of about 90%.
  • Quantum dot bodies can have a relatively narrow half-width (FWHM).
  • FWHM is the width corresponding to half the wavelength of the peak absorption point, and when the FWHM is narrow, it can be formulated to emit light in a narrower wavelength region, and higher color purity can be obtained.
  • the quantum dot body can have, for example, less than or equal to about 50 nm, less than or equal to about 49 nm, less than or equal to about 48 nm, less than or equal to about 47 nm, less than or equal to about 46 nm, less than or equal to about 45 nm, less than or equal to about 44 nm, less than or equal to Equal to about 43 nm, less than or equal to about 42 nm, less than or equal to about 41 nm, less than or equal to about 40 nm, less than or equal to about 39 nm, less than or equal to about 38 nm, less than or equal to about 37 nm, less than or equal to about 36 nm, less than or equal to about A FWHM of 35 nm, less than or equal to about 34 nm, less than or equal to about 33 nm, less than or equal to about 32 nm, less than or equal to about 31 nm, less than or equal to about 30 nm, less than or equal to
  • it may have, for example, about 2 nm to about 49 nm, about 2 nm to about 48 nm, about 2 nm to about 47 nm, about 2 nm to about 46 nm, about 2 nm to about 45 nm, about 2 nm to about 44 nm, about 2 nm to about 43 nm, About 2nm to about 42nm, about 2nm to about 41nm, about 2nm to about 40nm, about 2nm to about 39nm, about 2nm to about 38nm, about 2nm to about 37nm, about 2nm to about 36nm, about 2nm to about 35nm, about 2nm to a FWHM of about 34 nm, about 2 nm to about 33 nm, about 2 nm to about 32 nm, about 2 nm to about 31 nm, about 2 nm to about 30 nm, about 2 nm to about 29 nm, or about 2
  • the quantum dot body may include a group II-VI semiconductor compound, a group III-V semiconductor compound, a group IV-VI semiconductor compound, a group IV semiconductor, a group I-III-VI semiconductor compound, a group I-II-IV-VI semiconductor compounds, II-III-V semiconductor compounds, or combinations thereof.
  • the II-VI semiconductor compound may, for example, be selected from: binary compounds such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, or mixtures thereof; ternary compounds such as CdSeS, CdSeTe, CdSTe , ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, or mixtures thereof; and quaternary compounds such as HgZnTeS, CdZnSeS, C dZnSeTe, CdZnSTe
  • the III-V semiconductor compound may be selected from, for example: binary compounds such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or mixtures thereof; ternary compounds such as GaNP, GaNAs , GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, or mixtures thereof; and quaternary compounds such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or mixtures thereof, but are not limited thereto.
  • Group IV-VI semiconductor compounds may, for example, be selected from: binary compounds such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or mixtures thereof; ternary compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe , SnPbTe, or mixtures thereof; and quaternary compounds such as SnPbSSe, SnPbSeTe, SnPbSTe, or mixtures thereof, but are not limited thereto.
  • the Group IV semiconductor may, for example, be selected from the group consisting of: elemental (unitary) semiconductors such as Si, Ge, or mixtures thereof; and binary semiconductor compounds such as SiC, SiGe, and mixtures thereof, but is not limited thereto.
  • the Group I-III-VI semiconductor compound may be, for example, CuInSe2, CuInS2, CuInGaSe, CuInGaS, or a mixture thereof, but is not limited thereto.
  • the Group I-II-IV-VI semiconductor compound may be, for example, CuZnSnSe, CuZnSnS, or a mixture thereof, but is not limited thereto.
  • the II-III-V semiconductor compound may include, for example, InZnP, but is not limited thereto.
  • the quantum dot body may include a single element semiconductor, a binary semiconductor compound, a ternary semiconductor compound, or a quaternary semiconductor compound with a substantially uniform concentration or a locally different concentration distribution.
  • the quantum dot body may include a cadmium (Cd) free quantum dot body.
  • Cadmium-free quantum dot bodies are quantum dot bodies that do not include cadmium (Cd).
  • Cadmium (Cd) can cause serious environmental/health problems and is a restricted element in many countries under the Restriction of Hazardous Substances Directive (RoHS), and therefore non-cadmium-based quantum dot bodies can be effectively used.
  • RoHS Hazardous Substances Directive
  • the quantum dot body may be a semiconductor compound including zinc (Zn), and at least one of tellurium (Te) and selenium (Se).
  • the quantum dot body can be a Zn-Te semiconductor compound, a Zn-Se semiconductor compound, and/or a Zn-Te-Se semiconductor compound.
  • the amount of tellurium (Te) in the Zn-Te-Se semiconductor compound may be less than the amount of selenium (Se).
  • the semiconductor compound may have a peak emission wavelength ( ⁇ max) in a wavelength region less than or equal to about 480 nm, such as about 430 nm to about 480 nm, and may be formulated to emit light of the second color.
  • the quantum dot body may be a semiconductor compound including indium (In), and at least one of zinc (Zn) and phosphorus (P).
  • the quantum dot body may be an In-P semiconductor compound and/or an In-Zn-P semiconductor compound.
  • In-Zn-P semiconductor in In-Zn-P semiconductor
  • the molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 25.
  • the semiconductor compound may have a peak emission wavelength ( ⁇ max) in a wavelength region of less than about 700 nm, such as about 600 nm to about 650 nm, and may be formulated to emit a third color of light.
  • the quantum dot bodies may have a core-shell structure, with one quantum dot body surrounding another quantum dot body.
  • the core and shell of a quantum dot body may have an interface, and the elements of at least one of the core or the shell in the interface may have a concentration gradient, with the concentration of the elements of the shell decreasing toward the core.
  • the material composition of the shell of the quantum dot body has a higher energy band gap than the material composition of the core of the quantum dot body, and thus the quantum dot body may exhibit a quantum confinement effect.
  • the quantum dot body can have a quantum dot core and a multi-layer quantum dot shell surrounding the core.
  • the multilayer shell has at least two shells, wherein each shell can be of a single composition, alloy, and/or have a concentration gradient.
  • shells of a multilayer shell that are farther from the core may have higher energy band gaps than shells closer to the core, and thus the quantum dot body may exhibit quantum confinement effects.
  • a quantum dot body having a core-shell structure may include, for example: a core including a first semiconductor compound including zinc (Zn) and at least one of tellurium (Te) and selenium (Se); and A shell comprising a second semiconductor compound is provided over at least a portion of the core and has a composition different from that of the core.
  • the first semiconductor compound may be a Zn-Te-Se-based semiconductor compound including zinc (Zn), tellurium (Te), and selenium (Se), for example, a Zn-Se-based semiconductor including a small amount of tellurium (Te)
  • Zn zinc
  • Te tellurium
  • Se selenium
  • a compound for example, a semiconductor compound represented by ZnTexSe1-x, wherein x is greater than about 0 and less than or equal to 0.05.
  • the molar amount of zinc (Zn) may be higher than the molar amount of selenium (Se), and the molar amount of selenium (Se) may be higher than that of tellurium (Te).
  • molar quantity may be less than or equal to about 0.05, less than or equal to about 0.049, less than or equal to about 0.048, less than or equal to about 0.047, less than or equal to about 0.047, or less than or equal to about 0.047.
  • the molar ratio of tellurium (Te) to zinc (Zn) may be less than or equal to about 0.02, less than or equal to about 0.019, less than or equal to about 0.018, less than or equal to about 0.017, less than or equal to about 0.016, less than or equal to about 0.015, less than or equal to about 0.014, less than or equal to about 0.013, less than or equal to about 0.012, less than or equal to about 0.011, or less than or equal to about 0.010.
  • the second semiconductor compound may include, for example, II-VI semiconductor compound, III-V semiconductor compound, IV-VI semiconductor compound, IV semiconductor, I-III-VI semiconductor compound, I-II-IV-VI semiconductor compounds, II-III-V semiconductor compounds, or combinations thereof.
  • Group II-VI semiconductor compounds, Group III-V semiconductor compounds, Group IV-VI semiconductor compounds, Group IV semiconductors, Group I-III-VI semiconductor compounds, Group I-II-IV-VI semiconductor compounds, and II-III- Examples of group V semiconductor compounds are the same as described above.
  • the second semiconductor compound may include zinc (Zn), selenium (Se), and/or sulfur (S).
  • the shell may include ZnSeS, ZnSe, ZnS, or combinations thereof.
  • the shells may include at least one inner shell disposed proximate the core and an outermost shell disposed at the outermost side of the quantum dot body.
  • the inner shell may include ZnSeS, ZnSe, or a combination thereof, and the outermost shell may include ZnS.
  • the shell may have a concentration gradient of one component, and the amount of sulfur (S), for example, may increase as it leaves the core.
  • the quantum dot body having a core-shell structure may include: a core including a third semiconductor compound including indium (In), and at least one of zinc (Zn) and phosphorus (P); and provided A shell is provided over at least a portion of the core and includes a fourth semiconductor compound having a different composition than the core.
  • the molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 25.
  • the molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 28, greater than or equal to about 29, or greater than or equal to about 30.
  • the molar ratio of zinc (Zn) to indium (In) may be less than or equal to about 55, such as less than or equal to about 50, less than or equal to about 45, less than or equal to Equal to about 40, less than or equal to about 35, less than or equal to about 34, less than or equal to about 33, or less than or equal to about 32.
  • the fourth semiconductor compound may include, for example, II-VI semiconductor compound, III-V semiconductor compound, IV-VI semiconductor compound, IV semiconductor, I-III-VI semiconductor compound, I-II-IV-VI semiconductor compounds, II-III-V semiconductor compounds, or combinations thereof.
  • Group II-VI semiconductor compounds, Group III-V semiconductor compounds, Group IV-VI semiconductor compounds, Group IV semiconductors, Group I-III-VI semiconductor compounds, Group I-II-IV-VI semiconductor compounds, and II-III- Examples of group V semiconductor compounds are the same as described above.
  • the fourth semiconductor compound may include zinc (Zn) and sulfur (S) and optionally selenium (Se).
  • the shell may include ZnSeS, ZnSe, ZnS, or combinations thereof.
  • the shells may include at least one inner shell disposed proximate the core and an outermost shell disposed at the outermost side of the quantum dot body. At least one of the inner shell and the outermost shell may include a fourth semiconductor compound ZnS, ZnSe, or ZnSeS.
  • the first quantum dot body-the first quantum dot ligand in the first ligand solution and the second quantum dot body-the second quantum dot body in the second ligand solution can be selected from any of the above.
  • the quantum dot body can be the same or different.
  • the core-shell material of the first quantum dot body in the first quantum dot film layer and the second quantum dot body in the second quantum dot film layer located in the same preset area are the same, and the particle size is the same.
  • the size is basically the same.
  • the particle size difference between the first quantum dot body and the second quantum dot body is no more than 10%, and further, it can also be no more than 8%, 7%, 6%, 5%, 4%, or 3%. , 2% or 1%, etc., but not limited to this.
  • step S210 a first quantum dot body-first ligand solution is provided.
  • the first quantum dot body-first ligand solution may include the first quantum dot body and the first ligand, and the first ligand forms a coordination bond with the first quantum dot body through the coordination group.
  • the first ligand may include a first coordination group, and a coordination bond is formed between the first coordination group and the first quantum dot body.
  • the first coordinating group is selected from an amino group, a carboxylic acid group, a thiol group, a phosphine group or a phosphineoxy group.
  • the first coordinating group can also be selected from bismercapto groups.
  • the bisulfhydryl group can be formed like The structure shown.
  • the first ligand may also include a first linking group, the first linking group is connected between the first coordinating group and the cross-linkable group, and the first linking group is selected from the group consisting of carbon atoms with 1 -8 alkylene group, the specific number of carbon atoms can be 2, 3, 4, 5, 6, 7 or 8.
  • the crosslinkable group included in the first ligand is selected from a carboxylic acid group or a sulfonic acid group, and the carboxylic acid group or the sulfonic acid group cross-links with the amino group under light conditions, that is, when exposed. Or form salts that are insoluble in the developer. It should be noted here that the number of cross-linkable groups included in the first ligand may be multiple, and the present disclosure does not limit the specific number.
  • step S210 includes:
  • Step S211 providing the first quantum dot body-first ligand matrix solution
  • Step S212 Add an activator to the first quantum dot body-first ligand matrix solution to activate the first ligand matrix in the first quantum dot body-first ligand matrix solution into the first ligand, to obtain the first ligand.
  • the first ligand matrix includes a cross-linkable matrix, and the cross-linkable matrix is selected from a carboxylic acid group or a sulfonic acid group;
  • the crosslinkable group is selected from:
  • the crosslinkable matrix is activated into a crosslinkable group under the action of an activator.
  • the carboxylic acid group can be activated into The sulfonic acid group can be activated to
  • the activator is selected from one or two of 1-ethyl-(3-dimethylaminopropyl), carbodiimide, and N-hydroxysulfosuccinimide , that is, one or both of EDC and sulfo-NHS.
  • step S220 the first quantum dot-first ligand solution is coated on one side of the substrate to form a first quantum dot film layer.
  • the thickness of the first quantum dot film layer formed is 15-25nm, specifically 15nm, 16nm, 17nm, 18nm, 19nm, 20nm, 21nm, 22nm, 23nm, 24nm or 25nm.
  • step S230 a mixed solution of the second quantum dot body-the second ligand solution and the photoacid generator is provided.
  • the second ligand in the second quantum dot body-second ligand forms a coordination bond with the second quantum dot body through a coordination bond.
  • the second ligand may comprise a second coordinating group selected from an amino group, a carboxylic acid group, a thiol group, a phosphine group or a phosphineoxy group.
  • the second coordinating group may also be selected from dithiol groups.
  • the second ligand in the second quantum dot body-second ligand solution includes a Z group, and the structure of the Z group is -A-B, A is an imino group, and B is a protecting group.
  • the protecting group is selected from the group consisting of the following structures:
  • the Z group can remove the protective group under the action of the photoacid generator to form an amino group, and the formed amino group can cross-link with the cross-linkable group or form a salt that is insoluble in the developer.
  • the second ligand may also include a second linking group, the second linking group is connected between the second coordinating group and the amino group, and the second linking group is selected from an alkylene group with a carbon number of 1-8, The specific number of carbon atoms may be 2, 3, 4, 5, 6, 7 or 8.
  • step S240 a mixed solution of the second quantum dot body, the second ligand and the photoacid generator is coated on the side of the first quantum dot film layer away from the substrate to form a second quantum dot film layer.
  • the thickness of the second quantum dot film layer formed is 15-25nm, specifically 15nm, 16nm, 17nm, 18nm, 19nm, 20nm, 21nm, 22nm, 23nm, 24nm or 25nm.
  • step S220 and step S240 can be repeated alternately to form a stacked first quantum dot film layer and a second quantum dot film layer, and all the first quantum dot film layers and the second quantum dot film layer are stacked.
  • the sum of the thicknesses of the layers does not exceed 50nm, and quantum dot light-emitting layers emitting different colors can also be formed.
  • step S200 includes:
  • Step S210 providing a mixed solution of the first quantum dot body-first ligand solution, the second quantum dot body-second ligand solution and the photoacid generator;
  • Step S220 coating a mixed solution of the first quantum dot body-first ligand solution, the second quantum dot body-second ligand solution and the photoacid generator on one side of the substrate to form a quantum dot film layer;
  • the first ligand in the first quantum dot body-first ligand solution includes a cross-linkable group
  • the second ligand in the second quantum dot body-second ligand solution contains a Z group.
  • the structure of the Z group is -A-B, A is an imino group, and B is a protecting group;
  • the Z group can remove the protective group under the action of the photoacid generator to form an amino group, and the formed amino group can cross-link with the cross-linkable group or form a salt that is insoluble in the developer.
  • the selection of the dot body, the second ligand, etc. may refer to the above embodiments and will not be described in detail here.
  • the quantum dot film layer can also be formed repeatedly to form a quantum dot light-emitting layer capable of emitting different colors.
  • the quantum dot bodies in the different quantum dot film layers including the first quantum dot body and the second quantum dot body, may be different.
  • step S300 a preset area of the substrate is exposed, so that the first ligand and the second ligand in the quantum dot film layer located in the preset area are cross-linked or form a salt insoluble in the developer.
  • the preset area can be set according to actual needs, and is not specifically limited in this disclosure.
  • the quantum dot film layer in the preset area is cross-linked and insoluble in the developer, and the salt formed is also insoluble in the developer.
  • the first quantum dot body-the first ligand is soluble in the developer; the second quantum dot body-the second ligand is insoluble in the developer after exposure.
  • the quantum dot film layer includes a first quantum dot film layer and a second quantum dot film layer
  • the second quantum dot film layer in the preset area is insoluble in the developer after exposure, corresponding to the first quantum dot film layer in the preset area.
  • the material in the second quantum dot film layer is also insoluble in the developer after cross-linking or salt formation, and the material contained in the finally formed quantum dot light-emitting layer has a lower solubility in the developer than the second quantum dot film layer after exposure The solubility of the material contained in the developer solution.
  • step S400 a development process is performed to remove the quantum dot film layer located in the non-preset area of the substrate to obtain a quantum dot light-emitting layer.
  • the quantum dot film layer in the non-preset area that is, the unexposed area, has not been cross-linked or salted, and can be dissolved in the developer.
  • the quantum dot film layer includes a first quantum dot film layer and a second quantum dot film layer
  • the material in the first quantum dot film layer is dissolved in the developer. Therefore, when the development process is performed, the first quantum dot film layer in the non-preset area is The quantum dot film begins to dissolve, taking away the second quantum dot film in that area.
  • the first quantum dot film layer located in the predetermined area is insoluble in the developer due to cross-linking or salt formation with the second quantum dot film layer. That is, when the development process is performed, the first quantum dot film layer and the second quantum dot film layer in the predetermined area do not dissolve, thereby forming a quantum dot light-emitting layer.
  • the first quantum dot film layer and the second quantum dot film layer can be formed repeatedly to form a stacked first quantum dot film layer and a second quantum dot film layer, and all the first quantum dots The sum of the thicknesses of the film layer and the second quantum dot film layer does not exceed 50 nm. Furthermore, quantum dot light-emitting layers emitting different colors can also be formed.
  • the first quantum dot film layer 21 and the second quantum dot film layer 22 can be formed on one side of the substrate 1 , exposed in a predetermined area, and then developed to form the first luminescence.
  • the layer 211 and the second luminescent layer 221, the first luminescent layer 211 and the second luminescent layer 221 may emit light of a first color.
  • the first quantum dot film layer 31 and the second quantum dot film layer 32 are formed, exposed in a predetermined area, and then developed to form the first luminescent layer 311 and the second luminescent layer 321.
  • the first light emitting layer 311 and the second light emitting layer 321 may emit light of the second color.
  • first quantum dot film layer 41 and the second quantum dot film layer 42 are formed, exposed in a predetermined area, and then developed to form the first quantum dot light-emitting layer 411 and the second quantum dot light-emitting layer 421.
  • the first light-emitting layer 411 and the second light-emitting layer 421 may emit light of a third color.
  • the disclosure also provides a quantum dot luminescent layer.
  • the material of the quantum dot luminescent layer includes a first quantum dot body, a first ligand, a second quantum dot body and a second ligand; the first ligand and the first quantum dot body A coordination bond is formed between them, and a coordination bond is formed between the second ligand and the second quantum dot body; the first ligand and the second ligand are cross-linked or form a salt insoluble in the developer.
  • the quantum dot light-emitting layer has a single-layer structure, and in other embodiments of the present disclosure, the quantum dot light-emitting layer has a multi-layer structure.
  • the quantum dot light-emitting layer includes at least one first light-emitting layer and at least one second light-emitting layer.
  • the first light-emitting layer and the second light-emitting layer are stacked; the material of the first light-emitting layer includes the first quantum dot body. and a first ligand, and the material of the second light-emitting layer includes a second quantum dot body and a second ligand.
  • the material of the first light-emitting layer includes a first quantum dot body and a first ligand.
  • the first ligand includes a first coordination group and a cross-linkable group connected to each other.
  • the first ligand A coordination bond is formed between the bit group and the first quantum dot body;
  • the material of the second light-emitting layer includes a second quantum dot body and a second ligand.
  • the second ligand includes a second ligand group and an amino group connected to each other.
  • the second ligand group and the second quantum dot body form a Coordination key;
  • the cross-linkable group may cross-link with the amino group in the second ligand or form a salt insoluble in the developer.
  • the crosslinkable group is selected from carboxylic acid group, sulfonic acid group,
  • the first coordinating group and the second coordinating group are selected from amino, carboxylic acid, thiol, phosphine or phosphineoxy groups.
  • the first coordinating group and the second coordinating group can also be selected from bismercapto groups.
  • the first ligand also includes a first linking group, and the first linking group is connected between the first coordination group and the cross-linkable group;
  • the second ligand also includes a second The linking group and the second linking group are connected between the second coordinating group and the amino group;
  • the first linking group and the second linking group are selected from alkylene groups with 1 to 8 carbon atoms.
  • the material of the quantum dot light-emitting layer includes the following structure:
  • Q1 is the first quantum dot body
  • Q2 is the second quantum dot body
  • L 1 is the first coordination group forming a coordination bond with the first quantum dot body
  • L 2 is a second coordination group that forms a coordination bond with the second quantum dot body
  • n1 is selected from any integer from 1 to 7; specifically it can be 1, 2, 3, 4, 5, 6 or 7; n2 is selected from any integer from 0 to 8, specifically it can be 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • the core-shell materials of the first quantum dot body and the second quantum dot body are the same, and the particle sizes are substantially the same.
  • the present disclosure also provides a quantum dot mixture, including a first quantum dot body, a first ligand, a second quantum dot body and a second ligand;
  • the first ligand includes a first coordination group and a cross-linkable group that are connected to each other, and a coordination bond is formed between the first coordination group and the first quantum dot body;
  • the second ligand includes a second coordination group and a Z group connected to each other, and a coordination bond is formed between the second coordination group and the second quantum dot body;
  • the structure of the Z group is -A-B , A is imino group, B is protecting group;
  • the first ligand can be ionized in an alkaline solution
  • the Z group can remove the protective group under the action of photoacid generator to form an amino group
  • the cross-linkable group can cross-link with the amino group formed by removing the protecting group of the Z group or form a salt that is insoluble in the developer;
  • cross-linkable group after being activated by an activator, can cross-link with the amino group formed by removing the protecting group from the Z group or form a salt that is insoluble in the developer.
  • the crosslinkable group is selected from carboxylic acid group or sulfonic acid group
  • the activator is selected from one or both of 1-ethyl-(3-dimethylaminopropyl)carbodiimide and N-hydroxysulfosuccinimide.
  • the crosslinkable group can be ionized.
  • the carboxylic acid group or the sulfonic acid group can be ionized in the alkaline solution, so that the first ligand can be dissolved in the alkaline solution.
