WO2023155162A1 - 显示基板、电致发光器件及其制备方法 - Google Patents

显示基板、电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2023155162A1
WO2023155162A1 PCT/CN2022/076914 CN2022076914W WO2023155162A1 WO 2023155162 A1 WO2023155162 A1 WO 2023155162A1 CN 2022076914 W CN2022076914 W CN 2022076914W WO 2023155162 A1 WO2023155162 A1 WO 2023155162A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
color
sub
base substrate
Prior art date
Application number
PCT/CN2022/076914
Other languages
English (en)
French (fr)
Inventor
李东
李卓
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000217.5A priority Critical patent/CN116941346A/zh
Priority to PCT/CN2022/076914 priority patent/WO2023155162A1/zh
Publication of WO2023155162A1 publication Critical patent/WO2023155162A1/zh

Links

Images

Definitions

  • Embodiments of the present disclosure relate to a display substrate, an electroluminescence device and a manufacturing method thereof.
  • quantum dots As a new type of luminescent material, quantum dots (QD) have the advantages of high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life, and have become a research hotspot for new luminescent materials. Therefore, quantum dot light-emitting diodes (QLEDs) using quantum dot materials as the light-emitting layer have become the main direction of research on new display devices. With the continuous improvement of quantum efficiency, QLED devices can achieve a smaller area of light emission, which is conducive to enabling display products to achieve higher resolution.
  • High-resolution AMQLED Active Matrix Quantum Dot Light-Emitting Diode
  • AMQLED Active Matrix Quantum Dot Light-Emitting Diode
  • At least one embodiment of the present disclosure provides a display substrate, an electroluminescent device, and a manufacturing method thereof.
  • the first auxiliary layer in the display substrate at least includes a first portion and a second portion spaced apart from each other, and the first portion of the first auxiliary layer is It is arranged on the side of the first color quantum dot layer away from the base substrate, and the second part of the first auxiliary layer is arranged on the side of the second color quantum dot layer close to the base substrate, and the first auxiliary layer can By avoiding the second color quantum dot material formed later remaining on the first color quantum dot layer, the problem of color mixing can be avoided, so as to improve the color gamut of the subsequently formed electroluminescent device.
  • At least one embodiment of the present disclosure provides a display substrate, which includes: a base substrate; a pixel defining layer disposed on the base substrate, wherein the pixel defining layer includes a plurality of openings, and the plurality of The opening corresponds to a plurality of sub-pixel regions, and the plurality of sub-pixel regions at least include a first sub-pixel region and a second sub-pixel region; the first color quantum dot layer is arranged in the first sub-pixel region; the second color quantum dot layer, arranged in the second sub-pixel region; a first auxiliary layer, at least including a first part and a second part spaced apart from each other, and the first part is arranged in the first color quantum dot layer away from the substrate One side of the substrate; the second part is disposed on the side of the second color quantum dot layer close to the base substrate.
  • the first part and the second part have the same thickness and the same material.
  • the material of the first part and the second part is metal oxide.
  • the surface roughness of the metal oxide is less than 3 nm.
  • the first auxiliary layer further includes a third part, and the third part is disposed on a side of the pixel defining layer away from the base substrate, And the first part, the second part and the third part are not connected.
  • the display substrate provided in at least one embodiment of the present disclosure further includes a second auxiliary layer and a third color quantum dot layer disposed in the third sub-pixel area, wherein the second auxiliary layer is disposed at least in the The side of the second color quantum dot layer away from the base substrate.
  • materials of the first auxiliary layer and the second auxiliary layer are different.
  • the material of the first auxiliary layer includes an electron-transporting oxide
  • the material of the second auxiliary layer includes a hole-transporting oxide
  • at least part of the The first auxiliary layer is in contact with the first color quantum dot layer
  • at least part of the second auxiliary layer is in contact with the third color quantum dot layer.
  • the first color quantum dot layer is a blue quantum dot layer
  • the second color quantum dot layer is a red quantum dot layer and a green quantum dot layer
  • the third color quantum dot layer is the other one of the green quantum dot layer and the red quantum dot layer.
  • the first color quantum dot layer includes first color quantum dots
  • the second color quantum dot layer includes second color quantum dots
  • the third color quantum dots included in the third color quantum dot layer all include a quantum dot body and a ligand connected to the quantum dot body, and the structure of the ligand is A-B-C type, and A is the The connected coordination group; B is the reactant after the photosensitive group is illuminated; C is -COOH.
  • the first color quantum dot layer includes first color quantum dots
  • the second color quantum dot layer includes second color quantum dots
  • the third color quantum dots included in the third color quantum dot layer all include a quantum dot body and a ligand connected to the quantum dot body, and the structure of the ligand is a mixture of A-B type ligands and A-C type ligands, And A is the coordination group connected with the quantum dot body; B is the reactant after the photosensitive group is illuminated; C is -COOH.
  • the second auxiliary layer includes at least a fourth part, a fifth part and a sixth part spaced apart from each other, and the fourth part is arranged on the first part.
  • the fifth part is disposed on a side of the second color quantum dot layer away from the base substrate;
  • the second auxiliary layer further includes a seventh portion spaced apart from the fourth portion, the fifth portion, and the sixth portion, the The seventh portion is disposed on a side of the third portion away from the base substrate, and is at least partially in contact with the third portion.
  • the first auxiliary layer further includes an eighth part spaced apart from the first part, the second part and the third part, the The eighth part is disposed on a side of the sixth part close to the base substrate.
  • the materials of the first auxiliary layer and the second auxiliary layer both include at least one of an electron transport type oxide and a hole transport type oxide.
  • the materials of the first auxiliary layer and the second auxiliary layer include zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, oxide Nickel, zirconium oxide, vanadium oxide, zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, At least one of lithium or aluminum tin oxide.
  • the first auxiliary layer includes a laminated first layer structure and a second layer structure, and the first layer structure is adjacent to the second layer structure.
  • the material of the first layer structure includes at least one of an electron-transport oxide and a hole-transport oxide;
  • the general formula of the second layer structure includes: Wherein, A is -(CH 2 )nCH 3 , n is less than or equal to 4; M is -(CH 2 )x, and x is less than or equal to 6; P includes at least one of the .
  • the second auxiliary layer includes a stacked third layer structure and a fourth layer structure, and the third layer structure is adjacent to the fourth layer structure.
  • the material of the third layer structure includes at least one of an electron transport oxide and a hole transport oxide;
  • the general formula of the fourth layer structure includes: Wherein, A is -(CH 2 )nCH 3 , n is less than or equal to 4; M is -(CH 2 )x, and x is less than or equal to 6; P includes at least one of the .
  • the materials of the first layer structure and the third layer structure both include zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, oxide Nickel, zirconium oxide, vanadium oxide, zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, At least one of lithium or aluminum tin oxide.
  • At least one embodiment of the present disclosure further provides an electroluminescent device, which includes the display substrate described in any one of the above, and a first electrode and a first functional layer stacked on the base substrate , wherein, the first electrode is arranged on the side of the first functional layer close to the base substrate; the first functional layer and the first electrode are both stacked and arranged in a plurality of the sub-pixel regions , and the first functional layer and the first electrode stacked are between the first color quantum dot layer and the substrate substrate, and between the second color quantum dot layer and the substrate between the substrates, and between the third color quantum dot layer and the base substrate.
  • the materials of the first auxiliary layer and the first functional layer are the same, and in a direction perpendicular to the main surface of the base substrate, The thickness of the first functional layer is 4-5 times the thickness of the first auxiliary layer.
  • the thickness of the first color quantum dot layer is 4 to 5 times the thickness of the first auxiliary layer.
  • At least one embodiment of the present disclosure also provides a method for manufacturing an electroluminescent device, the preparation method comprising: providing a base substrate; forming a pixel defining layer on the base substrate, and the pixel defining layer includes a plurality of openings to Forming a plurality of sub-pixel regions spaced apart from each other, the plurality of sub-pixel regions at least including a first sub-pixel region and a second sub-pixel region; forming a first color quantum dot layer in the first sub-pixel region; Forming a second color quantum dot layer in the second sub-pixel area, the method further includes: forming a first auxiliary layer after forming the first color quantum dot layer and before forming the second color quantum dot layer, wherein, The first auxiliary layer includes at least a first part and a second part spaced apart from each other, the first part is arranged on the side of the first color quantum dot layer away from the base substrate; the second part is arranged on A side of the second color quantum dot layer close to the base substrate.
  • the method before forming the first color quantum dot layer, further includes: forming a first functional layer on the base substrate, and The first functional layer and the first auxiliary layer are attached to each other in the second sub-pixel area and the third sub-pixel area.
  • the material of the first auxiliary layer includes at least one of an electron-transport oxide and a hole-transport oxide, and magnetron sputtering is used
  • the first auxiliary layer is formed.
  • the material of the first auxiliary layer includes zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, Zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and in tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum at least one.
  • forming the first auxiliary layer includes forming a laminated first layer structure and a second layer structure, and the first layer structure is formed on top of the second layer structure.
  • the side close to the base substrate, and forming the first layer structure includes: applying at least one of an electron-transport oxide and a hole-transport oxide on the base substrate by magnetron sputtering.
  • forming the second layer structure includes placing the base substrate formed with the first layer structure in a solution of a silane coupling agent for soaking, and the solution of the silane coupling agent includes of the first group.
  • the material of the first layer structure includes zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, Zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and in tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum at least one.
  • a second auxiliary layer is formed at least on the side of the second color quantum dot layer away from the base substrate;
  • a third color quantum dot layer is formed on one side of the base substrate and in the third sub-pixel area; the materials of the first auxiliary layer and the second auxiliary layer are different.
  • the material of the second auxiliary layer includes at least one of an electron-transport oxide and a hole-transport oxide, and magnetron sputtering is used The second auxiliary layer is formed.
  • the material of the second auxiliary layer includes zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, Zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and in tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum at least one.
  • forming the second auxiliary layer includes forming a stacked third layer structure and a fourth layer structure, and the third layer structure is formed on top of the fourth layer structure.
  • the side close to the base substrate, and forming the third layer structure includes: applying at least one of an electron-transport oxide and a hole-transport oxide on the base substrate by magnetron sputtering.
  • forming the fourth layer structure includes placing the base substrate formed with the third layer structure in a solution of a silane coupling agent for soaking, and the solution of the silane coupling agent includes the first layer containing a perfluorinated terminal Three groups.
  • the material of the third layer structure includes zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, Zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and in tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum at least one.
  • forming the first color quantum dot layer includes: depositing a first color quantum dot material on the first functional layer, and depositing a first color quantum dot material on the first sub-pixel Cross-linking and developing the first color quantum dot material in the region to form the first color quantum dot layer;
  • forming the second color quantum dot layer includes: depositing a second color on the first functional layer Quantum dot material, and crosslinking and developing the second color quantum dot material in the second sub-pixel area to form the second color quantum dot layer;
  • forming the third color quantum dot layer includes: Depositing a third color quantum dot material on the first functional layer, and crosslinking and developing the third color quantum dot material in the third sub-pixel area to form the third color quantum dot layer .
  • the material of the first auxiliary layer includes an electron-transporting oxide
  • the material of the second auxiliary layer includes a hole-transporting oxide
  • at least part of the The first auxiliary layer is in contact with the first color quantum dot layer
  • at least part of the second auxiliary layer is in contact with the third color quantum dot layer.
  • the quantum dot layer of the second color and the quantum dot layer of the third color further comprising: A second functional layer and a third functional layer are sequentially formed on the side of the first color quantum dot layer, the second color quantum dot layer and the third color quantum dot layer away from the base substrate.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: forming a first electrode on the base substrate before forming the first functional layer, wherein the material of the first electrode includes a transparent conductive metal An oxide or a conductive polymer; a second electrode is formed on the side of the third functional layer away from the base substrate, and the material of the second electrode includes conductive metal or conductive metal oxide.
  • the first auxiliary layer and the second auxiliary layer are sequentially formed on the surface of the pixel defining layer away from the base substrate.
  • Fig. 1 is a schematic diagram of the process of patterning a quantum dot layer
  • Fig. 2 is the quantum dot pattern formed in the actual process in Fig. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram of a display substrate provided by at least one embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional structure diagram of another display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a double-layer structure in which the first auxiliary layer is stacked according to at least one embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view of a double-layer structure in which the second auxiliary layer is stacked according to at least one embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional structure diagram of another display substrate provided by at least one embodiment of the present disclosure.
  • Fig. 8 is a schematic cross-sectional structure diagram of an electroluminescent device provided by at least one embodiment of the present disclosure.
  • Fig. 9 is a schematic cross-sectional structure diagram of another electroluminescent device provided by at least one embodiment of the present disclosure.
  • Fig. 10 is a flow chart of the preparation process of an electroluminescent device provided by at least one embodiment of the present disclosure
  • Fig. 11 is a flow chart of the preparation process of another electroluminescent device provided by at least one embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of the preparation process of an electroluminescent device provided by at least one embodiment of the present disclosure
  • Figure 13 shows the blank glass, the blank glass provided with quantum dots (without MPA ligand), the blank glass provided with zinc oxide and quantum dots (without MPA ligand) and the blank glass provided with zinc oxide under the irradiation of 400nm excitation light. and the graph of the emission peak of the blank glass of quantum dots (containing MPA ligand);
  • Figure 14 is a schematic diagram of the emission peak formed by red quantum dots (without MPA ligand) after sputtering ZnO and under the irradiation of 400nm excitation light after development;
  • Figure 15 is a schematic diagram of the emission peak formed under the irradiation of 400nm excitation light after the red quantum dots (containing MPA ligand) are sputtered with ZnO, developed (washing away the red quantum dots), and then deposited with green quantum dots;
  • Figure 16 is a schematic diagram of the emission peaks formed by green quantum dots (containing MPA ligands) after sputtering ZnO and under the irradiation of 400nm excitation light after development; and
  • Fig. 17 is a schematic diagram of emission of light after deposition of green quantum dots by sputtering ZnO, exposure cross-linking, red quantum dots (without MPA ligand) and development (red quantum dots are washed away).
  • the patterning of the quantum dot layer is mainly realized by the process of inkjet printing, but limited by the inkjet printing equipment, the resolution of the formed patterned quantum dot layer is limited Within 200ppi.
  • the pixel defining layer needs to be prepared first, and the quantum dot ink in each functional layer will have the problem of climbing on the pixel defining layer , even the quantum dot ink will climb to the platform area on the top of the pixel defining layer, which greatly affects the morphology and thickness uniformity of the formed quantum dot film, and affects the life of the quantum dot electroluminescent device and the uniformity of light output. Sex will have a great impact, which in turn affects the mass production of subsequent quantum dot electroluminescent devices. This problem is more pronounced especially for display panels with high resolution. Therefore, it is necessary to study a patterning method of the quantum dot layer to improve the resolution of the quantum dot electroluminescent device.
  • FIG. 1 is a schematic diagram of a quantum dot layer patterning process. As shown in FIG. 1 , a base substrate 101 is provided, and a first electrode 102 is formed on the base substrate 101.
  • a pixel defining layer 104 is formed on one side of an electrode 102, and the pixel defining layer 104 includes a plurality of openings to form a plurality of sub-pixel regions, and a red quantum dot material is applied to each sub-pixel region to form a red quantum dot film layer 105',
  • the process of patterning the red quantum dot film layer 105' includes: using the first mask 1031 to block the sub-pixel area in the middle area and the rightmost sub-pixel area, so that the light irradiates to the leftmost sub-pixel area.
  • the pixel area so that the red quantum dot material in the sub-pixel area undergoes a cross-linking reaction, that is, the exposure process to the red quantum dot film layer 105' is completed, and the red quantum dot material that has not undergone a cross-linking reaction is cleaned to Removing the red quantum dot material in the sub-pixel area located in the middle area and the rightmost sub-pixel area, that is, forming a red quantum dot pattern 105; applying a green quantum dot material in each sub-pixel area to form a green quantum dot film Layer 106', the process of patterning the green quantum dot film layer 106' includes: using the second mask 1032 to block the leftmost sub-pixel region and the rightmost sub-pixel region, so that the light The sub-pixel area located in the middle area is irradiated, so that the green quantum dot material in the sub-pixel area undergoes a cross-linking reaction, that is, the exposure process to the green quantum dot film layer 106' is completed, and the green quantum
  • the process diagram shown in Figure 1 is an ideal process flow chart, and the quantum dots that have not undergone cross-linking reactions are removed during each step of the cleaning process.
  • the quantum dots that have not undergone a crosslinking reaction are not cleaned cleanly, that is, there will be residual quantum dots that have not undergone a crosslinking reaction.
  • the red quantum dots remain in the sub-pixel area of the middle area and the rightmost sub-pixel area; the green quantum dots remain in the leftmost sub-pixel area and the rightmost sub-pixel area; the blue quantum dots remain In the sub-pixel area in the middle area and the leftmost sub-pixel area, for example, FIG.
  • FIG. 2 shows the quantum dot pattern formed in the actual process in FIG. 1.
  • One side of the base substrate 101 still has green quantum dot material and blue quantum dot material;
  • On the side of the green quantum dot pattern 106 close to the base substrate 101 there is still red quantum dot material, and on the side of the green quantum dot pattern 106
  • the blue quantum dot material remains on the side away from the base substrate 101 , and the green quantum dot material and red quantum dot material remain on the side of the blue quantum dot pattern 107 close to the base substrate 101 .
  • the quantum dot pattern can also be formed by using the indirect photolithography method, that is, the sacrificial layer is used to realize the patterning of the quantum dot luminescent material.
  • the removed area forms a sacrificial layer, and then uses the sacrificial layer elution method to pattern the quantum dot luminescent material.
  • this indirect photolithography method there are also green quantum dots remaining on the side away from the substrate similar to the red quantum dot pattern.
  • red quantum dot material remains on the side of the green quantum dot pattern close to the substrate, and blue quantum dot material remains on the side of the green quantum dot pattern away from the substrate , the phenomenon that the green quantum dot material and the red quantum dot material remain on the side of the blue quantum dot pattern close to the substrate, that is, the quantum dot material applied after the presence of both direct photolithography and indirect photolithography Problems remaining on previously formed quantum dot patterns.
  • the first auxiliary layer can be formed on the surface of the red quantum dot pattern that has undergone a crosslinking reaction, so that the green quantum dot material subsequently formed on it can be easily washed away, and after the crosslinking reaction has occurred
  • the surface of the reacted green quantum dot pattern forms the second auxiliary layer, so that the blue quantum dot material subsequently formed on it can be easily washed off, thereby reducing the phenomenon of color mixing.
  • the quantum dot electroluminescent device includes: a base substrate; a pixel defining layer disposed on the base substrate, the pixel defining layer includes a plurality of openings, the A plurality of openings corresponds to a plurality of sub-pixel regions, and the plurality of sub-pixel regions at least include a first sub-pixel region and a second sub-pixel region, the first color quantum dot layer is arranged in the first sub-pixel region, and the second color quantum dot
  • the layer is arranged in the second sub-pixel area, the first auxiliary layer at least includes a first part and a second part spaced apart from each other, the first part is arranged on the side of the first color quantum dot layer away from the base substrate; the second part is arranged on On the side of the second color quantum dot layer close to the base substrate, the first auxiliary layer can prevent the second color quantum dot material formed later from remaining on the first color quantum dot layer, thereby avoiding the problem
  • FIG. 3 is a schematic cross-sectional structure diagram of a display substrate provided by at least one embodiment of the present disclosure.
  • the display substrate 200 includes: a base substrate 201 ; a pixel defining layer disposed on the base substrate 201 202, the pixel defining layer 202 includes a plurality of openings 2021, and the plurality of openings 2021 correspond to a plurality of sub-pixel regions 2022, for example, one opening 2021 corresponds to a sub-pixel region 2022, that is, different colors of quanta are formed in the plurality of openings 2021 dot layer, so that the plurality of openings 2021 are set into a plurality of sub-pixel regions 2022, and the plurality of sub-pixel regions 2022 are distinguished according to the color of the quantum dot layer formed in the opening 2021, and the plurality of sub-pixel regions 2022 are at least Including a first sub-pixel area 2022a and a second sub-pixel area 2022b, the first color quantum dot
  • the first auxiliary layer 205 is also provided on the side of the part of the pixel defining layer 202 other than the opening away from the base substrate 201, that is, the first auxiliary layer 205 is formed as a whole layer.
  • the first auxiliary layer 205 of each sub-pixel area is disconnected from each other due to the existence of level difference caused by the opening of the pixel defining layer.
  • the first part 205a and the second part 205b pass through the pixel defining layer 202. Portions other than the opening 2021 are spaced apart from each other.
  • the material of the first portion 205a and the second portion 205b is metal oxide.
  • the surface roughness of the metal oxide is less than 3 nm.
  • this surface roughness means RMS roughness.
  • the first auxiliary layer 205 further includes a third portion 205c, the third portion 205c is disposed on the side of the pixel defining layer 202 away from the base substrate 201, and the first auxiliary layer 205c There is no connection between the part 205a, the second part 205b and the third part 205c.
  • the first auxiliary layer 205 has electron transport and/or electron blocking properties, and the connection force between the first auxiliary layer 205 and the uncrosslinked quantum dot material on it is weak, This makes it easier for the uncrosslinked quantum dot material to be washed away, so that the second-color quantum dot material formed later can be avoided from remaining on the first-color quantum dot layer, thereby avoiding the problem of color mixing, so as to improve the subsequent formation of the quantum dot material.
  • the color gamut of luminescent devices is referred to luminescent devices.
  • the thickness ratio of the first auxiliary layer 205 to the first color quantum dot layer 203 and the second color quantum dot layer 204 can be 0.1-0.5, for example, the thickness of the first auxiliary layer 205 is 5nm-10nm, The thickness of the first auxiliary layer 205 is 20nm-50nm.
  • the quantum dot layers of various colors include quantum dots of different colors, and the quantum dots of different colors may be semiconductor nanocrystals, and may have various shapes, such as spherical, conical, multi-armed and and/or cubic nanoparticles, nanotubes, nanowires, nanofibers, nanoplate particles, quantum rods, or quantum sheets.
  • the quantum rod may be a quantum dot having an aspect ratio (length-to-diameter ratio) (length:width ratio) of greater than about 1, for example, greater than or equal to about 2, greater than or equal to about 3, or greater than or equal to about 5.
  • the quantum rod can have an aspect ratio of about 50 or less, about 30 or less, or about 20 or less.
  • the quantum dots can have a particle diameter (average maximum particle length for non-spherical shapes) of, for example, about 1 nm to about 100 nm, about 1 nm to about 80 nm, about 1 nm to about 50 nm, or about 1 nm to 20 nm.
  • the energy bandgap of quantum dots can be controlled according to the size and composition of the quantum dots, and thus the emission wavelength can be controlled.
  • a quantum dot may have a narrow energy bandgap and thus be configured to emit light in a relatively long wavelength region as the size of the quantum dot increases, and a broad energy bandgap as the size of the quantum dot decreases.
  • the bandgap is thus configured to emit light in a relatively short wavelength region.
  • quantum dots may be configured to emit light in a predetermined wavelength region of the visible region according to their size and/or composition.
  • the quantum dots can be configured to emit blue light, red light, or green light
  • the blue light can have a peak emission wavelength ( ⁇ max), for example, in about 430 nm to about 480 nm
  • the red light can have
  • a peak emission wavelength ( ⁇ max) in about 600 nm to about 650 nm
  • the green light may have a peak emission wavelength ( ⁇ max) in, for example, about 520 nm to about 560 nm.
  • the average particle size of quantum dots configured to emit blue light can be, for example, less than or equal to about 4.5 nm, and, for example, less than or equal to about 4.3 nm, less than or equal to about 4.2 nm, less than or equal to about 4.1 nm, or less than or equal to About 4.0nm.
  • the average particle size of the quantum dots can be from about 2.0 nm to about 4.5 nm, such as from about 2.0 nm to about 4.3 nm, from about 2.0 nm to about 4.2 nm, from about 2.0 nm to about 4.1 nm, or About 2.0nm to about 4.0nm.
  • the quantum dots can have, for example, about 10% or more, about 20% or more, about 30% or more, about 50% or more, about 60% or more, about 70% or more, or A quantum yield of greater than or equal to about 90%.
  • the quantum dots may have a relatively narrow half width (FWHM).
  • FWHM is a width corresponding to a wavelength half of a peak absorption point, and when the FWHM is narrow, it can be configured to emit light in a narrow wavelength region, and high color purity can be obtained.
  • the quantum dots may have, for example, about 50 nm or less, about 49 nm or less, about 48 nm or less, about 47 nm or less, about 46 nm or less, about 45 nm or less, about 44 nm or less, or equal to about 43nm, less than or equal to about 42nm, less than or equal to about 41nm, less than or equal to about 40nm, less than or equal to about 39nm, less than or equal to about 38nm, less than or equal to about 37nm, less than or equal to about 36nm, less than or equal to A FWHM of about 35 nm or less, about 34 nm or less, about 33 nm or less, about 32 nm or less, about 31 nm or less, about 30 nm or less, about 29 nm or less, or about 28 nm or less.
  • it can have, for example, about 2 nm to about 49 nm, about 2 nm to about 48 nm, about 2 nm to about 47 nm, about 2 nm to about 46 nm, about 2 nm to about 45 nm, about 2 nm to about 44 nm, about 2 nm to about 43nm, about 2nm to about 42nm, about 2nm to about 41nm, about 2nm to about 40nm, about 2nm to about 39nm, about 2nm to about 38nm, about 2nm to about 37nm, about 2nm to about 36nm, about 2nm to about 35nm, A FWHM of about 2 nm to about 34 nm, about 2 nm to about 33 nm, about 2 nm to about 32 nm, about 2 nm to about 31 nm, about 2 nm to about 30 nm, about 2 nm to about 29 nm, or about 2 nm to
  • the quantum dots may include Group II-VI semiconductor compounds, Group III-V semiconductor compounds, Group IV-VI semiconductor compounds, Group IV semiconductors, Group I-III-VI semiconductor compounds, Group I-II-IV-VI A semiconductor compound, a Group II-III-V semiconductor compound, or a combination thereof.
