WO2023059072A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2023059072A1
WO2023059072A1 PCT/KR2022/015008 KR2022015008W WO2023059072A1 WO 2023059072 A1 WO2023059072 A1 WO 2023059072A1 KR 2022015008 W KR2022015008 W KR 2022015008W WO 2023059072 A1 WO2023059072 A1 WO 2023059072A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium secondary
loading amount
lithium
Prior art date
Application number
PCT/KR2022/015008
Other languages
English (en)
French (fr)
Inventor
박승원
박현우
권요한
이재욱
전찬수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280067006.3A priority Critical patent/CN118056312A/zh
Priority claimed from KR1020220127248A external-priority patent/KR20230049045A/ko
Publication of WO2023059072A1 publication Critical patent/WO2023059072A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery using silicon (Si) particles as an anode active material.
  • lithium secondary batteries are in the spotlight as an energy source for electric vehicles.
  • a lithium secondary battery generally forms an electrode assembly by interposing a separator between a positive electrode including a positive electrode active material made of a transition metal oxide containing lithium and a negative electrode including a negative electrode active material capable of storing lithium ions, and the electrode It is manufactured by inserting the assembly into a battery case, injecting a non-aqueous electrolyte serving as a medium for delivering lithium ions, and then sealing the assembly.
  • the non-aqueous electrolyte is generally composed of a lithium salt and an organic solvent capable of dissolving the lithium salt.
  • a carbon-based material such as natural graphite or artificial graphite has been mainly used as an anode active material of a lithium secondary battery.
  • the carbon-based negative electrode active material has a small capacity and a slow reaction rate with lithium, secondary batteries using the carbon-based negative electrode active material have limitations in realizing high capacity and rapid charging performance.
  • the present invention is to solve the above problems, and to provide a lithium secondary battery having excellent lifespan characteristics while implementing high capacity characteristics by applying high silicon (Si) particles as an anode active material.
  • a negative electrode comprising a negative electrode active material; a positive electrode including a positive electrode active material; a separator interposed between the cathode and anode; and an electrolyte, wherein the negative electrode active material includes silicon particles, a Si charge depth represented by the following formula (1) is 30% to 60%, and a Si discharge depth represented by the following formula (2) is 10% or more.
  • a lithium secondary battery is provided.
  • Si filling depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode)/cathode loading amount ⁇ ⁇ 100
  • the positive loading amount is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative loading amount is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is Capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 ).
  • Si discharge depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode - discharge loading amount) / cathode loading amount ⁇ ⁇ 100
  • the positive electrode loading is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative electrode loading is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is The capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 )
  • the discharge loading amount is the discharge capacity of the secondary battery at the discharge cut-off voltage as the positive electrode area value divided by
  • the lithium secondary battery according to the present invention is designed such that the Si charge depth and the Si discharge depth satisfy a specific range, and exhibits excellent lifespan characteristics despite the use of Si particles as an anode active material.
  • Si particles have excellent reactivity with lithium and capacity characteristics compared to carbon-based negative electrode active materials and/or SiOx-based negative electrode active materials, the lithium secondary battery of the present invention to which they are applied can realize excellent capacity characteristics and fast charging performance. can That is, the lithium secondary battery according to the present invention exhibits excellent capacity characteristics, lifespan characteristics, and rapid charging performance.
  • the lithium secondary battery according to the present invention may use, for example, a lithium nickel-based oxide having a Ni content of 60 mol% or more as a cathode active material, and in particular, when the Ni content is 80 mol% or more, the capacity characteristics are further improved. can make it
  • primary particle means a particle unit in which grain boundaries do not exist in appearance when observed under a 5000-fold to 20000-fold field of view using a scanning electron microscope.
  • Average particle diameter of primary particles means an arithmetic average value calculated after measuring the particle diameters of primary particles observed in a scanning electron microscope image.
  • second particles are particles formed by aggregation of a plurality of primary particles.
  • average particle diameter D 50 means a particle size based on 50% of a volume cumulative particle size distribution of particle powder to be measured (eg, positive electrode active material powder, negative electrode active material powder, etc.).
  • the average particle diameter D50 may be measured using a laser diffraction method. For example, after dispersing the powder of the particle to be measured in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000), irradiating ultrasonic waves of about 28kHz with an output of 60W, and then volume cumulative particle size After obtaining the distribution graph, it can be measured by finding the particle size corresponding to 50% of the cumulative volume.
  • a laser diffraction particle size measuring device e.g., Microtrac MT 3000
  • Si has excellent capacity characteristics and lithium reactivity compared to silicon-based negative active materials such as SiOx and SiC as well as carbon-based negative active materials such as graphite. Therefore, when Si is applied as an anode active material, improved energy density and rapid charging performance can be obtained. However, when Si is applied as an anode active material, it is difficult to implement satisfactory lifespan characteristics because the negative electrode degrades rapidly during charging and discharging due to severe volume change during charging and discharging. As a result of repeated research to improve the lifespan characteristics of a lithium secondary battery to which Si is applied as an anode active material, the present inventors have found that Si is used as an anode active material when a battery is designed such that the Si charge depth and Si discharge depth satisfy a specific range. However, the present invention was completed by finding out that excellent lifespan characteristics can be implemented.
  • the lithium secondary battery according to the present invention includes a negative electrode including a negative electrode active material; a positive electrode including a positive electrode active material; a separator interposed between the cathode and anode; and an electrolyte, wherein the negative electrode active material includes silicon (Si), Si represented by the following formula (1) has a charging depth of 30% to 60%, and Si represented by the following formula (2) The depth of discharge is more than 10%.
  • the negative electrode active material does not include other types of negative electrode active materials and may be made of only silicon.
  • Si filling depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode)/cathode loading amount ⁇ ⁇ 100
  • the positive loading amount is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative loading amount is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is It is the capacity per unit area (unit: mAh/cm 2 ) of lithium (Li) inserted into the negative electrode by prelithiation.
  • Si discharge depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode - discharge loading amount) / cathode loading amount ⁇ ⁇ 100
  • the positive electrode loading is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative electrode loading is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is The capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 )
  • the discharge loading amount is the discharge capacity of the secondary battery at the discharge cut-off voltage as the positive electrode area is the value divided by
  • the Si filling depth may be 40% to 60%, more preferably 50% to 60%.
  • the Si filling depth can be adjusted by controlling the positive electrode loading amount, the negative electrode loading amount, and/or the degree of prelithiation of the negative electrode.
  • the positive electrode loading amount and/or negative electrode loading amount depend on the type and content of the active material used, It may be set considering the porosity and/or the thickness of the active material layer.
  • the Si discharge depth represents the capacity of lithium remaining in the negative electrode at the discharge cut-off voltage. According to the study of the present inventors, even if the Si charge depth satisfies 30 to 60%, when the Si discharge depth is less than 10%, it was found that life characteristics are rapidly deteriorated.
  • the Si discharge depth may be 10% to 30%, more preferably 10% to 25%, even more preferably 15% to 25%, and still more preferably 17% to 25%.
  • the Si discharge depth is complexly affected by the ratio of the negative electrode capacity to the positive electrode capacity (N/P ratio), the driving voltage range of the battery, and the pre-lithiation degree of the negative electrode, and by appropriately controlling these factors, the Si discharge depth can be adjusted.
  • the lithium secondary battery of the present invention may be designed so that the Si usage range is 10 to 50%, preferably 20 to 40%, and more preferably 30% to 40%.