  • the cross-linkable group can directly cross-link with the amino group or form a salt different from the developer, or it can be activated by an activator. This is followed by cross-linking with amino groups or the formation of salts different from those in the developer.
  • the first ligand also includes a first linking group, and the first linking group is connected between the first coordination group and the cross-linkable matrix;
  • the second ligand also includes a second linking group, and the second linking group The group is connected between the second coordinating group and the amino group;
  • the first connecting group and the second connecting group are selected from alkylene groups with 1 to 8 carbon atoms.
  • the first ligand further includes a dissolving group, the dissolving group is connected between the first coordination group and the cross-linkable matrix, and the dissolving group is selected from polar groups.
  • the first ligand is selected from the group consisting of:
  • R 1 is selected from amino group, carboxylic acid group, thiol group, phosphine group, phosphineoxy group or bisthiol group;
  • R2 is selected from a carboxylic acid group or a sulfonic acid group; n3 is selected from any integer from 1 to 7, specifically 1, 2, 3, 4, 5, 6 or 7, and n4 is selected from any integer from 1 to 100.
  • the second ligand is selected from the following structures:
  • R 3 is selected from amino group, carboxylic acid group, thiol group, phosphine group, phosphineoxy group or bisthiol group;
  • R 4 is selected from the group consisting of:
  • n3 is selected from any integer from 0 to 7, specifically 0, 1, 2, 3, 4, 5, 6 or 7.
  • the present disclosure also provides a quantum dot light-emitting device, including a functional layer, and the functional layer includes the quantum dot light-emitting layer in any of the above embodiments.
  • the quantum dot light-emitting device may also include an anode and a cathode, and the functional layer is disposed between the anode and the cathode.
  • the functional layer also includes a hole injection layer, a hole transport layer, an electron transport layer and an electron injection layer.
  • a quantum dot light-emitting device may include a substrate 11 and a first electrode 131 , a hole injection layer 133d, a hole injection layer 133d and a first electrode 131 , which are sequentially stacked on one side of the substrate 11 .
  • first electrode 131 and the second electrode 132 is an anode and the other is a cathode.
  • the first electrode 131 may be an anode and the second electrode 132 may be a cathode.
  • first electrode 131 may be a cathode and the second electrode 132 may be an anode.
  • the anode may include a conductor with a high work function such as a metal, a conductive metal oxide, or a combination thereof.
  • the anode may include, for example, the metal may be nickel, platinum, vanadium, chromium, copper, zinc, or gold, or alloys thereof; the conductive metal oxide may be zinc oxide, indium oxide, tin oxide, indium tin oxide (ITO), Indium zinc oxide (IZO), or fluorine-doped tin oxide; alternatively, the combination of metal and conductive metal oxide can be ZnO and Al, or SnO and Sb, but is not limited thereto.
  • the cathode may include a conductor such as a metal, conductive metal oxide, and/or conductive polymer that has a lower work function than the anode.
  • the cathode may include, for example, the metal may be aluminum, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, silver, tin, lead, cesium, barium, etc., or alloys thereof; a multilayer structure such as LiF/ Al, Li 2 O/Al, Liq/Al, LiF/Ca, and BaF 2 /Ca, but are not limited thereto.
  • the work function of the anode may be higher than the work function of the cathode, for example, the work function of the anode may be, for example, about 4.5 eV to about 5.0 eV and the work function of the cathode may be, for example, about 4.0 eV to about 4.7 eV.
  • the work function of the anode may be, for example, about 4.6 eV to about 4.9 eV or about 4.6 eV to about 4.8 eV
  • the work function of the cathode may be, for example, about 4.0 eV to about 4.6 eV or about 4.3 eV to about 4.6 eV.
  • the first electrode 131 and the second electrode 132 may be a transmissive electrode, a partially transmissive partially reflective electrode or a reflective electrode.
  • the transmissive electrode or the partially transmissive partially reflective electrode may include: a conductive oxide such as zinc oxide, indium oxide, tin oxide, oxide Indium tin (ITO), indium zinc oxide (IZO), or fluorine-doped tin oxide, or thin metal layers.
  • the reflective electrode may include: a reflective metal, such as an opaque conductor such as aluminum (Al), silver (Ag), or gold (Au), and the first electrode and the second electrode may be a single-layer or multi-layer structure;
  • At least one of the first electrode 131 or the second electrode 132 may be connected to the auxiliary electrode. If connected to the auxiliary electrode, the resistance of the second electrode 132 can be reduced.
  • the hole transport layer 133b and the hole injection layer 133d are provided between the first electrode 131 and the quantum dot film layer 133a.
  • the hole transport layer 133b is disposed between the first electrode 131 and the quantum dot film layer 133a close to the quantum dot film layer 133a
  • the hole injection layer 133d is disposed between the first electrode 131 and the quantum dot film layer 133a close to the first electrode 131 set up.
  • the hole injection layer 133d can promote the injection of holes from the first electrode, and the hole transport layer 133b can effectively transfer the injected holes to the quantum dot film layer 133a.
  • the hole transport layer 133b and the hole injection layer 144d may each have one or two or more layers, and may include an electron blocking layer in a broad sense.
  • the hole transport layer 133b and the hole injection layer 133d may each have a HOMO energy level between the work function of the first electrode 131 and the HOMO energy level of the quantum dot film layer 133a.
  • the work function of the first electrode 131, the HOMO energy level of the hole injection layer 133d, the HOMO energy level of the hole transport layer 133b, and the HOMO energy level of the quantum dot film layer 133a may gradually become deeper, and may be, for example, a step style.
  • the hole transport layer 133b may have a relatively deep HOMO energy level to match the HOMO energy level of the quantum dot film layer 133a. Therefore, the mobility of holes transferred from the hole transport layer 133b to the quantum dot layer can be improved.
  • the HOMO energy level of the hole transport layer 133b may be equal to or smaller than the HOMO energy level of the quantum dot film layer 133a within a range of about 1.0 eV or less.
  • the difference between the HOMO energy levels of the hole transport layer 133b and the quantum dot film layer 133a may be about 0 eV to about 1.0 eV, in a range, such as about 0.01 eV to about 0.8 eV, in a range, such as about 0.01eV to about 0.7eV, in the range, such as about 0.01eV to about 0.5eV, in the range, such as about 0.01eV to about 0.4eV, such as about 0.01eV to about 0.3eV, such as about 0.01eV to about 0.2eV , for example, about 0.01eV to about 0.1eV.
  • the HOMO energy level of the hole transport layer 133b may be, for example, greater than or equal to about 5.0 eV, within a range, such as greater than or equal to about 5.2 eV, within a range, such as greater than or equal to about 5.4 eV, within a range, such as greater than or equal to Equal to about 5.6 eV, within the range, for example, greater than or equal to about 5.8 eV.
  • the HOMO energy level of the hole transport layer 133b may be about 5.0 eV to about 7.0 eV, within the above range, such as about 5.2 eV to about 6.8 eV, within the above range, such as about 5.4 eV to about 6.8 eV, such as About 5.4eV to about 6.7eV, such as about 5.4eV to about 6.5eV, such as about 5.4eV to about 6.3eV, such as about 5.4eV to about 6.2eV, such as about 5.4eV to about 6.1eV, such as about 5.6eV to about 7.0eV, such as about 5.6eV to about 6.8eV, such as about 5.6eV to about 6.7eV, such as about 5.6eV to about 6.5eV, such as about 5.6eV to about 6.3eV, such as about 5.6eV to about 6.2eV, such as about 5.6eV to about 6.1eV, such as about 5.8eV to about 7.0eV,
  • the hole transport layer 133b and the hole injection layer 133d may include materials satisfying energy levels without particular limitations, and may include, for example, at least one selected from the group consisting of poly(9,9-dioctyl-fluorene-co-N -(4-butylphenyl)-diphenylamine) (TFB), poly(N,N'-bis-4-butylphenyl-N,N'-diphenyl)benzidine (poly TPD) , polyarylamine (polyarylamine), poly(N-vinylcarbazole), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3,4-ethylenedioxy Thiophene): polystyrene sulfonate (PEDOT: PSS), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4,4' -Bis[N-(1-n
  • Either or both the hole transport layer and the hole injection layer may be omitted.
  • One or more than one suitable method eg, vacuum deposition, spin coating, tape casting, Langmuir-Blodgett (LB) method, sputtering, inkjet printing, laser
  • LB Langmuir-Blodgett
  • sputtering inkjet printing
  • laser The hole transport layer 133b and the hole injection layer 133d are formed by printing method and/or laser induced thermal imaging (LITI) method).
  • LITI laser induced thermal imaging
  • Quantum dots of different sizes in the quantum dot light-emitting layer can emit light of different colors correspondingly and form sub-pixels of different colors, such as the first color sub-pixel 13G, the second color sub-pixel 13B, and the third color sub-pixel 12R.
  • the electron transport layer 133c and the electron injection layer 133e are provided between the second electrode 132 and the quantum dot film layer 133a.
  • the electron transport layer 133c is disposed between the second electrode 132 and the quantum dot film layer 133a close to the quantum dot film layer 133a
  • the electron injection layer 133e is disposed between the second electrode 132 and the quantum dot film layer 133a close to the second electrode 132.
  • the electron injection layer 133e can promote the injection of electrons from the second electrode, and the electron transport layer 133c can effectively transfer the injected electrons to the quantum dot film layer 133a.
  • the electron transport layer 133c and the electron injection layer 133e may each have one or two or more layers, and may include a hole blocking layer in a broad sense.
  • the electron injection layer 133e may be in contact with the second electrode 132.
  • the electron transport layer 133c may be in contact with the quantum dot film layer 133a.
  • the electron transport layer 133c and the electron injection layer 133e may contact each other. Either or both the electron transport layer and the electron injection layer may be omitted.
  • the LUMO energy levels of the second electrode 132, the electron injection layer 133e, the electron transport layer 133c, and the quantum dot film layer 133a may gradually become shallower.
  • the LUMO energy level of the electron injection layer 133e may be shallower than the work function of the second electrode 132
  • the LUMO energy level of the electron transport layer 133c may be shallower than the LUMO energy level of the electron injection layer 133e
  • the LUMO energy level of the quantum dot film layer 133a It is shallower than the LUMO energy level of the electron transport layer 133c.
  • the work function of the second electrode 132, the LUMO energy level of the electron injection layer 133e, the LUMO energy level of the electron transport layer 133c, and the LUMO energy level of the quantum dot film layer 133a may have a step pattern that gradually decreases in one direction. (cascade) energy levels.
  • the electron transport layer 133c may include first inorganic nanoparticles.
  • the first inorganic nanoparticles may be, for example, oxide nanoparticles, and may be, for example, metal oxide nanoparticles.
  • the first inorganic nanoparticles may be two- or three-dimensional nanoparticles having an average particle diameter less than or equal to about 10 nm, in the range less than or equal to about 8 nm, less than or equal to about 7 nm, less than or equal to about 5 nm, less than Or equal to about 4nm, or less than or equal to about 3.5nm, or in the range of about 1nm to about 10nm, about 1nm to about 9nm, about 1nm to about 8nm, about 1nm to about 7nm, about 1nm to about 5nm, about 1nm to about 4 nm, or from about 1 nm to about 3.5 nm.
  • the first inorganic nanoparticles may be metal oxide nanoparticles
  • the metal oxide nanoparticles include at least one of the following: zinc (Zn), magnesium (Mg), cobalt (Co), nickel (Ni), gallium (Ga ), aluminum (Al), calcium (Ca), zirconium (Zr), tungsten (W), lithium (Li), titanium (Ti), tantalum (Ta), tin (Sn), hafnium (Hf), and barium ( Ba).
  • the first inorganic nanoparticles may include metal oxide nanoparticles including zinc (Zn), and may include metal oxide nanoparticles represented by Zn1-xQxO (0 ⁇ x ⁇ 0.5).
  • Q is at least one metal different from Zn, such as magnesium (Mg), cobalt (Co), nickel (Ni), gallium (Ga), aluminum (Al), calcium (Ca), zirconium (Zr), Tungsten (W), lithium (Li), titanium (Ti), tantalum (Ta), tin (Sn), hafnium (Hf), silicon (Si), barium (Ba), or combinations thereof.
  • Q may include magnesium (Mg).
  • x may be in the range 0.01 ⁇ x ⁇ 0.3, for example, 0.01 ⁇ x ⁇ 0.2.
  • the LUMO energy level of the electron transport layer 16 may be a value between the LUMO energy level of the quantum dot film layer 133a and the LUMO energy level of the electron injection layer 17, and may be about 3.2 eV to about 4.8 eV, about 3.2 eV to about 4.6eV, about 3.2eV to about 4.5eV, about 3.2eV to about 4.3eV, about 3.2eV to about 4.1eV, about 3.4eV to 4.1eV, about 3.5eV to about 4.6eV, about 3.6eV to about 4.6eV, About 3.6eV to about 4.3eV, about 3.6eV to about 4.1eV, about 3.6eV to about 3.9eV, about 3.7eV to about 4.6eV, about 3.7eV to about 4.3eV, about 3.7eV to about 4.1eV, or about 3.7eV to about 3.9eV.
  • the thickness of the electron transport layer 133c may be greater than about 10 nm and less than or equal to about 80 nm, and in the range, greater than about 10 nm and less than or equal to about 70 nm, greater than about 10 nm and less than or equal to about 60 nm, greater than about 10 nm and less than or equal to about 50 nm, greater than about 10 nm and less than or equal to about 40 nm, or greater than about 10 nm and less than or equal to about 30 nm.
  • the LUMO energy level of the electron injection layer 133e may be between the work function of the second electrode 132 and the LUMO energy level of the electron transport layer.
  • the difference between the work function of the second electrode 132 and the LUMO energy level of the electron injection layer 133e may be less than about 0.5 eV, about 0.001 eV to about 0.5 eV, about 0.001 eV to about 0.4 eV, or about 0.001 eV. to about 0.3eV.
  • the difference between the LUMO energy level of the electron injection layer 133e and the LUMO energy level of the electron transport layer may be less than about 0.5eV, about 0.001eV to about 0.5eV, about 0.001eV to about 0.4eV, or about 0.001 eV to about 0.3eV. Therefore, electrons can be easily injected from the second electrode 132 into the electron injection layer 133e to reduce the driving voltage of the quantum dot device, and electrons can be efficiently transferred from the electron injection layer 133e to the electron transport layer to improve efficiency.
  • the LUMO energy level of the electron injection layer may be about 3.4eV to about 4.8eV, about 3.4eV to about 4.6eV, about 3.4eV to about 4.5eV, about 3.6eV to about 4.8eV, About 3.6eV to about 4.6eV, about 3.6eV to about 4.5eV, about 3.6eV to about 4.3eV, about 3.9eV to about 4.8eV, about 3.9eV to about 4.6eV, about 3.9eV to about 4.5eV, or about 3.9eV to about 4.3eV.
  • the electron injection layer 133e may be thinner than the electron transport layer 133c.
  • the thickness of the electron injection layer 133e may be about 0.01 times to about 0.8 times, about 0.01 times to about 0.7 times, about 0.01 times to about 0.5 times, about 0.1 times to about 0.8 times, about the thickness of the electron transport layer 133c. 0.1 times to about 0.7 times, or about 0.1 times to about 0.5 times.
  • the thickness of the electron injection layer 17 may be, for example, less than or equal to about 10 nm, less than or equal to about 7 nm, or less than or equal to about 5 nm.
  • the thickness of electron injection layer 17 may range from about 1 nm to about 10 nm, from about 1 nm to about 8 nm, from about 1 nm to about 7 nm, or from about 1 nm to about 5 nm.
  • One or more than one suitable method eg, vacuum deposition, spin coating, tape casting, Langmuir-Blodgett (LB) method, inkjet printing, sputtering, laser
  • LB Langmuir-Blodgett
  • the electron transport layer 133c and the electron injection layer 133e are formed by printing method and/or laser induced thermal imaging (LITI) method).
  • LITI laser induced thermal imaging
  • the quantum dot light-emitting device may also be a photoluminescent quantum dot device including a light-emitting unit, and the quantum dot light-emitting layer is provided on one side of the light-emitting unit.
  • a quantum dot light emitting device may include a first substrate and a second substrate.
  • the first substrate and the second substrate may be disposed oppositely.
  • the first substrate may be a substrate provided with components such as a light source
  • the second substrate may be a substrate provided with components such as a color filter.
  • the first substrate may include a first substrate 11 and a plurality of light emitting units 12 provided on the first substrate 11 .
  • the second substrate may include: a second substrate 51; a quantum dot light-emitting layer provided on the second substrate 51; a plurality of extinction structures 53 provided on the side of the quantum dot light-emitting layer facing the first substrate, wherein any two phases
  • a first channel 54 is formed between adjacent extinction structures 53; and a plurality of first optical structures 55 are arranged on the side of the quantum dot light-emitting layer facing the first substrate, wherein the plurality of first optical structures 55 are respectively located at any two phases. in the first channel 54 between adjacent matting structures 53 .
  • the quantum dot light emitting device may further include a filling material part 9 disposed between the first substrate and the second substrate.
  • the refractive index of the material of the filling material portion 9 is greater than the refractive index of the material of the first optical structure 55 , and the extinction structure 53 includes a light-absorbing material.
  • the orthographic projections of the plurality of light-emitting units 12 on the first substrate 11 at least partially overlap with the orthographic projections of the plurality of first optical structures 55 on the first substrate 11 , and the quantum dot light-emitting layer is on the first substrate 11 .
  • the orthographic projection on the substrate 11 at least partially overlaps with the orthographic projection of the plurality of first optical structures 55 on the first substrate 11 , and the orthographic projection of the plurality of first optical structures 55 on the first substrate 11 falls into the filling material. Part 9 is within the orthographic projection on the first substrate 11 .
  • the first substrate 11 and the second substrate 51 may be rigid substrates or flexible substrates, including but not limited to, glass substrates or polyimide (PI) substrates.
  • the plurality of light-emitting units 12 may include a plurality of organic light-emitting diodes or a plurality of inorganic light-emitting diodes, such as Mini LED or Micro LED.
  • the quantum dot light-emitting device may include a plurality of sub-pixels I, such as an area surrounded by a dotted frame.
  • the sub-pixel I may be a third-color sub-pixel 10R for emitting light with a first wavelength range, a first-color sub-pixel 10G for emitting light with a second wavelength range, and a third-color sub-pixel 10G for emitting light with a third wavelength range.
  • Each sub-pixel may include one sub-pixel opening.
  • the third color sub-pixel 10R may include a first sub-pixel opening 561, the first color sub-pixel 10G may include a second sub-pixel opening 562, and the second color sub-pixel 10B may A third sub-pixel opening 563 is included.
  • the first color, the second color and the third color may refer to green, blue and red respectively.
  • the quantum dot light-emitting device may also include pixels for emitting other colors, such as pixels for emitting yellow light, which are not particularly limited in the embodiments of the present disclosure.
  • the quantum dot light-emitting layer may include a plurality of quantum dot structures for emitting different colors, and the quantum dot structure includes the first unit of the present disclosure.
  • the quantum dot structure includes a quantum dot body and a first unit, and the first unit is bonded to the surface of the quantum dot body.
  • the third color sub-pixel 10R may include a first quantum dot structure 521 for emitting light with a first wavelength range
  • the first color sub-pixel 10G may include a first quantum dot structure 521 for emitting light with a second wavelength range.
  • the quantum dot light-emitting layer may also include quantum dot structures for emitting light with other wavelength ranges, such as quantum dot structures that emit yellow light.
  • the second substrate may further include a plurality of light blocking structures 57 disposed on the second substrate 51 , and the plurality of light blocking structures 57 are located between the layer where the extinction structure 53 is located and the layer where the quantum dot film layer 52 is located.
  • the light blocking structure 57 includes light blocking material.
  • a second channel 58 is formed between any two adjacent light blocking structures 57, and the orthographic projection of the second channel 58 on the second substrate 51 falls within the orthographic projection of the first channel 54 on the second substrate 51,
  • the plurality of first channels 54 and the plurality of second channels 58 are respectively connected to form multiple light inlet channels.
  • the second substrate may also include a plurality of quantum dot protection structures 59 disposed on the second substrate 51.
  • the plurality of quantum dot protection structures 59 are located between the quantum dot light-emitting layer 52 and the first optical structure 55.
  • the plurality of quantum dot protection structures 59 The orthographic projections of 59 on the second substrate 51 are respectively located within the orthographic projections of the plurality of second channels 58 on the second substrate 51 . In this way, the plurality of quantum dot protection structures 59 respectively protect the quantum dot structures located in respective pixel openings.
  • the second substrate may also include a plurality of retaining wall structures 60 disposed on the second substrate 51.
  • the plurality of retaining wall structures 60 are located between the second substrate 51 and the plurality of matting structures 53.
  • the plurality of retaining wall structures 60 are located on the second substrate 51.
  • the orthographic projections on the two substrates 51 are respectively located within the orthographic projections of the plurality of extinction structures 53 on the second substrate 51 .
  • Each of the above-mentioned pixel openings 561, 562, 563 is located between any two adjacent blocking wall structures 60, and the orthographic projection of each pixel opening 561, 562, 563 on the first substrate 11 respectively covers a plurality of light inlet channels in the first substrate 11.
  • the orthographic projection on a substrate 11 and the orthographic projection of each pixel opening 561, 562, 563 on the first substrate 11 respectively cover the orthographic projection of the plurality of light-emitting units 12 on the first substrate 11.
  • the present disclosure also provides a display device, including the above-mentioned quantum dot light-emitting device.
  • the display device of the present disclosure may be an electronic device such as a mobile phone, a tablet computer, or a television, which will not be listed here.
  • the structure of the first ligand is
  • the structure of the second ligand is The method of providing can refer to the above step 1), providing a 10 mg/mL second quantum dot body-second ligand solution, and adding a photo acid generator (PAG) to the solution at a concentration of 0.5 mg/mL.
  • PAG photo acid generator
  • the second ligand removes the protecting group to form an amino group, and the first quantum dot film layer and the second quantum dot film layer in the preset area (exposed area) are cross-linked or salted.
  • the material in the first quantum dot film layer in the non-preset area (non-exposed area) is ionized and dissolved, and takes away the second quantum dot film layer.
  • the structure of the first ligand is
  • the first ligand matrix is activated by EDC into the first ligand.
  • the structure of the second ligand is The method of providing can refer to the above-mentioned Example 1, providing a 10 mg/mL second quantum dot body-second ligand solution, and adding a photo acid generator (PAG) to the solution at a concentration of 0.5 mg/mL.
  • PAG photo acid generator
  • the first quantum dot film layer and the second quantum dot film layer are cross-linked in the preset area (exposed area).
  • the material in the first quantum dot film layer in the non-preset area (non-exposed area) is ionized and dissolved, and takes away the second quantum dot film layer.
  • the structure of the first ligand is
  • the first ligand matrix is activated into the first ligand by EDC and sulfo-NHS.
  • the structure of the second ligand is The method of providing can refer to the above-mentioned Example 1, providing a 10 mg/mL second quantum dot body-second ligand solution, and adding a photo acid generator (PAG) to the solution at a concentration of 0.5 mg/mL.
  • PAG photo acid generator
  • the first quantum dot film layer and the second quantum dot film layer are cross-linked in the preset area (exposed area).
  • the material in the first quantum dot film layer in the non-preset area (non-exposed area) is ionized and dissolved, and takes away the second quantum dot film layer.
  • the ligand after sulfo-NHS is activated, the ligand has better stability, higher stability to water, is easier to preserve, and has water solubility.
  • the mixed solution of the first quantum dot body-first ligand solution, the second quantum dot body-second ligand solution and the photoacid generator in the above embodiments can be further mixed, and then coated to form quantum dots.
  • the film layer is further exposed and developed to form a quantum dot light-emitting layer.
  • the reactions occurring in the exposed area and the non-exposed area may refer to the above embodiment.