  • the II-VI group semiconductor compound may for example be selected from: binary compounds such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, or mixtures thereof; ternary compounds such as CdSeS, CdSeTe , CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, or mixtures thereof; and quaternary compounds such as HgZnTeS, CdZn SeS, CdZnSeTe, CdZnSTe, Cd
  • the III-V group semiconductor compound may, for example, be selected from binary compounds such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or mixtures thereof; ternary compounds such as GaNP , GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, or mixtures thereof; and quaternary compounds such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or mixtures thereof, but are not limited thereto.
  • the IV-VI group semiconductor compound can be selected from, for example: binary compounds such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or mixtures thereof; ternary compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS , SnPbSe, SnPbTe, or mixtures thereof; and quaternary compounds such as, but not limited to, SnPbSSe, SnPbSeTe, SnPbSTe, or mixtures thereof.
  • the Group IV semiconductor may be selected from, for example, elemental (unary) semiconductors such as Si, Ge, or mixtures thereof; and binary semiconductor compounds such as SiC, SiGe, and mixtures thereof, but are not limited thereto.
  • the group I-III-VI semiconductor compound may be, for example, CuInSe2, CuInS2, CuInGaSe, CuInGaS, or a mixture thereof, but is not limited thereto.
  • the Group I-II-IV-VI semiconductor compound may be, for example, CuZnSnSe, CuZnSnS, or a mixture thereof, but is not limited thereto.
  • the group II-III-V semiconductor compound may include, for example, InZnP, but is not limited thereto.
  • the quantum dots may have a substantially uniform concentration distribution or a locally varying concentration distribution, the quantum Tina comprising the elemental semiconductor, the binary semiconductor compound, the ternary semiconductor compound, or the quaternary semiconductor compound.
  • the quantum dots may include cadmium (Cd) free quantum dots.
  • Cadmium-free quantum dots are quantum dots that do not include cadmium (Cd).
  • Cadmium (Cd) which may cause serious environmental/health problems, is an element restricted under the Restriction of Hazardous Substances (RoHS) in many countries, and thus non-cadmium-based quantum dots may be effectively used.
  • RoHS Hazardous Substances
  • the quantum dot may be a semiconductor compound including zinc (Zn), and at least one of tellurium (Te) and selenium (Se).
  • the quantum dots may be Zn-Te semiconductor compounds, Zn-Se semiconductor compounds, and/or Zn-Te-Se semiconductor compounds.
  • the amount of tellurium (Te) in the Zn—Te—Se semiconductor compound may be smaller than that of selenium (Se).
  • the semiconductor compound may have a peak emission wavelength ( ⁇ max) in a wavelength region of less than or equal to about 480 nm, eg, about 430 nm to about 480 nm, and may be configured to emit blue light.
  • the quantum dot may be a semiconductor compound including indium (In), and at least one of zinc (Zn) and phosphorus (P).
  • the quantum dots may be In-P semiconductor compounds and/or In-Zn-P semiconductor compounds.
  • a molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 25.
  • the semiconductor compound may have a peak emission wavelength ( ⁇ max) in a wavelength region of less than about 700 nm, eg, about 600 nm to about 650 nm, and may be configured to emit red light.
  • the quantum dots may have a core-shell structure in which one quantum dot surrounds another quantum dot.
  • the core and shell of the quantum dot can have an interface, and at least one of the elements of the core or the shell can have a concentration gradient in the interface, with the concentration of the elements of the shell toward the core lowered.
  • the material composition of the shell of the quantum dot has a higher energy bandgap than the material composition of the core of the quantum dot, and thus the quantum dot may exhibit a quantum confinement effect.
  • the quantum dots may have a quantum dot core and a multilayer quantum dot shell surrounding the core.
  • the multilayer shell has at least two shells, wherein each shell can be of single composition, alloy, and/or have a concentration gradient.
  • a shell of a multilayer shell remote from the core may have a higher energy bandgap than a shell close to the core, and thus the quantum dot may exhibit a quantum confinement effect.
  • a quantum dot having a core-shell structure may include, for example, a core including a first semiconductor compound including zinc (Zn), and at least one of tellurium (Te) and selenium (Se). species; and a shell comprising a second semiconducting compound disposed on at least a portion of the core and having a composition different from that of the core.
  • the first semiconductor compound may be a Zn-Te-Se-based semiconductor compound including zinc (Zn), tellurium (Te), and selenium (Se), for example, a Zn-Se-based semiconductor compound including a small amount of tellurium (Te).
  • a semiconductor compound for example, a semiconductor compound represented by ZnTexSe1-x, wherein x is greater than about 0 and less than or equal to 0.05.
  • the molar amount of zinc (Zn) may be higher than that of selenium (Se), and the molar amount of selenium (Se) may be higher than that of tellurium (Te). Molarity.
  • the molar ratio of tellurium (Te) to selenium (Se) may be less than or equal to about 0.05, less than or equal to about 0.049, less than or equal to about 0.048, less than or equal to about 0.047, less than or equal to Equal to about 0.045, Less than or equal to about 0.044, Less than or equal to about 0.043, Less than or equal to about 0.042, Less than or equal to about 0.041, Less than or equal to about 0.04, Less than or equal to about 0.039, Less than or equal to about 0.035, Less than or equal to about 0.03, less than or equal to about 0.029, less than or equal to about 0.025, less than or equal to about 0.024, less than or equal to about 0.023, less than or equal to about 0.022, less than or equal to about 0.021, less than or equal to about 0.02, less than or equal to about 0.019, about 0.018 or less,
  • the molar ratio of tellurium (Te) to zinc (Zn) may be less than or equal to about 0.02, less than or equal to about 0.019, less than or equal to about 0.018, less than or equal to about 0.017, less than or equal to Equal to about 0.016, less than or equal to about 0.015, less than or equal to about 0.014, less than or equal to about 0.013, less than or equal to about 0.012, less than or equal to about 0.011, or less than or equal to about 0.010.
  • the second semiconductor compound may include, for example, II-VI group semiconductor compounds, III-V group semiconductor compounds, IV-VI group semiconductor compounds, IV group semiconductors, I-III-VI group semiconductor compounds, I-II-IV-VI group semiconductor compound, II-III-V group semiconductor compound, or a combination thereof.
  • the II-VI group semiconductor compound, III-V group semiconductor compound, IV-VI group semiconductor compound, IV group semiconductor, I-III-VI group semiconductor compound, I-II-IV-VI group semiconductor compound, and II- Examples of group III-V semiconductor compounds are the same as described above.
  • the second semiconductor compound may include zinc (Zn), selenium (Se), and/or sulfur (S).
  • the shell can include ZnSeS, ZnSe, ZnS, or combinations thereof.
  • the shell may include at least one inner shell disposed near the core and an outermost shell disposed at the outermost side of the quantum dot.
  • the inner shell may include ZnSeS, ZnSe, or a combination thereof, and the outermost shell may include ZnS.
  • the shell may have a concentration gradient of a constituent, and for example the amount of sulfur (S) may increase away from the core.
  • a quantum dot having a core-shell structure may include a core including a third semiconductor compound including indium (In), and at least one of zinc (Zn) and phosphorus (P). and a shell disposed on at least a portion of the core and comprising a fourth semiconducting compound having a different composition than the core.
  • a molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 25.
  • a molar ratio of zinc (Zn) to indium (In) may be greater than or equal to about 28, greater than or equal to about 29, or greater than or equal to about 30.
  • the molar ratio of zinc (Zn) to indium (In) may be less than or equal to about 55, such as less than or equal to about 50, less than or equal to about 45, About 40 or less, about 35 or less, about 34 or less, about 33 or less, or about 32 or less.
  • the fourth semiconductor compound may include, for example, II-VI group semiconductor compounds, III-V group semiconductor compounds, IV-VI group semiconductor compounds, IV group semiconductors, I-III-VI group semiconductor compounds, I-II-IV-VI group semiconductor compound, II-III-V group semiconductor compound, or a combination thereof.
  • the II-VI group semiconductor compound, III-V group semiconductor compound, IV-VI group semiconductor compound, IV group semiconductor, I-III-VI group semiconductor compound, I-II-IV-VI group semiconductor compound, and II- Examples of group III-V semiconductor compounds are the same as described above.
  • the fourth semiconductor compound may include zinc (Zn) and sulfur (S) and optionally selenium (Se).
  • the shell can include ZnSeS, ZnSe, ZnS, or combinations thereof.
  • the shell may include at least one inner shell disposed near the core and an outermost shell disposed at the outermost side of the quantum dot. At least one of the inner shell and the outermost shell may include a fourth semiconductor compound ZnS, ZnSe, or ZnSeS.
  • the light emitting layer may have a thickness of, eg, from about 5 nm to about 200 nm, within said range, eg, from about 10 nm to about 150 nm, eg from about 10 nm to about 100 nm, eg from about 10 nm to about 50 nm.
  • the quantum dots QD contained in the light emitting layer EML may be laminated in one or more than one layer, eg two layers. However, embodiments of the presently disclosed concept are not limited thereto, and quantum dots QDs may be laminated into one to ten layers. Quantum dot QDs may be laminated into any suitable number of layers depending on the kind (or type) of quantum dot QDs being used and the desired emission wavelength of light.
  • Quantum dots may have a relatively deep HOMO level, for example, a HOMO level of greater than or equal to about 5.4 eV, within said range, for example, greater than or equal to about 5.5 eV, such as greater than or equal to about 5.6 eV, such as greater than Or equal to about 5.7eV, such as about greater than or equal to about 5.8eV, such as greater than or equal to about 5.9eV, such as greater than or equal to about 6.0eV.
  • a relatively deep HOMO level for example, a HOMO level of greater than or equal to about 5.4 eV, within said range, for example, greater than or equal to about 5.5 eV, such as greater than or equal to about 5.6 eV, such as greater than Or equal to about 5.7eV, such as about greater than or equal to about 5.8eV, such as greater than or equal to about 5.9eV, such as greater than or equal to about 6.0eV.
  • the HOMO level of the quantum dot layer 13 may be, for example, from about 5.4eV to about 7.0eV, such as from about 5.4eV to about 6.8eV, such as from about 5.4eV to about 6.7eV, such as from about 5.4eV to about 6.5 eV, for example about 5.4eV to about 6.3eV, for example about 5.4eV to about 6.2eV, for example about 5.4eV to about 6.1eV, within said range, for example about 5.5eV to about 7.0eV, for example about 5.5eV to about 6.8eV, such as about 5.5eV to about 6.7eV, such as about 5.5eV to about 6.5eV, such as about 5.5eV to about 6.3eV, such as about 5.5eV to about 6.2eV, such as about 5.5eV to about 6.1eV, such as about 5.5eV to about 7.0eV, for example about 5.6eV to about 6.8eV, for example
  • Quantum dots may have relatively shallow LUMO levels, for example, less than or equal to about 3.7 eV, within said range, for example, less than or equal to about 3.6 eV, such as less than or equal to about 3.5 eV, such as less than or equal to about 3.4 eV, For example, less than or equal to about 3.3 eV, such as less than or equal to about 3.2 eV, such as less than or equal to about 3.0 eV.
  • the LUMO energy level of the quantum dot layer 13 can be about 2.5eV to about 3.7eV, about 2.5eV to about 3.6eV, about 2.5eV to about 3.5eV, about 2.5eV to about 3.4eV, about 2.5 eV to about 3.3eV, about 2.5eV to about 3.2eV, about 2.5eV to about 3.1eV, about 2.5eV to about 3.0eV, about 2.8eV to about 3.7eV, about 2.8eV to about 3.6eV, about 2.8eV to About 3.5eV, about 2.8eV to about 3.4eV, about 2.8eV to about 3.3eV, about 2.8eV to about 3.2eV, about 3.0eV to about 3.7eV, about 3.0eV to about 3.6eV, about 3.0eV to about 3.5 eV, or about 3.0eV to about 3.4eV.
  • the quantum dots may have an energy bandgap of about 1.7 eV to about 2.3 eV, or about 2.4 eV to about 2.9 eV.
  • the quantum dot layer 13 may have an energy band gap of about 1.8eV to about 2.2eV or about 2.4eV to about 2.8eV, within the range, for example, about 1.9eV to about 2.1eV , for example about 2.4eV to about 2.7eV.
  • the quantum dots of the first color and the quantum dots of the second color respectively included in the first color quantum dot layer 203 and the second color quantum dot layer 204 are IIB-VIA group semiconductor compounds, and can be binary compounds, ternary compounds or Quaternary compounds, for example, the materials of the quantum dots of the first color and the quantum dots of the second color can be CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdZnSeS, CdZnSeTe
  • quantum dots when excited by a blue light source, they will emit excitation fluorescence of a specific wavelength, and the emitted fluorescence spectrum is determined by the chemical composition and particle size of the quantum dot material. As the particle size of quantum dot materials increases, the fluorescence spectrum emitted by materials with the same chemical composition is red-shifted from green light to red light.
  • the quantum dot materials that emit red light and the quantum dot materials that emit green light can be quantum dot materials with the same chemical composition but different particle sizes, or quantum dot materials with different chemical compositions, that is, the quantum dots of the first color and the quantum dots of the first color
  • the quantum dots of the second color can be made of the same material but have different particle sizes, or the quantum dots of the first color and the quantum dots of the second color can be made of different materials.
  • quantum dots are a kind of nanometer-level semiconductor.
  • the nanometer-level semiconductor material By applying a certain electric field or light pressure to the nanometer-level semiconductor material, the nanometer-level semiconductor material will emit light of a specific frequency, and the frequency of the emitted light will change with the The size of the semiconductor changes, so the color of the light emitted by the quantum dot can be controlled by adjusting the size of the quantum dot.
  • the electronic states such as the energy gap width of quantum dots, the size of exciton binding energy, and the energy blue shift of excitons can be easily adjusted.
  • the size of quantum dots decreases, the spectrum of quantum dots appears blue-shifted. The smaller the size of the quantum dots, the more pronounced the blue shift phenomenon.
  • cadmium selenide quantum dots when the size of cadmium selenide quantum dots is reduced from 10nm to 2nm, the color of light emitted by cadmium selenide quantum dots changes from red to blue, and when the size of cadmium selenide quantum dots is greater than or equal to 2nm and less than 5nm Blue light; emit green light when the size of the cadmium selenide quantum dot is greater than or equal to 5nm and less than 8nm; emit red light when the size of the cadmium selenide quantum dot is greater than or equal to 8nm and less than 10nm.
  • quantum dots are based on their own quantum size effects.
  • size confinement will cause size effects, quantum confinement effects, macroscopic quantum tunneling effects, and surface effects, thereby deriving nanosystems It has different low-dimensional physical properties from the microscopic system, so that the quantum dots have different physical and chemical properties from the microscopic system.
  • quantum dots quantum dots (Quantum dots) have unique photoluminescence and electroluminescence properties due to the quantum size effect and the electric confinement effect.
  • quantum dots Compared with organic fluorescent dyes, quantum dots have excellent optical properties such as high quantum yield, high photochemical stability, not easy to photolysis, wide excitation, narrow emission, high color purity, and luminous color can be adjusted by controlling the size of quantum dots.
  • the quantum dot electroluminescent device including the quantum dot light-emitting layer has the advantages of high luminous efficiency, good stability, long life, high brightness and wide color gamut.
  • the first color quantum dot layer includes first color quantum dots
  • the second color quantum dot layer includes second color quantum dots
  • the third color quantum dot layer includes third color quantum dots.
  • the quantum dots all include the quantum dot body and the ligands with the quantum dot body.
  • the structure of the ligands is ABC type, and A is the quantum dot with the first color quantum dot, the second color quantum dot and the third color quantum dot.
  • the coordination groups connected to the point bodies respectively, the coordination groups can be -SH, -COOH, -NH 2 or multi-dentate ligands;
  • B is the reactant after the photosensitive group is illuminated, and is configured to make the first color Quantum dots, quantum dots of the second color or quantum dots of the third color are photocrosslinked, and the photosensitive group can be alkenyl, carbonyl, epoxy group or Boc-amino, etc.;
  • C is -COOH, configured to be compatible with the developer react.
  • TMAH tetramethylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • one end is a hydroxyl group, which is a polar group
  • the other end is a tetramethylamine group, which is a quaternary ammonium group and is a non-polar group, which can well improve the quantum dots in the developer. Solubility to facilitate the elution of quantum dots.
  • the developer material can also be tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, cetyltrimethylammonium bromide (CTAB) and a series of polyalkylene
  • CTAB cetyltrimethylammonium bromide
  • the base quaternary ammonium salt can also be the double quaternary ammonium salt (a kind of gemini surfactant) that the single quaternary ammonium salt is connected.
  • a multidentate ligand is a ligand having two or more coordinating atoms in one ligand.
  • diethylenetriamine abbreviated as DEN
  • EDTA ethylenediaminetetraacetate
  • the quantum dots of the first color included in the quantum dot layer of the first color, the quantum dots of the second color included in the quantum dot layer of the second color, and the quantum dots of the third color included in the quantum dot layer of the third color Both include the quantum dot body and the ligand connected to the quantum dot body, the structure of the ligand is a mixture of AB-type ligands and AC-type ligands, and A is the quantum dot with the first color, the second color quantum dot and the
  • A-B ligands can realize the photocuring properties of quantum dots, and A-C ligands can achieve their good elution properties.
  • the first color quantum dot layer 203 and the second color quantum dot layer 204 may also include a thickener, a coupling agent, an accelerator, etc., and the content thereof may be adjusted as required.
  • the thickener may be at least one of methyl vinyl MQ silicone resin, polymethacrylate, and polycyanoacrylate.
  • the coupling agent is at least one of vinyltrimethoxysilane, vinyltriethoxysilane and vinyl-tris-(2-methoxyethoxy)silane.
  • the accelerator is N,N-dimethylaniline, N,N-dimethyl-p-toluidine or 2,4,6-tris(dimethylaminomethyl)phenol.
  • the base substrate 201 includes a transparent insulating substrate such as a glass substrate and a flexible base substrate, and the material of the base substrate 201 may also be other suitable materials, which are not limited in the embodiments of the present disclosure.
  • openings 2021 are shown in FIG. 3 , the embodiments of the present disclosure are not limited thereto, and there may be more openings 2021 , that is, there may be more sub-pixel regions 2022 .
  • Other layer structures can also be set between the base substrate 201 and the first color quantum dot layer 203 and the second color quantum dot layer 204, for example, organic functional layers and/or electrode structures, which are shown in FIG. 3 for simplicity The partial layer structure.
  • quantum dot light-emitting diodes in quantum dot electroluminescent devices generally include a cathode, an anode, and a quantum dot light-emitting layer arranged between the cathode and the anode, and can also be included between the cathode and the quantum dot light-emitting layer, or between the anode and the organic functional layer between the quantum dot light-emitting layer.
  • FIG. 4 is a schematic cross-sectional view of another display substrate provided by at least one embodiment of the present disclosure.
  • the display substrate 200 in the display substrate 200, three sub-pixel regions 2022 are shown, and the first color quantum The dot layer 203 is disposed in the first sub-pixel area 2022a, the second color quantum dot layer 204 is disposed in the second sub-pixel area 2022b, and the third color quantum dot layer 206 is disposed in the third sub-pixel area 2022c.
  • the first color quantum dot layer 203 can include red quantum dots
  • the second color quantum dot layer 204 can include green quantum dots
  • the third color quantum dot layer 206 can include blue quantum dots, so that from the first color
  • the red light emitted from the quantum dot layer 203 , the green light emitted from the second color quantum dot layer 204 and the blue light emitted from the third color quantum dot layer 206 can be mixed to form white light.
  • the quantum dot electroluminescent device can have good display color.
  • the materials of red quantum dots, green quantum dots, and blue quantum dots are not particularly limited, and those skilled in the art can choose according to the above-mentioned common materials of red quantum dots, green quantum dots, and blue quantum dots.
  • the first color quantum dot layer 203 is formed first
  • the second color quantum dot layer 204 is formed
  • the third color quantum dot layer 206 is finally formed as an example for illustration.
  • the first auxiliary layer 205 is formed on the entire surface, and the first auxiliary layer 205 at least includes a first portion 205a, a second portion 205b, a third portion 205c, and an eighth portion 205d spaced apart from each other.
  • a part 205a is arranged on the side of the first color quantum dot layer 203 away from the base substrate 201
  • the second part 205b is arranged on the side of the second color quantum dot layer 204 close to the base substrate 201
  • the third part 205c Set on the side of the pixel defining layer 202 away from the base substrate 201
  • the eighth part 205d is set on the side of the third color quantum dot layer 206 close to the base substrate 201, because the pixel defining layer 202 except the opening 2021
  • the height difference between the third portion 205c and the first portion 205a , the second portion 205b and the eighth portion 205d in a direction perpendicular to the main surface of the base substrate 201 is greater than that of the third portion 205c in the direction perpendicular to the base substrate 201 The thickness in the direction of the major surface of .
  • the height difference between the third portion 205c and the first portion 205a in the direction perpendicular to the main surface of the base substrate 201 is greater than or equal to the thickness of the third portion 205c in the direction perpendicular to the main surface of the base substrate 201 4 times, and less than or equal to 6 times the thickness of the third portion 205c in the direction perpendicular to the main surface of the base substrate 201 .
  • the height difference between the third portion 205c and the second portion 205b in the direction perpendicular to the main surface of the base substrate 201 is greater than or equal to 8 times the thickness of the third portion 205c in the direction perpendicular to the main surface of the base substrate 201 times, and less than or equal to 11 times the thickness of the third portion 205c in a direction perpendicular to the main surface of the base substrate 201 .
  • the height difference between the third portion 205c and the eighth portion 205d in the direction perpendicular to the main surface of the base substrate 201 is greater than or equal to 8 times the thickness of the third portion 205c in the direction perpendicular to the main surface of the base substrate 201 times, and less than or equal to 11 times the thickness of the third portion 205c in a direction perpendicular to the main surface of the base substrate 201 .
  • the display substrate 200 also includes a second auxiliary layer 207, which is at least disposed on the side of the second color quantum dot layer 204 away from the base substrate 201.
  • a part of the second auxiliary layer 207 is arranged on the side away from the substrate 201 of the first auxiliary layer 205 corresponding to the first color quantum dot layer 203, and is arranged on the side far away from the substrate of the second color quantum dot layer 204
  • One side of the substrate 201, the other part of the second auxiliary layer 207 is arranged on the side of the third color quantum dot layer 206 close to the base substrate 201, and is located between the third color quantum dot layer 206 and the third color quantum dot Layer 206 corresponds to the first auxiliary layer 205 .
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 are the same, so that the types of materials used can be reduced, and the first auxiliary layer 205 and the second auxiliary layer 207 can also be formed using the same equipment and process conditions.
  • the second auxiliary layer 207 can save equipment cost.
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 are different, so that the problem of color mixing can be avoided to the greatest extent according to the needs of the process, so as to improve the color of the electroluminescent device formed subsequently. area.
  • the second auxiliary layer 207 at least includes a fourth portion 207a, a fifth portion 207b, and a sixth portion 207c spaced apart from each other, and the fourth portion 207a is arranged on the first portion of the first auxiliary layer 205.
  • the side of 205a away from the base substrate 201 is at least partially in contact with the first portion 205a, that is, in the first sub-pixel region 2022a, the first portion 205a of the first auxiliary layer 205 and the fourth portion of the second auxiliary layer 207 207a are at least partially in contact with each other and face to face.
  • the first part 205a and the fourth part 207a are in direct contact and surface-attached; in the first sub-pixel area 2022a
  • the first part 205a and the fourth part 207a may be in partial contact, but the remaining quantum dot material of the second color may be distributed in dots rather than on the entire surface.
  • the fifth part 207b is disposed on the side of the second color quantum dot layer 204 away from the base substrate 201, that is, in the second sub-pixel region 2022b, and the second color quantum dot layer 204 is sandwiched between the first auxiliary layer 205 Between the second part 205b and the fifth part 207b of the second auxiliary layer 207 .
  • the sixth part 207c is disposed on the side of the third color quantum dot layer 206 close to the base substrate 201, that is, in the third sub-pixel region 2022c, a side of the third color quantum dot layer 206 close to the base substrate 201
  • the eighth part 205d of the first auxiliary layer 205 and the sixth part 207c of the second auxiliary layer 207 are stacked on the side, and the eighth part 205d is on the side of the sixth part 207c close to the base substrate 201 .
  • the second auxiliary layer 207 further includes a seventh portion 207d spaced apart from the fourth portion 207a, the fifth portion 207b, and the sixth portion 207c, and the seventh portion 207d is arranged on the third portion 205c.
  • the side away from the base substrate, and at least partly in contact with the third part 205c it should be noted that, in the case where there is no second color quantum dot material on the pixel defining layer 202, the seventh part 207d and the third part Portion 205c is in direct contact and is surface-to-face; in the case where there is a portion of second color quantum dot material on pixel defining layer 202, this seventh portion 207d and third portion 205c may be partially contactable. That is, the third portion 205 c of the first auxiliary layer 205 and the seventh portion 207 d of the second auxiliary layer 207 are provided in layers of the pixel defining layer 202 except for the opening 2021 .
  • first auxiliary layer 205 when the formation sequence of the first color quantum dot layer 203 , the second color quantum dot layer 204 and the third color quantum dot layer 206 changes, the structure of the first auxiliary layer 205 will also change.