  • the Si use range as shown in Equation (3) below, means the difference between the Si charge depth and the Si discharge depth. When the Si use range is high, the energy density increases, but the life characteristics are significantly lowered, and the Si use range If is too low, the energy density decreases.
  • the N/P ratio which is the percentage of the negative electrode loading amount to the positive electrode loading amount
  • the Si filling depth may increase, resulting in a decrease in lifespan.
  • a decrease in lifespan may occur.
  • the lithium secondary battery according to the present invention designed to satisfy the above conditions can realize excellent energy density and rapid charging performance by using Si particles, and exhibits excellent lifespan characteristics.
  • the lithium secondary battery according to the present invention has an energy density of 500 Wh/L or more, preferably 550 Wh/L or more, more preferably 600 Wh/L or more, and even more preferably 650 Wh/L or more, while having an energy density of 80 Wh/L or more.
  • the number of times of reaching the % lifetime may be 450 times or more, preferably 480 times or more, more preferably 500 times or more, even more preferably 600 times or more, and still more preferably 700 times or more.
  • the lithium secondary battery according to the present invention has a cell energy density of 500 Wh/L or more and the number of 80% lifespan reaching 450 times or more, or a cell energy density of 550Wh/L or more and the number of 80% lifespan reaching 480 times. times or more, the cell energy density is 650 Wh/L or more, and the number of times 80% life reaches 480 times or more, or the cell energy density is 550 Wh/L to 600 Wh/L, and the number of times 80% life reaches 700 times or more. .
  • the negative electrode according to the present invention may include silicon (Si) as an anode active material, and preferably, 100% silicon (Si) may be used as an anode active material. Silicon used in the present invention may be pure silicon not bonded to other metals or oxygen.
  • the negative electrode according to the present invention includes an anode current collector and an anode active material layer formed on at least one surface of the anode current collector, and the anode active material layer may include silicon (Si) as an anode active material.
  • Si has excellent capacity characteristics and lithium reactivity compared to silicon-based negative active materials such as SiOx and SiC as well as carbon-based negative active materials such as graphite. Therefore, when Si is applied as an anode active material, improved energy density and rapid charging performance can be obtained.
  • the average particle diameter (D50) of the silicon may be 1 ⁇ m to 10 ⁇ m, specifically 2 ⁇ m to 8 ⁇ m, and more specifically 3 ⁇ m to 7 ⁇ m.
  • the average particle diameter is less than 5 ⁇ m, the specific surface area of the particles is excessively increased, and thus the viscosity of the negative electrode slurry is excessively increased. Accordingly, the dispersion of the particles constituting the negative electrode slurry is not smooth.
  • the size of the silicon particles is too small, the contact area between the silicon particles and the conductive materials is reduced by the composite of the conductive material and the binder in the negative electrode slurry, so the possibility of disconnection of the conductive network increases, resulting in a decrease in capacity retention rate.
  • the BET specific surface area of the silicon is preferably 0.01 to 150.0 m 2 /g, more preferably 0.1 to 100.0 m 2 /g, particularly preferably 0.2 to 80.0 m 2 /g, and most preferably 0.2 to 18.0 m 2 /g.
  • the BET surface area can be determined according to DIN 66131 using nitrogen.
  • the silicon may exist in crystalline or amorphous form, and is preferably not porous.
  • the silicon particles may be spherical or fragment-shaped, but are not limited thereto, and may have a fibrous structure or be present in the form of a silicon-containing film or coating.
  • Silicon may be included in an amount of 50% by weight or more, 60% by weight or more, preferably 65% by weight or more, more preferably 70% by weight or more based on the total weight of the negative electrode active material layer, and 99% by weight or less, preferably may be included in an amount of 95% by weight or less, more preferably 90% by weight or less, and even more preferably 80% by weight or less.
  • the negative electrode according to the present invention may further include other negative electrode active materials other than the silicon, if necessary.
  • the other anode active material may be SiOx (where 0 ⁇ x ⁇ 2), a carbon-based anode active material, and the like.
  • the carbon-based negative electrode active material may be, for example, artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, soft carbon, or hard carbon, but is not limited thereto.
  • the other negative active material may be included in an amount of 50% by weight or less, preferably 45% by weight or less, and more preferably 30% by weight or less based on the total weight of the negative electrode active material layer.
  • the negative electrode active material layer may further include a conductive material and a binder, if necessary.
  • the conductive material examples include spherical or scaly graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, single-walled carbon nanotubes, and multi-walled carbon nanotubes; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 to 40% by weight, 1 to 30% by weight, or 5 to 30% by weight based on the total weight of the negative electrode active material layer.
  • the negative electrode active material layer according to the present invention may include two or more types of conductive materials, and in this case, the conductive materials may include a point-shaped conductive material and a plate-shaped conductive material.
  • the dotted conductive material may be used to improve the conductivity of the negative electrode, and preferably has conductivity without causing chemical change.
  • the conductive material is natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, titanic acid It may be at least one selected from the group consisting of potassium, titanium oxide, and polyphenylene derivatives, and preferably may include carbon black in terms of implementing high conductivity and excellent dispersibility.
  • the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g or more and 60 m 2 /g or less. there is.
  • the point-like conductive material may satisfy a functional group content (Volatile matter) of 0.01% or more and 0.05% or less, preferably 0.01% or more and 0.04% or less, more preferably 0.01% or more and 0.03% or less.
  • a functional group content Volatile matter
  • Control of the functional group content can be adjusted according to the degree of heat treatment of the point-shaped conductive material. That is, in the production of the point-like conductive material, a high functional group content means a lot of foreign substances, and a low functional group content means more heat treatment processing, and the point-like conductive material according to the present application has a functional group content within the above range. In order to satisfy, it is characterized in that the point-shaped conductive material is subjected to a certain portion of heat treatment to satisfy the functional group content range.
  • the particle size of the dot-shaped conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
  • the plate-shaped conductive material is a planar conductive material or a bulk type conductive material that can improve conductivity by increasing the surface contact between silicon particles in the negative electrode and suppress the disconnection of the conductive path due to volume expansion at the same time. can be expressed as
  • the plate-like conductive material may include at least one selected from the group consisting of plate-like graphite, graphene, graphene oxide, and graphite flakes, and preferably may be plate-like graphite.
  • An average particle diameter (D50) of the plate-shaped conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 4 ⁇ m to 5 ⁇ m.
  • the plate-shaped conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g or more and 300 m 2 /g or less. there is.
  • binder for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylic acid , polyacrylamide, polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one of them alone Alternatively, a mixture of two or more may be used.
  • the binder may be included in an amount of 1 to 20% by weight, 2 to 20% by weight, or 2 to 10% by weight based on the total weight of the negative electrode active material layer.
  • the negative electrode may have a multi-layered structure in which a negative electrode active material layer is composed of a single layer or two or more layers.
  • a negative electrode active material layer is composed of a single layer or two or more layers.
  • each layer may have different types and/or contents of the negative active material, the binder, and/or the conductive material.
  • the negative electrode according to the present invention may have a two-layer structure, and a layer adjacent to the current collector (hereinafter referred to as a lower layer) and an upper layer formed on the lower layer may have different types of negative electrode active materials.
  • the anode active material of the lower layer may be silicon
  • the anode active material of the upper layer may be SiOx (where 0 ⁇ x ⁇ 2).
  • the negative electrode active material layer may have a porosity of 20% to 70% or 20% to 50%. If the porosity of the negative electrode active material layer is too small, the impregnability of the electrolyte solution may be lowered and thus lithium mobility may be lowered, and if the porosity is too large, the energy density may be lowered.