Landscapes

  • Luminescent Compositions (AREA)

Abstract

一种量子点混合物、量子点发光层及制作方法。该量子点发光层的制作方法,包括:提供基底(1);于该基底的一侧形成量子点膜层(21、22、31、32、41、42),该量子点膜层的材料包含第一量子点本体-第一配体和第二量子点本体-第二配体;曝光该基底的预设区域,使得位于该预设区域的该量子点膜层中的第一配体和第二配体产生交联或形成不溶于显影液的盐;进行显影处理,去除位于该基底非预设区域的该量子点膜层,获得该量子点发光层(211、221、311、321、411、421)。该制作方法为量子点发光层能采用光刻工艺形成提供基础。

Description

量子点混合物、量子点发光层及制作方法 技术领域
本公开涉及显示技术领域,尤其涉及一种量子点混合物、量子点发光层及制作方法。
背景技术
随着量子点制备技术的深入发展,量子点的稳定性以及发光效率不断提升,量子点电致发光二极管(Quantum Dot Light Emitting Diodes,QLED)的研究不断深入,QLED在显示领域的应用前景日渐光明。然而,QLED的效率还没有达到量产水平。其中一个重要原因是QLED的高分辨率图案化技术还没有取得突破。
量子点的无机纳米粒子特征使其无法通过蒸镀成膜并图案化;通过喷墨打印法很难达到较高的分辨率。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种量子点混合物、量子点发光层及制作方法,本公开为量子点发光层能采用光刻工艺形成提供基础。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种量子点发光层的制作方法,包括:
提供基底;
于所述基底的一侧形成量子点膜层,所述量子点膜层的材料包含第一量子点本体-第一配体和第二量子点本体-第二配体;
曝光所述基底的预设区域,使得位于所述预设区域的所述量子点膜层中的第一配体和第二配体产生交联或形成不溶于显影液的盐;
进行显影处理,去除位于所述基底非预设区域的所述量子点膜层, 获得所述量子点发光层。
在本公开的一种示例性实施例中,所述第一量子点本体-第一配体溶于显影液;
所述第二量子点本体-第二配体经曝光后不溶于显影液;
所述第一量子点本体-第一配体中的第一配体包含可交联基团;
所述第二量子点本体-第二配体中的第二配体包含Z基团,所述Z基团的结构为-A-B,A为亚氨基,B为保护基团;
在光照条件下,所述Z基团在光致生酸剂作用下能够脱去所述保护基团形成氨基,且形成的氨基能够与所述可交联基团产生交联或形成不溶于显影液的盐。
在本公开的一种示例性实施例中,于所述基底的一侧形成量子点膜层包括:
提供所述第一量子点本体-第一配体溶液、所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液;
于所述基底一侧涂覆所述第一量子点本体-第一配体溶液、所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液,形成所述量子点膜层。
在本公开的一种示例性实施例中,于所述基底的一侧形成量子点膜层包括:
于所述基底的一侧形成至少一层第一量子点膜层和至少一层第二量子点膜层,所述第一量子点膜层和所述第二量子点膜层层叠设置;
所述第一量子点膜层的材料包含所述第一量子点本体-第一配体,所述第二量子点膜层的材料包含所述第二量子点本体-第二配体。
在本公开的一种示例性实施例中,所述第一量子点本体-第一配体溶于显影液;
所述第二量子点本体-第二配体经曝光后不溶于显影液。
在本公开的一种示例性实施例中,于所述基底的一侧形成至少一层第一量子点膜层和至少一层第二量子点膜层包括:
提供第一量子点本体-第一配体溶液;
于所述基底一侧涂覆所述第一量子点-第一配体溶液,形成所述第一 量子点膜层;
提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液;
于所述第一量子点膜层远离所述基底的一侧涂覆所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液,形成所述第二量子点膜层。
在本公开的一种示例性实施例中,所述可交联基团选自羧酸基或磺酸基。
在本公开的一种示例性实施例中,所述保护基团选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000001
Figure PCTCN2022081762-appb-000002
表示化学键。
在本公开的一种示例性实施例中,提供第一量子点本体-第一配体溶液包括:
提供第一量子点本体-第一配体基体溶液;
于所述第一量子点本体-第一配体基体溶液中加入活化剂,将所述第一量子点本体-第一配体基体溶液中的第一配体基体活化为所述第一配体,获得所述第一量子点本体-第一配体溶液;
其中,所述第一配体基体包含可交联基体,所述可交联基体选自羧酸基或磺酸基;
所述可交联基团选自
Figure PCTCN2022081762-appb-000003
Figure PCTCN2022081762-appb-000004
Figure PCTCN2022081762-appb-000005
表示化学键。
在本公开的一种示例性实施例中,所述活化剂选自1-乙基-(3-二甲 基氨基丙基)碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种。
在本公开的一种示例性实施例中,位于同一预设区域的所述第一量子点膜层中的第一量子点本体和所述第二量子点膜层中的第二量子点本体的核壳材料相同,且粒径大小基本相同。
根据本公开的第二个方面,提供一种量子点发光层,所述量子点发光层的材料包含第一量子点本体、第一配体、第二量子点本体和第二配体;
所述第一配体与所述第一量子点本体之间形成配位键,所述第二配体与所述第二量子点本体之间形成配位键;
所述第一配体和所述第二配体产生交联或形成不溶于显影液的盐。
在本公开的一种示例性实施例中,所述第一配体包含相互连接的第一配位基团和可交联基团,所述第一配位基团与所述第一量子点本体之间形成配位键;
所述第二配体包含相互连接的第二配位基团和氨基,所述第二配位基团与所述第二量子点本体之间形成配位键;
所述可交联基团与所述第二配体中的氨基产生交联或形成不溶于显影液的盐。
在本公开的一种示例性实施例中,所述量子点发光层包括至少一层第一发光层和至少一层第二发光层,所述第一发光层和所述第二发光层层叠设置;
所述第一发光层的材料包含所述第一量子点本体和所述第一配体,所述第二发光层的材料包含所述第二量子点本体和所述第二配体。
在本公开的一种示例性实施例中,所述可交联基团选自羧酸基、磺酸基、
Figure PCTCN2022081762-appb-000006
在本公开的一种示例性实施例中,所述量子点发光层的材料包含如下结构:
Figure PCTCN2022081762-appb-000007
其中,Q1为第一量子点本体,Q2为第二量子点本体;
L 1为与所述第一量子点本体之间形成配位键的第一配位基团;
L 2为与所述第二量子点本体之间形成配位键的第二配位基团;
n1选自1-7的任意整数;n2选自0-8的任意整数。
在本公开的一种示例性实施例中,所述第一量子点本体和所述第二量子点本体的核壳材料相同,且粒径大小基本相同。
根据本公开的第三个方面,提供一种量子点混合物,包括第一量子点本体、第一配体、第二量子点本体和第二配体:
第一配体,包括相互连接的第一配位基团和可交联基团,所述第一配位基团与所述第一量子点本体之间形成配位键;
第二配体,包括相互连接的第二配位基团和Z基团,所述第二配位基团与所述第二量子点本体之间形成配位键;所述Z基团的结构为-A-B,A为亚氨基,B为保护基团;
其中,所述第一配体能够于碱性溶液中发生电离;
在光照条件下,所述Z基团在光致生酸剂作用下能够脱去所述保护基团形成氨基;
所述可交联基团能够与所述Z基团脱去所述保护基团形成的氨基产生交联或形成不溶于显影液的盐;
或所述可交联基团经活化剂活化后能够与所述Z基团脱去所述保护基团形成的氨基产生交联或形成不溶于显影液的盐。
在本公开的一种示例性实施例中,所述可交联基团选自羧酸基或磺酸基;
所述活化剂选自1-乙基-(3-二甲基氨基丙基)碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种。
在本公开的一种示例性实施例中,所述第一配体还包括第一连接基团,所述第一连接基团连接于所述第一配位基团和所述可交联基体之间;
所述第二配体还包括第二连接基团,所述第二连接基团连接于所述 第二配位基团和氨基之间;
所述第一连接基团、所述第二连接基团选自碳原子数为1-8的亚烷基。
在本公开的一种示例性实施例中,所述第一配体还包括溶解基团,所述溶解基团连接于所述第一配位基团和所述可交联基体之间,所述溶解基团选自极性基团。
在本公开的一种示例性实施例中,所述保护基团选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000008
Figure PCTCN2022081762-appb-000009
表示化学键。
在本公开的一种示例性实施例中,第一配体选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000010
其中,R 1选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
R 2选自羧酸基或磺酸基;
n3选自1-7的任意整数;n4选自1-100的任意整数。
在本公开的一种示例性实施例中,第二配体选自如下结构:
Figure PCTCN2022081762-appb-000011
其中,R 3选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
R 4选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000012
n3选自0-7的任意整数。
根据本公开的第四个方面,提供一种量子点发光器件,包括功能层,所述功能层包括第二方面任一实施例所述的量子点发光层。
根据本公开的第五个方面,提供一种显示装置,包括如第四方面所述的量子点发光器件。
本公开提供的量子点发光层的制作方法,当曝光基底的预设区域时,量子点膜层所包含的材料产生交联或形成不溶于显影液的盐,随后在显影过程中,该预设区域的量子点膜层不溶于显影液,而非预设区域的量子点膜层则溶于显影液,从而为量子点发光层能采用光刻工艺形成提供基础。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开示例性实施例中量子点发光层制作方法流程示意图;
图2是本公开示例性实施例中形成第一量子点膜层和第二量子点膜层结构示意图;
图3是本公开示例性实施例中形成量子点发光层结构示意图;
图4是本公开另一示例性实施例中形成第一量子点膜层和第二量子点膜层结构示意图;
图5是本公开另一示例性实施例中形成量子点发光层结构示意图;
图6是本公开又一示例性实施例中形成第一量子点膜层和第二量子点膜层结构示意图;
图7是本公开又一示例性实施例中形成量子点发光层结构示意图;
图8是本公开示例性实施例中量子点发光器件结构示意图;
图9是本公开另一示例性实施例中量子点发光器件结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
量子点(Quantum Dots,QD)由锌、镉、硒和硫原子构成,是晶体直径在2-10nm之间的纳米材料,其光电特性独特,受到光电刺激后,会根据量子点的直径大小,发出各种不同颜色的纯正单色光,能够改变光源光线的颜色。
量子点一般被用来形成量子点发光器件的量子点发光层。量子点发光器件一般包括依次层叠设置的阳极、空穴传输层、量子点发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向量子点膜层移动,阳极侧的空穴也向发光层移动,电子和空穴在量子点发光层结合形成激子,激子处于激发态向外释放能量,进而使得量子点发光层对外发光。
相关技术中,量子点因其容易受热量和水分影响的缺点,无法实现与自发光OLED相同的蒸镀方式,目前只能喷墨印刷。然而,通过喷墨打印很难达到较高的分辨率。
如图1所示,本公开提供一种量子点发光层的制作方法,包括以下步骤:
步骤S100,提供基底;
步骤S200,于基底的一侧形成量子点膜层,量子点膜层的材料包含 第一量子点本体-第一配体和第二量子点本体-第二配体;
步骤S300,曝光基底的预设区域,使得位于预设区域的量子点膜层中的第一配体和第二配体产生交联或形成不溶于显影液的盐;
步骤S400,进行显影处理,去除位于基底非预设区域的量子点膜层,获得量子点发光层。
本公开提供的量子点发光层的制作方法,当曝光基底的预设区域时,量子点膜层所包含的材料产生交联或形成不溶于显影液的盐,随后在显影过程中,该预设区域的量子点膜层不溶于显影液,而非预设区域的量子点膜层则溶于显影液,从而为量子点发光层能采用光刻工艺形成提供基础。
本公开中,所述第一量子点本体-第一配体溶于显影液;所述第二量子点本体-第二配体经曝光后不溶于显影液;所述第一量子点本体-第一配体中的第一配体包含可交联基团;所述第二量子点本体-第二配体中的第二配体包含Z基团,所述Z基团的结构为-A-B,A为亚氨基,B为保护基团;在光照条件下,所述Z基团在光致生酸剂作用下能够脱去所述保护基团形成氨基,且形成的氨基能够与所述可交联基团产生交联或形成不溶于显影液的盐。
下面结合附图对本公开实施方式提供的量子点发光层的制作方法进行详细说明:
步骤S100,提供基底。
基底可以是:无机材料例如玻璃衬底、金属衬底;有机材料例如聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合;硅晶片;或复合材料层等,具体本公开不做限定。
步骤S200,于基底的一侧形成量子点膜层,量子点膜层的材料包含第一量子点本体-第一配体和第二量子点本体-第二配体。
在本公开一些实施例中,步骤S200包括:
步骤S210,于基底的一侧形成至少一层第一量子点膜层和至少一层第二量子点膜层,第一量子点膜层和第二量子点膜层层叠设置;
第一量子点膜层的材料包含第一量子点本体-第一配体,第二量子点膜层的材料包含第二量子点本体-第二配体。
在本公开一些实施例中,步骤S210包括:
步骤S211,提供第一量子点本体-第一配体溶液;
步骤S212,于基底一侧涂覆第一量子点-第一配体溶液,形成第一量子点膜层;
步骤S213,提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液;
步骤S214,于第一量子点膜层远离基底的一侧涂覆第二量子点本体-第二配体和光致生酸剂的混合溶液,形成第二量子点膜层;
其中,第一量子点本体-第一配体溶液中的第一配体包含可交联基团;
第二量子点本体-第二配体溶液中的第二配体包含Z基团,Z基团的结构为-A-B,A为亚氨基,B为保护基团;
在光照条件下,Z基团在光致生酸剂作用下能够脱去保护基团形成氨基,且形成的氨基能够与可交联基团产生交联或形成不溶于显影液的盐。
量子点(QDs)是一种通过溶液法合成且尺寸介于1-10nm的无机半导体纳米颗粒,该尺寸近似或小于粒子的激子波尔半径。量子点由于尺寸很小、比表面积大,容易发生团聚,并且量子点的表面缺陷较多,因此在应用时量子点的表面通常还包覆着有机表面配体,该有机表面配体既起到保护作用又使量子点在溶液中有较好的溶解性。量子点中载流子(电子和空穴)的迁移被限制在量子点的内部,这样使得量子点具有独特的光学和电学性质。由于独特的尺寸依赖性质,量子点的吸光性能和发光性能可以很容易地通过控制颗粒尺寸、形状或表面结构来调节。
本公开量子点本体即指上述的量子点,其可为半导体纳米晶体,并且可具有多种形状例如球形、锥形、多臂和/或立方形的纳米颗粒、纳米管、纳米线、纳米纤维、纳米板颗粒、量子棒、或量子片。在这里,量子棒可为具有大于约1、例如大于或等于约2、大于或等于约3、或者大于或等于约5的纵横比(长径比)(长度:宽度比)的量子点本体。例如,量子棒可具有小于或等于约50、小于或等于约30、或者小于或等于约20的纵横比。
量子点本体可具有,例如,例如约1nm至约100nm、约1nm至约80nm、约1nm至约50nm、或约1nm至20nm的颗粒直径(对于非球形形状,平均 最大颗粒长度)。