  • the second color quantum dot layer 204 when forming the second color quantum dot layer 204 first, then forming the first color quantum dot layer 203, and finally forming the third color quantum dot layer 206, in the second sub-pixel area 2022b, the second color quantum dot layer 204 A first auxiliary layer 205 and a second auxiliary layer 207 stacked in sequence are arranged on the side away from the base substrate 201; in the first sub-pixel region 2022a, the first color quantum dot layer 203 is interposed between the first auxiliary layer 205 and Between the second auxiliary layers 207, that is, on the side of the first color quantum dot layer 203 close to the base substrate 201, a first auxiliary layer 205 is arranged, and on the side of the first color quantum dot layer 203 far away from the base substrate 201 The second auxiliary layer 207 is provided on the side; in the third sub-pixel region 2022c, the side of the third color quantum dot layer 206 close to the base substrate 201 is provided with the first auxiliary layer
  • the third color quantum dot layer 206 when forming the third color quantum dot layer 206 first, then forming the first color quantum dot layer 203, and finally forming the second color quantum dot layer 204, in the third sub-pixel area 2022c, the third color quantum dot layer 206 A first auxiliary layer 205 and a second auxiliary layer 207 stacked in sequence are arranged on the side away from the base substrate 201; in the first sub-pixel region 2022a, the first color quantum dot layer 203 is interposed between the first auxiliary layer 205 and Between the second auxiliary layers 207, that is, on the side of the first color quantum dot layer 203 close to the base substrate 201, a first auxiliary layer 205 is arranged, and on the side of the first color quantum dot layer 203 far away from the base substrate 201 In the second sub-pixel region 2022b, the side of the second color quantum dot layer 204 close to the base substrate 201 is provided with a first auxiliary layer 205 and a second auxiliary layer 207
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 include at least one of electron transport oxide and hole transport oxide, for example, the first auxiliary layer 205 and The materials of the second auxiliary layer 207 can both include electron transport oxides, the materials of the first auxiliary layer 205 and the second auxiliary layer 207 can also both include hole transport oxides, and the first auxiliary layer 205 can also be
  • the material of the second auxiliary layer 207 includes an electron-transporting oxide, and the material of the second auxiliary layer 207 includes a hole-transporting oxide, which is not limited in embodiments of the present disclosure.
  • the material of the first auxiliary layer includes an electron transport type oxide
  • the material of the second auxiliary layer includes a hole transport type oxide
  • at least part of the first auxiliary layer is in contact with the first color quantum dot layer
  • at least part of the second auxiliary layer is in contact with the first color quantum dot layer.
  • the layer is in contact with the third color quantum dot layer, for example, the first color quantum dot layer is a blue quantum dot layer
  • the second color quantum dot layer is one of a red quantum dot layer and a green quantum dot layer
  • the quantum dot layer is another one of the green quantum dot layer and the red quantum dot layer.
  • the material of the first auxiliary layer is an electron-transporting oxide
  • the material of the second auxiliary layer When it is a hole-transporting oxide, the electron-transporting effect and the hole-transporting effect are better. If the materials of the first auxiliary layer and the second auxiliary layer are both hole-transporting oxides, or the materials of the first auxiliary layer and the second auxiliary layer are both electron-transporting oxides, the first auxiliary layer and the second auxiliary layer If the thickness of the laminated layers is too thick, the effect of electron blocking or hole blocking may be too strong, thereby affecting the performance of the finally formed electroluminescent device.
  • the material of the first auxiliary layer includes an electron transport type oxide
  • the material of the second auxiliary layer includes a hole transport type oxide
  • at least part of the first auxiliary layer is in contact with the first color quantum dot layer
  • at least part of the second auxiliary layer is in contact with the first color quantum dot layer.
  • the beneficial effects of the contact between the layer and the third color quantum dot layer/third color quantum dot layer include: for the first sub-pixel prepared earlier, for example, a blue sub-pixel, only one layer is deposited after the first color quantum dot layer layer of hole-transporting oxide, and the second layer of electron-transporting oxide can be directly used as an electron-transporting layer, so that the interface layer of the hole-transporting type is not too thick to affect hole injection into the first color quantum dot; and for the second layer of electron-transporting oxide 2.
  • the prepared second sub-pixel is, for example, a green sub-pixel, and the interface layer of the second color quantum dot layer has the same functions as the first auxiliary layer and the second auxiliary layer on both sides; for the last prepared third sub-pixel, For example, for a red sub-pixel, its electron transport interface layer has the same function as the electron transport oxide below, and there is only one hole transport interface layer, and the thickness of the second auxiliary layer will not prevent hole injection into the first layer.
  • Three-color quantum dot layer for example, for a red sub-pixel, its electron transport interface layer has the same function as the electron transport oxide below, and there is only one hole transport interface layer, and the thickness of the second auxiliary layer will not prevent hole injection into the first layer.
  • red sub-pixels and green sub-pixels are generally multi-electron devices, while blue sub-pixels are generally multi-hole devices. Therefore, first prepare The first sub-pixel is a blue sub-pixel, the material of the first auxiliary layer includes an electron-transporting oxide, the green sub-pixel and the red sub-pixel can be sub-pixels of the second preparation or the third preparation, respectively, and the second auxiliary layer The material includes a hole-transporting oxide, so that the electron-transporting oxide in the blue sub-pixel blocks holes, and the hole-transporting oxide in the third sub-pixel blocks electrons to balance carriers and improve carrier injection efficiency.
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 both include electron transport oxides such as zinc oxide and tin oxide, or both include gallium nitride, aluminum nitride, molybdenum oxide, oxide Nickel, zirconia, vanadium oxide and other hole-transporting oxides, or zinc oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, or doped with magnesium, tin, gallium,
  • the tin oxide of indium, zirconium, hafnium, yttrium, lithium or aluminum is not limited in the embodiments of the present disclosure.
  • the general formulas of the materials of the first auxiliary layer 205 and the second auxiliary layer 207 both include At least one of, A is at least one of -SH, -COOH and -NH 2 ; M is X is less than or equal to 6; P includes at least one of the .
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 both include at least one of the .
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 both include a first group, a second group and a third group, and the first group includes -C(CF 3 ) 3. -C n F( 2n+1 ) or
  • the second group includes mercapto, carboxyl or amino;
  • the third group includes at least one of alkyl chain, aromatic ring, alkenyl, alkynyl, arylamine, epoxy and ester.
  • FIG. 5 is a schematic cross-sectional view of a double-layer structure in which the first auxiliary layer is stacked according to at least one embodiment of the present disclosure.
  • the first auxiliary layer 205 includes a stacked first layer structure 2051 and a second layer structure 2052, the first layer structure 2051 is on the side of the second layer structure 2051 close to the substrate 201, the material of the first layer structure 2051 includes electron transport oxide and hole transport oxide at least one of the objects.
  • the materials of the first layer structure include zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, doped with magnesium, tin, gallium, indium, zirconium, hafnium , zinc oxide of yttrium, lithium or aluminum, and at least one of tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum.
  • the general formula of the second layer structure 2052 includes: Wherein, A is -(CH 2 )nCH 3 , n is less than or equal to 4; M is -(CH 2 )x, and x is less than or equal to 6; P includes at least one of the .
  • the materials and formation order of the first layer structure 2051 and the second layer structure 2052 cannot be changed, and the organic material in the second layer structure 2052 can reduce lattice defects and achieve the effect of insulation passivation.
  • FIG. 6 is a schematic cross-sectional view of a double-layer structure in which the second auxiliary layer is stacked according to at least one embodiment of the present disclosure.
  • the second auxiliary layer 207 includes a stacked third layer structure 2071 and a fourth layer structure 2072, the third layer structure 2071 is on the side of the fourth layer structure 2072 close to the base substrate 201, and the material of the third layer structure 2071 includes an electron transport type oxide and a hole transport type oxide at least one of the .
  • the material of the third layer structure 2071 includes zinc oxide, tin oxide, gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, doped with magnesium, tin, gallium, indium, zirconium, Zinc oxide of hafnium, yttrium, lithium or aluminum, and at least one of tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum.
  • the general formula of the fourth layer structure 2072 includes: Wherein, A is -(CH 2 )nCH 3 , n is less than or equal to 4; M is -(CH 2 )x, and x is less than or equal to 6; P includes at least one of the .
  • the materials and formation order of the third layer structure 2071 and the fourth layer structure 2072 cannot be changed, and the organic material in the fourth layer structure 2072 can reduce lattice defects and achieve the effect of insulation passivation.
  • the zinc oxide formed by the sputtering method As the material of the first auxiliary layer, compared with the zinc oxide formed by the sol-gel method, the amount of quantum dots remaining on the zinc oxide formed by the sputtering method is less, and
  • the structure of sputtered zinc oxide has the following characteristics: because sputtered zinc oxide does not contain organic materials as raw materials, the surface roughness of zinc oxide formed by sputtering is low and does not contain organic materials.
  • the sputtered zinc oxide is Non-nanoparticles, so the quantum dots have a weak binding force with the smooth surface of the sputtered zinc oxide, and the quantum dots applied on the zinc oxide are easily washed off without residue.
  • FIG. 7 is a schematic cross-sectional structure diagram of another display substrate provided by at least one embodiment of the present disclosure.
  • the difference between the embodiment shown in FIG. 7 and the embodiment shown in FIG. 4 is that the first auxiliary layer 205 passes through After the patterning process, the first auxiliary layer 205 is not provided on the surface of the pixel defining layer 202 away from the base substrate 201. As shown in FIG.
  • the first part 205a is set on the side of the first color quantum dot layer 203 away from the base substrate 201
  • the second part 205b is set on the second color quantum dot layer 204 close to the base substrate 201
  • the eighth part 205d is arranged on the side of the third color quantum dot layer 206 close to the base substrate 201. Since there is a level difference between the part of the pixel defining layer 202 except the opening 2021 and the opening 2021, the eighth part 205d
  • the first portion 205a, the second portion 205b and the eighth portion 205d are in a disconnected state during the forming process.
  • the display substrate 200 further includes a second auxiliary layer 207 , which is different from the embodiment shown in FIG. 4 in that the second auxiliary layer 207 has been patterned.
  • the second auxiliary layer 207 is not provided on the surface away from the base substrate 201, and the second auxiliary layer 207 is at least provided on the side of the second color quantum dot layer 204 away from the base substrate 201.
  • the second auxiliary layer 207 A part of the layer 207 is arranged on the side of the first auxiliary layer 205 corresponding to the first color quantum dot layer 203 away from the base substrate 201, and is arranged on the side of the second color quantum dot layer 204 away from the base substrate 201 , the other part of the second auxiliary layer 207 is arranged on the side of the third color quantum dot layer 206 close to the base substrate 201, and is located in the third color quantum dot layer 206 and the third color quantum dot layer 206 corresponding to between an auxiliary layer 205 .
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 are the same, so that the types of materials used can be reduced, and the first auxiliary layer 205 and the second auxiliary layer 207 can also be formed using the same equipment and process conditions.
  • the second auxiliary layer 207 can save equipment cost.
  • the materials of the first auxiliary layer 205 and the second auxiliary layer 207 are different, so that the problem of color mixing can be avoided to the greatest extent according to the needs of the process, so as to improve the color of the electroluminescent device formed subsequently. area.
  • the second auxiliary layer 207 at least includes a fourth portion 207a, a fifth portion 207b, and a sixth portion 207c spaced apart from each other, and the fourth portion 207a is arranged on the first portion of the first auxiliary layer 205.
  • the side of 205a away from the base substrate 201 is at least partially in contact with the first portion 205a, that is, in the first sub-pixel region 2022a, the first portion 205a of the first auxiliary layer 205 and the fourth portion of the second auxiliary layer 207 207a are at least partially in direct contact and surface-to-face.
  • the first part 205a and the fourth part 207a are in direct contact and surface-attached; in the first sub-pixel area 2022a
  • the first part 205a and the fourth part 207a may be in partial contact, but the remaining quantum dot material of the second color may be distributed in dots rather than on the entire surface.
  • the fifth part 207b is disposed on the side of the second color quantum dot layer 204 away from the base substrate 201, that is, in the second sub-pixel region 2022b, and the second color quantum dot layer 204 is sandwiched between the first auxiliary layer 205 Between the second part 205b and the fifth part 207b of the second auxiliary layer 207 .
  • the sixth part 207c is disposed on the side of the third color quantum dot layer 206 close to the base substrate 201, that is, in the third sub-pixel region 2022c, a side of the third color quantum dot layer 206 close to the base substrate 201
  • the eighth part 205d of the first auxiliary layer 205 and the sixth part 207c of the second auxiliary layer 207 are stacked on the side, and the eighth part 205d is on the side of the sixth part 207c close to the base substrate 201 .
  • first auxiliary layer 205 when the formation sequence of the first color quantum dot layer 203 , the second color quantum dot layer 204 and the third color quantum dot layer 206 changes, the structure of the first auxiliary layer 205 will also change.
  • the second color quantum dot layer 204 when forming the second color quantum dot layer 204 first, then forming the first color quantum dot layer 203, and finally forming the third color quantum dot layer 206, in the second sub-pixel area 2022b, the second color quantum dot layer 204 A first auxiliary layer 205 and a second auxiliary layer 207 stacked in sequence are arranged on the side away from the base substrate 201; in the first sub-pixel region 2022a, the first color quantum dot layer 203 is interposed between the first auxiliary layer 205 and Between the second auxiliary layers 207, that is, on the side of the first color quantum dot layer 203 close to the base substrate 201, a first auxiliary layer 205 is arranged, and on the side of the first color quantum dot layer 203 far away from the base substrate 201 The second auxiliary layer 207 is provided on the side; in the third sub-pixel region 2022c, the side of the third color quantum dot layer 206 close to the base substrate 201 is provided with the first auxiliary layer
  • the third color quantum dot layer 206 when forming the third color quantum dot layer 206 first, then forming the first color quantum dot layer 203, and finally forming the second color quantum dot layer 204, in the third sub-pixel area 2022c, the third color quantum dot layer 206 A first auxiliary layer 205 and a second auxiliary layer 207 stacked in sequence are arranged on the side away from the base substrate 201; in the first sub-pixel region 2022a, the first color quantum dot layer 203 is interposed between the first auxiliary layer 205 and Between the second auxiliary layers 207, that is, on the side of the first color quantum dot layer 203 close to the base substrate 201, a first auxiliary layer 205 is arranged, and on the side of the first color quantum dot layer 203 far away from the base substrate 201 In the second sub-pixel region 2022b, the side of the second color quantum dot layer 204 close to the base substrate 201 is provided with the first auxiliary layer 205 and the second auxiliary layer 207 stacked in
  • FIG. 8 is a schematic cross-sectional structure diagram of an electroluminescent device provided by at least one embodiment of the present disclosure.
  • the electroluminescent device 300 includes the display substrate 200 in any of the above-mentioned embodiments, and the The electroluminescent device 300 also includes a first electrode 208 and a first functional layer 209 stacked on the base substrate 201, the first electrode 208 is disposed on the side of the first functional layer 209 close to the base substrate 201, the Both the first functional layer 209 and the first electrode 208 are stacked in a plurality of sub-pixel regions 2022, and in the first sub-pixel region 2022a, the stacked first functional layer 209 and the first electrode 208 are arranged in the first color quantum between the dot layer 203 and the base substrate 201; in the second sub-pixel region 2022b, the stacked first functional layer 209 and the first electrode 208 are between the second color quantum dot layer 204 and the base substrate 201, And in the third sub-pixel area 20
  • the electroluminescent device 300 further includes: disposed in a plurality of sub-pixel regions 2022 and disposed in the first color quantum dot layer 203 , the second color quantum dot layer 204 and the third color quantum dot layer
  • the second functional layer 210 and the third functional layer 211 on the side away from the base substrate 201 of 206 are separated from each other in different sub-pixel regions 2022 .
  • the second electrode 212 is disposed entirely on the side of the third functional layer 211 away from the base substrate 201
  • the third functional layer 211 is on the side of the second functional layer 210 away from the base substrate 201 .
  • the first functional layer 209 is an electron transport layer
  • the second functional layer 210 is a hole transport layer
  • the third functional layer 211 is a hole injection layer.
  • the material of the hole transport layer includes N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine (NPB ), 4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA) and 4,4-2-[N-(4-carbazolebenzene base)-N-phenylamino]biphenyl (CPB), but not limited thereto.
  • NPB N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine
  • m-MTDATA 4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine
  • CB 4,4-2-[N-(4-carbazolebenzene base)-N-phenylamino]bi
  • the hole injection layer can use metal oxide MeO, such as MoO3, and can also use p-type doped MeO (metal oxide)-TPD(N,N'10-bis(3-methylphenyl)- N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine): F4TCNQ(N,N,N',N'-tetramethoxyphenyl)-p-diamino Biphenyl: 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone) or m-MTDATA: F4TCNQ (4,4',4"-tri( N-3-methylphenyl-N-phenylamino) triphenylamine: 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone) etc.
  • MeO metal oxide
  • MoO3 metal oxide
  • the electron transport layer may include first inorganic nanoparticles or a first inorganic layer.
  • the first inorganic nanoparticles may be, for example, oxide nanoparticles, and may be, for example, metal oxide nanoparticles.
  • the first inorganic nanoparticles can be two-dimensional or three-dimensional nanoparticles having an average particle diameter of less than or equal to about 10 nm, within said range, less than or equal to about 8 nm, less than or equal to about 7 nm, less than or equal to Equal to about 5 nm, less than or equal to about 4 nm, or less than or equal to about 3.5 nm, or within the range, about 1 nm to about 10 nm, about 1 nm to about 9 nm, about 1 nm to about 8 nm, about 1 nm to about 7 nm, about 1 nm to about 5 nm, about 1 nm to about 4 nm, or about 1 nm to about 3.5 nm.
  • the first inorganic nanoparticles may be metal oxide nanoparticles including at least one of the following: zinc (Zn), magnesium (Mg), cobalt (Co), nickel (Ni), Gallium (Ga), Aluminum (Al), Calcium (Ca), Zirconium (Zr), Tungsten (W), Lithium (Li), Titanium (Ti), Tantalum (Ta), Tin (Sn), Hafnium (Hf), and barium (Ba).
  • the first inorganic nanoparticles may include metal oxide nanoparticles including zinc (Zn), and may include metal oxide nanoparticles represented by Zn1-xQxO (0 ⁇ x ⁇ 0.5).
  • Q is at least one metal other than Zn, such as magnesium (Mg), cobalt (Co), nickel (Ni), gallium (Ga), aluminum (Al), calcium (Ca), zirconium (Zr), Tungsten (W), lithium (Li), titanium (Ti), tantalum (Ta), tin (Sn), hafnium (Hf), silicon (Si), barium (Ba), or combinations thereof.
  • Q can include magnesium (Mg).
  • x may be within the range 0.01 ⁇ x ⁇ 0.3, for example, 0.01 ⁇ x ⁇ 0.2.
  • the material of the first inorganic layer is: metal oxide
  • the metal oxide includes at least one of the following: zinc (Zn), magnesium (Mg), cobalt (Co), nickel (Ni), gallium (Ga ), aluminum (Al), calcium (Ca), zirconium (Zr), tungsten (W), lithium (Li), titanium (Ti), tantalum (Ta), tin (Sn), hafnium (Hf), and barium ( Ba).
  • the material of the electron transport layer includes 4,7-diphenyl-1,10-phenanthroline (BPhen), 1,3,5-tris(1-phenyl-1H- Any one of benzimidazol-2-yl)benzene (TPBI) and n-doping electron transport materials, but not limited thereto.
  • N-type doped electron transport materials include, for example, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP): Li 2 CO 3 , 8-hydroxyquinoline aluminum (Alq3 ): Mg, TPBI: Li, etc., but embodiments of the present disclosure are not limited thereto.
  • an electron injection layer can also be provided between the first functional layer 209 and the base substrate 201, and the material of the electron injection layer includes: lithium oxide (Li 2 O), cesium oxide (Cs 2 O), sodium oxide (Na 2 O), lithium carbonate (Li 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), or sodium carbonate (Na 2 CO 3 ), lithium fluoride (LiF), cesium fluoride (CsF), sodium fluoride ( NaF), calcium fluoride (CaF 2 ), aluminum 8-hydroxyquinolate (Alq 3 ), lithium 8-hydroxyquinolate (Liq), gallium 8-hydroxyquinolate, bis[2-(2-hydroxyphenyl- 1)-pyridine]beryllium, 2-(4-diphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD).
  • the material of the first electrode can be a transparent conductive material
  • the transparent conductive material includes indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO) ), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO) and carbon nanotubes, etc.
  • the material of the second electrode includes magnesium, aluminum, lithium single metal or magnesium aluminum alloy (MgAl), lithium aluminum alloy (LiAl) and the like.
  • the first electrode is an anode and the second electrode is a cathode.
  • first electrode and second electrode are only an example in the embodiments of the present disclosure, and the first electrode and the second electrode can also be made of other materials.
  • first electrode and the second electrode Depending on the material of the second electrode, it can be divided into single-sided light-emitting quantum dot devices and double-sided light-emitting quantum dot devices.
  • the material of one electrode in the anode and cathode is opaque or semi-transparent, it is single-sided
  • the light-emitting quantum dot device is a double-sided light-emitting quantum dot device when the materials of the anode and the cathode are both light-transmitting and/or semi-transparent materials.
  • the materials of the first electrode and the second electrode can be selected to be respectively applicable to the top light emission type, the bottom light emission type and the double side light emission type.
  • Embodiments of the present disclosure do not limit the selection of materials for the first electrode and the second electrode.
  • the relevant features of the first color quantum dot layer 203, the second color quantum dot layer 204, the third color quantum dot layer 206, the first auxiliary layer 205 and the second auxiliary layer 207 can be referred to above. The related descriptions will not be repeated here.
  • FIG. 9 is a schematic cross-sectional structure diagram of another electroluminescent device provided by at least one embodiment of the present disclosure.
  • the electroluminescent device 300 includes the display substrate 200 in any of the above-mentioned embodiments, and The electroluminescent device 300 also includes: a first electrode 208 and a first functional layer 209 stacked on the base substrate 201, the first electrode 208 is disposed on the entire surface of the base substrate 201, and the first functional layer 209 Set on the side of the first electrode 208 away from the base substrate 201, the first functional layer 209 is set in a plurality of sub-pixel areas 2022, and in the first sub-pixel area 2022a, the first functional layer 209 is in the first Between the color quantum dot layer 203 and the base substrate 201; in the second sub-pixel area 2022b, the first functional layer 209 is between the second color quantum dot layer 204 and the base substrate 201; and in the third sub-pixel In region 2022c, the first functional layer 20
  • the electroluminescent device 300 further includes: disposed in a plurality of sub-pixel regions 2022 and disposed in the first color quantum dot layer 203, the second color quantum dot layer 204 and the third color quantum dot layer 206, the second functional layer 210, the third functional layer 211 and the second electrode 212 on the side away from the base substrate 201, the third functional layer 211 is on the side of the second functional layer 210 away from the base substrate 201, and
  • the second electrode 212 is formed on the side of the third functional layer 211 away from the base substrate 201, that is, the first electrode 208 is formed on the entire surface, and the second electrodes 212 in different sub-pixel regions 2022 are spaced apart from each other.
  • the first color quantum dot layer 203 in the first sub-pixel area 2022a can emit light of the first color
  • the second color quantum dot layer 204 in the second sub-pixel area 2022b can emit light of the second color
  • the third color quantum dot layer 206 in the third sub-pixel area 2022c can emit light of the third color
  • the light of the first color, the light of the second color and the light of the third color have different colors, so that each sub-pixel The light emitted from the pixel region 2022 has a higher purity.
  • the relevant features of the first color quantum dot layer 203, the second color quantum dot layer 204, the third color quantum dot layer 206, the first auxiliary layer 205 and the second auxiliary layer 207 can be referred to above. The related descriptions will not be repeated here.
  • the first functional layer 209 is an electron transport layer
  • the second functional layer 210 is a hole transport layer
  • the third functional layer 211 is a hole injection layer.
  • Materials for the electron transport layer, hole transport layer, hole injection layer, first electrode, and second electrode are not particularly limited, and reference can be made to the relevant description in FIG. 8 above. Those skilled in the art can Commonly used materials for the above structure of the light-emitting device are selected.
  • At least one embodiment of the present disclosure also provides a method for fabricating an electroluminescent device, the fabricating method comprising: providing a base substrate; forming a pixel defining layer on the base substrate, and the pixel defining layer includes a plurality of openings to form mutual intervals A plurality of sub-pixel regions, the plurality of sub-pixel regions at least include a first sub-pixel region and a second sub-pixel region, a first color quantum dot layer is formed in the first sub-pixel region; a second color quantum dot layer is formed in the second sub-pixel region
  • the preparation method further includes: after forming the first color quantum dot layer and before forming the second color quantum dot layer, forming a first auxiliary layer, the first auxiliary layer at least includes a first part and a second part spaced apart from each other. Two parts, the first part is set on the side of the first color quantum dot layer away from the base substrate; the second part is set on the side of the second color quantum dot layer close to the base
  • FIG. 10 is a flow chart of a manufacturing process of an electroluminescent device provided by at least one embodiment of the present disclosure. As shown in FIG. 10 , the manufacturing method includes the following steps.
  • the base substrate includes a transparent insulating substrate such as a glass substrate and a flexible base substrate, and the material of the base substrate may also be other suitable materials, which are not limited in the embodiments of the present disclosure.
  • a pixel defining layer on the base substrate, the pixel defining layer including a plurality of openings to form a plurality of sub-pixel regions spaced apart from each other, the plurality of sub-pixel regions at least including a first sub-pixel region and a second sub-pixel region.
  • the process of forming the pixel defining layer includes: depositing the material of the pixel defining layer on the base substrate, then applying a photoresist material on the material of the pixel defining layer, exposing and developing the photoresist material by using a mask Forming a photoresist pattern, and then using the photoresist pattern as a mask to etch the material of the pixel defining layer to form a pixel defining layer, the etched part of the material of the pixel defining layer forms a plurality of openings, and in a plurality of A plurality of sub-pixel regions are formed at positions corresponding to the openings, and the plurality of sub-pixel regions are spaced apart from each other, so that they at least include a first sub-pixel region and a second sub-pixel region spaced apart from each other.
  • forming the first color quantum dot layer in the first sub-pixel area may include: applying the material of the first color quantum dot layer in a plurality of sub-pixel areas to form the first color quantum dot film, and then applying the first color quantum dot film to the first color quantum dot layer The dot film undergoes a patterning process to form a first color quantum dot layer.