  • the negative electrode may be a pre-lithiated negative electrode in which lithium is intercalated before charging and discharging.
  • Prelithiation of the negative electrode may be performed through a negative electrode prelithiation method well known in the art.
  • the prelithiation of the negative electrode is a method of compressing or depositing lithium metal on the negative electrode active material layer, a method of inserting lithium into the negative electrode active material layer through an electrochemical method, a sacrificial positive electrode material or positive electrode active material included in the positive electrode Excess lithium contained in the anode is inserted into the anode through an activation process, or excess lithium is imparted to the anode through an electrochemical method or a method of compressing or depositing lithium metal, and the excess lithium provided to the anode through the activation process is applied to the anode. It may be performed by a method of inserting into, etc., and may be performed by combining two or more of the above methods.
  • the negative electrode of the present invention may have a pre-lithiation degree of 5 to 50%, preferably 5 to 30%, more preferably 10 to 20%, represented by the following formula (4).
  • Equation (4)
  • a lithium secondary battery having excellent capacity and lifespan characteristics may be implemented. Specifically, if the degree of pre-lithiation of the negative electrode is too small, life characteristics may deteriorate. Life characteristics can be improved by controlling the depth of discharge, but in this case, it is difficult to secure cell energy density. In addition, if the degree of prelithiation of the negative electrode is too high, degradation of silicon particles in the electrode may be accelerated, and thus capacity characteristics may deteriorate.
  • a cathode according to the present invention includes a cathode active material layer.
  • the positive electrode of the present invention may include a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, and may further include a conductive material and/or a binder, if necessary.
  • the cathode active material various cathode active materials known in the art, lithium nickel-based oxide, lithium manganese-based oxide, lithium cobalt-based oxide, and the like may be used.
  • the molar ratio of nickel to all metals other than lithium is 60 mol% or more, preferably 80 mol% or more, more preferably 83 mol% or more, and still more preferably 85 mol% or more.
  • mol % or more of lithium nickel-based oxide may be included.
  • a lithium nickel-based oxide containing 60 mol% or more of Ni has a high capacity, when a lithium nickel-based oxide containing 60 mol% or more of Ni is used as a positive electrode active material and Si is used as a negative electrode active material, compared to the prior art, A lithium secondary battery having excellent capacity characteristics can be manufactured.
  • the lithium nickel-based oxide may be, for example, represented by Chemical Formula 1 below.
  • M 1 may be at least one selected from the group consisting of Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr, and Zr.
  • 1+x1 represents the molar ratio of lithium in the lithium nickel-based oxide, and may be -0.2 ⁇ x1 ⁇ 0.2, 0.1 ⁇ x1 ⁇ 0.1, or 0 ⁇ x1 ⁇ 0.1.
  • a1 represents the molar ratio of nickel among all metals except lithium in the lithium nickel-based oxide, 0.6 ⁇ a1 ⁇ 1, 0.8 ⁇ a1 ⁇ 1, 0.8 ⁇ a1 ⁇ 0.98, 0.82 ⁇ a1 ⁇ 0.98, 0.83 ⁇ a1 ⁇ 0.98 , 0.85 ⁇ a1 ⁇ 0.98, 0.88 ⁇ a1 ⁇ 0.98, or 0.90 ⁇ a1 ⁇ 0.98.
  • b1 represents the molar ratio of cobalt among all metals except lithium in the lithium nickel-based oxide, 0 ⁇ b1 ⁇ 0.4, 0 ⁇ b1 ⁇ 0.2, 0 ⁇ b1 ⁇ 0.18, 0.01 ⁇ b1 ⁇ 0.18, 0.01 ⁇ b1 ⁇ 0.17 , 0.01 ⁇ b1 ⁇ 0.15, 0.01 ⁇ b1 ⁇ 0.12, or 0.01 ⁇ b1 ⁇ 0.10.
  • c1 represents the molar ratio of manganese among all metals except lithium in the lithium nickel-based oxide, 0 ⁇ c1 ⁇ 0.4, 0 ⁇ c1 ⁇ 0.2, 0 ⁇ c1 ⁇ 0.18, 0.01 ⁇ c1 ⁇ 0.18, 0.01 ⁇ c1 ⁇ 0.17 , 0.01 ⁇ c1 ⁇ 0.15, 0.01 ⁇ c1 ⁇ 0.12, or 0.01 ⁇ c1 ⁇ 0.10.
  • d1 represents the molar ratio of M 1 in all metals except lithium in the lithium nickel-based oxide, 0 ⁇ d1 ⁇ 0.2, 0 ⁇ d1 ⁇ 0.18, 0 ⁇ d1 ⁇ 0.17, 0 ⁇ d1 ⁇ 0.15, 0 ⁇ d1 ⁇ 0.12, or 0 ⁇ d1 ⁇ 0.10.
  • the cathode active material may further include a coating layer on the surface of the lithium nickel-based oxide, if necessary.
  • the coating layer may include a coating element M 2 , and the coating element M 2 may include, for example, Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, It may be at least one selected from the group consisting of Sr and Zr.
  • the coating layer is formed through various coating methods known in the art, for example, dry coating, wet coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc. It can be.
  • the form of the cathode active material is not particularly limited, and may be, for example, secondary particle form in which tens to hundreds of primary particles are aggregated, single particle form composed of 10 or less primary particles, or a combination thereof.
  • the average particle diameter of the primary particles may be 0.05 ⁇ m to 4 ⁇ m, specifically, the average particle diameter of the primary particles may be 0.05 ⁇ m or more, 0.1 ⁇ m or more, , The average particle diameter of the primary particles may be 4 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less. If the average particle diameter of the primary particles is too large, a rock salt phase may be formed and resistance characteristics and life characteristics may deteriorate.
  • the average particle diameter of the secondary particles may be 2 ⁇ m to 25 ⁇ m, specifically, 2 ⁇ m or more, 3 ⁇ m or more, or 4 ⁇ m or more, and may be 25 ⁇ m or less, 20 ⁇ m or less, or 18 ⁇ m or less. .
  • the average particle diameter of the secondary particles satisfies the above range, it is possible to prevent the cathode active material particles from being broken during the rolling process or from deteriorating processability during slurry preparation.
  • the single particles may have an average particle diameter D 50 of 2 ⁇ m to 10 ⁇ m.
  • the average particle diameter D 50 of the single particles may be 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, or 6 ⁇ m or more, and 10 ⁇ m or less, 9 ⁇ m or less, 8 ⁇ m or less, or 7 ⁇ m may be below. If the average particle diameter D 50 of the single particles is too large, the lithium migration path becomes longer, increasing resistance and degrading output characteristics.
  • the average particle diameter of the primary particles constituting the single particle may be 0.5 ⁇ m to 4 ⁇ m, specifically, 0.5 ⁇ m or more, 0.7 ⁇ m or more, 1 ⁇ m or more, or 1.5 ⁇ m or more, 4 ⁇ m or less, It may be 3.5 ⁇ m or less, or 3 ⁇ m or less. If the average particle diameter of the primary particles constituting single particles is too large, the lithium migration path becomes longer, increasing resistance and degrading output characteristics. If it is too small, the specific surface area increases, which may increase side reactions with the electrolyte. .
  • the conductive material for example, spherical or scaly graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, single-walled carbon nanotubes, and multi-walled carbon nanotubes; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 to 20% by weight, 1 to 20% by weight, or 1 to 10% by weight based on the total weight of the positive electrode active material layer.
  • binder for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile (polyacrylonitrile) , carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and one of these may be used alone or a mixture of two or more thereof.