可根据量子点本体的尺寸和组成控制量子点本体的能带隙,且因此可控制发光波长。例如,当量子点本体的尺寸增加时,量子点本体可具有窄的能带隙且因此配制成发射在相对长的波长区域中的光,而当量子点本体的尺寸减小时,量子点本体可具有宽的能带隙且因此配制成发射在相对短的波长区域中的光。例如,量子点本体可根据其尺寸和/或组成而配制成发射在可见光区域的预定波长区域中的光。例如,量子点本体可配制成发射第二颜色光、第三颜色光、或第一颜色光,第二颜色光可具有例如在约430nm至约480nm中的峰值发射波长(λ最大),第三颜色光可具有例如在约600nm至约650nm中的峰值发射波长(λ最大),且第一颜色光可具有例如在约520nm至约560nm中的峰值发射波长(λ最大),但不限于此。
例如,配制成发射第二颜色光的量子点本体的平均颗粒尺寸可例如小于或等于约4.5nm、和例如小于或等于约4.3nm、小于或等于约4.2nm、小于或等于约4.1nm、或者小于或等于约4.0nm。在范围内,例如,量子点本体的平均颗粒尺寸可为约2.0nm至约4.5nm、例如约2.0nm至约4.3nm、约2.0nm至约4.2nm、约2.0nm至约4.1nm、或约2.0nm至约4.0nm。
量子点本体可具有例如大于或等于约10%、大于或等于约20%、大于或等于约30%、大于或等于约50%、大于或等于约60%、大于或等于约70%、或者大于或等于约90%的量子产率。
量子点本体可具有相对窄的半宽度(FWHM)。在这里,FWHM为对应于峰值吸收点的一半的波长的宽度,并且当FWHM较窄时,可配制成发射在较窄波长区域中的光,并且可获得较高的色纯度。量子点本体可具有例如小于或等于约50nm、小于或等于约49nm、小于或等于约48nm、小于或等于约47nm、小于或等于约46nm、小于或等于约45nm、小于或等于约44nm、小于或等于约43nm、小于或等于约42nm、小于或等于约41nm、小于或等于约40nm、小于或等于约39nm、小于或等于约38nm、小于或等于约37nm、小于或等于约36nm、小于或等于约35nm、小于或等于约34nm、小于或等于约33nm、小于或等于约32nm、小于或等于约31nm、小于或等于约30nm、小于或等于约29nm、或者小于或等于约28nm的FWHM。在范围内,其可具有例如约2nm至约49nm、约2nm至约48nm、 约2nm至约47nm、约2nm至约46nm、约2nm至约45nm、约2nm至约44nm、约2nm至约43nm、约2nm至约42nm、约2nm至约41nm、约2nm至约40nm、约2nm至约39nm、约2nm至约38nm、约2nm至约37nm、约2nm至约36nm、约2nm至约35nm、约2nm至约34nm、约2nm至约33nm、约2nm至约32nm、约2nm至约31nm、约2nm至约30nm、约2nm至约29nm、或约2nm至约28nm的FWHM。
例如,量子点本体可包括II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。II-VI族半导体化合物可例如选自:二元化合物例如CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、或其混合物;三元化合物例如CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、或其混合物;和四元化合物例如HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、或其混合物,但不限于此。III-V族半导体化合物可例如选自:二元化合物例如GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、或其混合物;三元化合物例如GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、或其混合物;和四元化合物例如GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、或其混合物,但不限于此。IV-VI族半导体化合物可例如选自:二元化合物例如SnS、SnSe、SnTe、PbS、PbSe、PbTe、或其混合物;三元化合物例如SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、或其混合物;和四元化合物例如SnPbSSe、SnPbSeTe、SnPbSTe、或其混合物,但不限于此。IV族半导体可例如选自:单质(一元)半导体例如Si、Ge、或其混合物;和二元半导体化合物例如SiC、SiGe、和其混合物,但不限于此。I-III-VI族半导体化合物可为例如CuInSe2、CuInS2、CuInGaSe、CuInGaS、或其混合物,但不限于此。I-II-IV-VI族半 导体化合物可为例如CuZnSnSe、CuZnSnS、或其混合物,但不限于此。II-III-V族半导体化合物可包括例如InZnP,但不限于此。
量子点本体可以基本上均匀的浓度或局部不同的浓度分布包括单质半导体、二元半导体化合物、三元半导体化合物、或四元半导体化合物。
例如,量子点本体可包括无镉(Cd)量子点本体。无镉量子点本体是不包括镉(Cd)的量子点本体。镉(Cd)可引起严重的环境/健康问题和是在多个国家中按照有害物质限制指令(RoHS)的被限制的元素,且因此非镉基量子点本体可被有效地使用。
作为实例,量子点本体可为包括锌(Zn)、以及碲(Te)和硒(Se)的至少一种的半导体化合物。例如,量子点本体可为Zn-Te半导体化合物、Zn-Se半导体化合物、和/或Zn-Te-Se半导体化合物。例如,Zn-Te-Se半导体化合物中的碲(Te)的量可小于硒(Se)的量。半导体化合物可具有在小于或等于约480nm、例如约430nm至约480nm的波长区域中的峰值发射波长(λ最大),并且可配制成发射第二颜色光。
例如,量子点本体可为包括铟(In)、以及锌(Zn)和磷(P)的至少一种的半导体化合物。例如,量子点本体可为In-P半导体化合物和/或In-Zn-P半导体化合物。例如,在In-Zn-P半导体
化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约25。半导体化合物可具有在小于约700nm、例如约600nm至约650nm的波长区域中的峰值发射波长(λ最大),并且可配制成发射第三颜色光。
量子点本体可具有芯-壳结构,其中一个量子点本体围绕另一量子点本体。例如,量子点本体的芯和壳可具有界面,并且在界面中的芯或壳的至少一个的元素可具有浓度梯度,其中壳的元素的浓度朝着芯降低。例如,量子点本体的壳的材料组成具有比量子点本体的芯的材料组成高的能带隙,且由此量子点本体可呈现出量子限制效应。
量子点本体可具有一个量子点芯和围绕芯的多层量子点壳。在这里,多层壳具有至少两个壳,其中各壳可为单一组成、合金、和/或具有浓度梯度者。
例如,多层壳的远离芯的壳可具有比靠近芯的壳高的能带隙,且由此量子点本体可呈现出量子限制效应。
例如,具有芯-壳结构的量子点本体可例如包括:芯,芯包括第一半导体化合物,第一半导体化合物包括锌(Zn)、以及碲(Te)和硒(Se)的至少一种;以及设置在芯的至少一部分上并且具有与芯的组成不同的组成的包括第二半导体化合物的壳。
例如,第一半导体化合物可为包括锌(Zn)、碲(Te)和硒(Se)的基于Zn-Te-Se的半导体化合物,例如,包括少量的碲(Te)的基于Zn-Se的半导体化合物,例如,由ZnTexSe1-x表示的半导体化合物,其中x大于约0且小于或等于0.05。
例如,在基于Zn-Te-Se的第一半导体化合物中,锌(Zn)的摩尔量可高于硒(Se)的摩尔量,且硒(Se)的摩尔量可高于碲(Te)的摩尔量。例如,在第一半导体化合物中,碲(Te)对硒(Se)的摩尔比可小于或等于约0.05、小于或等于约0.049、小于或等于约0.048、小于或等于约0.047、小于或等于约0.045、小于或等于约0.044、小于或等于约0.043、小于或等于约0.042、小于或等于约0.041、小于或等于约0.04、小于或等于约0.039、小于或等于约0.035、小于或等于约0.03、小于或等于约0.029、小于或等于约0.025、小于或等于约0.024、小于或等于约0.023、小于或等于约0.022、小于或等于约0.021、小于或等于约0.02、小于或等于约0.019、小于或等于约0.018、小于或等于约0.017、小于或等于约0.016、小于或等于约0.015、小于或等于约0.014、小于或等于约0.013、小于或等于约0.012、小于或等于约0.011、或者小于或等于约0.01。例如,在第一半导体化合物中,碲(Te)对锌(Zn)的摩尔比可小于或等于约0.02、小于或等于约0.019、小于或等于约0.018、小于或等于约0.017、小于或等于约0.016、小于或等于约0.015、小于或等于约0.014、小于或等于约0.013、小于或等于约0.012、小于或等于约0.011、或者小于或等于约0.010。
第二半导体化合物可包括例如II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、和II-III-V族半导体化合物的实例与以上面描述的相同。
例如,第二半导体化合物可包括锌(Zn)、硒(Se)、和/或硫(S)。例如,壳可包括ZnSeS、ZnSe、ZnS、或其组合。例如,壳可包括靠近芯设置的至少一个内壳和设置在量子点本体的最外侧处的最外面的壳。内壳可包括ZnSeS、ZnSe、或其组合,且最外面的壳可包括ZnS。例如,壳可具有一种成分的浓度梯度,和例如硫(S)的量可随着离开芯而增加。
例如,具有芯-壳结构的量子点本体可包括:芯,芯包括第三半导体化合物,第三半导体化合物包括铟(In)、以及锌(Zn)和磷(P)的至少一种;以及设置在芯的至少一部分上并且包括具有与芯不同的组成的第四半导体化合物的壳。
在基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约25。例如,在基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约28、大于或等于约29、或者大于或等于约30。例如,在基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可小于或等于约55、例如小于或等于约50、小于或等于约45、小于或等于约40、小于或等于约35、小于或等于约34、小于或等于约33、或者小于或等于约32。
第四半导体化合物可包括例如II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、和II-III-V族半导体化合物的实例与以上描述的相同。
例如,第四半导体化合物可包括锌(Zn)和硫(S)以及任选地硒(Se)。例如,壳可包括ZnSeS、ZnSe、ZnS、或其组合。例如,壳可包括靠近芯设置的至少一个内壳和设置在量子点本体的最外侧处的最外面的壳。内壳和最外面的壳的至少一个可包括第四半导体化合物ZnS、ZnSe、或ZnSeS。
本公开中,第一量子点本体-第一配体溶液中的第一量子点配体和第二量子点本体-第二配体溶液中的第二量子点本体均可以选自上述任一种量子点本体,两者可相同或不同。
在本公开一些实施例中,位于同一预设区域的第一量子点膜层中的 第一量子点本体和第二量子点膜层中的第二量子点本体的核壳材料相同,且粒径大小基本相同。具体地,第一量子点本体和第二量子点本体两者间的粒径大小相差不大于10%,进一步地,也可不大于8%、7%、6%、5%、4%、3%、2%或1%等,但不限于此。
在步骤S210中,提供第一量子点本体-第一配体溶液。
第一量子点本体-第一配体溶液中可包含第一量子点本体和第一配体,且第一配体通过配位基团与第一量子点本体之间形成配位键。
具体地,第一配体可包含第一配位基团,第一配位基团与第一量子点本体之间形成配位键。第一配位基团选自氨基、羧酸基、巯基、膦基或膦氧基。第一配位基团也可以选自双巯基。
本公开中,双巯基可由
Figure PCTCN2022081762-appb-000013
形成如
Figure PCTCN2022081762-appb-000014
所示的结构。
进一步地,第一配体还可以包含第一连接基团,第一连接基团连接于第一配位基团和可交联基团之间,第一连接基团选自碳原子数为1-8的亚烷基,具体碳原子数可以是2、3、4、5、6、7或8。
在本公开一些实施例中,第一配体包含的可交联基团选自羧酸基或磺酸基,羧酸基或磺酸基在光照条件下,即曝光时,与氨基发生交联或形成不溶于显影液的盐。在此需说明的是,第一配体所包含的可交联基团的数量可以为多个,具体本公开不做限定。
在本公开另一些实施例中,步骤S210包括:
步骤S211,提供第一量子点本体-第一配体基体溶液;
步骤S212,于第一量子点本体-第一配体基体溶液中加入活化剂,将第一量子点本体-第一配体基体溶液中的第一配体基体活化为第一配体,获得第一量子点本体-第一配体溶液;
其中,第一配体基体包含可交联基体,可交联基体选自羧酸基或磺酸基;
可交联基团选自
Figure PCTCN2022081762-appb-000015
Figure PCTCN2022081762-appb-000016
Figure PCTCN2022081762-appb-000017
表示化学键。
在这些实施例中,可交联基体在活化剂的作用下被活化为可交联基团,具体地,羧酸基可被活化为
Figure PCTCN2022081762-appb-000018
磺酸基可被活化为
Figure PCTCN2022081762-appb-000019
在本公开一些实施例中,活化剂选自1-乙基-(3-二甲基氨基丙基)、碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种,即EDC、sulfo-NHS中的一种或两种。
在步骤S220中,于基底一侧涂覆第一量子点-第一配体溶液,形成第一量子点膜层。
在该步骤中,形成的第一量子点膜层的厚度为15-25nm,具体可以是15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm或25nm。
在步骤S230中,提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液。
在该步骤中,第二量子点本体-第二配体中的第二配体通过配位键与第二量子点本体之间形成配位键。具体地,第二配体可包含第二配位基团,第二配位基团选自氨基、羧酸基、巯基、膦基或膦氧基。第二配位基团也可选自双巯基。
第二量子点本体-第二配体溶液中的第二配体包含Z基团,Z基团的结构为-A-B,A为亚氨基,B为保护基团。
在本公开一些实施例中,保护基团选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000020
Figure PCTCN2022081762-appb-000021
表示化学键。
在光照条件下,Z基团在光致生酸剂作用下能够脱去保护基团形成氨基,且形成的氨基能够与可交联基团产生交联或形成不溶于显影液的盐。
第二配体还可以包括第二连接基团,第二连接基团连接于第二配位基团和氨基之间,第二连接基团选自碳原子数为1-8的亚烷基,具体碳原子数可以是2、3、4、5、6、7或8。
在步骤S240中,于第一量子点膜层远离基底的一侧涂覆第二量子点本体-第二配体和光致生酸剂的混合溶液,形成第二量子点膜层。
在该步骤中,形成的第二量子点膜层的厚度为15-25nm,具体可以是15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm或25nm。
在本公开一些实施例中,步骤S220和步骤S240可交替重复,以形成层叠设置的第一量子点膜层和第二量子点膜层,所有的第一量子点膜层和第二量子点膜层的厚度之和不超过50nm,进一步也可形成发出不同颜色的量子点发光层。
在本公开另一些实施例中,步骤S200包括:
步骤S210,提供第一量子点本体-第一配体溶液、第二量子点本体-第二配体溶液和光致生酸剂的混合溶液;
步骤S220,于基底一侧涂覆第一量子点本体-第一配体溶液、第二量子点本体-第二配体溶液和光致生酸剂的混合溶液,形成量子点膜层;
其中,第一量子点本体-第一配体溶液中的第一配体包含可交联基团;
第二量子点本体-第二配体溶液中的第二配体包含Z基团,Z基团的结构为-A-B,A为亚氨基,B为保护基团;