  • the patterning process of the first color quantum dot film includes using a mask to block the non-exposed area of the first color quantum dot film, for example, to block the second sub-pixel area and the third sub-pixel area, and treat The exposure area (the first sub-pixel area) is exposed to make the first color quantum dot material in the first sub-pixel area cross-linked, and the development process is completed, and the second sub-pixel area and the third sub-pixel area are removed. Two-color quantum dot materials, thereby forming a patterned first-color quantum dot layer.
  • the first color quantum dot layer includes the material of the first color quantum dot, and the thickener, coupling agent and accelerator included in the first color quantum dot layer can refer to the relevant description in the above, which will not be repeated here. repeat.
  • the first auxiliary layer has electron transport properties, and the connection force between the first auxiliary layer and the uncrosslinked quantum dot material on it is weak, so that the uncrosslinked quantum dot material is more easily Washing away can prevent the second color quantum dot material formed later from remaining on the first color quantum dot layer, thereby avoiding the problem of color mixing, so as to improve the color gamut of the quantum dot electroluminescent device.
  • forming the second color quantum dot layer in the second sub-pixel area may include: applying the material of the second color quantum dot layer in a plurality of sub-pixel areas to form a second color quantum dot film, and then applying the second color quantum dot film to the second color quantum dot layer.
  • the dot film undergoes a patterning process to form a second color quantum dot layer.
  • patterning the quantum dot film of the second color includes using a mask to block the non-exposed area of the quantum dot film of the second color, for example, to block the first sub-pixel area and the third sub-pixel area, and treat The exposure area (the second sub-pixel area) is exposed so that the second color quantum dot material in the second sub-pixel area is cross-linked, and the development process is completed, and the first sub-pixel area and the third sub-pixel area are removed. Two-color quantum dot material, so as to form a patterned second-color quantum dot layer.
  • the second color quantum dot layer includes the material of the second color quantum dots, and the thickener, coupling agent and accelerator included in the second color quantum dot layer can refer to the relevant description in the above, and will not be repeated here. repeat.
  • the method before forming the first color quantum dot layer, further includes: forming a first functional layer on the substrate, and the first functional layer in the second sub-pixel area and the third sub-pixel area The functional layer and the first auxiliary layer are attached to each other. That is, the first functional layer is formed first, then the first color quantum dot layer is formed, then the first auxiliary layer is formed, and then the second color quantum dot layer and the third color quantum dot layer are formed.
  • the first functional layer is an electron transport layer
  • the electron transport layer can transport electrons.
  • the material of the electron transport layer can refer to the relevant description above, and will not be repeated here.
  • the materials of the first auxiliary layer and the first functional layer are the same, for example, the materials of the first auxiliary layer and the first functional layer are zinc oxide, and the main surface perpendicular to the base substrate direction, the thickness of the first functional layer is 4 to 5 times the thickness of the first auxiliary layer, for example, the first auxiliary layer is 4 times, 4.2 times, 4.4 times, 4.6 times the thickness of the first functional layer , 4.8 times or 5 times.
  • the thickness of the first color quantum dot layer is 4 to 5 times the thickness of the first auxiliary layer, for example, the thickness of the first color quantum dot layer is 4 times the thickness of the first auxiliary layer , 4.2 times, 4.4 times, 4.6 times, 4.8 times or 5 times.
  • the material of the first auxiliary layer includes at least one of electron transport oxide and hole transport oxide, and the first auxiliary layer is formed by magnetron sputtering.
  • the material of the first auxiliary layer includes electron transport oxides such as zinc oxide and tin oxide, or includes gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, doped with magnesium, tin , gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum zinc oxide, and tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, embodiments of the present disclosure to this Not limited.
  • electron transport oxides such as zinc oxide and tin oxide, or includes gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, vanadium oxide, doped with magnesium, tin , gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum zinc oxide, and tin oxide doped with magnesium, t
  • the unexposed second color quantum dots have little force with the first auxiliary layer (for example, sputtered zinc oxide), and the second color quantum dots remain less on the sputtered zinc oxide, so that This makes the quantum dots of the second color remain less in the first sub-pixel area.
  • the first auxiliary layer for example, sputtered zinc oxide
  • the first color quantum dot layer includes first color quantum dots
  • forming the first auxiliary layer includes placing the base substrate formed with the first color quantum dot layer in a first solution for soaking, for example, the soaking time is After 5-30 minutes, the first solution includes a first group containing a perfluorinated terminal and a second group that can coordinate with the terminal of the quantum dot of the first color.
  • the first group includes -C(CF 3 ) 3 , -C n F( 2n+1 ) or
  • the second group includes mercapto, carboxyl or amino.
  • the first solution further includes a third group connecting the first group and the second group, and the third group includes an electron-withdrawing group or an alkyl chain.
  • an electron-withdrawing group is a group that reduces the electron cloud density on the benzene ring when a substituent replaces the hydrogen on the benzene ring; conversely, a group that increases the electron cloud density on the benzene ring is called an electron-donating group. Whether a group is an electron-withdrawing group or an electron-donating group depends on the sum of its inductive effect, conjugation effect, and hyperconjugation effect on the benzene ring.
  • the selection of electron-withdrawing groups can reduce the transmission of electrons to a certain extent, prevent leakage, and facilitate the balance of carriers.
  • the second group is a photosensitive group containing double bond, triple bond, epoxy, ester bond, etc.
  • the ligand undertakes the photosensitive function of the quantum dot.
  • the electron-withdrawing group includes at least one of an aromatic ring, an alkenyl group, an alkynyl group, an arylamine group, an epoxy group, and an ester group.
  • the general formulas of the materials of the first auxiliary layer all include PCF 2 nMA, At least one of, A is at least one of -SH, -COOH and -NH 2 ; M is X is less than or equal to 6; P includes at least one of the .
  • the material of the first auxiliary layer includes at least one of the .
  • forming the first auxiliary layer includes forming a laminated first layer structure and a second layer structure, the first layer structure is on the side of the second layer structure close to the base substrate, and forming a first
  • the layer structure includes: applying at least one of an electron transport type oxide and a hole transport type oxide on the substrate by means of magnetron sputtering, forming the second layer structure includes forming the first layer structure
  • the base substrate is placed in a solution of a silane coupling agent and soaked, for example, for 5 to 30 minutes.
  • the solution of the silane coupling agent includes a first group containing a perfluorinated terminal, and the first group includes at least one of the .
  • the material of the first layer structure includes at least one of electron transport oxide and hole transport oxide.
  • it includes electron-transporting oxides such as zinc oxide and tin oxide, or hole-type oxides such as gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, and vanadium oxide, or includes oxides doped with magnesium, Zinc oxide of tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, and at least one of tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum, this
  • electron-transporting oxides such as zinc oxide and tin oxide
  • hole-type oxides such as gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconium oxide, and vanadium oxide
  • oxides doped with magnesium Zinc oxide of tin, gallium,
  • the general formula of the material of the second layer structure includes: Wherein, A is -(CH 2 )nCH 3 , n is less than or equal to 4; M is -(CH 2 )x, and x is less than or equal to 6; P includes at least one of the .
  • the second auxiliary layer is formed at least on the side of the second color quantum dot layer away from the base substrate, and on the side of the second auxiliary layer away from the base substrate and in the third sub-pixel region A third color quantum dot layer is formed, and the materials of the first auxiliary layer and the second auxiliary layer are the same or different.
  • the material of the second auxiliary layer includes at least one of electron transport oxide and hole transport oxide, and the second auxiliary layer is formed by magnetron sputtering.
  • the material of the second auxiliary layer includes electron-type transport materials such as zinc oxide and tin oxide, or hole-type transport materials such as gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconia, and vanadium oxide.
  • electron-type transport materials such as zinc oxide and tin oxide
  • hole-type transport materials such as gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconia, and vanadium oxide.
  • tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum and tin oxide doped with magnesium, tin, gallium, indium, zirconium, hafnium, yttrium, lithium or aluminum.
  • the second color quantum dot layer includes second color quantum dots
  • forming the second auxiliary layer includes soaking the base substrate formed with the first color quantum dot layer in a second solution, and the second solution includes A third group at the end of the perfluoro and a fourth group that can coordinate with the end of the quantum dot of the second color.
  • the third group includes -C(CF 3 ) 3 , -C n F( 2n+1 ) or
  • the fourth group includes mercapto, carboxyl or amino.
  • the second solution further includes a fifth group connecting the third group and the fourth group, the fifth group includes an electron-withdrawing group or an alkyl chain, for example, formed by the second
  • the general formula of the material of the second auxiliary layer formed by the solution includes At least one of, A is at least one of -SH, -COOH and -NH 2 ; M is X is less than or equal to 6; P includes at least one of the .
  • forming the second auxiliary layer includes forming a stacked third layer structure and a fourth layer structure, the third layer structure is on the side of the fourth layer structure close to the base substrate, and forming the third layer structure
  • the structure includes: applying at least one of an electron-transporting oxide and a hole-transporting oxide on the substrate by means of magnetron sputtering.
  • forming the fourth layer structure includes placing the base substrate formed with the third layer structure in a solution of a silane coupling agent for soaking, and the solution of the silane coupling agent includes a third group containing a perfluorinated terminal, for example, The third group includes at least one of the .
  • the material of the third layer structure includes electron-transporting oxides such as zinc oxide and tin oxide, or spacers such as gallium nitride, aluminum nitride, molybdenum oxide, nickel oxide, zirconia, and vanadium oxide.
  • the materials of the first auxiliary layer and the second auxiliary layer are different, the material of the first auxiliary layer includes an electron-transporting oxide, and the material of the second auxiliary layer includes a hole-transporting oxide.
  • FIG. 11 is a flow chart of another electroluminescent device manufacturing process provided by at least one embodiment of the present disclosure. As shown in FIG. 11 , the manufacturing method includes the following steps.
  • the pixel defining layer includes a plurality of openings to form a plurality of sub-pixel regions spaced apart from each other, and the plurality of sub-pixel regions at least include a first sub-pixel region, a second sub-pixel region and a second sub-pixel region Three sub-pixel areas.
  • the first functional layer is an electron transport layer.
  • the electron transport layer may be formed of metal oxide, specifically, the material constituting the electron transport layer may include at least one of zinc oxide, nickel oxide and titanium oxide.
  • the material of the electron transport layer may also include 4,7-diphenyl-1,10-phenanthroline (BPhen), 1,3,5-tris(1-phenyl-1H-benzimidazole -2-yl) benzene (TPBI) and any one of n-type doping (n-doping) electron transport materials, but not limited thereto.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • TPBI 1,3,5-tris(1-phenyl-1H-benzimidazole -2-yl) benzene
  • n-doping n-type doping
  • N-type doped electron transport materials include, for example, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP): Li 2 CO 3 , 8-hydroxyquinoline aluminum (Alq3 ): Mg, TPBI: Li, etc., but embodiments of the present disclosure are not limited thereto.
  • the first functional layer may be formed by spin coating and annealing, or the first functional layer may be formed on the base substrate by evaporation.
  • an electron injection layer may also be formed on the base substrate, and the material of the electron injection layer may refer to the relevant description above, which will not be repeated here.
  • forming the first color quantum dot layer in the first sub-pixel area may include: applying the material of the first color quantum dot layer in a plurality of sub-pixel areas to form the first color quantum dot film, and then applying the first color quantum dot film to the first color quantum dot layer The dot film undergoes a patterning process to form a first color quantum dot layer.
  • the patterning process of the first color quantum dot film includes using a mask to block the non-exposed area of the first color quantum dot film, for example, to block the second sub-pixel area and the third sub-pixel area, and treat The exposure area (the first sub-pixel area) is exposed to make the first color quantum dot material in the first sub-pixel area cross-linked, and the development process is completed, and the second sub-pixel area and the third sub-pixel area are removed. Two-color quantum dot materials, thereby forming a patterned first-color quantum dot layer.
  • the first color quantum dot layer includes the material of the first color quantum dot, and the thickener, coupling agent and accelerator included in the first color quantum dot layer can refer to the relevant description in the above, which will not be repeated here. repeat.
  • the quantum dot layer of the second color and the quantum dot layer of the third color may be respectively formed in the second sub-pixel area and the third sub-pixel area subsequently.
  • the first auxiliary layer has electron transport properties, and the connection force between the first auxiliary layer and the uncrosslinked quantum dot material on it is weak, so that the uncrosslinked quantum dot material is more easily Washing away, so that the second color quantum dot material formed later can be avoided remaining on the first color quantum dot layer, thereby avoiding the problem of color mixing, so as to improve the color gamut of the quantum dot electroluminescent device.
  • the first auxiliary layer is formed in the whole layer, the first auxiliary layer is formed in the first sub-pixel area, the second sub-pixel area and the third sub-pixel area, and is formed on the pixel defining layer away from the base substrate side.
  • forming the second color quantum dot layer in the second sub-pixel area may include: applying the material of the second color quantum dot layer in a plurality of sub-pixel areas to form a second color quantum dot film, and then applying the second color quantum dot film to the second color quantum dot layer.
  • the dot film undergoes a patterning process to form a second color quantum dot layer.
  • patterning the quantum dot film of the second color includes using a mask to block the non-exposed area of the quantum dot film of the second color, for example, to block the first sub-pixel area and the third sub-pixel area, and treat The exposure area (the second sub-pixel area) is exposed so that the second color quantum dot material in the second sub-pixel area is cross-linked, and the development process is completed, and the first sub-pixel area and the third sub-pixel area are removed. Two-color quantum dot material, so as to form a patterned second-color quantum dot layer.
  • the second color quantum dot layer includes the material of the second color quantum dots, and the thickener, coupling agent and accelerator included in the second color quantum dot layer can refer to the relevant description in the above, and will not be repeated here. repeat.
  • connection force between the second auxiliary layer and the uncrosslinked quantum dot material on it is weak, so that the uncrosslinked quantum dot material can be washed away more easily, so that the third color formed later can be avoided.
  • the quantum dot material remains on the second color quantum dot layer and the first color quantum dot layer, thereby avoiding the problem of color mixing and improving the color gamut of the quantum dot electroluminescent device.
  • the second auxiliary layer is formed in the whole layer, the second auxiliary layer is formed in the first sub-pixel area, the second sub-pixel area and the third sub-pixel area, and is formed on the pixel defining layer away from the base substrate On one side of the pixel defining layer, that is, on the side of the pixel defining layer away from the base substrate, the first auxiliary layer and the second auxiliary layer are sequentially stacked.
  • forming the third color quantum dot layer in the third sub-pixel area may include: applying the material of the third color quantum dot layer in a plurality of sub-pixel areas to form a third color quantum dot film, and then applying the third color quantum dot film to the third color quantum dot layer The dot film undergoes a patterning process to form a third color quantum dot layer.
  • patterning the quantum dot film of the third color includes using a mask to block the non-exposed area of the quantum dot film of the third color, for example, to block the first sub-pixel area and the second sub-pixel area, and treat The exposure area (the third sub-pixel area) is exposed so that the third color quantum dot material in the third sub-pixel area is cross-linked, and the development process is completed, and the first sub-pixel area and the second sub-pixel area are removed. Three-color quantum dot material, thereby forming a patterned third-color quantum dot layer.
  • the third color quantum dot layer includes the material of the third color quantum dots, and the thickener, coupling agent and accelerator included in the third color quantum dot layer can refer to the relevant description above, and will not be repeated here. repeat.
  • the method of forming the second functional layer and the third functional layer includes directly forming by vapor deposition.
  • the second functional layer is a hole transport layer
  • the third functional layer is a hole injection layer.
  • materials of the second functional layer and the third functional layer please refer to the relevant description above. This will not be repeated here.
  • a first electrode may be formed on the base substrate, and the first electrode may be formed on the entire surface.
  • the material of the first electrode includes transparent conductive metal oxide or conductive polymer
  • the conductive metal oxide may include indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium oxide Zinc (GZO), zinc oxide (ZnO), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), and carbon nanotubes.
  • a second electrode can also be formed on the side of the third functional layer away from the base substrate, and the material of the second electrode includes conductive metal or conductive metal oxide .
  • the material of the second electrode includes magnesium, aluminum, lithium single metal or magnesium aluminum alloy (MgAl), lithium aluminum alloy (LiAl) and the like.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode may also be formed in the first sub-pixel area, the second sub-pixel area and the third sub-pixel area respectively, and the second electrode may be formed on the entire surface.
  • the structures of the first electrode and the second electrode can refer to the relevant description above, and will not be repeated here.
  • FIG. 12 is a schematic diagram of the preparation process of an electroluminescent device provided by at least one embodiment of the present disclosure.
  • a first electrode 208 is formed on the base substrate 201, and a A pixel defining layer 202, the pixel defining layer 202 includes a plurality of openings to form a first sub-pixel region 2022a, a second sub-pixel region 2022b and a third sub-pixel region 2022c spaced apart from each other, the first functional layer 209 and the first color quantum
  • the dot material 203' is formed in the first sub-pixel region 2022a, the second sub-pixel region 2022b and the third sub-pixel region 2022c, and the second sub-pixel region 2022b and the third sub-pixel region 2022c are processed by using the first mask Blocking, so that the light is irradiated to the first sub-pixel area 2022a, so that the first color quantum dot material 203' in the first sub-pixel area 2022a undergoes a cross
  • Quantum dot material 203' which forms the first color quantum dot layer 203; in the first sub-pixel region 2022a, the second sub-pixel region 2022b and the third sub-pixel region 2022c, and in the pixel defining layer 202 away from the substrate substrate 201
  • One side of the first auxiliary layer 205 is applied, that is, the first auxiliary layer 205 is formed in one layer; the second color is spin-coated in the first sub-pixel area 2022a, the second sub-pixel area 2022b and the third sub-pixel area 2022c
  • the quantum dot material 204', the process of patterning the second color quantum dot material 204' includes: using the second mask 2032 to block the first sub-pixel region 2022a and the third sub-pixel
  • the first color quantum dot material 203', the second color quantum dot material 204' and the third color quantum dot material 206' are also formed on the pixel defining layer 202.
  • the first color quantum dot layer 203, the second color quantum dot layer 204 and the third color quantum dot layer 206 can be respectively a red quantum dot layer, a green quantum dot layer and a blue quantum dot layer, Embodiments of the present disclosure do not limit this.
  • the first auxiliary layer 205 can prevent the second color quantum dot material formed later from remaining on the first color quantum dot layer, and the second auxiliary layer 207 can prevent the third color quantum dot material formed later from remaining on the second color quantum dot layer.
  • the problem of color mixing can be avoided, so as to improve the color gamut of the quantum dot electroluminescent device.
  • Fig. 13 is a blank glass, a blank glass provided with quantum dots (without MPA ligands), a blank glass provided with zinc oxide and quantum dots (without MPA ligands), and a blank glass provided with 400nm excitation light.
  • the MPA ligand is Mercaptopropionic acid ligand.
  • Figure 14 is a schematic diagram of the emission peaks formed by red quantum dots (without MPA ligands) after sputtering ZnO and under the irradiation of 400nm excitation light after development, red quantum dots (without MPA ligands) after sputtering After deposition of ZnO, development (washing away of red quantum dots), and then deposition of green quantum dots to prepare the device, a red luminescence peak is detected after the device emits light, indicating that the red quantum dots remain and the development is not complete.
  • red quantum dots containing MPA ligands
  • ZnO sputtering ZnO
  • green quantum dots were deposited to prepare devices, no red was detected after the device emitted light.
  • the luminous peak indicates that there is no residue of red quantum dots and the development is complete.
  • Figure 15 is a schematic diagram of the emission peak formed under the irradiation of 400nm excitation light after the red quantum dots (containing MPA ligand) are sputtered with ZnO, developed (washing away the red quantum dots), and then deposited with green quantum dots, from It can be seen from Figure 15 that no red luminescence peak is detected after the device emits light, indicating that there is no residue of red quantum dots and the development is complete.
  • Figure 16 is a schematic diagram of the emission peaks formed by green quantum dots (containing MPA ligands) after sputtering ZnO and under the irradiation of 400nm excitation light after development. After the ZnO deposition, the device was prepared, and no red signal was detected after the device emitted light.
  • green quantum dots containing MPA ligands
  • Figure 17 is a schematic diagram of green quantum dots emitting light after sputtering ZnO deposition, exposure crosslinking, red quantum dots (without MPA ligand) and development (washing away red quantum dots), as shown in Figure 17 As shown, a red signal can be detected, which proves that there are red quantum dots remaining on the cross-linked green quantum dots.
  • the display substrate, the electroluminescent device and the preparation method thereof provided by at least one embodiment of the present disclosure have at least one of the following beneficial technical effects:
  • the first auxiliary layer can prevent the second color quantum dot material formed later from remaining on the first color quantum dot layer, thereby avoiding the problem of color mixing, so as to improve The color gamut of the finally formed electroluminescent device including the display substrate.