  • the binder may be included in an amount of 1 to 20% by weight, 2 to 20% by weight, or 2 to 10% by weight based on the total weight of the positive electrode active material layer.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions. If it is normally used as a separator in a lithium secondary battery, it can be used without particular limitation. It is preferable to have an excellent ability to absorb the electrolyte while being resistant.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention includes organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a straight-chain, branched or cyclic hydrocarbon group having 2
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiN(FSO
  • additives may be included in the electrolyte for the purpose of improving life characteristics of a battery, suppressing capacity decrease, suppressing gas generation, and the like.
  • various additives used in the art for example, fluoro ethylene carbonate (FEC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfate (ESa), lithium difluoro Phosphate (LiPO 2 F 2 ), lithium bisoxalato borate (LiBOB), lithium tetrafluoro borate (LiBF4), lithium difluorooxalato borate (LiDFOB), lithium difluorobisoxalatophosphate (LiDFBP), lithium Tetrafluorooxalato phosphate (LiTFOP), lithium methyl sulfate (LiMS), lithium ethyl sulfate (LiES) propanesultone (PS), propensultone (PRS), succinonitrile (SN), a
  • n and n are each independently an integer of 1 to 100.
  • R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN
  • D is CH, or N.
  • R 1 R 2 , R 3 , and R 4 are each independently hydrogen; Or an alkyl group having 1 to 5 carbon atoms, a cyano group (CN), an allyl group, a propargyl group, an amine group, a phosphate group, an ether group, a benzene group, a cyclohexyl group, a silyl group, an isocyanate group (-NCO), a fluorine group (-F) may be included.
  • compounds acting as oxygen scavengers may be used as the additive.
  • Materials with phosphite-based structures such as tris tri(methylsilyl)phosphite (TMSPi), tris trimethylphosphite (TMPi), and tris(2,2,2-trifluoroethyl)phosphite (TTFP) (see Formula E); tristri(methylsilyl)phosphate (TMSPa); polyphosphoric acid trimethylsilyl ester (PPSE); tris(pentafluorophenyl)borane (TPFPB); Coumarin-3-carbonitrile (CMCN), 7-ethynylcoumarin (ECM), 3-acetylcoumarin (AcCM), 3-[(trimethylsilyl)oxyl]-2H-1-benzopyran-2-one ( TMSOCM) 3-(trimethylsilyl)coumarin (TMSCM) and the like, compounds containing a Coumarin structure (see Formula F); 3-(2-propyn-1
  • R1 to R6 are each independently a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms and a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a cyano group (-CN), or a fluoro group.
  • a cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 97.7:0.9:1.4 to prepare a cathode slurry. At this time, LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 was used as the cathode active material, and CNT was used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 4.52 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Elkem Co.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed and used in a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 8.73 mAh/cm 2 .
  • a lithium secondary battery A was prepared by preparing an electrode assembly by interposing a separator between the positive electrode and the negative electrode prepared as described above, inserting the electrode assembly into a battery case, and then injecting an electrolyte solution.
  • Cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 96.25:1.5:2.25 to prepare a cathode slurry. At this time, LiNi 0.83 Co 0.11 Mn 0.06 O 2 was used as the cathode active material, and Denka Black was used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 3.50 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Waker Co., Ltd.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed at a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 7.36 mAh/cm 2 .
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode prepared as described above, and after inserting the electrode assembly into a battery case, an electrolyte solution was injected to prepare a lithium secondary battery B.
  • a lithium secondary battery C was manufactured in the same manner as in Preparation Example 2, except that the loading amounts of the positive electrode and the negative electrode were changed as described in Table 1 below.
  • Lithium secondary batteries D to F were prepared in the same manner as in Preparation Example 1, except that the loading amounts of the positive and negative electrodes were changed as described in Table 1 below.
  • a lithium secondary battery G was manufactured in the same manner as in Preparation Example 2, except that the loading amounts of the positive electrode and the negative electrode were changed as described in Table 1 below.
  • a cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 97.7:0.9:1.4 to prepare a cathode slurry. At this time, LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 was used as the cathode active material, and CNT was used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 3.03 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Elkem Co.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed and used in a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 7.75 mAh/cm 2 .
  • Pre-lithiation was performed by pressing lithium metal on the negative electrode, and the degree of pre-lithiation was 7.38%.
  • An electrode assembly was prepared by interposing a separator between the positive electrode prepared as described above and the prelithiated negative electrode, the electrode assembly was inserted into a battery case, and an electrolyte solution was injected to prepare a lithium secondary battery H.
  • Lithium secondary batteries I to K were prepared in the same manner as in Preparation Example 8, except that the loading amount of the positive electrode was changed as described in Table 1 below.
  • a lithium secondary battery L was manufactured in the same manner as in Preparation Example 8, except that prelithiation was performed so that the prelithiation degree (%) was 16.5%.
  • the N/P ratio and Si charge depth of the lithium secondary batteries A to L prepared as described above are shown in Table 1 below.
  • Example 1 A 63 193.1 51.8 19.2 32.6 581 857
  • Example 2 A 69 193.1 51.8 16.1 35.7 631 690
  • Example 3 A 75 193.1 51.8 12.9 38.9 680 548
  • Example 4 B 65 210.3 47.6 16.6 31.0 595 530
  • Example 5 C 65 184.0 54.3 19.0 35.3 593 500
  • Example 6 H 85 255.8 46.5 13.3 33.2 629 481
  • Example 8 H 70 255.8 46.5 19.1 27.4 529 784
  • Example 9 L 100 255.8 54.1 15.0 39.1 715 483 Comparative Example 1 A 91 193.1 51.8 4.7 47.1 805 320 Comparative Example 2 A 97 193.1 51.8 1.6 50.2 856 238 Comparative Example 3 D 100 392.7 25.5 0.0 25.5 659 148

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하고, 상기 음극 활물질이 실리콘 입자를 포함하며, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지에 관한 것이다. 식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100 식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100 상기 식 (1) 및 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값임.

Description

리튬 이차 전지
본 출원은 2021년 10월 5일에 출원된 한국특허출원 제10-2021-0131946호 및 2022년 10월 5일에 출원된 10-2022-0127248호에 기초한 우선권의 이익을 주장하며, 해당 한구특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차 전지에 관한 것으로, 보다 구체적으로는 음극 활물질로 실리콘(Si) 입자를 적용한 리튬 이차 전지에 관한 것이다.
최근 전기 자동차의 에너지원으로 리튬 이차 전지가 각광받고 있다.
전기 자동차의 보급이 확산됨에 따라 1회 충전 시 주행거리가 더 길고, 급속 충전 시간을 단축할 수 있는 리튬 이차 전지에 대한 요구가 증가하고 있다.
리튬 이차 전지는 일반적으로 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극 활물질을 포함하는 양극과, 리튬 이온을 저장할 수 있는 음극 활물질을 포함하는 음극 사이에 분리막을 개재하여 전극 조립체를 형성하고, 상기 전극 조립체를 전지 케이스에 삽입한 후, 리튬 이온을 전달하는 매개체가 되는 비수 전해질을 주입한 다음 밀봉하는 방법으로 제조된다. 상기 비수 전해질은 일반적으로 리튬염과, 상기 리튬 염을 용해시킬 수 있는 유기 용매로 구성된다. 종래에는 리튬 이차 전지의 음극 활물질로 천연 흑연이나 인조 흑연과 같은 탄소계 소재가 주로 이용되었다. 그러나, 이와 같이 탄소계 음극 활물질은 용량이 작고, 리튬과의 반응 속도가 느리기 때문에, 이를 적용한 이차 전지로는 고용량 및 급속 충전 성능 구현에 한계가 있다.