在光照条件下,Z基团在光致生酸剂作用下能够脱去保护基团形成氨基,且形成的氨基能够与可交联基团产生交联或形成不溶于显影液的盐。
第一量子点本体-第一配体溶液、第二量子点本体-第二配体溶液和光致生酸剂的混合溶液的获取方法,以及第一量子点本体、第一配体、第二量子点本体和第二配体等的选择可参照上述实施例,在此不详细赘述。
同样地,在该实施例中,也可通过重复形成量子点膜层,以形成能够发出不同颜色的量子点发光层。当形成不同的量子点膜层时,不同量子点膜层中的量子点本体,包括第一量子点本体和第二量子点本体之间可不同。
在步骤S300中,曝光基底的预设区域,使得位于预设区域的量子点膜层中的第一配体和第二配体产生交联或形成不溶于显影液的盐。
在该步骤中,预设区域可根据实际需求进行设定,具体本公开不做限定。曝光后,预设区域的量子点膜层交联后不溶于显影液,且形成的盐也不溶于显影液。
在此需说明的是,本公开中,第一量子点本体-第一配体溶于显影液;第二量子点本体-第二配体经曝光后不溶于显影液。当量子点膜层包含第一量子点膜层和第二量子点膜层时,预设区域的第二量子点膜层在曝光后不溶于显影液,对应预设区域的第一量子点膜层和第二量子点膜层中的材料在交联或成盐后也不溶于显影液,且最终形成的量子点发光层中所包含的材料在显影液中的溶解度小于第二量子点膜层曝光后所包含的材料在显影液中的溶解度。
在步骤S400中,进行显影处理,去除位于基底非预设区域的量子点膜层,获得量子点发光层。
非预设区域,即未曝光区域的量子点膜层未发生交联或成盐,其可以溶于显影液中。
当量子点膜层包含第一量子点膜层和第二量子点膜层时,第一量子点膜层中的材料溶于显影液,因此,当进行显影处理时,非预设区域的第一量子点膜层开始溶解,并带走该区域的第二量子点膜层。而位于预设区域的第一量子点膜层由于与第二量子点膜层产生交联或成盐,因此,不溶于显影液。即,当进行显影处理时,预设区域的第一量子点膜层和第二量子点膜层不发生溶解,进而形成量子点发光层。
在本公开一些实施例中,可重复形成第一量子点膜层和第二量子点膜层,以形成层叠设置的第一量子点膜层和第二量子点膜层,所有的第一量子点膜层和第二量子点膜层的厚度之和不超过50nm,进一步也可形成发出不同颜色的量子点发光层。
举例而言,如图2至图7所示,可于基底1一侧形成第一量子点膜层21和第二量子点膜层22,并于预设区域曝光,随后显影,形成第一发光层211和第二发光层221,第一发光层211和第二发光层221可发出第一颜色的光。
之后,再形成第一量子点膜层31和第二量子点膜层32,并于预设区域曝光,随后显影,形成第一发光层311和第二发光层321。第一发光层311和第二发光层321可发出第二颜色的光。
进一步地,再形成第一量子点膜层41和第二量子点膜层42,并于预设区域曝光,随后显影,形成第一量子点发光层411和第二量子点发光层421。第一发光层411和第二发光层421可发出第三颜色的光。
本公开还提供一种量子点发光层,量子点发光层的材料包含第一量子点本体、第一配体、第二量子点本体和第二配体;第一配体与第一量子点本体之间形成配位键,第二配体与第二量子点本体之间形成配位键;第一配体和第二配体产生交联或形成不溶于显影液的盐。
在本公开一些实施例中,量子点发光层为单层结构,在本公开另一些实施例中,量子点发光层为多层结构。举例而言,量子点发光层,包括至少一层第一发光层和至少一层第二发光层,第一发光层和第二发光层层叠设置;第一发光层的材料包含第一量子点本体和第一配体,第二发光层的材料包含第二量子点本体和第二配体。
在本公开一些实施例中,第一发光层的材料包含第一量子点本体和第一配体,第一配体包含相互连接的第一配位基团和可交联基团,第一配位基团与第一量子点本体之间形成配位键;
第二发光层的材料包含第二量子点本体和第二配体,第二配体包含相互连接的第二配位基团和氨基,第二配位基团与第二量子点本体之间形成配位键;
可交联基团与第二配体中的氨基产生交联或形成不溶于显影液的盐。
在本公开一些实施例中,可交联基团选自羧酸基、磺酸基、
Figure PCTCN2022081762-appb-000022
Figure PCTCN2022081762-appb-000023
第一配位基团和第二配位基团选自氨基、羧酸基、巯基、膦基或膦氧基。第一配位基团和第二配位基团也可以选自双巯基。
在本公开一些实施例中,第一配体还包括第一连接基团,第一连接基团连接于第一配位基团和可交联基团之间;第二配体还包括第二连接基团,第二连接基团连接于第二配位基团和氨基之间;第一连接基团、第二连接基团选自碳原子数为1-8的亚烷基。
在本公开一些实施例中,所述量子点发光层的材料包含如下结构:
Figure PCTCN2022081762-appb-000024
其中,Q1为第一量子点本体,Q2为第二量子点本体;
L 1为与所述第一量子点本体之间形成配位键的第一配位基团;
L 2为与所述第二量子点本体之间形成配位键的第二配位基团;
n1选自1-7的任意整数;具体可以为1、2、3、4、5、6或7;n2选自0-8的任意整数,具体可以为0、1、2、3、4、5、6、7或8。
在本公开一些实施例中,所述第一量子点本体和所述第二量子点本体的核壳材料相同,且粒径大小基本相同。
本公开还提供一种量子点混合物,包括第一量子点本体、第一配体、第二量子点本体和第二配体;
第一配体包括相互连接的第一配位基团和可交联基团,第一配位基团与第一量子点本体之间形成配位键;
第二配体包括相互连接的第二配位基团和Z基团,所述第二配位基 团与所述第二量子点本体之间形成配位键;Z基团的结构为-A-B,A为亚氨基,B为保护基团;
其中,第一配体能够于碱性溶液中电离;
在光照条件下,Z基团在光致生酸剂作用下能够脱去保护基团形成氨基;
可交联基团能够与Z基团脱去保护基团形成的氨基产生交联或形成不溶于显影液的盐;
或可交联基团经活化剂活化后能够与Z基团脱去保护基团形成的氨基产生交联或形成不溶于显影液的盐。
本公开一些实施例中,可交联基团选自羧酸基或磺酸基;
活化剂选自1-乙基-(3-二甲基氨基丙基)碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种。
在碱性溶液中,可交联基团可发生电离,如羧酸基或磺酸基可在碱性溶液中电离,使得第一配体能够溶于碱性溶液。
在光照条件下,可交联基团可直接与氨基产生交联或形成不同于显影液的盐,也可经活化剂活化为
Figure PCTCN2022081762-appb-000025
Figure PCTCN2022081762-appb-000026
随后与氨基产生交联或形成不同于显影液的盐。
同上,第一配体还包括第一连接基团,第一连接基团连接于第一配位基团和可交联基体之间;第二配体还包括第二连接基团,第二连接基团连接于第二配位基团和氨基之间;第一连接基团、第二连接基团选自碳原子数为1-8的亚烷基。
在本公开一些实施例中,第一配体还包括溶解基团,连接于溶解基团连接于第一配位基团和可交联基体之间,溶解基团选自极性基团。
在本公开一些实施例中,第一配体选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000027
其中,R 1选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
R 2选自羧酸基或磺酸基;n3选自1-7的任意整数,具体可以为1、2、3、4、5、6或7,n4选自1-100的任意整数。
在本公开一些实施例中,第二配体选自如下结构:
Figure PCTCN2022081762-appb-000028
其中,R 3选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
R 4选自如下结构所组成的组:
Figure PCTCN2022081762-appb-000029
n3选自0-7的任意整数,具体可以为0、1、2、3、4、5、6或7。
本公开还提供一种量子点发光器件,包括功能层,功能层包括上述任一实施例中的量子点发光层。
量子点发光器件还可以包括阳极和阴极,功能层设置于阳极和阴极之间。功能层还包括空穴注入层、空穴传输层、电子传输层和电子注入层。
如图8所示,在本公开的一种具体实施方式中,量子点发光器件可以包括衬底11和依次层叠设置于衬底11一侧的第一电极131、空穴注入层133d、空穴传输层133b、量子点发光层133a、电子传输层133c、电子注入层133e和第二电极132。
第一电极131和第二电极132之一为阳极且另一个为阴极。例如,第一电极131可为阳极且第二电极132可为阴极。例如,第一电极131可为阴极且第二电极132可为阳极。
阳极可包括具有高的功函数的导体例如金属、导电金属氧化物、或其组合。阳极可包括,如,金属可以是镍、铂、钒、铬、铜、锌、或金、或其合金;导电金属氧化物可以是氧化锌、氧化铟、氧化锡、氧化铟锡(ITO)、氧化铟锌(IZO)、或氟掺杂氧化锡;或者,金属和导电金属氧化物的组合 可以是ZnO和Al、或SnO 2和Sb,但不限于此。
阴极可包括具有比阳极低的功函数的导体例如金属、导电金属氧化物、和/或导电聚合物。阴极可包括,如,金属可以是铝、镁、钙、钠、钾、钛、铟、钇、锂、钆、银、锡、铅、铯、钡等、或其合金;多层结构例如LiF/Al、Li 2O/Al、Liq/Al、LiF/Ca、和BaF 2/Ca,但不限于此。
阳极的功函可高于阴极的功函,例如,阳极的功函可为例如约4.5eV至约5.0eV且阴极的功函可为约4.0eV至约4.7eV。在该范围内,阳极的功函可为例如约4.6eV至约4.9eV或约4.6eV至约4.8eV,且阴极的功函可为例如约4.0eV至约4.6eV或约4.3eV至约4.6eV。
第一电极131和第二电极132可以是透射电极、部分透过部分反射电极或反射电极,透射电极或部分透过部分反射电极可以包括:导电氧化物例如氧化锌、氧化铟、氧化锡、氧化铟锡(ITO)、氧化铟锌(IZO)、或氟掺杂氧化锡,或者金属薄层。反射电极可以包括:反射金属,例如:不透明导体例如铝(Al)、银(Ag)、或金(Au),第一电极和第二电极可以是单层或多层结构;
第一电极131或第二电极132的至少一者可以与辅助电极连接。如果与辅助电极连接,可以减小第二电极132的电阻。
空穴传输层133b和空穴注入层133d设置在第一电极131和量子点膜层133a之间。空穴传输层133b在第一电极131和量子点膜层133a之间靠近量子点膜层133a设置,且空穴注入层133d在第一电极131和量子点膜层133a之间靠近第一电极131设置。空穴注入层133d可促进空穴从第一电极的注入,且空穴传输层133b可将所注入的空穴有效地转移到量子点膜层133a。空穴传输层133b和空穴注入层144d可分别具有一个或两个或更多个层,并且在广义上可包括电子阻挡层。
空穴传输层133b和空穴注入层133d可各自具有在第一电极131的功函和量子点膜层133a的HOMO能级之间的HOMO能级。例如,第一电极131的功函、空穴注入层133d的HOMO能级、空穴传输层133b的HOMO能级、和量子点膜层133a的HOMO能级可逐渐变深,并且可为例如阶梯式的。
空穴传输层133b可具有相对深的HOMO能级以匹配量子点膜层133a 的HOMO能级。因此,从空穴传输层133b转移到量子点层的空穴的迁移率可改善。
空穴传输层133b的HOMO能级可等于量子点膜层133a的HOMO能级或者在约1.0eV或更小的范围内小于量子点膜层133a的HOMO能级。例如,在空穴传输层133b和量子点膜层133a的HOMO能级之间的差可为约0eV至约1.0eV,在范围内,例如约0.01eV至约0.8eV,在范围内,例如约0.01eV至约0.7eV,在范围内,例如约0.01eV至约0.5eV,在范围内,例如约0.01eV至约0.4eV、例如约0.01eV至约0.3eV、例如约0.01eV至约0.2eV、例如约0.01eV至约0.1eV。
空穴传输层133b的HOMO能级可为例如大于或等于约5.0eV,在范围内,例如大于或等于约5.2eV,在范围内,例如大于或等于约5.4eV,在范围内,例如大于或等于约5.6eV,在范围内,例如大于或等于约5.8eV。
例如,空穴传输层133b的HOMO能级可为约5.0eV至约7.0eV,在以上范围内,例如约5.2eV至约6.8eV,在以上范围内,例如约5.4eV至约6.8eV、例如约5.4eV至约6.7eV、例如约5.4eV至约6.5eV、例如约5.4eV至约6.3eV、例如约5.4eV至约6.2eV、例如约5.4eV至约6.1eV、例如约5.6eV至约7.0eV、例如约5.6eV至约6.8eV、例如约5.6eV至约6.7eV、例如约5.6eV至约6.5eV、例如约5.6eV至约6.3eV、例如约5.6eV至约6.2eV、例如约5.6eV至约6.1eV、例如约5.8eV至约7.0eV、例如约5.8eV至约6.8eV、例如约5.8eV至约6.7eV、例如约5.8eV至约6.5eV、例如约5.8eV至约6.3eV、例如约5.8eV至约6.2eV、例如约5.8eV至约6.1eV。
空穴传输层133b和空穴注入层133d可包括满足能级的材料而没有特别限制,并且可包括例如选自如下的至少一种:聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、聚(N,N’-双-4-丁基苯基-N,N’-双苯基)联苯胺(poly TPD)、聚芳基胺(多芳基胺)、聚(N-乙烯基咔唑)、聚(3,4-亚乙基二氧噻吩)(PEDOT)、聚(3,4-亚乙基二氧噻吩):聚磺苯乙烯(PEDOT:PSS)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4,4'-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、m-MTDATA(4,4',4”-三[苯基(间甲苯基)氨基]三苯基胺)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基]环己烷(TAPC)、p型金属氧化物(例如,NiO、WO3、MoO3等)、 基于碳的材料例如石墨烯氧化物、酞菁化合物(例如铜酞菁);N,N’-二苯基-N,N’-双-[4-(苯基-间甲苯基-氨基)-苯基]-联苯基-4,4’-二胺(DNTPD)、4,4’,4”-三(3-甲基苯基苯基氨基)三苯胺(m-MTDATA)、4,4’,4”-三(N,N-二苯基氨基)三苯胺(TDATA)、4,4’,4”-三{N-(2-萘基)-N-苯基氨基}-三苯胺(2-TNATA)、聚(3,4-亚乙基二氧基噻吩)/聚(4-苯乙烯磺酸酯)(PEDOT/PSS)、聚苯胺/十二烷基苯磺酸(PANI/DBSA)、聚苯胺/樟脑磺酸(PANI/CSA)、聚苯胺/聚(4-苯乙烯磺酸酯)(PANI/PSS)、N,N’-二(萘-1-基)-N,N’-二苯基-联苯胺(NPB)、含三苯胺的聚醚酮(TPAPEK)、4-异丙基-4’-甲基二苯基碘鎓四(五氟苯基)硼酸盐和/或二吡嗪并[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六甲腈(HAT-CN)、咔唑衍生物(例如N-苯基咔唑和/或聚乙烯基咔唑)、氟衍生物、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1-联苯基]-4,4’-二胺(TPD)、三苯胺衍生物(例如4,4’,4”-三(N-咔唑基)三苯胺(TCTA))、N,N’-二(萘-1-基)-N,N’-二苯基-联苯胺(NPB)、4,4’-亚环己基双[N,N-双(4-甲基苯基)苯胺](TAPC)、4,4’-双[N,N’-(3-甲苯基)氨基]-3,3’-二甲基联苯(HMTPD)、1,3-双(N-咔唑基)苯(mCP)及其组合,但不限于此。
可省略空穴传输层和空穴注入层之一或两者。
可以使用一种或多于一种的合适的方法(例如真空沉积法、旋涂法、流延法、朗缪尔-布洛杰特(LB)法、溅射法、喷墨印刷法、激光印刷法和/或激光诱导热成像(LITI)法)形成空穴传输层133b和空穴注入层133d。
量子点发光层中不同尺寸的量子点可对应发出不同颜色的光,并分别形成不同颜色的子像素,如第一颜色子像素13G,第二颜色子像素13B,第三颜色子像素12R。