  • the second auxiliary layer can prevent the third color quantum dot material formed later from remaining on the second color quantum dot layer and the first color quantum dot layer, and then can The problem of color mixing is avoided to improve the color gamut of the finally formed electroluminescent device including the display substrate.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板(200)、电致发光器件(300)及制备方法,显示基板(200)包括:衬底基板(201);设置在衬底基板(201)上的像素界定层(202),其中,像素界定层(202)包括多个开口(2021),多个开口(2021)对应多个子像素区(2022),多个子像素区(2022)至少包括第一子像素区(2022a)和第二子像素区(2022b);第一颜色量子点层(203),设置在第一子像素区(2022a)中;第二颜色量子点层(204),设置在第二子像素区(2022b)中;第一辅助层(205),至少包括相互间隔的第一部分(205a)和第二部分(205b),第一部分(205a)设置在第一颜色量子点层(203)的远离衬底基板(201)的一侧;第二部分(205b)设置在第二颜色量子点层(204)的靠近衬底基板(201)的一侧,第一辅助层(205)可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层(203)上,从而可以避免混色,提高量子点电致发光器件(300)的色域。

Description

显示基板、电致发光器件及其制备方法 技术领域
本公开的实施例涉及一种显示基板、电致发光器件及其制备方法。
背景技术
量子点(QD)作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,成为目前新型发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(QLED)成为了目前新型显示器件研究的主要方向。随着量子效率不断提升,QLED器件可以实现更小面积的发光,从而有利于使得显示产品实现更高的分辨率。
高分辨率的AMQLED(有源矩阵量子点发光二极管)由于其在宽色域、高寿命等方面的潜在优势也得到了越来越广泛的关注,其研究日益深入,量子效率也不断提升,基本达到了产业化的水平,进一步采用新的工艺和技术来实现其产业化已经成为未来发展的趋势。由于量子点材料本身的特性,其一般采用掩模蒸发的方法、印刷的方法或者打印的方法制备,但是掩模蒸发的方法存在对位困难、良品率低、无法实现更小面积发光的缺陷,从而无法满足目前对高分辨率显示的需求。
发明内容
本公开至少一实施例提供一种显示基板、电致发光器件及其制备方法,该显示基板中的第一辅助层至少包括相互间隔的第一部分和第二部分,将第一辅助层的第一部分设置在第一颜色量子点层的远离衬底基板的一侧,将第一辅助层的第二部分设置在第二颜色量子点层的靠近衬底基板的一侧,且该第一辅助层可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,进而可以避免混色的问题,以提高后续形成的电致发光器件的色域。
本公开至少一实施例提供一种显示基板,该显示基板包括:衬底基板;设置在所述衬底基板上的像素界定层,其中,所述像素界定层包括多个开口,所述多个开口对应多个子像素区,所述多个子像素区至少包括第一子像素区和第二子像素区;第一颜色量子点层,设置在所述第一子像素区中;第二颜色量子点层,设置在所述第二子像素区中;第一辅助层,至少包括相互间隔 的第一部分和第二部分,所述第一部分设置在所述第一颜色量子点层的远离所述衬底基板的一侧;所述第二部分设置在所述第二颜色量子点层的靠近所述衬底基板的一侧。
例如,在本公开至少一实施例提供的显示基板中,所述第一部分和所述第二部分的厚度相同且材料相同。
例如,在本公开至少一实施例提供的显示基板中,所述第一部分和所述第二部分的材料为金属氧化物。
例如,在本公开至少一实施例提供的显示基板中,所述金属氧化物的表面粗糙度小于3nm。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层还包括第三部分,所述第三部分设置在所述像素界定层的远离所述衬底基板的一侧,且所述第一部分、所述第二部分和所述第三部分之间均不连接。
例如,本公开至少一实施例提供的显示基板还包括第二辅助层和设置在所述第三子像素区中的第三颜色量子点层,其中,所述第二辅助层至少设置在所述第二颜色量子点层的远离所述衬底基板的一侧。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层和所述第二辅助层的材料不同。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层的材料包括电子传输型氧化物,所述第二辅助层的材料包括空穴传输型氧化物,且至少部分所述第一辅助层和所述第一颜色量子点层接触,至少部分所述第二辅助层和所述第三颜色量子点层接触。
例如,在本公开至少一实施例提供的显示基板中,所述第一颜色量子点层为蓝色量子点层,所述第二颜色量子点层为红色量子点层和绿色量子点层中的一种,所述第三颜色量子点层为所述绿色量子点层和所述红色量子点层中的另外一种。
例如,在本公开至少一实施例提供的显示基板中,所述第一颜色量子点层包括的第一颜色量子点,所述第二颜色量子点层包括的第二颜色量子点,以及所述第三颜色量子点层包括的第三颜色量子点均包括量子点本体以及和所述量子点本体连接的配体,所述配体的结构均为A-B-C型,且A为与所述量子点本体连接的配位基团;B为光敏基团光照后的反应物;C为-COOH。
例如,在本公开至少一实施例提供的显示基板中,所述第一颜色量子点层包括的第一颜色量子点,所述第二颜色量子点层包括的第二颜色量子点,以及所述第三颜色量子点层包括的第三颜色量子点均包括量子点本体以及和所述量子点本体连接的配体,所述配体的结构均为A-B型配体和A-C型配体的混合,且A为与所述量子点本体连接的配位基团;B为光敏基团光照后的反应物;C为-COOH。
例如,在本公开至少一实施例提供的显示基板中,所述第二辅助层至少包括相互间隔的第四部分、第五部分和第六部分,所述第四部分设置在所述第一部分的远离所述衬底基板的一侧,且和所述第一部分至少部分接触;所述第五部分设置在所述第二颜色量子点层的远离所述衬底基板的一侧;所述第六部分设置在所述第三颜色量子点层的靠近所述衬底基板的一侧。
例如,在本公开至少一实施例提供的显示基板中,所述第二辅助层还包括与所述第四部分、所述第五部分和所述第六部分均间隔的第七部分,所述第七部分设置在所述第三部分的远离所述衬底基板的一侧,且和所述第三部分至少部分接触。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层还包括与所述第一部分、所述第二部分和所述第三部分均相互间隔的第八部分,所述第八部分设置在所述第六部分的靠近所述衬底基板的一侧。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层和所述第二辅助层的材料均包括电子传输型氧化物和空穴传输型氧化物中的至少之一。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层和所述第二辅助层的材料均包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,在本公开至少一实施例提供的显示基板中,所述第一辅助层包括层叠的第一层结构和第二层结构,所述第一层结构在所述第二层结构的靠近所述衬底基板的一侧,所述第一层结构的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一;
所述第二层结构的通式包括:
Figure PCTCN2022076914-appb-000001
其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
Figure PCTCN2022076914-appb-000002
Figure PCTCN2022076914-appb-000003
中的至少之一。
例如,在本公开至少一实施例提供的显示基板中,所述第二辅助层包括层叠的第三层结构和第四层结构,所述第三层结构在所述第四层结构的靠近所述衬底基板的一侧,所述第三层结构的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一;
所述第四层结构的通式包括:
Figure PCTCN2022076914-appb-000004
其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
Figure PCTCN2022076914-appb-000005
Figure PCTCN2022076914-appb-000006
中的至少之一。
例如,在本公开至少一实施例提供的显示基板中,所述第一层结构和所述第三层结构的材料均包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
本公开至少一实施例还提供一种电致发光器件,该电致发光器件包括上述任一项所述的显示基板,以及层叠设置在所述衬底基板上的第一电极和第一功能层,其中,所述第一电极设置在所述第一功能层的靠近所述衬底基板的一侧;所述第一功能层和所述第一电极均层叠设置在多个所述子像素区中,且层叠设置的所述第一功能层和所述第一电极在所述第一颜色量子点层和所述衬底基板之间,在所述第二颜色量子点层和所述衬底基板之间,以及在所述第三颜色量子点层和所述衬底基板之间。
例如,在本公开至少一实施例提供的电致发光器件中,所述第一辅助层和所述第一功能层的材料相同,且在垂直于所述衬底基板的主表面的方向上,所述第一功能层的厚度为所述第一辅助层的厚度的4~5倍。
例如,在本公开至少一实施例提供的电致发光器件中,所述第一颜色量子点层的厚度为所述第一辅助层的厚度的4~5倍。
本公开至少一实施例还提供一种电致发光器件的制备方法,该制备方法包括:提供衬底基板;在所述衬底基板上形成像素界定层,所述像素界定层包括多个开口以形成相互间隔的多个子像素区,所述多个子像素区至少包括第一子像素区和第二子像素区;在所述第一子像素区中形成第一颜色量子点层;在所述第二子像素区中形成第二颜色量子点层,所述方法还包括:在形成所述第一颜色量子点层之后并且在形成所述第二颜色量子点层之前形成第一辅助层,其中,所述第一辅助层至少包括相互间隔的第一部分和第二部分,所述第一部分设置在所述第一颜色量子点层的远离所述衬底基板的一侧;所述第二部分设置在所述第二颜色量子点层的靠近所述衬底基板的一侧。
例如,在本公开至少一实施例提供的制备方法中,在形成所述第一颜色量子点层之前,所述方法还包括:在所述衬底基板上形成第一功能层,且在所述第二子像素区和所述第三子像素区中所述第一功能层和所述第一辅助层相互贴合。
例如,在本公开至少一实施例提供的制备方法中,所述第一辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成所述第一辅助层。
例如,在本公开至少一实施例提供的制备方法中,所述第一辅助层的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化 钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,形成所述第一辅助层包括形成层叠的第一层结构和第二层结构,所述第一层结构在所述第二层结构的靠近所述衬底基板的一侧,且形成所述第一层结构包括:采用磁控溅射的方式在所述衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一;形成所述第二层结构包括将形成有所述第一层结构的所述衬底基板放置在硅烷偶联剂的溶液中浸泡,所述硅烷偶联剂的溶液包括含有全氟末端的第一基团。
例如,在本公开至少一实施例提供的制备方法中,所述第一层结构的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,至少在所述第二颜色量子点层的远离所述衬底基板的一侧形成第二辅助层;在所述第二辅助层的远离所述衬底基板的一侧并在所述第三子像素区形成第三颜色量子点层;所述第一辅助层和所述第二辅助层的材料不同。
例如,在本公开至少一实施例提供的制备方法中,所述第二辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成所述第二辅助层。
例如,在本公开至少一实施例提供的制备方法中,所述第二辅助层的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,形成所述第二辅助层包括形成层叠的第三层结构和第四层结构,所述第三层结构在所述第四层结构的靠近所述衬底基板的一侧,且形成所述第三层结构包括:采用磁控溅射的方式在所述衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一;形成所述第四层结构包括将形成有所述第三层结构的衬底基板放置在硅烷偶联剂的溶液中浸泡,所述硅烷偶联剂的溶液包括含有全氟末端的第三基团。
例如,在本公开至少一实施例提供的制备方法中,所述第三层结构的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,形成所述第一颜色量子点层包括:在所述第一功能层上沉积第一颜色量子点材料,并在所述第一子像素区内使所述第一颜色量子点材料交联、显影,以形成所述第一颜色量子点层;形成所述第二颜色量子点层包括:在所述第一功能层上沉积第二颜色量子点材料,并在所述第二子像素区内使所述第二颜色量子点材料交联、显影,以形成所述第二颜色量子点层;形成所述第三颜色量子点层包括:在所述第一功能层上沉积第三颜色量子点材料,并在所述第三子像素区内使所述第三颜色量子点材料交联,显影,以形成所述第三颜色量子点层。
例如,在本公开至少一实施例提供的制备方法中,所述第一辅助层的材料包括电子传输型氧化物,所述第二辅助层的材料包括空穴传输型氧化物,且至少部分所述第一辅助层和所述第一颜色量子点层接触,至少部分所述第二辅助层和所述第三颜色量子点层接触。
例如,在本公开至少一实施例提供的制备方法中,在形成所述第一颜色量子点层、所述第二颜色量子点层和所述第三颜色量子点层之后,还包括在所述第一颜色量子点层、所述第二颜色量子点层和所述第三颜色量子点层的远离所述衬底基板的一侧依次形成第二功能层和第三功能层。
例如,本公开至少一实施例提供的制备方法还包括:在形成所述第一功能层之前在所述衬底基板上形成第一电极,其中,所述第一电极的材料包括透明的导电金属氧化物或者导电聚合物;在所述第三功能层的远离所述衬底基板的一侧形成第二电极,所述第二电极的材料包括导电金属或者导电金属氧化物。
例如,在本公开至少一实施例提供的制备方法中,在所述像素界定层的远离所述衬底基板的表面依次形成有所述第一辅助层和所述第二辅助层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种量子点层图案化的过程示意图;
图2为图1中实际工艺过程中形成的量子点图案;
图3为本公开至少一实施例提供的一种显示基板的截面结构示意图;
图4为本公开至少一实施例提供的再一种显示基板的截面结构示意图;
图5为本公开至少一实施例提供的一种第一辅助层为层叠设置的双层结构的截面结构示意图;
图6为本公开至少一实施例提供的一种第二辅助层为层叠设置的双层结构的截面结构示意图;
图7为本公开至少一实施例提供的又一种显示基板的截面结构示意图;
图8为本公开至少一实施例提供的一种电致发光器件的截面结构示意图;
图9为本公开至少一实施例提供的又一种电致发光器件的截面结构示意图;
图10为本公开至少一实施例提供的一种电致发光器件的制备过程流程图;
图11为本公开至少一实施例提供的再一种电致发光器件的制备过程流程图;
图12为本公开至少一实施例提供的一种电致发光器件的制备过程示意图;
图13为在400nm激发光的照射下空白玻璃、设置有量子点(不含MPA配体)的空白玻璃、设置有氧化锌和量子点(不含MPA配体)的空白玻璃以及设置有氧化锌和量子点(含MPA配体)的空白玻璃的发射峰的曲线图;
图14为红色量子点(不含MPA配体)在溅射ZnO后且在显影后在400nm激发光的照射下形成的发射峰的示意图;
图15为红色量子点(含MPA配体)在溅射ZnO后,显影(洗去红色量子点),然后沉积绿色量子点之后在400nm激发光的照射下形成的发射峰的示意图;
图16为绿色量子点(含MPA配体)在溅射ZnO后且在显影后在400nm激发光的照射下形成的发射峰的示意图;以及
图17为绿色量子点在溅射ZnO沉积后,曝光交联,然后沉积红色量子点(不含MPA配体)并进行显影(洗去红色量子点)后发射光的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在量子点电致发光器件的制备过程中,量子点层的图案化主要是通过喷墨打印的工艺实现,但是受到喷墨打印设备的限制,形成的图案化的量子点层的分辨率被限制在200ppi以内。此外,在采用喷墨打印工艺实现量子点层的图案化时,在沉积各个功能层之前,需要先制备像素界定层,各个功能层中的量子点墨水都会存在在像素界定层上攀爬的问题,甚至量子点墨水会攀爬至像素界定层的顶部的平台区域,从而极大地影响了形成的量子点薄膜的形貌以及厚度的均匀性,对量子点电致发光器件的寿命和出光的均匀性都会造成极大的影响,进而影响了后续量子点电致发光器件的量产。尤其对于具有高分辨率的显示面板,该问题更加显著。因此,需要研究一种量子点层的图案化方法,以提高量子点电致发光器件的分辨率。
例如,直接采用光刻的方法可以实现量子点电致发光器件的全彩图案化,但是这种工艺也有缺点,即不同颜色的量子点在各个像素区中都会有残留,从而会出现混色的问题,例如,图1为一种量子点层图案化的过程示意 图,如图1所示,提供衬底基板101,在衬底基板101上形成第一电极102,在衬底基板101的形成有第一电极102的一侧形成像素界定层104,该像素界定层104包括多个开口以形成多个子像素区,在各个子像素区中施加红色量子点材料,以形成红色量子点膜层105’,对红色量子点膜层105’进行图案化的过程包括:采用第一掩膜板1031对中间区域的子像素区和最右侧的子像素区进行遮挡,以使得光线照射至最左侧的子像素区,以使得该子像素区中的红色量子点材料发生交联反应,即完成对红色量子点膜层105’的曝光过程,并对未发生交联反应的红色量子点材料进行清洗,以去除位于中间区域的子像素区和位于最右侧的子像素区中的红色量子点材料,即形成红色量子点图案105;在各个子像素区中施加绿色量子点材料,以形成绿色量子点膜层106’,对绿色量子点膜层106’进行图案化的过程包括:采用第二掩膜板1032对位于最左侧的子像素区和位于最右侧的子像素区进行遮挡,以使得光线照射至位于中间区域的子像素区,以使得该子像素区中的绿色量子点材料发生交联反应,即完成对绿色量子点膜层106’的曝光过程,并对未发生交联反应的绿色量子点材料进行清洗,以去除位于最左侧的子像素区和位于最右侧的子像素区中的绿色量子点材料,即形成绿色量子点图案106;在各个子像素区中施加蓝色量子点材料,以形成蓝色量子点膜层107’,对蓝色量子点膜层进行图案化的过程包括:采用第三掩膜板1033对位于最左侧的子像素区和位于中间区域的子像素区进行遮挡,以使得光线照射至位于最右侧的子像素区,以使得该子像素区中的蓝色量子点材料发生交联反应,即完成对蓝色量子点膜层107’的曝光过程,并对未发生交联反应的蓝色量子点材料进行清洗,以去除位于最左侧的子像素区和位于中间区域的子像素区中的蓝色量子点材料,即形成蓝色量子点图案107。
需要说明的是,图1所示的过程图为理想的工艺制备流程图,在每一步的清洗过程中都将未发生交联反应的量子点去除干净,然而在实际的制备过程中,总是会出现对未发生交联反应的量子点清洗不干净的问题,即会伴随着有未发生交联反应的量子点的残留。例如,红色量子点残留在中间区域的子像素区和最右侧的子像素区中;绿色量子点残留在最左侧的子像素区和最右侧的子像素区中;蓝色量子点残留在中间区域的子像素区和最左侧的子像素区中,例如,图2为图1中实际工艺过程中形成的量子点图案,如图2所示,在红色量子点图案105的远离衬底基板101的一侧还残留有绿色量子点 材料和蓝色量子点材料;在绿色量子点图案106的靠近衬底基板101的一侧还残留有红色量子点材料,在绿色量子点图案106的远离衬底基板101的一侧还残留有蓝色量子点材料,在蓝色量子点图案107的靠近衬底基板101的一侧还残留有绿色量子点材料和红色量子点材料。
此外,采用间接光刻法也可以形成量子点图案,即利用牺牲层实现量子点发光材料的图案化,具体地,间接光刻法包括在形成量子点发光材料之前,先在量子点发光材料需要去除的区域形成牺牲层,然后采用牺牲层洗脱的方法对量子点发光材料进行图案化,该间接光刻法也存在类似红色量子点图案的远离衬底基板的一侧还残留有绿色量子点材料和蓝色量子点材料;在绿色量子点图案的靠近衬底基板的一侧还残留有红色量子点材料,在绿色量子点图案的远离衬底基板的一侧还残留有蓝色量子点材料,在蓝色量子点图案的靠近衬底基板的一侧还残留有绿色量子点材料和红色量子点材料的现象,即无论是直接光刻法还是间接光刻法都存在后施加的量子点材料在在先形成的量子点图案上残留的问题。
本公开的发明人注意到,可以在已经发生交联反应的红色量子点图案的表面形成第一辅助层,使得后续在其上形成的绿色量子点材料容易被清洗掉,并在已经发生交联反应的绿色量子点图案的表面形成第二辅助层,使得后续在其上形成的蓝色量子点材料容易被清洗掉,从而可以减少混色的现象。
本公开至少一实施例提供一种量子点电致发光器件,该量子点电致发光器件包括:衬底基板;设置在衬底基板上的像素界定层,该像素界定层包括多个开口,该多个开口对应多个子像素区,该多个子像素区至少包括第一子像素区和第二子像素区,该第一颜色量子点层设置在第一子像素区中,该第二颜色量子点层设置在第二子像素区中,第一辅助层至少包括相互间隔的第一部分和第二部分,第一部分设置在第一颜色量子点层的远离衬底基板的一侧;第二部分设置在第二颜色量子点层的靠近衬底基板的一侧,该第一辅助层可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,从而可以避免混色的问题,以提高量子点电致发光器件的色域。
例如,图3为本公开至少一实施例提供的一种显示基板的截面结构示意图,如图3所示,该显示基板200包括:衬底基板201;设置在衬底基板201上的像素界定层202,该像素界定层202包括多个开口2021,该多个开口2021 对应多个子像素区2022,例如,一个开口2021对应一个子像素区2022,即在多个开口2021中分别形成不同颜色的量子点层,以将多个开口2021设定成多个子像素区2022,并根据在开口2021中形成的量子点层的颜色的不同以将多个子像素区2022进行区分,该多个子像素区2022至少包括第一子像素区2022a和第二子像素区2022b,该第一颜色量子点层203设置在第一子像素区2022a中,该第二颜色量子点层204设置在第二子像素区2022b中,该第一辅助层205至少包括相互间隔的第一部分205a和第二部分205b,该第一部分205a设置在第一颜色量子点层203的远离衬底基板201的一侧,该第二部分205b设置在第二颜色量子点层204的靠近衬底基板201的一侧。在图3所示的结构中在像素界定层202的除了开口之外的部分的远离衬底基板201的一侧也设置有该第一辅助层205,即该第一辅助层205是整层形成的,但是由于像素界定层的开口导致段差的存在,因此各个子像素区的第一辅助层205是相互断开的。
例如,在一个示例中,如图3所示,由于像素界定层202的除了开口2021之外的部分和开口2021之间具有段差,使得该第一部分205a和第二部分205b通过像素界定层202的除了开口2021之外的部分相互间隔开。
例如,在一个示例中,该第一部分205a和第二部分205b的材料为金属氧化物。例如,该金属氧化物的表面粗糙度小于3nm。需要说明的是,该表面粗糙度是指RMS粗糙度。
例如,在一个示例中,如图3所示,该第一辅助层205还包括第三部分205c,该第三部分205c设置在像素界定层202的远离衬底基板201的一侧,且该第一部分205a、第二部分205b和第三部分205c之间均不连接。
例如,在一个示例中,该第一辅助层205具有电子传输和/或阻挡电子的特性,且该第一辅助层205与位于其上的未交联的量子点材料之间的连接力弱,使得该未交联的量子点材料更容易被清洗掉,从而可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,从而可以避免混色的问题,以提高后续形成的电致发光器件的色域。
例如,该第一辅助层205与第一颜色量子点层203、第二颜色量子点层204的厚度之比可以均为0.1~0.5,例如,该第一辅助层205的厚度为5nm-10nm,该第一辅助层205的厚度20nm-50nm。
例如,需要说明的是,各种颜色的量子点层包括不同颜色的量子点,该 不同颜色的量子点可以为半导体纳米晶体,并且可以具有多种形状,例如,球形、锥形、多臂和/或立方形的纳米颗粒、纳米管、纳米线、纳米纤维、纳米板颗粒、量子棒、或量子片。在这里,量子棒可以为具有大于约1、例如,大于或等于约2、大于或等于约3、或者大于或等于约5的纵横比(长径比)(长度:宽度比)的量子点。例如,该量子棒可以具有小于或等于约50、小于或等于约30、或者小于或等于约20的纵横比。
例如,该量子点可以具有例如约1nm至约100nm、约1nm至约80nm、约1nm至约50nm、或约1nm至20nm的颗粒直径(对于非球形形状,平均最大颗粒长度)。
例如,可以根据量子点的尺寸和组成控制量子点的能带隙,且因此可以控制发光波长。例如,当量子点的尺寸增加时,量子点可具有窄的能带隙且因此配置成发射在相对长的波长区域中的光,而当量子点的尺寸减小时,量子点可具有宽的能带隙且因此配置成发射在相对短的波长区域中的光。例如,量子点可根据其尺寸和/或组成而配置成发射在可见光区域的预定波长区域中的光。例如,所述量子点可配置成发射蓝色光、红色光、或绿色光,并且所述蓝色光可具有例如在约430nm至约480nm中的峰值发射波长(λ最大),所述红色光可具有例如在约600nm至约650nm中的峰值发射波长(λ最大),且所述绿色光可具有例如在约520nm至约560nm中的峰值发射波长(λ最大)。
例如,配置成发射蓝色光的量子点的平均颗粒尺寸可例如小于或等于约4.5nm、和例如小于或等于约4.3nm、小于或等于约4.2nm、小于或等于约4.1nm、或者小于或等于约4.0nm。在范围内,例如,所述量子点的平均颗粒尺寸可为约2.0nm至约4.5nm、例如约2.0nm至约4.3nm、约2.0nm至约4.2nm、约2.0nm至约4.1nm、或约2.0nm至约4.0nm。
所述量子点可具有例如大于或等于约10%、大于或等于约20%、大于或等于约30%、大于或等于约50%、大于或等于约60%、大于或等于约70%、或者大于或等于约90%的量子产率。
所述量子点可具有相对窄的半宽度(FWHM)。在这里,FWHM为对应于峰值吸收点的一半的波长的宽度,并且当FWHM较窄时,可配置成发射在较窄波长区域中的光,并且可获得较高的色纯度。所述量子点可具有例如小于或等于约50nm、小于或等于约49nm、小于或等于约48nm、小于或等于 约47nm、小于或等于约46nm、小于或等于约45nm、小于或等于约44nm、小于或等于约43nm、小于或等于约42nm、小于或等于约41nm、小于或等于约40nm、小于或等于约39nm、小于或等于约38nm、小于或等于约37nm、小于或等于约36nm、小于或等于约35nm、小于或等于约34nm、小于或等于约33nm、小于或等于约32nm、小于或等于约31nm、小于或等于约30nm、小于或等于约29nm、或者小于或等于约28nm的FWHM。在所述范围内,其可具有例如约2nm至约49nm、约2nm至约48nm、约2nm至约47nm、约2nm至约46nm、约2nm至约45nm、约2nm至约44nm、约2nm至约43nm、约2nm至约42nm、约2nm至约41nm、约2nm至约40nm、约2nm至约39nm、约2nm至约38nm、约2nm至约37nm、约2nm至约36nm、约2nm至约35nm、约2nm至约34nm、约2nm至约33nm、约2nm至约32nm、约2nm至约31nm、约2nm至约30nm、约2nm至约29nm、或约2nm至约28nm的FWHM。
例如,所述量子点可以包括II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。所述II-VI族半导体化合物可例如选自:二元化合物例如CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、或其混合物;三元化合物例如CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、或其混合物;和四元化合物例如HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、或其混合物,但不限于此。所述III-V族半导体化合物可例如选自:二元化合物例如GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、或其混合物;三元化合物例如GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、或其混合物;和四元化合物例如GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、或其混合物,但不限于此。所述IV-VI族半导体化合物可例如选自:二元化合物例如SnS、SnSe、SnTe、PbS、PbSe、PbTe、或其混合物;三元化合物例如SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、或其混合物;和四元化 合物例如SnPbSSe、SnPbSeTe、SnPbSTe、或其混合物,但不限于此。所述IV族半导体可例如选自:单质(一元)半导体例如Si、Ge、或其混合物;和二元半导体化合物例如SiC、SiGe、和其混合物,但不限于此。所述I-III-VI族半导体化合物可为例如CuInSe2、CuInS2、CuInGaSe、CuInGaS、或其混合物,但不限于此。所述I-II-IV-VI族半导体化合物可为例如CuZnSnSe、CuZnSnS、或其混合物,但不限于此。所述II-III-V族半导体化合物可包括例如InZnP,但不限于此。