이에 따라 탄소계 소재 대비 이론 용량이 10배 이상 큰 실리콘계 음극 활물질을 적용한 리튬 이차 전지의 개발이 시도되고 있다. 실리콘계 음극 활물질의 경우, 탄소계 소재와 비교하여 이론 용량이 높고, 리튬과의 반응 속도가 빨라, 용량 특성 및 급속 충전 성능을 향상시킬 수 있다는 장점이 있으나, 충전 과정에서 급격하게 부피가 팽창되어 음극 손상 및 도전 경로 단절이 발생할 수 있으며, 이로 인해 전지 성능이 급격하게 퇴화되는 문제점이 있다.
따라서, 실리콘계 음극 활물질을 적용하면서도 우수한 수명 특성을 갖는 리튬 이차 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 음극 활물질로 높은 실리콘(Si) 입자를 적용하여 높은 용량 특성을 구현하면서도 수명 특성이 우수한 리튬 이차 전지를 제공하고자 한다.
일 측면에서, 본 발명은, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하고, 상기 음극 활물질이 실리콘 입자를 포함하며, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지를 제공한다.
식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)임.
식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값임.
본 발명에 따른 리튬 이차 전지는, Si 충전 심도 및 Si 방전 심도가 특정 범위를 만족하도록 설계되어, 음극 활물질로 Si 입자를 사용함에도 불구하고 우수한 수명 특성을 나타낸다. 한편, Si 입자는 탄소계 음극 활물질 및/또는 SiOx계 음극 활물질과 비교하여, 리튬과의 반응성 및 용량 특성이 우수하기 때문에, 이를 적용한 본 발명의 리튬 이차 전지는 우수한 용량 특성 및 급속 충전 성능을 구현할 수 있다. 즉, 본 발명에 따른 리튬 이차 전지는 용량 특성, 수명 특성 및 급속 충전 성능이 모두 우수하게 나타난다.
또한, 본 발명에 따른 리튬 이차 전지는 양극 활물질로, 예를 들면, Ni 함량이 60몰% 이상인 리튬 니켈계 산화물을 적용할 수 있으며, 특히, Ni 함량이 80몰% 이상일 때 용량 특성을 더욱 향상시킬 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명에서 "1차 입자"는 주사전자현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
본 발명에서 "2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다.
본 발명에서 "평균 입경 D50"은 측정 대상 입자 분말(예를 들면, 양극 활물질 분말, 음극 활물질 분말 등)의 체적누적 입도분포의 50% 기준에서의 입자 크기를 의미한다. 상기 평균 입경 D50은 레이저 회절법(laser diffraction method)를 이용하여 측정될 수 있다. 예를 들면, 측정하고자 하는 입자의 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻은 후, 체적 누적량의 50%에 해당하는 입자 크기를 구함으로써 측정될 수 있다.
이하, 본 발명을 구체적으로 설명한다.
Si는 흑연과 같은 탄소계 음극 활물질 뿐 아니라 SiOx, SiC와 같은 실리콘계 음극 활물질과 비교하여도 우수한 용량 특성 및 리튬 반응성을 갖는다. 따라서, Si를 음극 활물질로 적용할 경우, 개선된 에너지 밀도 및 급속 충전 성능을 얻을 수 있다. 그러나, Si는 충방전 시에 부피 변화가 심해 충방전 시에 음극 퇴화가 급속하게 발생하기 때문에, Si을 음극 활물질로 적용할 경우, 만족할 만한 수명 특성을 구현하기 어려웠다. 본 발명자들은 음극 활물질로 Si를 적용한 리튬 이차 전지의 수명 특성을 개선하기 위해 연구를 거듭한 결과, Si 충전 심도 및 Si 방전 심도가 특정 범위를 만족하도록 전지를 설계할 경우, 음극 활물질로 Si를 사용하면서도 우수한 수명 특성을 구현할 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 리튬 이차 전지는, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차 전지이며, 상기 음극 활물질이 실리콘(Si)을 포함하고, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상이다. 바람직하게는 상기 음극 활물질은 다른 종류의 음극 활물질을 포함하지 않고, 실리콘으로만 이루어질 수 있다.
식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)이다.
식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값이다.
상기 Si 충전 심도는, 완전 충전 상태(즉, SOC=100)에서의 Si과 Li의 결합 정도를 나타내는 값으로, 본 발명자들의 연구에 따르면, Si 충전 심도가 60%를 초과하거나, 30% 미만인 경우, 수명 특성이 급격하게 저하되는 것으로 나타났다. 구체적으로는 Si 충전 심도가 60%를 초과할 경우, Si의 부피 팽창이 급격하게 발생하고, 이로 인해 에너지 밀도 및 수명 특성 저하가 발생하였으며, Si 충전 심도가 30% 미만인 경우에는 반응 불균일성이 심화되어 수명 특성이 저하되는 것으로 나타났다. 바람직하게는, 상기 Si 충전 심도는 40% ~ 60%, 더 바람직하게는 50% ~ 60%일 수 있다.
상기 Si 충전 심도는 양극 로딩량, 음극 로딩량 및/또는 음극의 전리튬화 도를 제어하여 조절할 수 있으며, 상기 양극 로딩량 및/또는 음극 로딩량은 사용되는 활물질의 종류 및 함량, 활물질층의 공극율, 및/또는 활물질층의 두께 등을 고려해서 설정될 수 있다.
한편, 상기 Si 방전 심도는, 방전 cut-off 전압에서 음극에 잔존하는 리튬의 용량을 나타낸다. 본 발명자들의 연구에 따르면, Si 충전 심도가 30 ~ 60%를 만족하더라도, Si 방전 심도가 10% 미만인 경우에는 수명 특성이 급격하게 저하되는 것으로 나타났다. 바람직하게는 상기 Si 방전 심도는 10% 내지 30%, 더 바람직하게는 10% 내지 25%, 보다 더 바람직하게는 15% 내지 25%, 보다 더 바람직하게는 17% 내지 25%일 수 있다.
상기 Si 방전 심도는 양극 용량에 대한 음극 용량의 비(N/P ratio), 전지의 구동 전압 범위 및 음극의 전리튬화도에 의해 복합적으로 영향을 받으며, 이들 인자를 적절하게 제어함으로써, Si 방전 심도를 조절할 수 있다.
한편, 본 발명의 리튬 이차 전지는 Si 사용 범위가 10 ~ 50%, 바람직하게는 20 ~ 40%, 더 바람직하게는 30% ~ 40% 정도가 되도록 설계될 수 있다. Si 사용 범위는, 하기 식 (3)에 나타난 바와 같이, Si 충전 심도와 Si 방전 심도의 차이를 의미하는 것으로, Si 사용 범위가 높으면 에너지 밀도는 증가하지만, 수명 특성이 현저하게 떨어지고, Si 사용 범위가 너무 낮으면, 에너지 밀도가 감소한다.
식 (3): Si 사용 범위(%) = Si 충전 심도 - Si 방전 심도
한편, 본 발명에 따른 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 150% 내지 300%, 바람직하게는 180% 내지 300%, 더 바람직하게는 190% 내지 300%일 수 있다. 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 상기 범위 미만인 경우, Si 충전 심도가 증가하여 수명 저하가 발생할 수 있고, 상기 범위를 초과할 경우에는, 전극 표면부의 Si 반응 불균일이 심화되어 오히려 수명 저하가 발생할 수 있다.