电子传输层133c和电子注入层133e设置在第二电极132和量子点膜层133a之间。电子传输层133c在第二电极132和量子点膜层133a之间靠近量子点膜层133a设置,且电子注入层133e在第二电极132和量子点膜层133a之间靠近第二电极132设置。电子注入层133e可促进电子从第二电极的注入,且电子传输层133c可将所注入的电子有效地转移到量子点膜层133a。电子传输层133c和电子注入层133e可分别具有一个或两个或更多个层,并且可在广义上包括空穴阻挡层。
例如,电子注入层133e可与第二电极132接触。
例如,电子传输层133c可与量子点膜层133a接触。
例如,电子传输层133c和电子注入层133e可彼此接触。可省略电子传输层和电子注入层之一或两者。
例如,第二电极132、电子注入层133e、电子传输层133c、和量子点膜层133a的LUMO能级可逐渐变浅。例如,电子注入层133e的LUMO能级可比第二电极132的功函浅,且电子传输层133c的LUMO能级可比电子注入层133e的LUMO能级浅,且量子点膜层133a的LUMO能级可比电子传输层133c的LUMO能级浅。即,第二电极132的功函、电子注入层133e的LUMO能级、电子传输层133c的LUMO能级、和量子点膜层133a的LUMO能级可具有在一个方向上逐渐减小的阶式(级联)能级。
电子传输层133c可包括第一无机纳米颗粒。第一无机纳米颗粒可为例如氧化物纳米颗粒,且可为例如金属氧化物纳米颗粒。
第一无机纳米颗粒可为具有如下的平均颗粒直径的二维或三维纳米颗粒:小于或等于约10nm,在范围内,小于或等于约8nm、小于或等于约7nm、小于或等于约5nm、小于或等于约4nm、或者小于或等于约3.5nm,或者在范围内,约1nm至约10nm、约1nm至约9nm、约1nm至约8nm、约1nm至约7nm、约1nm至约5nm、约1nm至约4nm、或约1nm至约3.5nm。
例如,第一无机纳米颗粒可为金属氧化物纳米颗粒,金属氧化物纳米颗粒包括如下的至少一种:锌(Zn)、镁(Mg)、钴(Co)、镍(Ni)、镓(Ga)、铝(Al)、钙(Ca)、锆(Zr)、钨(W)、锂(Li)、钛(Ti)、钽(Ta)、锡(Sn)、铪(Hf)、和钡(Ba)。
作为实例,第一无机纳米颗粒可包括包含锌(Zn)的金属氧化物纳米颗粒,并且可包括由Zn1-xQxO(0≤x<0.5)表示的金属氧化物纳米颗粒。在这里,Q为不同于Zn的至少一种金属,例如镁(Mg)、钴(Co)、镍(Ni)、镓(Ga)、铝(Al)、钙(Ca)、锆(Zr)、钨(W)、锂(Li)、钛(Ti)、钽(Ta)、锡(Sn)、铪(Hf)、硅(Si)、钡(Ba)、或其组合。
例如,Q可包括镁(Mg)。
例如,x可在范围内为0.01≤x≤0.3,例如,0.01≤x≤0.2。
电子传输层16的LUMO能级可为在量子点膜层133a的LUMO能级 和电子注入层17的LUMO能级之间的值,并且可为约3.2eV至约4.8eV、约3.2eV至约4.6eV、约3.2eV至约4.5eV、约3.2eV至约4.3eV、约3.2eV至约4.1eV、约3.4eV至4.1eV、约3.5eV至约4.6eV、约3.6eV至约4.6eV、约3.6eV至约4.3eV、约3.6eV至约4.1eV、约3.6eV至约3.9eV、约3.7eV至约4.6eV、约3.7eV至约4.3eV、约3.7eV至约4.1eV、或约3.7eV至约3.9eV。
电子传输层133c厚度可为大于约10nm且小于或等于约80nm,和在范围内,大于约10nm且小于或等于约70nm、大于约10nm且小于或等于约60nm、大于约10nm且小于或等于约50nm、大于约10nm且小于或等于约40nm、或大于约10nm且小于或等于约30nm。
电子注入层133e的LUMO能级可在第二电极132的功函和电子传输层的LUMO能级之间。例如,在第二电极132的功函和电子注入层133e的LUMO能级之间的差可为小于约0.5eV、约0.001eV至约0.5eV、约0.001eV至约0.4eV、或约0.001eV至约0.3eV。作为实例,在电子注入层133e的LUMO能级和电子传输层的LUMO能级之间的差可为小于约0.5eV、约0.001eV至约0.5eV、约0.001eV至约0.4eV、或约0.001eV至约0.3eV。因此,电子可容易地从第二电极132注入到电子注入层133e中以降低量子点器件的驱动电压,并且电子可有效地从电子注入层133e转移到电子传输层以提高效率。在满足前述能级的范围内,电子注入层的LUMO能级可为约3.4eV至约4.8eV、约3.4eV至约4.6eV、约3.4eV至约4.5eV、约3.6eV至约4.8eV、约3.6eV至约4.6eV、约3.6eV至约4.5eV、约3.6eV至约4.3eV、约3.9eV至约4.8eV、约3.9eV至约4.6eV、约3.9eV至约4.5eV、或约3.9eV至约4.3eV。
电子注入层133e可比电子传输层133c薄。例如,电子注入层133e的厚度可为电子传输层133c的厚度的约0.01倍至约0.8倍、约0.01倍至约0.7倍、约0.01倍至约0.5倍、约0.1倍至约0.8倍、约0.1倍至约0.7倍、或约0.1倍至约0.5倍。电子注入层17的厚度可为例如小于或等于约10nm、小于或等于约7nm、或者小于或等于约5nm。在范围内,电子注入层17的厚度可为约1nm至约10nm、约1nm至约8nm、约1nm至约7nm、或约1nm至约5nm。
可以使用一种或多于一种的合适的方法(例如真空沉积法、旋涂法、流延法、朗缪尔-布洛杰特(LB)法、喷墨印刷法、溅射法、激光印刷法和/或激光诱导热成像(LITI)法)形成电子传输层133c和电子注入层133e。
在本公开一些实施例中,量子点发光器件也可以是包含发光单元的光致发光量子点器件,量子点发光层设于发光单元的一侧。
如图9所示,根据本公开实施例的量子点发光器件可以包括第一基板和第二基板。第一基板和第二基板可以相对设置,例如,第一基板可以是设置有光源等部件的基板,第二基板可以是设置有彩膜等部件的基板。
第一基板可以包括第一衬底11和设置于第一衬底11的多个发光单元12。
第二基板可以包括:第二衬底51;设置于第二衬底51的量子点发光层;设置在量子点发光层面向第一基板一侧的多个消光结构53,其中,任意两个相邻的消光结构53之间形成第一通道54;和设置在量子点发光层面向第一基板一侧的多个第一光学结构55,其中,多个第一光学结构55分别位于任意两个相邻的消光结构53之间的第一通道54中。
量子点发光器件还可以包括设置在第一基板与第二基板之间的填充材料部9。
在本公开的实施例中,填充材料部9的材料的折射率大于第一光学结构55的材料的折射率,消光结构53包含吸光材料。
如图9所示,多个发光单元12在第一衬底11上的正投影与多个第一光学结构55在第一衬底11上的正投影至少部分重叠,量子点发光层在第一衬底11上的正投影与多个第一光学结构55在第一衬底11上的正投影至少部分重叠,多个第一光学结构55在第一衬底11上的正投影落入填充材料部9在第一衬底11上的正投影内。第一衬底11和第二衬底51可以是刚性的衬底或柔性的衬底,包括但不限于,玻璃衬底或聚酰亚胺(PI)衬底。
在本公开的实施例中,多个发光单元12可以包括多个有机发光二极管或多个无机发光二极管,诸如Mini LED或Micro LED。
在本公开的实施例中,量子点发光器件可以包括多个子像素I,例如由虚线框包围的区域。子像素I可以是用于发射出具有第一波长范围的光 的第三颜色子像素10R、用于发射出具有第二波长范围的光的第一颜色子像素10G和用于发射出具有第三波长范围的光的第二颜色子像素10B。每一个子像素可以包括一个子像素开口,例如,第三颜色子像素10R可以包括第一子像素开口561,第一颜色子像素10G可以包括第二子像素开口562,第二颜色子像素10B可以包括第三子像素开口563。第一颜色、第二颜色和第三颜色可以分别指代绿色、蓝色和红色。当然,量子点发光器件还可以包括用于发射出其他颜色的像素,例如发射出黄光的像素,本公开的实施例不对其做特别的限制。
量子点发光层可以包括用于发射出不同颜色的多个量子点结构,该量子点结构包含本公开的第一单元。如量子点结构包含量子点本体和第一单元,第一单元结合于量子点本体表面。例如,第三颜色子像素10R可以包括用于发射出具有第一波长范围的光的第一量子点结构521,第一颜色子像素10G可以包括用于发射出具有第二波长范围的光的第二量子点结构522。当然,量子点发光层还可以包括用于发射出具有其他波长范围的光的量子点结构,例如发射出黄光的量子点结构。
第二基板还可以包括设置于第二衬底51的多个光阻挡结构57,多个光阻挡结构57位于消光结构53所在的层和量子点膜层52所在的层之间。例如,光阻挡结构57包含阻光材料。
任意两个相邻的光阻挡结构57之间形成第二通道58,第二通道58在第二衬底51上的正投影落入第一通道54在第二衬底51上的正投影内,多个第一通道54和多个第二通道58分别连通,以形成多个进光通道。
第二基板还可以包括设置于第二衬底51的多个量子点保护结构59,多个量子点保护结构59位于量子点发光层52和第一光学结构55之间,多个量子点保护结构59在第二衬底51上的正投影分别位于多个第二通道58在第二衬底51上的正投影内。以此方式,多个量子点保护结构59分别保护位于各个像素开口中的量子点结构。
第二基板还可以包括设置于第二衬底51的多个挡墙结构60,多个挡墙结构60位于第二衬底51和多个消光结构53之间,多个挡墙结构60在第二衬底51上的正投影分别位于多个消光结构53在第二衬底51上的正投影内。
上述各个像素开口561、562、563位于任意两个相邻的挡墙结构60之间,各个像素开口561、562、563在第一衬底11上的正投影分别覆盖多个进光通道在第一衬底11上的正投影,以及,各个像素开口561、562、563在第一衬底11上的正投影分别覆盖多个发光单元12在第一衬底11上的正投影。
本公开还提供一种显示装置,包括上述量子点发光器件。本公开的显示装置可以是手机、平板电脑、电视等电子设备,在此不再一一列举。
下面将结合具体实施例,详细说明本公开中量子点发光层的制作方法。
实施例1
1)提供第一量子点本体-第一配体溶液
在该实施例中,第一配体的结构为
Figure PCTCN2022081762-appb-000030
(11)提供第一配体-甲醇的转相剂,并用氢氧化钠溶液调节pH为11-12.
(12)将第一量子点本体溶液加入转向剂搅拌;随后加入等体积去离子水,再搅拌10分钟离心清洗,丙酮/甲醇混合溶剂离心2次,即得到第一量子点本体-第一配体母溶液。
加入0.5M浓度的HCl/MeOH溶液,调节pH至6.5-7.0,将第一量子点本体-第一配体沉出后,离心收集,溶于PGMEA中,制成10mg/mL第一量子点本体-第一配体溶液。
2)于基底一侧涂覆第一量子点-第一配体溶液,形成第一量子点膜层
将10mg/mL的第一量子点-第一配体溶液涂膜,厚度15-25nm。
3)提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液
在该实施例中,第二配体的结构为
Figure PCTCN2022081762-appb-000031
提供方法可参照上述步骤1),提供为10mg/mL第二量子点本体-第二配体溶液,溶液中添加光致生酸剂(photo acid generator,PAG),浓度为0.5mg/mL。
4)于第一量子点膜层远离基底的一侧涂覆第二量子点本体-第二配体和光致生酸剂的混合溶液,形成第二量子点膜层
将10mg/mL的第二量子点-第二配体、0.5mg/mLPAG的溶液涂膜,厚度15-25nm。
曝光显影,在光照条件下,第二配体脱去保护基团形成氨基,预设区域(曝光区域)第一量子点膜层和第二量子点膜层交联或成盐。
Figure PCTCN2022081762-appb-000032
非预设区域(非曝光区域)第一量子点膜层中的材料电离溶解,并带走第二量子点膜层。
Figure PCTCN2022081762-appb-000033
实施例2
1)提供第一量子点本体-第一配体溶液
在该实施例中,第一配体的结构为
Figure PCTCN2022081762-appb-000034
(11)提供第一量子点本体-第一配体基体溶液,第一配体基体的结构为
Figure PCTCN2022081762-appb-000035
提供方法可参照实施例1中的步骤(1);
(12)第一量子点本体-第一配体基体溶液(10mg/mL)加入EDC(10mg/mL,等体积),室温搅拌4小时;用甲醇沉出。PGMEA溶解/甲醇沉淀重复3次,最后将分散在PGMEA中形成10mg/mL第一量子点本体-第一配体溶液。
在该步骤中,第一配体基体被EDC活化为第一配体。
Figure PCTCN2022081762-appb-000036
2)于基底一侧涂覆第一量子点-第一配体溶液,形成第一量子点膜层
将10mg/mL的第一量子点-第一配体溶液涂膜,厚度15-25nm。
3)提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液
在该实施例中,第二配体的结构为
Figure PCTCN2022081762-appb-000037
提供方法可参照上述实施例1,提供为10mg/mL第二量子点本体-第二配体溶液,溶液中添加光致生酸剂(photo acid generator,PAG),浓度为0.5mg/mL。
4)于第一量子点膜层远离基底的一侧涂覆第二量子点本体-第二配体和光致生酸剂的混合溶液,形成第二量子点膜层
将10mg/mL的第二量子点-第二配体、0.5mg/mLPAG的溶液涂膜,厚度15-25nm。
曝光显影,预设区域(曝光区域)第一量子点膜层和第二量子点膜层交联。
Figure PCTCN2022081762-appb-000038
非预设区域(非曝光区域)第一量子点膜层中的材料电离溶解,并带走第二量子点膜层。
Figure PCTCN2022081762-appb-000039
实施例3
1)提供第一量子点本体-第一配体溶液
在该实施例中,第一配体的结构为
Figure PCTCN2022081762-appb-000040
(11)提供第一量子点本体-第一配体基体溶液,第一配体基体的结构为
Figure PCTCN2022081762-appb-000041
提供方法可参照实施例1中的步骤(1);
(12)第一量子点本体-第一配体基体溶液(10mg/mL)加入EDC/sulfo-NHS(均为10mg/mL,等体积),室温搅拌4小时;用甲醇沉出。PGMEA溶解/甲醇沉淀重复3次,最后将分散在PGMEA中形成10mg/mL第一量子点本体-第一配体溶液。
在该步骤中,第一配体基体被EDC、sulfo-NHS活化为第一配体。
Figure PCTCN2022081762-appb-000042
2)于基底一侧涂覆第一量子点-第一配体溶液,形成第一量子点膜层
将10mg/mL的第一量子点-第一配体溶液涂膜,厚度15-25nm。
3)提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液
在该实施例中,第二配体的结构为
Figure PCTCN2022081762-appb-000043
提供方法可参照上述实施例1,提供为10mg/mL第二量子点本体-第二配体溶液,溶液中添加光致生酸剂(photo acid generator,PAG),浓度为0.5mg/mL。
4)于第一量子点膜层远离基底的一侧涂覆第二量子点本体-第二配体和光致生酸剂的混合溶液,形成第二量子点膜层
将10mg/mL的第二量子点-第二配体、0.5mg/mLPAG的溶液涂膜,厚度15-25nm。
曝光显影,预设区域(曝光区域)第一量子点膜层和第二量子点膜层交联。
Figure PCTCN2022081762-appb-000044
非预设区域(非曝光区域)第一量子点膜层中的材料电离溶解,并带走第二量子点膜层。
Figure PCTCN2022081762-appb-000045
在该实施例中,sulfo-NHS活化后,配体稳定性更好,对水的稳定性更高,利于保存,且具有水溶性。
此外,可将上述实施例中的第一量子点本体-第一配体溶液,以及第二量子点本体-第二配体溶液和光致生酸剂的混合溶液进一步混合,之后涂覆形成量子点膜层,进一步在进行曝光显影形成量子点发光层。曝光区域和非曝光区域所发生的反应可参照上述实施例。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等,均应视为本公开的一部分。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (23)