所述量子点可以基本上均匀的浓度分布或局部不同的浓度分布,该量子蒂娜包括所述单质半导体、所述二元半导体化合物、三元半导体化合物、或四元半导体化合物。
例如,所述量子点可以包括无镉(Cd)量子点。无镉量子点是不包括镉(Cd)的量子点。镉(Cd)可引起严重的环境/健康问题,是在多个国家中按照有害物质限制指令(RoHS)被限制的元素,且因此非镉基量子点可以被有效地使用。
作为一种实施方式,所述量子点可为包括锌(Zn)、以及碲(Te)和硒(Se)中的至少一种的半导体化合物。例如,所述量子点可为Zn-Te半导体化合物、Zn-Se半导体化合物、和/或Zn-Te-Se半导体化合物。例如,所述Zn-Te-Se半导体化合物中的碲(Te)的量可小于硒(Se)的量。所述半导体化合物可具有在小于或等于约480nm、例如约430nm至约480nm的波长区域中的峰值发射波长(λ最大),并且可配置成发射蓝色光。
例如,所述量子点可为包括铟(In)、以及锌(Zn)和磷(P)的至少一种的半导体化合物。例如,所述量子点可为In-P半导体化合物和/或In-Zn-P半导体化合物。例如,在所述In-Zn-P半导体化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约25。所述半导体化合物可具有在小于约700nm、例如约600nm至约650nm的波长区域中的峰值发射波长(λ最大),并且可配置成发射红色光。
所述量子点可具有芯-壳结构,其中一个量子点围绕另一量子点。例如,所述量子点的芯和壳可具有界面,并且在所述界面中的所述芯或所述壳的至少一个的元素可具有浓度梯度,其中所述壳的元素的浓度朝着所述芯降低。例如,所述量子点的壳的材料组成具有比所述量子点的芯的材料组成高的能带隙,且由此所述量子点可呈现出量子限制效应。
所述量子点可具有一个量子点芯和围绕所述芯的多层量子点壳。在这 里,所述多层壳具有至少两个壳,其中各壳可为单一组成、合金、和/或具有浓度梯度者。
例如,多层壳的远离所述芯的壳可具有比靠近所述芯的壳高的能带隙,且由此所述量子点可呈现出量子限制效应。
例如,具有芯-壳结构的量子点可例如包括:芯,所述芯包括第一半导体化合物,所述第一半导体化合物包括锌(Zn)、以及碲(Te)和硒(Se)的至少一种;以及设置在所述芯的至少一部分上并且具有与所述芯的组成不同的组成的包括第二半导体化合物的壳。
例如,所述第一半导体化合物可为包括锌(Zn)、碲(Te)和硒(Se)的基于Zn-Te-Se的半导体化合物,例如,包括少量的碲(Te)的基于Zn-Se的半导体化合物,例如,由ZnTexSe1-x表示的半导体化合物,其中x大于约0且小于或等于0.05。
例如,在基于Zn-Te-Se的第一半导体化合物中,锌(Zn)的摩尔量可高于硒(Se)的摩尔量,且硒(Se)的摩尔量可高于碲(Te)的摩尔量。例如,在所述第一半导体化合物中,碲(Te)对硒(Se)的摩尔比可小于或等于约0.05、小于或等于约0.049、小于或等于约0.048、小于或等于约0.047、小于或等于约0.045、小于或等于约0.044、小于或等于约0.043、小于或等于约0.042、小于或等于约0.041、小于或等于约0.04、小于或等于约0.039、小于或等于约0.035、小于或等于约0.03、小于或等于约0.029、小于或等于约0.025、小于或等于约0.024、小于或等于约0.023、小于或等于约0.022、小于或等于约0.021、小于或等于约0.02、小于或等于约0.019、小于或等于约0.018、小于或等于约0.017、小于或等于约0.016、小于或等于约0.015、小于或等于约0.014、小于或等于约0.013、小于或等于约0.012、小于或等于约0.011、或者小于或等于约0.01。例如,在所述第一半导体化合物中,碲(Te)对锌(Zn)的摩尔比可小于或等于约0.02、小于或等于约0.019、小于或等于约0.018、小于或等于约0.017、小于或等于约0.016、小于或等于约0.015、小于或等于约0.014、小于或等于约0.013、小于或等于约0.012、小于或等于约0.011、或者小于或等于约0.010。
所述第二半导体化合物可包括例如II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。所述II-VI 族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、和II-III-V族半导体化合物的实例与以上面描述的相同。
例如,所述第二半导体化合物可包括锌(Zn)、硒(Se)、和/或硫(S)。例如,所述壳可包括ZnSeS、ZnSe、ZnS、或其组合。例如,所述壳可包括靠近所述芯设置的至少一个内壳和设置在所述量子点的最外侧处的最外面的壳。所述内壳可包括ZnSeS、ZnSe、或其组合,且所述最外面的壳可包括ZnS。例如,所述壳可具有一种成分的浓度梯度,和例如硫(S)的量可随着离开所述芯而增加。
例如,具有芯-壳结构的量子点可包括:芯,所述芯包括第三半导体化合物,所述第三半导体化合物包括铟(In)、以及锌(Zn)和磷(P)的至少一种;以及设置在所述芯的至少一部分上并且包括具有与所述芯不同的组成的第四半导体化合物的壳。
在基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约25。例如,在所述基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可大于或等于约28、大于或等于约29、或者大于或等于约30。例如,在所述基于In-Zn-P的第三半导体化合物中,锌(Zn)对铟(In)的摩尔比可小于或等于约55、例如小于或等于约50、小于或等于约45、小于或等于约40、小于或等于约35、小于或等于约34、小于或等于约33、或者小于或等于约32。
所述第四半导体化合物可包括例如II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、II-III-V族半导体化合物、或其组合。所述II-VI族半导体化合物、III-V族半导体化合物、IV-VI族半导体化合物、IV族半导体、I-III-VI族半导体化合物、I-II-IV-VI族半导体化合物、和II-III-V族半导体化合物的实例与以上描述的相同。
例如,所述第四半导体化合物可包括锌(Zn)和硫(S)以及任选地硒(Se)。例如,所述壳可包括ZnSeS、ZnSe、ZnS、或其组合。例如,所述壳可包括靠近所述芯设置的至少一个内壳和设置在所述量子点的最外侧处的最外面的壳。所述内壳和所述最外面的壳的至少一个可包括第四半导体化合物ZnS、ZnSe、或ZnSeS。
光发射层可以具有如下的厚度:例如约5nm至约200nm,在所述范围内,例如约10nm至约150nm、例如约10nm至约100nm、例如约10nm至约50nm。包含在光发射层EML中的量子点QD可以被层压成一个或多于一个的层,例如:两个层。然而,本公开构思的实施方案不限于此,并且量子点QD可以被层压成一个至十个层。取决于被使用的量子点QD的种类(或类型)以及光的期望发射波长,量子点QD可以被层压成任何合适数量的层。
量子点可具有相对深的HOMO能级,例如,如下的HOMO能级:大于或等于约5.4eV,在所述范围内,例如大于或等于约5.5eV、例如大于或等于约5.6eV、例如大于或等于约5.7eV、例如约大于或等于约5.8eV、例如大于或等于约5.9eV、例如大于或等于约6.0eV。在所述范围内,量子点层13的HOMO能级可为例如约5.4eV至约7.0eV、例如约5.4eV至约6.8eV、例如约5.4eV至约6.7eV、例如约5.4eV至约6.5eV、例如约5.4eV至约6.3eV、例如约5.4eV至约6.2eV、例如约5.4eV至约6.1eV,在所述范围内,例如约5.5eV至约7.0eV、例如约5.5eV至约6.8eV、例如约5.5eV至约6.7eV、例如约5.5eV至约6.5eV、例如约5.5eV至约6.3eV、例如约5.5eV至约6.2eV、例如约5.5eV至约6.1eV、例如约5.5eV至约7.0eV、例如约5.6eV至约6.8eV、例如约5.6eV至约6.7eV、例如约5.6eV至约6.5eV、例如约5.6eV至约6.3eV、例如约5.6eV至约6.2eV、例如约5.6eV至约6.1eV,在所述范围内,例如约5.7eV至约7.0eV、例如约5.7eV至约6.8eV、例如约5.7eV至约6.7eV、例如约5.7eV至约6.5eV、例如约5.7eV至约6.3eV、例如约5.7eV至约6.2eV、例如约5.7eV至约6.1eV,在所述范围内,例如约5.8eV至约7.0eV、例如约5.8eV至约6.8eV、例如约5.8eV至约6.7eV、例如约5.8eV至约6.5eV、例如约5.8eV至约6.3eV、例如约5.8eV至约6.2eV、例如约5.8eV至约6.1eV,在所述范围内,例如约6.0eV至约7.0eV、例如约6.0eV至约6.8eV、例如约6.0eV至约6.7eV、例如约6.0eV至约6.5eV、例如约6.0eV至约6.3eV、例如约6.0eV至约6.2eV。
量子点可具有相对浅的LUMO能级,例如,小于或等于约3.7eV,在所述范围内,例如小于或等于约3.6eV、例如小于或等于约3.5eV、例如小于或等于约3.4eV、例如小于或等于约3.3eV、例如小于或等于约3.2eV、例如小于或等于约3.0eV。在所述范围内,量子点层13的LUMO能级可为约2.5eV至约3.7eV、约2.5eV至约3.6eV、约2.5eV至约3.5eV、约2.5eV至约3.4eV、 约2.5eV至约3.3eV、约2.5eV至约3.2eV、约2.5eV至约3.1eV、约2.5eV至约3.0eV、约2.8eV至约3.7eV、约2.8eV至约3.6eV、约2.8eV至约3.5eV、约2.8eV至约3.4eV、约2.8eV至约3.3eV、约2.8eV至约3.2eV、约3.0eV至约3.7eV、约3.0eV至约3.6eV、约3.0eV至约3.5eV、或约3.0eV至约3.4eV。
量子点可具有约1.7eV至约2.3eV或约2.4eV至约2.9eV的能带隙。在所述范围内,例如,量子点层13可具有如下的能带隙:约1.8eV至约2.2eV或约2.4eV至约2.8eV,在所述范围内,例如约1.9eV至约2.1eV、例如约2.4eV至约2.7eV。
例如,第一颜色量子点层203和第二颜色量子点层204分别包括的第一颜色量子点和第二颜色量子点为IIB-VIA族半导体化合物,且可以为二元化合物、三元化合物或者四元化合物,例如,该第一颜色量子点和第二颜色量子点的材料可以为CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe中的至少一种。通常量子点受到蓝光光源的激发时,会发出特定波长的激发荧光,其发射的荧光光谱由量子点材料的化学组成、粒径决定。量子点材料随着粒径的增大,同一化学组成的材料发出的荧光光谱是由绿光向红光方向红移的。所采用的发射红光的量子点材料和发射绿光的量子点材料可以是同一化学组成但粒径不同的量子点材料,也可以为不同化学组成的量子点材料,即第一颜色量子点和第二颜色量子点可以由相同的材料制备形成,但具有不同的粒径,或者,第一颜色量子点和第二颜色量子点由不同的材料制备形成。
例如,量子点是一种纳米级别的半导体,通过对纳米级别的半导体材料施加一定的电场或者光压,该纳米级别的半导体材料便会发出特定频率的光,而发出的光的频率会随着该半导体的尺寸的改变而变化,因而通过调节量子点的尺寸就可以控制其发出的光的颜色。
例如,通过控制量子点的形状、结构和尺寸,可以方便地调节量子点的能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。随着量子点尺寸的减小,量子点的光谱出现蓝移。量子点的尺寸越小,蓝移现象也越显著。例如,对于硒化镉量子点,由10nm减小至2nm时,硒化镉量子点发射 光的颜色由红色变化到蓝色,当硒化镉量子点的尺寸大于或者等于2nm且小于5nm时发射蓝色的光;当硒化镉量子点的尺寸大于或者等于5nm且小于8nm时发射绿色的光;当硒化镉量子点的尺寸大于或者等于8nm且小于10nm时发射红色的光。
例如,量子点独特的性质基于它自身的量子尺寸效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有与微观体系不同的低维物性,使得量子点具有与微观体系不同的物理化学性质。例如,量子点(Quantum dots)由于量子尺寸效应和电限域效应具有独特的光致发光和电致发光性能。与有机荧光染料相比,量子点具有量子产率高,光化学稳定性高,不易光解,以及宽激发、窄发射,高色纯度、发光颜色可通过控制量子点大小进行调节等优良的光学特性,这样,包括量子点发光层的量子点电致发光器件具有发光效率高、稳定性好、寿命长、亮度高和色域宽等优点。
例如,在一个示例中,该第一颜色量子点层包括的第一颜色量子点,该第二颜色量子点层包括的第二颜色量子点,以及该第三颜色量子点层包括的第三颜色量子点均包括量子点本体,以及和量子点本体的配体,该配体的结构均为A-B-C型,且A为与第一颜色量子点、第二颜色量子点和第三颜色量子点的量子点本体分别连接的配位基团,该配位基团可以为-SH、-COOH、-NH 2或者多齿配体;B为光敏基团光照后的反应物,且配置为使第一颜色量子点、第二颜色量子点或者第三颜色量子点进行光交联,该光敏基团可以是烯基、羰基、环氧基团或者Boc-氨基等;C为-COOH,配置为与显影液进行反应。
例如,一方面弱碱性显影剂四甲基氢氧化铵(TMAH)与羧基发生反应,形成离子型配体,溶解性较好;另一方面,四甲基氢氧化铵(TMAH)是一种表面活性剂,其一端为羟基,是极性基团,另一端为四甲基胺,是一种季胺基团,为非极性基团,从而能够很好地提高量子点在显影液中的溶解性,以有利于量子点的洗脱。需要说明的是,该显影剂的材料还可以是四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、十六烷基三甲基溴化铵(CTAB)等一系列多烷基季铵盐,也可以是单季铵盐连接而成的双季铵盐(双子表面活性剂的一种)。
例如,多齿配体为一个配体中有两个或两个以上配位原子的配体。例如, 二亚乙基三胺(简写为DEN)和乙二胺四乙酸根(简写为EDTA)。
例如,在另一个示例中,第一颜色量子点层包括的第一颜色量子点,第二颜色量子点层包括的第二颜色量子点,以及第三颜色量子点层包括的第三颜色量子点均包括量子点本体以及和量子点本体连接的配体,该配体的结构均为A-B型配体和A-C型配体的混合,且A为与第一颜色量子点、第二颜色量子点和第三颜色量子点的量子点本体分别连接的配位基团,该配位基团可以是-SH、-COOH、-NH 2或者多齿配体;B为光敏基团光照后的反应物,且配置为使第一颜色量子点、第二颜色量子点或者第三颜色量子点进行光交联;C为-COOH,配置为与显影液进行反应;光敏基团可以是烯基、羰基、环氧基团或者Boc-氨基等。
例如,A-B型配体可以实现量子点的光固化特性,A-C配体可以实现其良好的洗脱特性。
例如,该第一颜色量子点层203和第二颜色量子点层204中还可以包括增稠剂、偶联剂和促进剂等,其含量可以根据需要进行调整。
例如,该增稠剂可以为甲基乙烯基MQ硅树脂、聚甲基丙烯酸酯、聚氰基丙烯酸酯中的至少之一。该偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基-三-(2-甲氧基乙氧基)硅烷中的至少之一。该促进剂为N,N-二甲基苯胺、N,N-二甲基对甲苯胺或2,4,6-三(二甲氨基甲基)苯酚。
例如,该衬底基板201包括玻璃基板、柔性衬底基板等透明绝缘基板,该衬底基板201的材料还可以是其他适合的材料,本公开的实施例对此不作限定。
需要说明的是,尽管图3中只示出了两个开口2021,但是本公开的实施例不限于此,还可以具有更多的开口2021,即可以具有更多的子像素区2022。在衬底基板201和第一颜色量子点层203、第二颜色量子点层204之间还可以设置其他的层结构,例如,有机功能层和/或电极结构,为了简化图3中示出了该部分层结构。
例如,量子点电致发光器件中的量子点发光二极管通常包括阴极、阳极,以及设置在阴极和阳极之间的量子点发光层,还可以包括在阴极和量子点发光层之间,或者在阳极和量子点发光层之间的有机功能层。
例如,图4为本公开至少一实施例提供的再一种显示基板的截面结构示意图,如图4所示,在该显示基板200中,示出了三个子像素区2022,该第 一颜色量子点层203设置在第一子像素区2022a中,该第二颜色量子点层204设置在第二子像素区2022b中,在第三子像素区2022c中设置有第三颜色量子点层206。例如,该第一颜色量子点层203可以包括红色量子点,该第二颜色量子点层204可以包括绿色量子点,该第三颜色量子点层206可以包括蓝色量子点,这样从第一颜色量子点层203出射的红色光线、从第二颜色量子点层204出射的绿色光线和从第三颜色量子点层206出射的蓝色光线混合后即可以形成白色光线。由此,可以使量子点电致发光器件具有良好的显示色彩。关于红色量子点、绿色量子点、蓝色量子点的材料不受特别限制,本领域技术人员可以根据上述红色量子点、绿色量子点和蓝色量子点的常用材料进行选择。以下以先形成第一颜色量子点层203,再形成第二颜色量子点层204,最后形成第三颜色量子点层206为例进行说明。
例如,如图4所示,该第一辅助层205整面形成,该第一辅助层205至少包括相互间隔的第一部分205a、第二部分205b和第三部分205c和第八部分205d,该第一部分205a设置在第一颜色量子点层203的远离衬底基板201的一侧,该第二部分205b设置在第二颜色量子点层204的靠近衬底基板201的一侧,该第三部分205c设置在像素界定层202的远离衬底基板201的一侧,该第八部分205d设置在第三颜色量子点层206的靠近衬底基板201的一侧,由于像素界定层202的除了开口2021之外的部分和开口2021之间具有段差,该第一部分205a、第二部分205b、第三部分205c和第八部分205d在形成的过程中处于断开状态。例如,该第三部分205c与第一部分205a、第二部分205b和第八部分205d在垂直于衬底基板201的主表面的方向上均存在高度差。例如,该第三部分205c与第一部分205a、第二部分205b和第八部分205d在垂直于衬底基板201的主表面的方向上的高度差大于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度。例如,该第三部分205c与第一部分205a在垂直于衬底基板201的主表面的方向上的高度差大于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的4倍,且小于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的6倍。该第三部分205c与第二部分205b在垂直于衬底基板201的主表面的方向上的高度差大于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的8倍,且小于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的11倍。该第三部分205c 与第八部分205d在垂直于衬底基板201的主表面的方向上的高度差大于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的8倍,且小于或者等于该第三部分205c在垂直于衬底基板201的主表面方向上的厚度的11倍。
例如,如图4所示,该显示基板200还包括第二辅助层207,该第二辅助层207至少设置在第二颜色量子点层204的远离衬底基板201的一侧,在图4中,该第二辅助层207的一部分设置在对应于第一颜色量子点层203的第一辅助层205的远离衬底基板201的一侧,以及设置在第二颜色量子点层204的远离衬底基板201的一侧,该第二辅助层207的另一部分设置在第三颜色量子点层206的靠近衬底基板201的一侧,且位于第三颜色量子点层206和与第三颜色量子点层206对应的第一辅助层205之间。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料相同,这样可以减少所使用的材料的种类,还可以采用相同的设备和工艺条件形成该第一辅助层205和第二辅助层207,从而可以节省设备成本。
例如,在另一个示例中,该第一辅助层205和第二辅助层207的材料不相同,这样可以根据工艺的需要最大程度的避免混色的问题,以提高后续形成的电致发光器件的色域。
例如,如图4所示,该第二辅助层207至少包括相互间隔的第四部分207a、第五部分207b和第六部分207c,该第四部分207a设置在第一辅助层205包括的第一部分205a的远离衬底基板201的一侧,且和第一部分205a至少部分接触,即在第一子像素区2022a中,该第一辅助层205的第一部分205a和第二辅助层207的第四部分207a之间是至少部分接触并且面贴合的。需要说明的是,在第一子像素区2022a中完全不存在第二颜色量子点材料的情形下,第一部分205a和第四部分207a是直接接触并且面贴合的;在第一子像素区2022a中存在部分第二颜色量子点材料的情形下,该第一部分205a和第四部分207a可以是部分接触的,但残留的第二颜色量子点材料可能是点状分布,并非整面分布。该第五部分207b设置在第二颜色量子点层204的远离衬底基板201的一侧,即第二子像素区2022b中,第二颜色量子点层204夹设在第一辅助层205的第二部分205b和第二辅助层207的第五部分207b之间。该第六部分207c设置在第三颜色量子点层206的靠近衬底基板201的一侧,即在第三子像素区2022c中,该第三颜色量子点层206的靠近 衬底基板201的一侧具有层叠设置的第一辅助层205的第八部分205d和第二辅助层207的第六部分207c,且该第八部分205d在第六部分207c的靠近衬底基板201的一侧。
例如,如图4所示,该第二辅助层207还包括与第四部分207a、第五部分207b和第六部分207c均间隔的第七部分207d,该第七部分207d设置在第三部分205c的远离衬底基板的一侧,且和第三部分205c至少部分接触,需要说明的是,在像素界定层202上完全不存在第二颜色量子点材料的情形下,第七部分207d和第三部分205c是直接接触并且面贴合的;在像素界定层202上存在部分第二颜色量子点材料的情形下,该第七部分207d和第三部分205c可以是可以部分接触的。即在像素界定层202的除了开口2021之外的部分均设置有层叠设置的第一辅助层205的第三部分205c和第二辅助层207的第七部分207d。
需要说明的是,当第一颜色量子点层203、第二颜色量子点层204和第三颜色量子点层206的形成顺序发生变化时,该第一辅助层205的结构也会发生变化。
例如,当先形成第二颜色量子点层204,再形成第一颜色量子点层203,最后形成第三颜色量子点层206时,在第二子像素区2022b中,第二颜色量子点层204的远离衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207;在第一子像素区2022a中,第一颜色量子点层203夹设在第一辅助层205和第二辅助层207之间,即在第一颜色量子点层203的靠近衬底基板201的一侧设置有第一辅助层205,在第一颜色量子点层203的远离衬底基板201的一侧设置有第二辅助层207;在第三子像素区2022c中,第三颜色量子点层206的靠近衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207。
例如,当先形成第三颜色量子点层206,再形成第一颜色量子点层203,最后形成第二颜色量子点层204时,在第三子像素区2022c中,第三颜色量子点层206的远离衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207;在第一子像素区2022a中,第一颜色量子点层203夹设在第一辅助层205和第二辅助层207之间,即在第一颜色量子点层203的靠近衬底基板201的一侧设置有第一辅助层205,在第一颜色量子点层203的远离衬底基板201的一侧设置有第二辅助层207;在第二子像素区2022b中, 第二颜色量子点层204的靠近衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料均包括电子传输型氧化物和空穴传输型氧化物中的至少之一,例如,该第一辅助层205和第二辅助层207的材料可以均包括电子传输型氧化物,该第一辅助层205和第二辅助层207的材料也可以均包括空穴传输型氧化物,还可以是该第一辅助层205的材料包括电子传输型氧化物,该第二辅助层207的材料包括空穴传输型氧化物,本公开的实施例对此不作限定。
例如,第一辅助层的材料包括电子传输型氧化物,第二辅助层的材料包括空穴传输型氧化物,且至少部分第一辅助层和第一颜色量子点层接触,至少部分第二辅助层和第三颜色量子点层接触,例如,第一颜色量子点层为蓝色量子点层,第二颜色量子点层为红色量子点层和绿色量子点层中的一种,该第三颜色量子点层为绿色量子点层和红色量子点层中的另外一种。相比于第一辅助层和第二辅助层均为空穴传输型氧化物或者均为电子传输型氧化物的情形,第一辅助层的材料为电子传输型氧化物,第二辅助层的材料为空穴传输型氧化物时,电子传输的效果和空穴传输的效果更好。如果第一辅助层和第二辅助层的材料均为空穴传输型氧化物,或者第一辅助层和第二辅助层的材料均为电子传输型氧化物时,第一辅助层和第二辅助层叠加后的厚度太厚,可能会导致电子阻挡或者空穴阻挡的作用太强,从而会影响最终形成的电致发光器件的性能。
例如,第一辅助层的材料包括电子传输型氧化物,第二辅助层的材料包括空穴传输型氧化物,且至少部分第一辅助层和第一颜色量子点层接触,至少部分第二辅助层和第三颜色量子点层/第三颜色量子点层接触的有益效果包括:对于在先制备的第一子像素,例如为蓝色子像素,在第一颜色量子点层后只沉积了一层空穴传输型氧化物,而第二层电子传输型氧化物可以直接作为电子传输层,不会让空穴传输型的界面层太厚而影响空穴注入第一颜色量子点;而对于第二制备的第二子像素,例如为绿色子像素,第二颜色量子点层的界面层与其两侧的第一辅助层和第二辅助层的功能分别一致;对于最后制备的第三子像素,例如为红色子像素,其电子传输型界面层与下方的电子传输型氧化物的功能一致,仅有一层空穴传输型的界面层,该第二辅助层的厚度也不会阻止空穴注入第三颜色量子点层。
同时考虑到红色量子点、绿色量子点和蓝色量子点的能级的差异,红色子像素和绿色子像素一般是多电子器件,而蓝色子像素一般是多空穴器件,因此,首先制备的第一子像素是蓝色子像素,第一辅助层的材料包括电子传输型氧化物,绿色子像素和红色子像素可以分别是第二制备或者第三制备的子像素,第二辅助层的材料包括空穴传输型氧化物,从而可以实现蓝色子像素中的电子传输型氧化物阻挡空穴,第三子像素中的空穴传输型氧化物阻挡电子,以平衡载流子,并提高载流子的注入效率。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料均包括氧化锌,氧化锡等电子传输型氧化物,或者均包括氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒等空穴传输型氧化物,或者掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,或者掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡,本公开的实施例对此不作限定。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料的通式均包括
Figure PCTCN2022076914-appb-000007
中的至少之一,A为-SH、-COOH和-NH 2中的至少之一;M为
Figure PCTCN2022076914-appb-000008
X小于或者等于6;P包括
Figure PCTCN2022076914-appb-000009
中的至少之一。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料均包括
Figure PCTCN2022076914-appb-000010
Figure PCTCN2022076914-appb-000011
Figure PCTCN2022076914-appb-000012
Figure PCTCN2022076914-appb-000013
中的至少之一。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料均包括第一基团、第二基团和第三基团,该第一基团包括-C(CF 3) 3、-C nF( 2n+1)或者
Figure PCTCN2022076914-appb-000014
该第二基团包括巯基、羧基或者氨基;该第三基团包括烷基链、芳环、烯基、炔基、芳胺基、环氧基和酯基中的至少之一。
例如,图5为本公开至少一实施例提供的一种第一辅助层为层叠设置的双层结构的截面结构示意图,如图5所示,该第一辅助层205包括层叠的第一层结构2051和第二层结构2052,该第一层结构2051在第二层结构2051的靠近衬底基板201的一侧,该第一层结构2051的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一。
例如,该第一层结构的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,该第二层结构2052的通式包括:
Figure PCTCN2022076914-appb-000015
其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
Figure PCTCN2022076914-appb-000016
中的至少之一。
例如,该第一层结构2051和第二层结构2052的材料和形成顺序不能换,第二层结构2052中的有机材料可以减小晶格缺陷,且可以实现绝缘钝化的效果。
例如,图6为本公开至少一实施例提供的一种第二辅助层为层叠设置的双层结构的截面结构示意图,如图6所示,该第二辅助层207包括层叠的第三层结构2071和第四层结构2072,该第三层结构2071在第四层结构2072的靠近衬底基板201的一侧,第三层结构2071的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一。