상기와 같은 조건을 만족하도록 설계된 본 발명에 따른 리튬 이차 전지는 Si 입자를 사용하여 우수한 에너지 밀도 및 급속 충전 성능을 구현할 수 있으며, 수명 특성도 우수하게 나타난다. 구체적으로는, 본 발명에 따른 리튬 이차 전지는 500Wh/L 이상, 바람직하게는 550Wh/L 이상, 더 바람직하게는 600Wh/L 이상, 보다 더 바람직하게는 650Wh/L 이상의 에너지 밀도를 갖는 동시에, 80% 수명 도달 횟수가 450회 이상, 바람직하게는 480회 이상, 더 바람직하게는 500회 이상, 보다 더 바람직하게는 600회 이상, 더욱 더 바람직하게는 700회 이상일 수 있다.
예를 들면, 본 발명에 따른 리튬 이차 전지는 셀 에너지 밀도가 500Wh/L 이상이고, 80% 수명 도달 횟수가 450회 이상이거나, 셀 에너지 밀도가 550Wh/L 이상이고, 80% 수명 도달 횟수가 480회 이상이거나, 셀 에너지 밀도가 650Wh/L 이상이고, 80% 수명 도달 횟수가 480회 이상이거나, 또는 셀 에너지 밀도가 550Wh/L 내지 600Wh/L이고, 80% 수명 도달 횟수가 700회 이상일 수 있다.
다음으로, 본 발명에 따른 리튬 이차 전지의 각 구성요소에 대해 구체적으로 설명한다.
음극
본 발명에 따른 음극은, 음극 활물질로 실리콘(Si)을 포함할 수 있으며, 바람직하게는, 음극 활물질로 실리콘(Si) 100%를 사용할 수 있다. 본 발명에서 사용되는 실리콘은 다른 금속 또는 산소 등과 결합되지 않은 순수 실리콘(Pure Si)일 수 있다. 구체적으로는, 본 발명에 따른 음극은, 음극 집전체 및 상기 음극 집전체의 적어도 일면에 형성된 음극 활물질층을 포함하고, 상기 음극 활물질층이 음극 활물질로 실리콘(Si)을 포함할 수 있다. Si는 흑연과 같은 탄소계 음극 활물질 뿐 아니라 SiOx, SiC와 같은 실리콘계 음극 활물질과 비교하여도 우수한 용량 특성 및 리튬 반응성을 갖는다. 따라서, Si를 음극 활물질로 적용할 경우, 개선된 에너지 밀도 및 급속 충전 성능을 얻을 수 있다.
상기 실리콘의 평균 입경(D50)은 1㎛ 내지 10㎛일 수 있으며, 구체적으로 2㎛ 내지 8㎛일 수 있고, 보다 구체적으로 3㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 5㎛ 미만인 경우, 입자의 비표면적이 지나치게 증가하여, 음극 슬러리의 점도가 지나치게 상승하게 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하지 않다. 또한, 실리콘 입자의 크기가 지나치게 작은 경우, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 줄어들게 되므로, 도전 네트워크가 단절될 가능성이 높아져서 용량 유지율이 저하된다. 한편, 상기 평균 입경이 10㎛ 초과인 경우, 지나치게 큰 실리콘 입자들이 존재하게 되어, 음극의 표면이 매끄럽지 못하게 되며, 이에 따라 충방전 시 전류 밀도 불균일이 발생한다. 또한, 지나치게 실리콘 입자가 큰 경우, 음극 슬러리의 상안정성이 불안정해지므로, 공정성이 저하된다. 이에 따라 전지의 용량 유지율이 저하된다.
한편, 상기 실리콘의 BET 비표면적은, 바람직하게는 0.01 내지 150.0 m2/g, 더욱 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 내지 80.0 m2/g, 가장 바람직하게는 0.2 내지 18.0 m2/g이다. BET 표면적은 질소를 사용하여 DIN 66131에 따라 측정될 수 있다.
또한, 상기 실리콘은 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 상기 실리콘 입자는 구형 또는 파편형 입자일 수 있으나, 이에 한정되는 것은 아니며, 섬유 구조를 가지거나, 규소 포함 필름 또는 코팅의 형태로 존재할 수도 있다.
상시 실리콘은 음극 활물질층 전체 중량을 기준으로 50중량% 이상, 60중량% 이상, 바람직하게는 65중량% 이상, 더 바람직하게는 70중량% 이상의 양으로 포함될 수 있으며, 99중량% 이하, 바람직하게는 95중량% 이하, 더 바람직하게는 90중량% 이하, 보다 더 바람직하게는 80중량% 이하의 양으로 포함될 수 있다.
한편, 본 발명에 따른 음극은, 필요에 따라 상기 실리콘 이외의 기타 음극 활물질을 더 포함할 수 있다. 상기 기타 음극 활물질은 SiOx(여기서 0<x<2), 탄소계 음극 활물질 등일 수 있다. 이때, 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 기타 음극 활물질은 음극 활물질층 전체 중량을 기준으로 50중량% 이하, 바람직하게는 45중량% 이하, 더 바람직하게는 30중량% 이하의 양으로 포함될 수 있다.
한편, 상기 음극 활물질층은, 필요에 따라, 도전재 및 바인더를 더 포함할 수 있다.
상기 도전재로는 예를 들면, 구형 또는 인편상 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 음극 활물질층 총 중량을 기준으로 0.1 ~ 40중량%, 1 ~ 30중량% 또는 5 ~ 30중량%의 양으로 포함될 수 있다.
바람직하게는 본 발명에 따른 음극 활물질층은 2종 이상의 도전재를 포함할 수 있으며, 이 경우 상기 도전재는 점형 도전재와 판상형 도전재를 포함할 수 있다.
상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이 좋다. 구체적으로 상기 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.
상기 점형 도전재는 작용기 함량(Volatile matter)이 0.01% 이상 0.05% 이하, 바람직하게는 0.01% 이상 0.04% 이하, 더욱 바람직하게는 0.01% 이상 0.03% 이하를 만족할 수 있다.
상기 작용기 함량의 조절은 점형 도전재를 열처리의 정도에 따라 조절할 수 있다. 즉, 점형 도전재의 제작에 있어, 작용기 함량이 높다는 것은 이물질이 많은 것을 의미하고, 작용기 함량이 적은 것은 열처리 가공을 더 많이한 것을 의미할 수 있으며, 본 출원에 따른 점형 도전재는 작용기 함량을 상기 범위로 만족하기 위하여, 점형 도전재를 일정 부분 열처리를 진행하여 상기 작용기 함량 범위를 만족시킨 것을 특징으로 한다.
상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다. 상기 판상형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할을 할 수 있는 것으로 면형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다.
상기 판상형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
상기 판상형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 4㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.
상기 판상형 도전재는 BET 비표면적이 1m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 300m2/g 이하일 수 있다.
다음으로, 상기 바인더로는, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴산(Polyacrylic acid), 폴리아크릴아미드(Polyacrylamide), 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량을 기준으로 1 ~ 20중량%, 2 ~ 20중량%, 또는 2 ~ 10중량%로 포함될 수 있다.
한편, 상기 음극은 음극 활물질층이 단일층 또는 2 이상의 층으로 구성된 다층 구조일 수 있다. 음극 활물질층이 2 이상의 층으로 구성된 다층 구조일 경우, 각 층은 음극 활물질, 바인더 및/또는 도전재의 종류 및/또는 함량이 서로 상이할 수 있다.