  1. 一种量子点发光层的制作方法,包括:
    提供基底;
    于所述基底的一侧形成量子点膜层,所述量子点膜层的材料包含第一量子点本体-第一配体和第二量子点本体-第二配体;
    曝光所述基底的预设区域,使得位于所述预设区域的所述量子点膜层中的第一配体和第二配体产生交联或形成不溶于显影液的盐;
    进行显影处理,去除位于所述基底非预设区域的所述量子点膜层,获得所述量子点发光层。
  2. 根据权利要求1所述的量子点发光层的制作方法,其中,所述第一量子点本体-第一配体溶于显影液;
    所述第二量子点本体-第二配体经曝光后不溶于显影液;
    所述第一量子点本体-第一配体中的第一配体包含可交联基团;
    所述第二量子点本体-第二配体中的第二配体包含Z基团,所述Z基团的结构为-A-B,A为亚氨基,B为保护基团;
    在光照条件下,所述Z基团在光致生酸剂作用下能够脱去所述保护基团形成氨基,且形成的氨基能够与所述可交联基团产生交联或形成不溶于显影液的盐。
  3. 根据权利要求2所述的量子点发光层的制作方法,其中,于所述基底的一侧形成量子点膜层包括:
    提供所述第一量子点本体-第一配体溶液、所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液;
    于所述基底一侧涂覆所述第一量子点本体-第一配体溶液、所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液,形成所述量子点膜层。
  4. 根据权利要求1所述的量子点发光层的制作方法,其中,于所述基底的一侧形成量子点膜层包括:
    于所述基底的一侧形成至少一层第一量子点膜层和至少一层第二量子点膜层,所述第一量子点膜层和所述第二量子点膜层层叠设置;
    所述第一量子点膜层的材料包含所述第一量子点本体-第一配体,所 述第二量子点膜层的材料包含所述第二量子点本体-第二配体。
  5. 根据权利要求4所述的量子点发光层的制作方法,其中,于所述基底的一侧形成至少一层第一量子点膜层和至少一层第二量子点膜层包括:
    提供第一量子点本体-第一配体溶液;
    于所述基底一侧涂覆所述第一量子点-第一配体溶液,形成所述第一量子点膜层;
    提供第二量子点本体-第二配体溶液和光致生酸剂的混合溶液;
    于所述第一量子点膜层远离所述基底的一侧涂覆所述第二量子点本体-第二配体溶液和所述光致生酸剂的混合溶液,形成所述第二量子点膜层。
  6. 根据权利要求2所述的量子点发光层的制作方法,其中,所述可交联基团选自羧酸基或磺酸基。
  7. 根据权利要求2所述的量子点发光层的制作方法,其中,所述保护基团选自如下结构所组成的组:
    Figure PCTCN2022081762-appb-100001
    Figure PCTCN2022081762-appb-100002
    表示化学键。
  8. 根据权利要求5所述的量子点发光层的制作方法,其中,提供第一量子点本体-第一配体溶液包括:
    提供第一量子点本体-第一配体基体溶液;
    于所述第一量子点本体-第一配体基体溶液中加入活化剂,将所述第一量子点本体-第一配体基体溶液中的第一配体基体活化为所述第一配体,获得所述第一量子点本体-第一配体溶液;
    其中,所述第一配体基体包含可交联基体,所述可交联基体选自羧酸基或磺酸基;
    所述可交联基团选自
    Figure PCTCN2022081762-appb-100003
    Figure PCTCN2022081762-appb-100004
    Figure PCTCN2022081762-appb-100005
    表示化学键。
  9. 根据权利要求8所述的量子点发光层的制作方法,其中,所述活化剂选自1-乙基-(3-二甲基氨基丙基)碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种。
  10. 根据权利要求4所述的量子点发光层的制作方法,其中,位于同一预设区域的所述第一量子点膜层中的第一量子点本体和所述第二量子点膜层中的第二量子点本体的核壳材料相同,且粒径大小基本相同。
  11. 一种量子点发光层,所述量子点发光层的材料包含第一量子点本体、第一配体、第二量子点本体和第二配体;
    所述第一配体与所述第一量子点本体之间形成配位键,所述第二配体与所述第二量子点本体之间形成配位键;
    所述第一配体和所述第二配体产生交联或形成不溶于显影液的盐。
  12. 根据权利要求11所述的量子点发光层,其中,所述第一配体包含相互连接的第一配位基团和可交联基团,所述第一配位基团与所述第一量子点本体之间形成配位键;
    所述第二配体包含相互连接的第二配位基团和氨基,所述第二配位基团与所述第二量子点本体之间形成配位键;
    所述可交联基团与所述第二配体中的氨基产生交联或形成不溶于显影液的盐。
  13. 根据权利要求11所述的量子点发光层,其中,所述量子点发光层包括至少一层第一发光层和至少一层第二发光层,所述第一发光层和所述第二发光层层叠设置;
    所述第一发光层的材料包含所述第一量子点本体和所述第一配体, 所述第二发光层的材料包含所述第二量子点本体和所述第二配体。
  14. 根据权利要求12所述的量子点发光层,其中,所述可交联基团选自羧酸基、磺酸基、
    Figure PCTCN2022081762-appb-100006
    Figure PCTCN2022081762-appb-100007
  15. 根据权利要求12所述的量子点发光层,其中,所述量子点发光层的材料包含如下结构:
    Figure PCTCN2022081762-appb-100008
    其中,Q1为第一量子点本体,Q2为第二量子点本体;
    L 1为与所述第一量子点本体之间形成配位键的第一配位基团;
    L 2为与所述第二量子点本体之间形成配位键的第二配位基团;
    n1选自1-7的任意整数;n2选自0-8的任意整数。
  16. 根据权利要求12所述的量子点发光层,其中,所述第一量子点本体和所述第二量子点本体的核壳材料相同,且粒径大小基本相同。
  17. 一种量子点混合物,包括第一量子点本体、第一配体、第二量子点本体和第二配体:
    第一配体包括相互连接的第一配位基团和可交联基团,所述第一配位基团与所述第一量子点本体之间形成配位键;
    第二配体包括相互连接的第二配位基团和Z基团,所述第二配位基团与所述第二量子点本体之间形成配位键;所述Z基团的结构为-A-B,A为亚氨基,B为保护基团;
    其中,所述第一配体能够于碱性溶液中发生电离;
    在光照条件下,所述Z基团在光致生酸剂作用下能够脱去所述保护基团形成氨基;
    所述可交联基团能够与所述Z基团脱去所述保护基团形成的氨基产 生交联或形成不溶于显影液的盐;
    或所述可交联基团经活化剂活化后能够与所述Z基团脱去所述保护基团形成的氨基产生交联或形成不溶于显影液的盐。
  18. 根据权利要求17所述的量子点混合物,其中,所述可交联基团选自羧酸基或磺酸基;
    所述活化剂选自1-乙基-(3-二甲基氨基丙基)碳酰二亚胺、N-羟基硫代琥珀酰亚胺中的一种或两种。
  19. 根据权利要求17所述的量子点混合物,其中,所述保护基团选自如下结构所组成的组:
    Figure PCTCN2022081762-appb-100009
    Figure PCTCN2022081762-appb-100010
    表示化学键。
  20. 根据权利要求17所述的量子点混合物,其中,第一配体选自如下结构所组成的组:
    Figure PCTCN2022081762-appb-100011
    其中,R 1选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
    R 2选自羧酸基或磺酸基;
    n3选自1-7的任意整数;n4选自1-100的任意整数。
  21. 根据权利要求17所述的量子点混合物,其中,第二配体选自如下结构:
    Figure PCTCN2022081762-appb-100012
    其中,R 3选自氨基、羧酸基、巯基、膦基、膦氧基或双巯基;
    R 4选自如下结构所组成的组:
    Figure PCTCN2022081762-appb-100013
    n5选自0-7的任意整数。
  22. 一种量子点发光器件,包括功能层,所述功能层包括11-16任一项所述的量子点发光层。
  23. 一种显示装置,包括如权利要求22所述的量子点发光器件。
PCT/CN2022/081762 2022-03-18 2022-03-18 量子点混合物、量子点发光层及制作方法 WO2023173417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000482.3A CN117178651A (zh) 2022-03-18 2022-03-18 量子点混合物、量子点发光层及制作方法
PCT/CN2022/081762 WO2023173417A1 (zh) 2022-03-18 2022-03-18 量子点混合物、量子点发光层及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081762 WO2023173417A1 (zh) 2022-03-18 2022-03-18 量子点混合物、量子点发光层及制作方法