例如,该第三层结构2071的材料包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
例如,该第四层结构2072的通式包括:
Figure PCTCN2022076914-appb-000017
其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
Figure PCTCN2022076914-appb-000018
中的至少之一。
例如,该第三层结构2071在第四层结构2072的材料和形成顺序不能换,第四层结构2072中的有机材料可以减小晶格缺陷,且可以实现绝缘钝化的效果。
例如,采用溶胶凝胶法形成氧化锌,然后将采用该溶胶凝胶法制备的氧化锌用作第一辅助层的材料时,会出现较多的量子点难以清洗掉的现象。采用溅射法形成的氧化锌作为第一辅助层的材料时,相比于采用溶胶凝胶法形成的氧化锌,在采用溅射方式形成的氧化锌上残留的量子点的量更少,且溅射氧化锌在结构上具有如下特征:因为溅射氧化锌不包含有机材料作为原料,所以溅射方式形成的氧化锌的表面粗糙度低,且不包含有机材料,此外溅射的氧化锌为非纳米颗粒,所以量子点与溅射氧化锌具有的光滑表面的结合力弱,施加在该氧化锌上的量子点容易被洗掉而不会有残留。
例如,图7为本公开至少一实施例提供的又一种显示基板的截面结构示意图,图7所示的实施例和图4所示的实施例的不同之处在于,第一辅助层205经过了图案化处理,在像素界定层202的远离衬底基板201的表面没有设置第一辅助层205,如图7所示,该第一辅助层205至少包括相互间隔的第一部分205a、第二部分205b和第八部分205d,该第一部分205a设置在第一颜色量子点层203的远离衬底基板201的一侧,该第二部分205b设置在第二颜色量子点层204的靠近衬底基板201的一侧,该第八部分205d设置在第三颜色量子点层206的靠近衬底基板201的一侧,由于像素界定层202的除了开口2021之外的部分和开口2021之间具有段差,该第一部分205a、第二部分205b和第八部分205d在形成的过程中处于断开状态。
例如,如图7所示,该显示基板200还包括第二辅助层207,与图4所示实施例的不同之处还在于第二辅助层207经过了图案化处理,在像素界定层202的远离衬底基板201的表面没有设置第二辅助层207,该第二辅助层207至少设置在第二颜色量子点层204的远离衬底基板201的一侧,在图7中,该第二辅助层207的一部分设置在对应于第一颜色量子点层203的第一辅助层205的远离衬底基板201的一侧,以及设置在第二颜色量子点层204 的远离衬底基板201的一侧,该第二辅助层207的另一部分设置在第三颜色量子点层206的靠近衬底基板201的一侧,且位于第三颜色量子点层206和与第三颜色量子点层206对应的第一辅助层205之间。
例如,在一个示例中,该第一辅助层205和第二辅助层207的材料相同,这样可以减少所使用的材料的种类,还可以采用相同的设备和工艺条件形成该第一辅助层205和第二辅助层207,从而可以节省设备成本。
例如,在另一个示例中,该第一辅助层205和第二辅助层207的材料不相同,这样可以根据工艺的需要最大程度的避免混色的问题,以提高后续形成的电致发光器件的色域。
例如,如图7所示,该第二辅助层207至少包括相互间隔的第四部分207a、第五部分207b和第六部分207c,该第四部分207a设置在第一辅助层205包括的第一部分205a的远离衬底基板201的一侧,且和第一部分205a至少部分接触,即在第一子像素区2022a中,该第一辅助层205的第一部分205a和第二辅助层207的第四部分207a之间是至少部分直接接触并且面贴合的。需要说明的是,在第一子像素区2022a中完全不存在第二颜色量子点材料的情形下,第一部分205a和第四部分207a是直接接触并且面贴合的;在第一子像素区2022a中存在部分第二颜色量子点材料的情形下,该第一部分205a和第四部分207a可以是部分接触的,但残留的第二颜色量子点材料可能是点状分布,并非整面分布。该第五部分207b设置在第二颜色量子点层204的远离衬底基板201的一侧,即第二子像素区2022b中,第二颜色量子点层204夹设在第一辅助层205的第二部分205b和第二辅助层207的第五部分207b之间。该第六部分207c设置在第三颜色量子点层206的靠近衬底基板201的一侧,即在第三子像素区2022c中,该第三颜色量子点层206的靠近衬底基板201的一侧具有层叠设置的第一辅助层205的第八部分205d和第二辅助层207的第六部分207c,且该第八部分205d在第六部分207c的靠近衬底基板201的一侧。
需要说明的是,当第一颜色量子点层203、第二颜色量子点层204和第三颜色量子点层206的形成顺序发生变化时,该第一辅助层205的结构也会发生变化。
例如,当先形成第二颜色量子点层204,再形成第一颜色量子点层203,最后形成第三颜色量子点层206时,在第二子像素区2022b中,第二颜色量 子点层204的远离衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207;在第一子像素区2022a中,第一颜色量子点层203夹设在第一辅助层205和第二辅助层207之间,即在第一颜色量子点层203的靠近衬底基板201的一侧设置有第一辅助层205,在第一颜色量子点层203的远离衬底基板201的一侧设置有第二辅助层207;在第三子像素区2022c中,第三颜色量子点层206的靠近衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207。
例如,当先形成第三颜色量子点层206,再形成第一颜色量子点层203,最后形成第二颜色量子点层204时,在第三子像素区2022c中,第三颜色量子点层206的远离衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207;在第一子像素区2022a中,第一颜色量子点层203夹设在第一辅助层205和第二辅助层207之间,即在第一颜色量子点层203的靠近衬底基板201的一侧设置有第一辅助层205,在第一颜色量子点层203的远离衬底基板201的一侧设置有第二辅助层207;在第二子像素区2022b中,第二颜色量子点层204的靠近衬底基板201的一侧设置有依次层叠的第一辅助层205和第二辅助层207。
例如,图8为本公开至少一实施例提供的一种电致发光器件的截面结构示意图,如图8所示,该电致发光器件300包括上述任一实施例中的显示基板200,且该电致发光器件300还包括层叠设置在衬底基板201上的第一电极208和第一功能层209,该第一电极208设置在第一功能层209的靠近衬底基板201的一侧,该第一功能层209和第一电极208均层叠设置在多个子像素区2022中,且在第一子像素区2022a中,该层叠设置的第一功能层209和第一电极208在第一颜色量子点层203和衬底基板201之间;在第二子像素区2022b中,该层叠设置的第一功能层209和第一电极208在第二颜色量子点层204和衬底基板201之间,以及在第三子像素区2022c中,该层叠设置的第一功能层209和第一电极208在第三颜色量子点层206和衬底基板201之间。
例如,如图8所示,该电致发光器件300还包括:设置在多个子像素区2022中且设置在第一颜色量子点层203、第二颜色量子点层204和第三颜色量子点层206的远离衬底基板201一侧的第二功能层210和第三功能层211,在不同的子像素区2022中,该层叠设置的第二功能层210和第三功能层211 相互间隔开。该第二电极212整面设置在第三功能层211的远离衬底基板201一侧,且该第三功能层211在第二功能层210的远离衬底基板201的一侧。
例如,在一个示例中,该第一功能层209为电子传输层,该第二功能层210为空穴传输层,该第三功能层211为空穴注入层。
例如,该空穴传输层的材料包括N,N’-双(1-萘基)-N,N’-二苯基-1,1’-二苯基-4,4’-二胺(NPB)、4,4’,4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)和4,4-2-[N-(4-咔唑苯基)-N-苯基氨基]联苯(CPB)中的任意一种,但不限于此。
例如,该空穴注入层可采用金属氧化物MeO,例如MoO3,也可以采用p型掺杂的MeO(金属氧化物)-TPD(N,N’10-双(3-甲基苯基)-N,N’–二苯基-1,1’–二苯基-4,4’–二胺):F4TCNQ(N,N,N',N’-四甲氧基苯基)-对二氨基联苯:2,3,5,6-四氟-7,7’,8,8’-四氰二甲基对苯醌)或者m-MTDATA:F4TCNQ(4,4’,4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺:2,3,5,6-四氟-7,7’,8,8’-四氰二甲基对苯醌)等。
例如,在一个示例中,该电子传输层可以包括第一无机纳米颗粒或者第一无机层。该第一无机纳米颗粒可以为例如氧化物纳米颗粒,且可以为例如金属氧化物纳米颗粒。
例如,该第一无机纳米颗粒可以为具有如下的平均颗粒直径的二维或三维纳米颗粒:小于或等于约10nm,在所述范围内,小于或等于约8nm、小于或等于约7nm、小于或等于约5nm、小于或等于约4nm、或者小于或等于约3.5nm,或者在所述范围内,约1nm至约10nm、约1nm至约9nm、约1nm至约8nm、约1nm至约7nm、约1nm至约5nm、约1nm至约4nm、或约1nm至约3.5nm。
例如,该第一无机纳米颗粒可为金属氧化物纳米颗粒,所述金属氧化物纳米颗粒包括如下的至少一种:锌(Zn)、镁(Mg)、钴(Co)、镍(Ni)、镓(Ga)、铝(Al)、钙(Ca)、锆(Zr)、钨(W)、锂(Li)、钛(Ti)、钽(Ta)、锡(Sn)、铪(Hf)、和钡(Ba)。
作为一个示例,该第一无机纳米颗粒可包括包含锌(Zn)的金属氧化物纳米颗粒,并且可包括由Zn1-xQxO(0≤x<0.5)表示的金属氧化物纳米颗粒。在这里,Q为不同于Zn的至少一种金属,例如镁(Mg)、钴(Co)、镍(Ni)、镓(Ga)、铝(Al)、钙(Ca)、锆(Zr)、钨(W)、锂(Li)、钛(Ti)、钽(Ta)、锡(Sn)、铪(Hf)、 硅(Si)、钡(Ba)、或其组合。
例如,Q可包括镁(Mg)。
例如,x可在所述范围内为0.01≤x≤0.3,例如,0.01≤x≤0.2。
例如,该第一无机层的材料为:金属氧化物,所述金属氧化物包括如下的至少一种:锌(Zn)、镁(Mg)、钴(Co)、镍(Ni)、镓(Ga)、铝(Al)、钙(Ca)、锆(Zr)、钨(W)、锂(Li)、钛(Ti)、钽(Ta)、锡(Sn)、铪(Hf)、和钡(Ba)。
例如,在一个示例中,该电子传输层的材料包括4,7-二苯基-1,10-邻二氮杂菲(BPhen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBI)和n型掺杂(n-doping)电子传输材料中的任意一种,但不限于此。n型掺杂电子传输材料例如包括2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP):Li 2CO 3,8-羟基喹啉铝(Alq3):Mg,TPBI:Li等,但本公开的实施例不限于此。
例如,在第一功能层209和衬底基板201之间还可以设置电子注入层,该电子注入层的材料包括:氧化锂(Li 2O)、氧化铯(Cs 2O)、氧化钠(Na 2O)、碳酸锂(Li 2CO 3)、碳酸铯(Cs 2CO 3)、或碳酸钠(Na 2CO 3)、氟化锂(LiF)、氟化铯(CsF)、氟化钠(NaF)、氟化钙(CaF 2)、8-羟基喹啉铝(Alq 3)、8-羟基喹啉锂(Liq)、8-羟基喹啉镓、双[2-(2-羟基苯基-1)-吡啶]铍、2-(4-二苯基)-5-(4-叔丁苯基)-1,3,4-噁二唑(PBD)。
例如,该第一电极的材料可以为透明导电材料,该透明导电材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
例如,该第二电极的材料包括镁、铝、锂单金属或者镁铝合金(MgAl)、锂铝合金(LiAl)等。
例如,第一电极为阳极,第二电极为阴极。
需要说明的是,上述第一电极和第二电极的材料和结构只是本公开的实施例中的一个示例,第一电极和第二电极还可以由其他的材料制备而成,根据第一电极和第二电极的材料的不同,可以分为单面出光型量子点器件和双面出光型量子点器件,当阳极和阴极中一个电极的材料为不透光或半透光材料时,为单面出光型量子点器件,当阳极和阴极的材料均为透光材料和/或半透光材料时,为双面出光型量子点器件。
根据需要,可以选择第一电极和第二电极的材料以分别适用于顶出光型、底出光型和双面出光型,本公开的实施例对第一电极和第二电极材料的 选择不作限制。
例如,在图8中,该第一颜色量子点层203、第二颜色量子点层204、第三颜色量子点层206、第一辅助层205和第二辅助层207的相关特征可以参见上述中的相关描述,在此不再赘述。
例如,图9为本公开至少一实施例提供的又一种电致发光器件的截面结构示意图,如图9所示,该电致发光器件300包括上述任一实施例中的显示基板200,且该电致发光器件300还包括:层叠设置在衬底基板201上的第一电极208和第一功能层209,该第一电极208整面设置在衬底基板201上,该第一功能层209设置在第一电极208的远离衬底基板201的一侧,该第一功能层209设置在多个子像素区2022中,且在第一子像素区2022a中,该第一功能层209在第一颜色量子点层203和衬底基板201之间;在第二子像素区2022b中,该第一功能层209在第二颜色量子点层204和衬底基板201之间;以及在第三子像素区2022c中,该第一功能层209在第三颜色量子点层206和衬底基板201之间。
例如,如图9所示,该电致发光器件300还包括:设置在多个子像素区2022中且设置在第一颜色量子点层203、第二颜色量子点层204和第三颜色量子点层206的远离衬底基板201一侧的第二功能层210、第三功能层211和第二电极212,该第三功能层211在第二功能层210的远离衬底基板201的一侧,且该第二电极212在第三功能层211的远离衬底基板201的一侧,即该第一电极208是整面形成的,在不同的子像素区2022中的第二电极212是相互间隔开的,从而使得第一子像素区2022a中的第一颜色量子点层203能够发射第一颜色的光线,第二子像素区2022b中的第二颜色量子点层204能够发射第二颜色的光线,第三子像素区2022c中的第三颜色量子点层206能够发射第三颜色的光线,第一颜色的光线、第二颜色的光线以及第三颜色的光线具有不同的颜色,从而使得从各个子像素区2022中出射的光线的纯度更高。
例如,在图9中,该第一颜色量子点层203、第二颜色量子点层204、第三颜色量子点层206、第一辅助层205和第二辅助层207的相关特征可以参见上述中的相关描述,在此不再赘述。
例如,在一个示例中,该第一功能层209为电子传输层,该第二功能层210为空穴传输层,该第三功能层211为空穴注入层。关于该电子传输层、 空穴传输层、空穴注入层、第一电极以及第二电极的材料不受特别限制,可以参见上述图8中的相关描述,本领域技术人员可以根据量子点电致发光器件上述结构的常用材料进行选择。
本公开至少一实施例还提供一种电致发光器件的制备方法,该制备方法包括:提供衬底基板;在衬底基板上形成像素界定层,该像素界定层包括多个开口以形成相互间隔的多个子像素区,该多个子像素区至少包括第一子像素区和第二子像素区,在第一子像素区中形成第一颜色量子点层;在第二子像素区中形成第二颜色量子点层,该制备方法还包括:在形成第一颜色量子点层之后并且在形成第二颜色量子点层之前形成第一辅助层,该第一辅助层至少包括相互间隔的第一部分和第二部分,第一部分设置在第一颜色量子点层的远离衬底基板的一侧;第二部分设置在第二颜色量子点层的靠近衬底基板的一侧。
例如,图10为本公开至少一实施例提供的一种电致发光器件的制备过程流程图,如图10所示,该制备方法包括如下步骤。
S11、提供衬底基板。
例如,该衬底基板包括玻璃基板、柔性衬底基板等透明绝缘基板,该衬底基板的材料还可以是其他适合的材料,本公开的实施例对此不作限定。
S12、在衬底基板上形成像素界定层,该像素界定层包括多个开口以形成相互间隔的多个子像素区,该多个子像素区至少包括第一子像素区和第二子像素区。
例如,形成像素界定层的过程包括:在衬底基板上沉积像素界定层的材料,然后在像素界定层的材料上施加光刻胶材料,采用掩膜板对光刻胶材料进行曝光、显影以形成光刻胶图案,然后以光刻胶图案为掩膜对像素界定层的材料进行刻蚀以形成像素界定层,该像素界定层的材料被刻蚀的部分形成多个开口,并在多个开口对应的位置形成多个子像素区,且该多个子像素区相互间隔开,以使得其至少包括相互间隔的第一子像素区和第二子像素区。
S13、在第一子像素区中形成第一颜色量子点层。
例如,在第一子像素区中形成第一颜色量子点层可以包括:在多个子像素区中施加第一颜色量子点层的材料以形成第一颜色量子点膜,然后对该第一颜色量子点膜进行构图工艺以形成第一颜色量子点层。
例如,对第一颜色量子点膜进行构图工艺包括采用掩膜板对第一颜色量 子点膜的非曝光区域进行遮挡,例如,对第二子像素区和第三子像素区进行遮挡,并对待曝光区域(第一子像素区)进行曝光使得第一子像素区内的第一颜色量子点材料交联,并完成显影的过程,并去除第二子像素区和第三子像素区中的第二颜色量子点材料,从而形成图案化的第一颜色量子点层。
例如,该第一颜色量子点层包括第一颜色量子点的材料,该第一颜色量子点层中包括的增稠剂、偶联剂和促进剂可以参见上述中的相关描述,在此不再赘述。
S14、形成第一辅助层。
例如,该第一辅助层具有电子传输的特性,且该第一辅助层与位于其上的未交联的量子点材料之间的连接力弱,使得该未交联的量子点材料更容易被清洗掉,从而可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,进而可以避免混色的问题,以提高量子点电致发光器件的色域。
例如,该第一辅助层的结构和材料可以参见上述中的相关描述,在此不再赘述。
S15、在第二子像素区中形成第二颜色量子点层。
例如,在第二子像素区中形成第二颜色量子点层可以包括:在多个子像素区中施加第二颜色量子点层的材料以形成第二颜色量子点膜,然后对该第二颜色量子点膜进行构图工艺以形成第二颜色量子点层。
例如,对第二颜色量子点膜进行构图工艺包括采用掩膜板对第二颜色量子点膜的非曝光区域进行遮挡,例如,对第一子像素区和第三子像素区进行遮挡,并对待曝光区域(第二子像素区)进行曝光使得第二子像素区内的第二颜色量子点材料交联,并完成显影的过程,并去除第一子像素区和第三子像素区中的第二颜色量子点材料,从而形成图案化的第二颜色量子点层。
例如,该第二颜色量子点层包括第二颜色量子点的材料,该第二颜色量子点层中包括的增稠剂、偶联剂和促进剂可以参见上述中的相关描述,在此不再赘述。
例如,在一个示例中,在形成第一颜色量子点层之前,该方法还包括:在衬底基板上形成第一功能层,且在第二子像素区和第三子像素区中该第一功能层和第一辅助层相互贴合。即该第一功能层最先形成,然后形成第一颜色量子点层,接着形成第一辅助层,后续再形成第二颜色量子点层和第三颜色量子点层。
例如,该第一功能层为电子传输层,该电子传输层可以对电子进行传输,该电子传输层的材料可以参见上述中的相关描述,在此不再赘述。
例如,在一个示例中,该第一辅助层和第一功能层的材料相同,例如,该第一辅助层和第一功能层的材料均为氧化锌,且在垂直于衬底基板的主表面的方向上,该第一功能层的厚度为第一辅助层的厚度的4~5倍,例如,该第一辅助层为第一功能层的厚度的4倍、4.2倍、4.4倍、4.6倍、4.8倍或者5倍。
例如,在一个示例中,该第一颜色量子点层的厚度为第一辅助层的厚度的4~5倍,例如,该第一颜色量子点层的厚度为第一辅助层的厚度的4倍、4.2倍、4.4倍、4.6倍、4.8倍或者5倍。
例如,在一个示例中,该第一辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成该第一辅助层。
例如,该第一辅助层的材料包括氧化锌、氧化锡等电子传输型氧化物,或者包括氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡,本公开的实施例对此不作限定。
例如,经过显影过程后,未曝光的第二颜色量子点与第一辅助层(例如,溅射氧化锌)的作用力小,且第二颜色量子点在溅射氧化锌上的残留少,从而使得第二颜色量子点在第一子像素区中残留的少。
例如,该第一颜色量子点层包括第一颜色量子点,形成该第一辅助层包括将形成有第一颜色量子点层的衬底基板放置在第一溶液中浸泡,例如,浸泡的时间为5~30分钟,该第一溶液包括含有全氟末端的第一基团以及可与第一颜色量子点的末端配位的第二基团。
例如,在一个示例中,该第一基团包括-C(CF 3) 3、-C nF( 2n+1)或者
Figure PCTCN2022076914-appb-000019
该第二基团包括巯基、羧基或者氨基。
例如,在一个示例中,该第一溶液还包括连接第一基团和第二基团的第三基团,第三基团包括吸电子基团或者烷基链。例如,吸电子基团是当取代基取代苯环上的氢后,苯环上电子云密度降低的基团;反之,苯环上电子云密度升高的叫供电子基团。一个基团到底是吸电子基团还是供电子基团,得 看它对苯环的诱导效应、共轭效应、超共轭效应的总和。选择吸电子基团可以在一定程度上降低电子的传输,防止漏电,有利于载流子的平衡。当第二基团为含有双键、三键、环氧、酯键等光敏性基团时,此配体承担量子点的光敏功能。
例如,在一个示例中,该吸电子基团包括芳环、烯基、炔基、芳胺基、环氧基和酯基中的至少之一。
例如,在一个示例中,该第一辅助层的材料的通式均包括PCF 2nMA、
Figure PCTCN2022076914-appb-000020
中的至少之一,A为-SH、-COOH和-NH 2中的至少之一;M为
Figure PCTCN2022076914-appb-000021
X小于或者等于6;P包括
Figure PCTCN2022076914-appb-000022
Figure PCTCN2022076914-appb-000023
中的至少之一。
例如,在一个示例中,该第一辅助层的材料包括
Figure PCTCN2022076914-appb-000024
Figure PCTCN2022076914-appb-000025
Figure PCTCN2022076914-appb-000026
Figure PCTCN2022076914-appb-000027
中的至少之一。
例如,在一个示例中,形成该第一辅助层包括形成层叠的第一层结构和第二层结构,第一层结构在第二层结构的靠近该衬底基板的一侧,且形成第一层结构包括:采用磁控溅射的方式在衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一,形成该第二层结构包括将形成有第一层结构的衬底基板放置在硅烷偶联剂的溶液中浸泡,例如,浸泡的时间为5~30分钟,该硅烷偶联剂的溶液包括含有全氟末端的第一基团,该第一基团包括
Figure PCTCN2022076914-appb-000028
中的至少之一。
例如,该第一层结构的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一。例如,包括氧化锌、氧化锡等电子传输型氧化物,或者包括氮化镓、氮化铝、氧化钼、氧化镍、氧化锆、氧化钒等空穴型氧化物,或者包括掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有 镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一,本公开的实施例对此不作限定。
例如,该第二层结构的材料的通式包括:
Figure PCTCN2022076914-appb-000029
其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
Figure PCTCN2022076914-appb-000030
中的至少之一。
例如,在一个示例中,至少在第二颜色量子点层的远离衬底基板的一侧形成第二辅助层,在第二辅助层的远离该衬底基板的一侧并在第三子像素区形成第三颜色量子点层,该第一辅助层和第二辅助层的材料相同或者不同。
例如,该第二辅助层的结构可以参见上述中的相关描述,在此不再赘述。
例如,在一个示例中,该第二辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成该第二辅助层。
例如,该第二辅助层的材料包括氧化锌、氧化锡等电子型传输材料,或者氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒等空穴型传输材料,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡。
例如,该第二颜色量子点层包括第二颜色量子点,形成第二辅助层包括将形成有该第一颜色量子点层的衬底基板放置在第二溶液中浸泡,该第二溶液包括含有全氟末端的第三基团以及可与第二颜色量子点的末端配位的第四基团。
例如,在一个示例中,该第三基团包括-C(CF 3) 3、-C nF( 2n+1)或者
Figure PCTCN2022076914-appb-000031
该第四基团包括巯基、羧基或者氨基。
例如,在一个示例中,该第二溶液还包括连接第三基团和第四基团的第五基团,该第五基团包括吸电子基团或者烷基链,例如,由该第二溶液形成 的第二辅助层的材料的通式包括
Figure PCTCN2022076914-appb-000032
Figure PCTCN2022076914-appb-000033
中的至少之一,A为-SH、-COOH和-NH 2中的至少之一;M为
Figure PCTCN2022076914-appb-000034
X小于或者等于6;P包括
Figure PCTCN2022076914-appb-000035
中的至少之一。
例如,在一个示例中,形成该第二辅助层包括形成层叠的第三层结构和第四层结构,第三层结构在第四层结构的靠近衬底基板的一侧,且形成第三层结构包括:采用磁控溅射的方式在衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一。
例如,形成第四层结构包括将形成有第三层结构的衬底基板放置在硅烷偶联剂的溶液中浸泡,该硅烷偶联剂的溶液包括含有全氟末端的第三基团,例如,该第三基团包括
Figure PCTCN2022076914-appb-000036
中的至少之一。
例如,在一个示例中,该第三层结构的材料包括氧化锌、氧化锡等电子传输型氧化物,或者包括氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒等空穴传输型氧化物,或者包括掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,或者包括掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡。
例如,该第一辅助层和第二辅助层的材料不同,第一辅助层的材料包括电子传输型氧化物,第二辅助层的材料包括空穴传输型氧化物。
例如,图11为本公开至少一实施例提供的再一种电致发光器件的制备过程流程图,如图11所示,该制备方法包括如下步骤。
S21、提供衬底基板。
例如,该衬底基板的材料可以参见上述中的相关描述,本公开的实施例对此不作限定。
S22、在衬底基板上形成像素界定层,该像素界定层包括多个开口以形成相互间隔的多个子像素区,该多个子像素区至少包括第一子像素区、第二子像素区和第三子像素区。
例如,形成像素界定层的过程可以参见上述关于图9的相关描述,在此不再赘述。
S23、在第一子像素区、第二子像素区和第三子像素区中分别形成第一功能层。
例如,该第一功能层为电子传输层。例如,该电子传输层可以是由金属氧化物形成的,具体的,构成电子传输层的材料可以包括氧化锌、氧化镍以及氧化钛的至少之一。例如,该电子传输层的材料还可以包括4,7-二苯基-1,10-邻二氮杂菲(BPhen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBI)和n型掺杂(n-doping)电子传输材料中的任意一种,但不限于此。n型掺杂电子传输材料例如包括2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP):Li 2CO 3,8-羟基喹啉铝(Alq3):Mg,TPBI:Li等,但本公开的实施例不限于此。
例如,该第一功能层可以是通过旋涂并退火的方式形成的,或者还可以采用蒸镀的方式在衬底基板上形成该第一功能层。
需要说明的是,在形成第一功能层之前,还可以在衬底基板上形成电子注入层,该电子注入层的材料可以参见上述中的相关描述,在此不再赘述。
S24、在第一子像素区中形成第一颜色量子点层。
例如,在第一子像素区中形成第一颜色量子点层可以包括:在多个子像素区中施加第一颜色量子点层的材料以形成第一颜色量子点膜,然后对该第一颜色量子点膜进行构图工艺以形成第一颜色量子点层。
例如,对第一颜色量子点膜进行构图工艺包括采用掩膜板对第一颜色量子点膜的非曝光区域进行遮挡,例如,对第二子像素区和第三子像素区进行遮挡,并对待曝光区域(第一子像素区)进行曝光使得第一子像素区内的第一颜色量子点材料交联,并完成显影的过程,并去除第二子像素区和第三子像素区中的第二颜色量子点材料,从而形成图案化的第一颜色量子点层。
例如,该第一颜色量子点层包括第一颜色量子点的材料,该第一颜色量 子点层中包括的增稠剂、偶联剂和促进剂可以参见上述中的相关描述,在此不再赘述。
例如,后续可以在第二子像素区和第三子像素区中分别形成第二颜色量子点层和第三颜色量子点层。
S25、形成第一辅助层。
例如,该第一辅助层具有电子传输的特性,且该第一辅助层与位于其上的未交联的量子点材料之间的连接力弱,使得该未交联的量子点材料更容易被清洗掉,从而可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,从而可以避免混色的问题,以提高量子点电致发光器件的色域。
例如,该第一辅助层是整层形成的,该第一辅助层形成在第一子像素区、第二子像素区和第三子像素区中,并形成在像素界定层的远离衬底基板的一侧。
例如,该第一辅助层的结构和材料可以参见上述中的相关描述,在此不再赘述。
S26、在第二子像素区中形成第二颜色量子点层。
例如,在第二子像素区中形成第二颜色量子点层可以包括:在多个子像素区中施加第二颜色量子点层的材料以形成第二颜色量子点膜,然后对该第二颜色量子点膜进行构图工艺以形成第二颜色量子点层。