예를 들면, 본 발명에 따른 음극은 2층 구조일 수 있으며, 집전체와 인접한 층(이하, 하부층이라 함)과 상기 하부층 상에 형성되는 상부층의 음극 활물질의 종류가 서로 상이한 것일 수 있다. 구체적으로는, 2층 구조의 음극에 있어서, 하부층의 음극 활물질이 실리콘이고, 상부층의 음극 활물질로 SiOx(여기서 0<x<2)일 수 있다.
한편, 상기 음극 활물질층은 공극율이 20% ~ 70% 또는 20% ~ 50%일 수 있다. 음극 활물질층의 공극율이 너무 작으면 전해액 함침성이 저하되어 리튬 이동성이 저하될 수 있으며, 공극율이 너무 크면 에너지 밀도가 저하될 수 있다.
한편, 본 발명에 있어서, 상기 음극은 충방전 이전에 리튬이 삽입된 전리튬화된 음극일 수 있다. 음극의 전리튬화는, 당해 기술 분야에 잘 알려진 음극 전리튬화 방법을 통해 수행될 수 있다. 예를 들면, 상기 음극의 전리튬화는, 음극 활물질층 상에 리튬 금속을 압착 또는 증착하는 방법, 전기화학적 방법을 통해 음극 활물질층에 리튬을 삽입하는 방법, 양극에 포함된 희생 양극재나 양극 활물질에 포함된 과잉 리튬을 활성화 공정을 통해 음극에 삽입하는 방법, 또는 전기화학적 방법이나 리튬 금속을 압착 또는 증착하는 방법으로 양극에 과잉 리튬을 부여하고, 활성화 공정을 통해 양극에 부여된 과잉 리튬을 음극에 삽입하는 방법 등으로 수행될 수 있으며, 상기 방법들 중 2 이상의 방법을 조합하여 실시할 수 있다.
상기와 같이 전리튬화 음극을 사용할 경우, 전리튬화되지 않은 음극에 비해 상대적으로 낮은 컷-오프(cut-off) 전압까지 방전시키더라도 수명 특성 열화가 적게 일어나기 때문에, 리튬 이차 전지의 구동 전압 범위를 상대적으로 넓은 범위로 설정할 수 있어 가용 SOC(Usable SOC)를 증가시킬 수 있다.
바람직하게는 본 발명의 음극은 하기 식 (4)로 표시되는 전리튬화도가 5 내지 50%, 바람직하게는 5 내지 30%, 더 바람직하게는 10 내지 20%일 수 있다.
식 (4):
전리튬화도(%) = {전리튬화에 의해 음극에 삽입된 Li의 단위면적 당 용량 / Si의 단위 면적당 용량} ×100
음극의 전리튬화도가 상기 범위를 만족할 때, 용량 및 수명 특성이 모두 우수한 리튬 이차 전지를 구현할 수 있다. 구체적으로는 음극의 전리튬화도가 너무 작으면, 수명 특성이 저하될 수 있다. 방전 심도를 제어하여 수명 특성을 개선할 수 있으나, 이 경우, 셀 에너지 밀도를 확보하기 어렵다. 또한, 음극의 전리튬화도가 너무 크면 전극 내 실리콘 입자 퇴화가 가속화되어 용량 특성이 저하될 수 있다.
양극
본 발명에 따른 양극은 양극 활물질층을 포함한다. 구체적으로는 본 발명의 양극은 양극 집전체, 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층을 포함할 수 있다.
상기 양극 활물질층은 양극 활물질을 포함하며, 필요에 따라 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 양극 활물질로는, 당해 기술 분야에 알려진 다양한 양극 활물질들, 리튬 니켈계 산화물, 리튬 망간계 산화물, 리튬 코발트계 산화물 등이 사용될 수 있다. 바람직하게는, 본 발명의 양극 활물질은, 리튬을 제외한 전체 금속 중 니켈의 몰비가 60몰% 이상, 바람직하게는, 80몰% 이상, 더 바람직하게는 83몰% 이상, 보다 더 바람직하게는 85몰% 이상인 리튬 니켈계 산화물을 포함할 수 있다. Ni을 60몰% 이상 포함하는 리튬 니켈계 산화물은 높은 용량을 가지므로, 양극 활물질로 Ni을 60몰% 이상 포함하는 리튬 니켈계 산화물을 사용하고, 음극 활물질로 Si를 사용할 경우, 종래에 비해 현저하게 우수한 용량 특성을 갖는 리튬 이차 전지를 제조할 수 있다.
상기 리튬 니켈계 산화물은, 예를 들면, 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Li1+x1[Nia1Cob1Mnc1M1 d1]O2
상기 화학식 1에서, 상기 M1은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다.
한편, 상기 1+x1은 리튬 니켈계 산화물 내 리튬의 몰비를 나타내는 것으로, -0.2≤x1≤0.2, 0.1≤x1≤0.1 또는 0≤x1≤0.1일 수 있다.
상기 a1은 리튬 니켈계 산화물에서 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.6≤a1<1, 0.8≤a1<1, 0.8≤a1≤0.98, 0.82≤a1≤0.98, 0.83≤a1≤0.98, 0.85≤a1≤0.98, 0.88≤a1≤0.98, 또는 0.90≤a1≤0.98일 수 있다.
상기 b1은 리튬 니켈계 산화물에서 리튬을 제외한 전체 금속 중 코발트의 몰비를 나타내는 것으로, 0<b1<0.4, 0<b1<0.2, 0<b1<0.18, 0.01≤b1<0.18, 0.01≤b1<0.17, 0.01≤b1<0.15, 0.01≤b1<0.12, 또는 0.01≤b1<0.10일 수 있다.
상기 c1은 리튬 니켈계 산화물에서 리튬을 제외한 전체 금속 중 망간의 몰비를 나타내는 것으로, 0<c1<0.4, 0<c1<0.2, 0<c1<0.18, 0.01≤c1<0.18, 0.01≤c1<0.17, 0.01≤c1<0.15, 0.01≤c1<0.12, 또는 0.01≤c1<0.10일 수 있다.
상기 d1은 리튬 니켈계 산화물에서 리튬을 제외한 전체 금속 중 M1의 몰비를 나타내는 것으로, 0≤d1<0.2, 0≤d1<0.18, 0≤d1<0.17, 0≤d1<0.15, 0≤d1<0.12, 또는 0≤d1<0.10일 수 있다.
한편, 상기 양극 활물질은, 필요에 따라, 상기 리튬 니켈계 산화물의 표면에 코팅층을 더 포함할 수 있다.
상기 코팅층은, 코팅 원소 M2를 포함할 수 있으며, 상기 코팅 원소 M2는 예를 들면, Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다. 상기 코팅층은, 당해 기술 분야에 알려진 다양한 코팅 방법들, 예를 들면, 건식 코팅, 습식 코팅, 화학기상증착(CVD), 물리기상증착(PVD), 원자층증착(ALD) 등의 방식을 통해 형성될 수 있다.