Publications (1)

Publication Number Publication Date
WO2023173417A1 true WO2023173417A1 (zh) 2023-09-21

Family

ID=88021971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081762 WO2023173417A1 (zh) 2022-03-18 2022-03-18 量子点混合物、量子点发光层及制作方法

Country Status (2)

Country Link
CN (1) CN117178651A (zh)
WO (1) WO2023173417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058243A (zh) * 2022-06-30 2022-09-16 北京京东方技术开发有限公司 量子点、量子点交联物、量子点发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271269A (zh) * 2020-10-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法
CN112410019A (zh) * 2020-11-20 2021-02-26 京东方科技集团股份有限公司 纳米粒子、纳米粒子层图案化的方法及相关应用
CN113046058A (zh) * 2021-03-15 2021-06-29 北京京东方技术开发有限公司 量子点材料、图案化量子点膜层、量子点器件和制作方法
CN113755158A (zh) * 2021-03-09 2021-12-07 京东方科技集团股份有限公司 量子点材料、图案化量子点膜层、量子点器件和制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271269A (zh) * 2020-10-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法
CN112410019A (zh) * 2020-11-20 2021-02-26 京东方科技集团股份有限公司 纳米粒子、纳米粒子层图案化的方法及相关应用
CN113755158A (zh) * 2021-03-09 2021-12-07 京东方科技集团股份有限公司 量子点材料、图案化量子点膜层、量子点器件和制作方法
CN113046058A (zh) * 2021-03-15 2021-06-29 北京京东方技术开发有限公司 量子点材料、图案化量子点膜层、量子点器件和制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058243A (zh) * 2022-06-30 2022-09-16 北京京东方技术开发有限公司 量子点、量子点交联物、量子点发光器件

Also Published As

Publication number Publication date
CN117178651A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7265893B2 (ja) 電界発光素子及び表示装置
JP7199922B2 (ja) 量子ドット素子及び電子装置
US11793011B2 (en) Quantum dot device and display device
KR102629349B1 (ko) 양자점 소자와 표시 장치
CN110246973B (zh) 量子点器件和电子设备
CN110783468B (zh) 量子点器件和显示设备
KR102649296B1 (ko) 양자점 소자와 표시 장치
CN110858628A (zh) 发光器件、其制造方法、和包括其的显示设备
CN110729404A (zh) 发光器件、其制造方法和包括其的显示设备
WO2023173417A1 (zh) 量子点混合物、量子点发光层及制作方法
CN116685659B (zh) 量子点配体、量子点膜层制备方法及量子点发光器件
WO2023225823A1 (zh) 量子点发光器件及其制备方法
WO2023245571A1 (zh) 量子点配体、量子点-配体材料和量子点发光器件
KR102673654B1 (ko) 양자점 소자 및 전자 장치
CN113410403A (zh) 量子点器件和电子设备
WO2023137668A1 (zh) 发光基板及其制备方法和发光装置
WO2024192734A1 (zh) 量子点膜层图案化方法、量子点发光器件
CN116426269A (zh) 量子点混合配体、量子点-配体体系及量子点-配体材料
KR102718279B1 (ko) 발광소자, 발광소자의 제조 방법과 표시 장치
WO2023155162A1 (zh) 显示基板、电致发光器件及其制备方法
WO2023206485A1 (zh) 发光基板及制备方法、含有发光材料的溶液、发光装置
CN116133451A (zh) 量子点发光二极管及其制备方法、光电装置
KR20220136185A (ko) 양자점 소자와 전자 장치
WO2022143557A1 (zh) 溶液组合物及其制备方法、膜层和发光二极管
CN116456741A (zh) 发光器件及其制作方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18277589

Country of ref document: US