例如,对第二颜色量子点膜进行构图工艺包括采用掩膜板对第二颜色量子点膜的非曝光区域进行遮挡,例如,对第一子像素区和第三子像素区进行遮挡,并对待曝光区域(第二子像素区)进行曝光使得第二子像素区内的第二颜色量子点材料交联,并完成显影的过程,并去除第一子像素区和第三子像素区中的第二颜色量子点材料,从而形成图案化的第二颜色量子点层。
例如,该第二颜色量子点层包括第二颜色量子点的材料,该第二颜色量子点层中包括的增稠剂、偶联剂和促进剂可以参见上述中的相关描述,在此不再赘述。
S27、形成第二辅助层。
例如,该第二辅助层与位于其上的未交联的量子点材料之间的连接力弱,使得该未交联的量子点材料更容易被清洗掉,从而可以避免后形成的第三颜色量子点材料残留在第二颜色量子点层和第一颜色量子点层上,从而可以避免混色的问题,以提高量子点电致发光器件的色域。
例如,该第二辅助层是整层形成的,该第二辅助层形成在第一子像素区、第二子像素区和第三子像素区中,并形成在像素界定层的远离衬底基板的一侧,即在像素界定层的远离衬底基板的一侧,该第一辅助层和第二辅助层依次层叠设置。
例如,该第二辅助层的结构和材料可以参见上述中的相关描述,在此不再赘述。
S28、在第三子像素区中形成第三颜色量子点层。
例如,在第三子像素区中形成第三颜色量子点层可以包括:在多个子像素区中施加第三颜色量子点层的材料以形成第三颜色量子点膜,然后对该第三颜色量子点膜进行构图工艺以形成第三颜色量子点层。
例如,对第三颜色量子点膜进行构图工艺包括采用掩膜板对第三颜色量子点膜的非曝光区域进行遮挡,例如,对第一子像素区和第二子像素区进行遮挡,并对待曝光区域(第三子像素区)进行曝光使得第三子像素区内的第三颜色量子点材料交联,并完成显影的过程,并去除第一子像素区和第二子像素区中的第三颜色量子点材料,从而形成图案化的第三颜色量子点层。
例如,该第三颜色量子点层包括第三颜色量子点的材料,该第三颜色量子点层中包括的增稠剂、偶联剂和促进剂可以参见上述中的相关描述,在此不再赘述。
S29、在第一颜色量子点层、第二颜色量子点层和第三颜色量子点层的远离衬底基板的一侧依次形成第二功能层和第三功能层。
例如,形成第二功能层和第三功能层的方式包括直接采用蒸镀的方式形成。
例如,在一个示例中,该第二功能层为空穴传输层,该第三功能层为空穴注入层,该第二功能层和第三功能层的材料可以参见上述中的相关描述,在此不再赘述。
例如,在衬底基板上形成像素界定层之前还可以先在衬底基板上形成第一电极,该第一电极可以是整面形成的。
例如,该第一电极的材料包括透明的导电金属氧化物或者导电聚合物,该导电金属氧化物可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
例如,在形成完第二功能层和第三功能层之后,还可以在第三功能层的远离衬底基板的一侧形成第二电极,该第二电极的材料包括导电金属或者导电金属氧化物。例如,该第二电极的材料包括镁、铝、锂单金属或者镁铝合金(MgAl)、锂铝合金(LiAl)等。
例如,该第一电极为阳极,第二电极为阴极。
例如,在另一个示例中,也可以是该第一电极分别形成在第一子像素区、第二子像素区和第三子像素区中,该第二电极整面形成。
例如,该第一电极和第二电极的结构可以参见上述中的相关描述,在此不再赘述。
例如,图12为本公开至少一实施例提供的一种电致发光器件的制备过程示意图,如图12所示,在衬底基板201上形成有第一电极208,在第一电极208上形成像素界定层202,该像素界定层202包括多个开口以形成相互间隔的第一子像素区2022a、第二子像素区2022b和第三子像素区2022c,第一功能层209和第一颜色量子点材料203’形成在第一子像素区2022a、第二子像素区2022b和第三子像素区2022c中,采用第一掩膜板2031对第二子像素区2022b和第三子像素区2022c进行遮挡,以使得光线照射至第一子像素区2022a,以使得第一子像素区2022a中的第一颜色量子点材料203’发生交联反应,即完成对第一子像素区2022a中的第一颜色量子点材料203’的曝光过程,并对未发生交联反应的第一颜色量子点材料203’进行清洗,以去除位于第二子像素区2022b和第三子像素区2022c中的第一颜色量子点材料203’,即形成第一颜色量子点层203;在第一子像素区2022a、第二子像素区2022b和第三子像素区2022c,以及在像素界定层202的远离衬底基板201的一侧施加第一辅助层205,即该第一辅助层205是整层形成的;在第一子像素区2022a、第二子像素区2022b和第三子像素区2022c中旋涂第二颜色量子点材料204’,对第二颜色量子点材料204’进行图案化的过程包括:采用第二掩膜板2032对第一子像素区2022a和第三子像素区2022c进行遮挡,以使得光线照射至第二子像素区2022b,以使得该第二子像素区2022b中的第二颜色量子点材料204’发生交联反应,即完成对第二颜色量子点材料204’的曝光过程,并对未发生交联反应的第二颜色量子点材料204’进行清洗,以去除位于第一子像素区2022a和第三子像素区2022c中的第二颜色量子点材料204’,即形成第二颜色量子点层204;在第一子像素区2022a、 第二子像素区2022b和第三子像素区2022c,以及在像素界定层202的远离衬底基板201的一侧施加第二辅助层207,即该第二辅助层207是整层形成的;在第一子像素区2022a、第二子像素区2022b和第三子像素区2022c中旋涂第三颜色量子点材料206’,对第三颜色量子点材料206’进行图案化的过程包括:采用第三掩膜板2033对第一子像素区2022a和第二子像素区2022b进行遮挡,以使得光线照射至第三子像素区2022c,以使得该第三子像素区2022c中的第三颜色量子点材料发生交联反应,即完成对第三颜色量子点材料206’的曝光过程,并对未发生交联反应的第三颜色量子点材料206’进行清洗,以去除位于第一子像素区2022a和第二子像素区2022b中的第三颜色量子点材料206’,即形成第三颜色量子点层206。
需要说明的是,尽管图12中未示出,但第一颜色量子点材料203’、第二颜色量子点材料204’和第三颜色量子点材料206’也形成在像素界定层202上。
例如,在一个示例中,该第一颜色量子点层203、第二颜色量子点层204和第三颜色量子点层206可以分别为红色量子点层、绿色量子点层和蓝色量子点层,本公开的实施例对此不作限定。该第一辅助层205可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,该第二辅助层207可以避免后形成的第三颜色量子点材料残留在第二颜色量子点层和第一颜色量子点层上,进而可以避免混色的问题,以提高量子点电致发光器件的色域。
例如,图13为在400nm激发光的照射下空白玻璃、设置有量子点(不含MPA配体)的空白玻璃、设置有氧化锌和量子点(不含MPA配体)的空白玻璃以及设置有氧化锌和量子点(含MPA配体)的空白玻璃的发射峰的曲线图,如图13所示,在400nm的激发光的照射下,空白玻璃无发射峰;在400nm激发光的照射下,空白玻璃上设置有量子点(不含MPA配体)的情形,具有发射峰;在400nm激发光的照射下,空白玻璃上设置有氧化锌和量子点(MPA配体)的情形,无发射峰,这说明量子点的表面具有MPA配体时且含有氧化锌的情况下,后形成的量子点材料在在线形成的量子点层上基本无残留。需要说明的是,该MPA配体为巯基丙酸配体(Mercaptopropionic acid)。
例如,图14为红色量子点(不含MPA配体)在溅射ZnO后且在显影后在400nm激发光的照射下形成的发射峰的示意图,红色量子点(不含MPA 配体)在溅射ZnO沉积后,显影(洗去红色量子点),然后再沉积绿色量子点之后制备器件时,器件发光后检测出红色发光峰,表示红色量子点有残留,未显影完全。与之形成对比的是,红色量子点(含MPA配体)在溅射ZnO沉积后,显影(洗去红色量子点),然后再沉积绿色量子点之后制备器件时,器件发光后未检测出红色发光峰,表示红色量子点无残留,显影完全。
例如,图15为红色量子点(含MPA配体)在溅射ZnO后,显影(洗去红色量子点),然后沉积绿色量子点之后在400nm激发光的照射下形成的发射峰的示意图,从图15中可以看出,器件发光后未检测出红色发光峰,表示红色量子点无残留,且显影完全。
例如,图16为绿色量子点(含MPA配体)在溅射ZnO后且在显影后在400nm激发光的照射下形成的发射峰的示意图,从图16中可以看出,绿色量子点在溅射ZnO沉积后,制备器件,器件发光后未检测出红色信号。
例如,图17为绿色量子点在溅射ZnO沉积后,曝光交联,然后沉积红色量子点(不含MPA配体)并进行显影(洗去红色量子点)后发射光的示意图,如图17所示,可以检测出红色信号,证明交联的绿色量子点上有红色量子点残留。
本公开至少一实施例提供的显示基板、电致发光器件及其制备方法,具有以下至少一项有益技术效果:
(1)在本公开至少一实施例提供的显示基板中,第一辅助层可以避免后形成的第二颜色量子点材料残留在第一颜色量子点层上,进而可以避免混色的问题,以提高最终形成的包括该显示基板的电致发光器件的色域。
(2)在本公开至少一实施例提供的显示基板中,第二辅助层可以避免后形成的第三颜色量子点材料残留在第二颜色量子点层和第一颜色量子点层上,进而可以避免混色的问题,以提高最终形成的包括该显示基板的电致发光器件的色域。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种显示基板,包括:
    衬底基板;
    设置在所述衬底基板上的像素界定层,其中,所述像素界定层包括多个开口,所述多个开口对应多个子像素区,所述多个子像素区至少包括第一子像素区和第二子像素区;
    第一颜色量子点层,设置在所述第一子像素区中;
    第二颜色量子点层,设置在所述第二子像素区中;
    第一辅助层,至少包括相互间隔的第一部分和第二部分,所述第一部分设置在所述第一颜色量子点层的远离所述衬底基板的一侧;所述第二部分设置在所述第二颜色量子点层的靠近所述衬底基板的一侧。
  2. 根据权利要求1所述的显示基板,其中,所述第一部分和所述第二部分的厚度相同且材料相同。
  3. 根据权利要求2所述的显示基板,其中,所述第一部分和所述第二部分的材料为金属氧化物。
  4. 根据权利要求3所述的显示基板,其中,所述金属氧化物的表面粗糙度小于3nm。
  5. 根据权利要求1~4中任一项所述的显示基板,其中,所述第一辅助层还包括第三部分,所述第三部分设置在所述像素界定层的远离所述衬底基板的一侧,且所述第一部分、所述第二部分和所述第三部分之间均不连接。
  6. 根据权利要求5所述的显示基板,还包括第二辅助层和设置在所述第三子像素区中的第三颜色量子点层,其中,
    所述第二辅助层至少设置在所述第二颜色量子点层的远离所述衬底基板的一侧。
  7. 根据权利要求6所述的显示基板,其中,所述第一辅助层和所述第二辅助层的材料不同。
  8. 根据权利要求7所述的显示基板,其中,所述第一辅助层的材料包括电子传输型氧化物,所述第二辅助层的材料包括空穴传输型氧化物,且至少部分所述第一辅助层和所述第一颜色量子点层接触,至少部分所述第二辅助层和所述第三颜色量子点层接触。
  9. 根据权利要求8所述的显示基板,其中,所述第一颜色量子点层为蓝色量子点层,所述第二颜色量子点层为红色量子点层和绿色量子点层中的一种,所述第三颜色量子点层为所述绿色量子点层和所述红色量子点层中的另外一种。
  10. 根据权利要求6~9中任一项所述的显示基板,其中,所述第一颜色量子点层包括的第一颜色量子点,所述第二颜色量子点层包括的第二颜色量子点,以及所述第三颜色量子点层包括的第三颜色量子点均包括量子点本体以及和所述量子点本体连接的配体,所述配体的结构均为A-B-C型,且A为与所述量子点本体连接的配位基团;B为光敏基团光照后的反应物;C为-COOH。
  11. 根据权利要求6~9中任一项所述的显示基板,其中,所述第一颜色量子点层包括的第一颜色量子点,所述第二颜色量子点层包括的第二颜色量子点,以及所述第三颜色量子点层包括的第三颜色量子点均包括量子点本体以及和所述量子点本体连接的配体,所述配体的结构均为A-B型配体和A-C型配体的混合,且A为与所述量子点本体连接的配位基团;B为光敏基团光照后的反应物;C为-COOH。
  12. 根据权利要求6~11中任一项所述的显示基板,其中,所述第二辅助层至少包括相互间隔的第四部分、第五部分和第六部分,所述第四部分设置在所述第一部分的远离所述衬底基板的一侧,且和所述第一部分至少部分接触;所述第五部分设置在所述第二颜色量子点层的远离所述衬底基板的一侧;所述第六部分设置在所述第三颜色量子点层的靠近所述衬底基板的一侧。
  13. 根据权利要求12所述的显示基板,其中,所述第二辅助层还包括与所述第四部分、所述第五部分和所述第六部分均间隔的第七部分,所述第七部分设置在所述第三部分的远离所述衬底基板的一侧,且和所述第三部分至少部分接触。
  14. 根据权利要求13所述的显示基板,其中,所述第一辅助层还包括与所述第一部分、所述第二部分和所述第三部分均相互间隔的第八部分,所述第八部分设置在所述第六部分的靠近所述衬底基板的一侧。
  15. 根据权利要求6~14中任一项所述的显示基板,其中,所述第一辅助层和所述第二辅助层的材料均包括电子传输型氧化物和空穴传输型氧化 物中的至少之一。
  16. 根据权利要求15所述的显示基板,其中,所述第一辅助层和所述第二辅助层的材料均包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
  17. 根据权利要求6~14中任一项所述的显示基板,其中,
    所述第一辅助层包括层叠的第一层结构和第二层结构,所述第一层结构在所述第二层结构的靠近所述衬底基板的一侧,
    所述第一层结构的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一;
    所述第二层结构的通式包括:
    Figure PCTCN2022076914-appb-100001
    其中,A为-(CH 2)nCH 3,n小于或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
    Figure PCTCN2022076914-appb-100002
    Figure PCTCN2022076914-appb-100003
    中的至少之一。
  18. 根据权利要求17所述的显示基板,其中,所述第二辅助层包括层叠的第三层结构和第四层结构,所述第三层结构在所述第四层结构的靠近所述衬底基板的一侧,
    所述第三层结构的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一;
    所述第四层结构的通式包括:
    Figure PCTCN2022076914-appb-100004
    其中,A为-(CH 2)nCH 3,n小于 或者等于4;M为-(CH 2)x,x小于或者等于6;P包括
    Figure PCTCN2022076914-appb-100005
    Figure PCTCN2022076914-appb-100006
    中的至少之一。
  19. 根据权利要求18所述的显示基板,其中,所述第一层结构和所述第三层结构的材料均包括氧化锌,氧化锡,氮化镓,氮化铝,氧化钼,氧化镍,氧化锆,氧化钒,掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锌,以及掺杂有镁、锡、镓、铟、锆、铪、钇、锂或者铝的氧化锡中的至少之一。
  20. 一种电致发光器件,包括权利要求1~19中任一项所述的显示基板,以及层叠设置在所述衬底基板上的第一电极和第一功能层,其中,所述第一电极设置在所述第一功能层的靠近所述衬底基板的一侧;
    所述第一功能层和所述第一电极均层叠设置在多个所述子像素区中,且层叠设置的所述第一功能层和所述第一电极在所述第一颜色量子点层和所述衬底基板之间,在所述第二颜色量子点层和所述衬底基板之间,以及在所述第三颜色量子点层和所述衬底基板之间。
  21. 根据权利要求20所述的电致发光器件,其中,所述第一辅助层和所述第一功能层的材料相同,且在垂直于所述衬底基板的主表面的方向上,所述第一功能层的厚度为所述第一辅助层的厚度的4~5倍。
  22. 根据权利要求20或21所述的电致发光器件,其中,所述第一颜色量子点层的厚度为所述第一辅助层的厚度的4~5倍。
  23. 一种电致发光器件的制备方法,包括:
    提供衬底基板;
    在所述衬底基板上形成像素界定层,所述像素界定层包括多个开口以形成相互间隔的多个子像素区,所述多个子像素区至少包括第一子像素区和第二子像素区;
    在所述第一子像素区中形成第一颜色量子点层;
    在所述第二子像素区中形成第二颜色量子点层,
    所述方法还包括:在形成所述第一颜色量子点层之后并且在形成所述第二颜色量子点层之前形成第一辅助层,其中,所述第一辅助层至少包括相互间隔的第一部分和第二部分,所述第一部分设置在所述第一颜色量子点层的远离所述衬底基板的一侧;所述第二部分设置在所述第二颜色量子点层的靠近所述衬底基板的一侧。
  24. 根据权利要求23所述的制备方法,其中,在形成所述第一颜色量子点层之前,所述方法还包括:在所述衬底基板上形成第一功能层,且在所述第二子像素区和所述第三子像素区中所述第一功能层和所述第一辅助层相互贴合。
  25. 根据权利要求23或24所述的制备方法,其中,所述第一辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成所述第一辅助层。
  26. 根据权利要求23或24所述的制备方法,其中,形成所述第一辅助层包括形成层叠的第一层结构和第二层结构,所述第一层结构在所述第二层结构的靠近所述衬底基板的一侧,且形成所述第一层结构包括:采用磁控溅射的方式在所述衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一;
    形成所述第二层结构包括将形成有所述第一层结构的所述衬底基板放置在硅烷偶联剂的溶液中浸泡,所述硅烷偶联剂的溶液包括含有全氟末端的第一基团。
  27. 根据权利要求24或25所述的制备方法,其中,
    至少在所述第二颜色量子点层的远离所述衬底基板的一侧形成第二辅助层;
    在所述第二辅助层的远离所述衬底基板的一侧并在所述第三子像素区形成第三颜色量子点层;
    所述第一辅助层和所述第二辅助层的材料不同。
  28. 根据权利要求27所述的制备方法,其中,所述第二辅助层的材料包括电子传输型氧化物和空穴传输型氧化物中的至少之一,且采用磁控溅射的方式形成所述第二辅助层。
  29. 根据权利要求27所述的制备方法,其中,形成所述第二辅助层包括形成层叠的第三层结构和第四层结构,所述第三层结构在所述第四层结构 的靠近所述衬底基板的一侧,且形成所述第三层结构包括:采用磁控溅射的方式在所述衬底基板上施加电子传输型氧化物和空穴传输型氧化物中的至少之一;
    形成所述第四层结构包括将形成有所述第三层结构的衬底基板放置在硅烷偶联剂的溶液中浸泡,所述硅烷偶联剂的溶液包括含有全氟末端的第三基团。
  30. 根据权利要求27所述的制备方法,其中,
    形成所述第一颜色量子点层包括:在所述第一功能层上沉积第一颜色量子点材料,并在所述第一子像素区内使所述第一颜色量子点材料交联、显影,以形成所述第一颜色量子点层;
    形成所述第二颜色量子点层包括:在所述第一功能层上沉积第二颜色量子点材料,并在所述第二子像素区内使所述第二颜色量子点材料交联、显影,以形成所述第二颜色量子点层;
    形成所述第三颜色量子点层包括:在所述第一功能层上沉积第三颜色量子点材料,并在所述第三子像素区内使所述第三颜色量子点材料交联,显影,以形成所述第三颜色量子点层。
  31. 根据权利要求28~30中任一项所述的制备方法,其中,所述第一辅助层的材料包括电子传输型氧化物,所述第二辅助层的材料包括空穴传输型氧化物,且至少部分所述第一辅助层和所述第一颜色量子点层接触,至少部分所述第二辅助层和所述第三颜色量子点层接触。
  32. 根据权利要求27所述的制备方法,其中,
    在形成所述第一颜色量子点层、所述第二颜色量子点层和所述第三颜色量子点层之后,还包括在所述第一颜色量子点层、所述第二颜色量子点层和所述第三颜色量子点层的远离所述衬底基板的一侧依次形成第二功能层和第三功能层。
  33. 根据权利要求32所述的制备方法,还包括:
    在形成所述第一功能层之前在所述衬底基板上形成第一电极,其中,所述第一电极的材料包括透明的导电金属氧化物或者导电聚合物;
    在所述第三功能层的远离所述衬底基板的一侧形成第二电极,所述第二电极的材料包括导电金属或者导电金属氧化物。
  34. 根据权利要求27~33中任一项所述的制备方法,其中,在所述像素 界定层的远离所述衬底基板的表面依次形成有所述第一辅助层和所述第二辅助层。
PCT/CN2022/076914 2022-02-18 2022-02-18 显示基板、电致发光器件及其制备方法 WO2023155162A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000217.5A CN116941346A (zh) 2022-02-18 2022-02-18 显示基板、电致发光器件及其制备方法
PCT/CN2022/076914 WO2023155162A1 (zh) 2022-02-18 2022-02-18 显示基板、电致发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076914 WO2023155162A1 (zh) 2022-02-18 2022-02-18 显示基板、电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2023155162A1 true WO2023155162A1 (zh) 2023-08-24

Family

ID=87577244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076914 WO2023155162A1 (zh) 2022-02-18 2022-02-18 显示基板、电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN116941346A (zh)
WO (1) WO2023155162A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449111A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 具有结合层的量子点发光二极管基板及其制备方法
JP2018022133A (ja) * 2016-05-30 2018-02-08 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. フォトルミネセンス表示装置およびその製造方法
US20180219183A1 (en) * 2017-02-02 2018-08-02 Samsung Display Co., Ltd. Organic light emitting diode display device
KR20180099991A (ko) * 2017-02-28 2018-09-06 한국생산기술연구원 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
CN110459691A (zh) * 2019-08-30 2019-11-15 京东方科技集团股份有限公司 显示基板及其制作方法、和显示装置
US20200388651A1 (en) * 2019-06-05 2020-12-10 Seloco Int, Inc. Display panel, method of fabricating the same and display device including the same
CN112271269A (zh) * 2020-10-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法
EP3920251A2 (en) * 2020-06-02 2021-12-08 Samsung Electronics Co., Ltd. Quantum dot device and quantum dot display device
CN113871437A (zh) * 2021-09-18 2021-12-31 深圳大学 显示器件及其制备方法和显示装置
US20220020900A1 (en) * 2020-07-17 2022-01-20 Lextar Electronics Corporation Light emitting device and module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449111A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 具有结合层的量子点发光二极管基板及其制备方法
JP2018022133A (ja) * 2016-05-30 2018-02-08 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. フォトルミネセンス表示装置およびその製造方法
US20180219183A1 (en) * 2017-02-02 2018-08-02 Samsung Display Co., Ltd. Organic light emitting diode display device
KR20180099991A (ko) * 2017-02-28 2018-09-06 한국생산기술연구원 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
US20200388651A1 (en) * 2019-06-05 2020-12-10 Seloco Int, Inc. Display panel, method of fabricating the same and display device including the same
CN110459691A (zh) * 2019-08-30 2019-11-15 京东方科技集团股份有限公司 显示基板及其制作方法、和显示装置
EP3920251A2 (en) * 2020-06-02 2021-12-08 Samsung Electronics Co., Ltd. Quantum dot device and quantum dot display device
US20220020900A1 (en) * 2020-07-17 2022-01-20 Lextar Electronics Corporation Light emitting device and module
CN112271269A (zh) * 2020-10-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法
CN113871437A (zh) * 2021-09-18 2021-12-31 深圳大学 显示器件及其制备方法和显示装置

Also Published As

Publication number Publication date
CN116941346A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN110289360B (zh) 电致发光器件、包括其的显示设备、及其形成方法
KR102611215B1 (ko) 전계 발광 소자, 및 표시 장치
KR102443644B1 (ko) 양자점 소자와 표시 장치
KR102673644B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR20190079111A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR102629349B1 (ko) 양자점 소자와 표시 장치
JP7199922B2 (ja) 量子ドット素子及び電子装置
KR102649296B1 (ko) 양자점 소자와 표시 장치
KR102572134B1 (ko) 양자점 소자와 표시 장치
KR20190074153A (ko) 전계 발광 소자, 및 표시 장치
KR20210034953A (ko) 발광소자, 발광소자의 제조 방법과 표시 장치
CN110010776B (zh) 电致发光器件、和包括其的显示器件
WO2023155162A1 (zh) 显示基板、电致发光器件及其制备方法
WO2023173417A1 (zh) 量子点混合物、量子点发光层及制作方法
KR20200059723A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
WO2023123133A1 (zh) 量子点配体、量子点膜层制备方法及量子点发光器件
US11575099B2 (en) Electroluminescent device comprising thermally activated delayed fluorescence material, and display device comprising the same
WO2023225823A1 (zh) 量子点发光器件及其制备方法
CN113130788B (zh) 复合材料、薄膜、量子点发光二极管
WO2023137668A1 (zh) 发光基板及其制备方法和发光装置
WO2024125109A1 (zh) 发光器件及其制备方法、显示装置
CN116426269A (zh) 量子点混合配体、量子点-配体体系及量子点-配体材料
CN118076133A (zh) 复合材料、组合物及其制备方法、发光器件及显示装置
CN118255788A (zh) 电子传输材料、发光器件及其制备方法
KR20230055406A (ko) 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000217.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18041083

Country of ref document: US