상기 양극 활물질의 형태는 특별히 한정되지 않으며, 예를 들면, 수십 개 ~ 수백 개의 1차 입자들이 응집된 2차 입자 형태이거나, 10개 이하의 1차 입자로 구성되는 단입자 형태 또는 이들의 조합일 수 있다. 양극 활물질이 2차 입자 형태인 경우에, 1차 입자의 평균 입경은 0.05㎛ 내지 4㎛일 수 있으며, 구체적으로는, 상기 1차 입자의 평균 입경은 0,05㎛ 이상, 0.1㎛ 이상일 수 있고, 상기 1차 입자의 평균 입경은 4㎛ 이하, 3㎛이하, 또는 2㎛이하일 수 있다. 1차 입자의 평균 입경이 너무 크면 암염(rock salt)상이 형성되어 저항 특성 및 수명 특성이 저하될 수 있고, 1차 입자의 평균 입경이 너무 작으면 전해액과의 접촉 면적이 증가해서 퇴화가 빨리 일어날 수 있다. 또한, 상기 2차 입자의 평균 입경은 2㎛ 내지 25㎛일 수 있으며, 구체적으로는, 2㎛ 이상, 3㎛이상 또는 4㎛ 이상일 수 있고, 25㎛ 이하, 20㎛ 이하, 18㎛ 이하일 수 있다. 2차 입자의 평균 입경이 상기 범위를 만족할 때, 압연 공정에서 양극 활물질 입자가 부서지거나, 슬러리 제조 시에 공정성이 저하되는 것을 방지할 수 있다. 한편, 양극 활물질이 단입자 형태인 경우, 상기 단입자의 평균 입경 D50은 2㎛ 내지 10 ㎛일 수 있다. 구체적으로, 상기 단입자의 평균 입경 D50은 2 ㎛ 이상, 3 ㎛ 이상, 4 ㎛ 이상, 5 ㎛ 이상, 또는 6 ㎛ 이상일 수 있고, 10 ㎛ 이하, 9 ㎛ 이하, 8 ㎛ 이하, 또는 7 ㎛ 이하일 수 있다. 단입자의 평균 입경 D50이 너무 크면, 리튬 이동 경로가 길어져 저항이 증가하고, 출력 특성이 저하될 수 있으며, 너무 작으면 비표면적이 증가하여 전해액과의 부반응이 증가할 수 있다. 또한, 상기 단입자를 구성하는 1차 입자의 평균 입경은 0.5㎛ 내지 4㎛일 수 있으며, 구체적으로는, 0.5㎛ 이상, 0.7㎛ 이상, 1㎛ 이상 또는 1.5㎛ 이상일 수 있고, 4㎛ 이하, 3.5㎛이하, 또는 3㎛ 이하일 수 있다. 단입자를 구성하는 1차 입자의 평균 입경이 너무 크면, 리튬 이동 경로가 길어져 저항이 증가하고, 출력 특성이 저하될 수 있으며, 너무 작으면 비표면적이 증가하여 전해액과의 부반응이 증가할 수 있다.
한편, 상기 도전재로는 예를 들면, 구형 또는 인편상 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량을 기준으로 0.1 ~ 20중량%, 1 ~ 20중량% 또는 1 ~ 10중량%의 양으로 포함될 수 있다.
또한, 상기 바인더로는, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량을 기준으로 1 ~ 20중량%, 2 ~ 20중량%, 또는 2 ~ 10중량%로 포함될 수 있다.
분리막
본 발명의 리튬 이차 전지에서 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
전해질
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiN(FSO2)2, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 5.0M 범위 내에서 사용하는 것이 좋다.
또한 상기 전해질에는 전지의 수명특성 향상, 용량 감소 억제, 가스 발생 억제 등을 목적으로, 첨가제가 포함될 수 있다. 상기 첨가제로는 당해 기술분야에서 사용되는 다양한 첨가제들, 예를 들면, 플루오로 에틸렌 카보네이트(FEC),비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트 (VEC), 에틸렌 설페이트 (ESa), 리튬 다이플루오로포스페이트 (LiPO2F2), 리튬 비스옥살레이토 보레이트 (LiBOB), 리튬 테트라플루오로 보레이트 (LiBF4), 리튬 다이플루오로옥살레이토 보레이트 (LiDFOB), 리튬 다이플루오로비스옥살레이토포스페이트 (LiDFBP), 리튬 테트라플루오로옥살레이토 포스페이트 (LiTFOP), 리튬메틸설페이트 (LiMS), 리튬에틸설페이트 (LiES) 프로판술톤(PS), 프로펜술톤(PRS), 숙시노니트릴(SN), 아디포나이트릴 (AND), 1,3,6-헥세인트라이카보나이트릴 (HTCN), 1,4-다이시아노-2-부텐 (DCB), 플로오로벤젠 (FB), 에틸다이(프로-2-이-1-닐) 포스페이트 (EDP), 5-메틸-5프로파질옥실카보닐-1,3-다이옥세인-2-온 (MPOD), 하기 화학식 A로 표시되는 화합물(예를 들면, 시아노에틸폴리비닐알코올, PVA-CN), 하기 화학식 B로 표시되는 화합물(예를 들면, 헵타플루오로뷰티르 시아노에틸폴리비닐알코올, PF-PVA-CN), 하기 화학식 C로 표시되는 화합물(예를 들면, 프로파질 1H-이미다졸-1-카르복실레이트, PAC), 및/또는 하기 화학식 D로 표시되는 화합물(예를 들면, C6H8N2 등과 같은 아릴이미다졸) 등이 사용될 수 있다.
[화학식 A]
Figure PCTKR2022015008-appb-img-000001
상기 화학식 A에서 m 및 n은 각각 독립적으로 1 내지 100인 정수이다.
[화학식 B]
Figure PCTKR2022015008-appb-img-000002
[화학식 C]
Figure PCTKR2022015008-appb-img-000003
상기 화학식 C에서 R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고, R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, D는 CH, 또는 N이다.
[화학식 D]
Figure PCTKR2022015008-appb-img-000004
상기 화학식 D에서,
R1 R2, R3, 및 R4는 각각 독립적으로 수소; 또는 탄소수 1 내지 5의 알킬기, 시아노기(CN), 알릴기, 프로파질기, 아민기, 포스페이트기, 에테르기, 벤젠기, 사이클로 헥실기, 실릴기, 아이소시아네이트기(-NCO), 플루오르기(-F)를 포함할 수 있다.
바람직하게는, 상기 첨가제로는 산소 스캐빈저(Oxygen scavenger)로 작용하는 화합물들이 사용될 수 있다. 트리스 트라이(메틸실릴)포스파이트 (TMSPi), 트리스 트라이메틸포스파이트 (TMPi), 트리스(2,2,2-트라이플로오로에틸)포스파이트 (TTFP)와 같은 포스파이트 (Phosphite) 기반 구조의 물질 (화학식 E 참조); 트리스 트라이(메틸실릴)포스페이트 (TMSPa); 폴리포스포릭엑시드 트라이메틸실릴 에스테르 (PPSE); 트리스(펜타플로오로페닐)보레인 (TPFPB); 쿠마린-3-카르보나이트릴 (CMCN), 7-에티닐쿠마린 (ECM), 3-아세틸쿠마린 (AcCM), 3-[(트라이메틸실릴)옥실]-2H-1-벤조파이란-2-온 (TMSOCM) 3-(트라이메틸실릴)쿠마린 (TMSCM) 등과 같은 쿠마린 (Coumarin) 구조를 포함하는 화합물 (화학식 F 참조); 3-(2-프로핀-1-닐옥실)-2H-1-벤조파이란-2-온 (POCM), 2-프로피-1-닐-2-옥소-2H-1-벤조파이란-3-카르복실레이트(OBCM) 등이 산소 스캐빈저로 작용하는 화합물로 사용될 수 있다.
[화학식 E]
Figure PCTKR2022015008-appb-img-000005
[화학식 F]
Figure PCTKR2022015008-appb-img-000006
상기 화학식 E 및 F에서, R1~R6는 각각 독립적으로, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기 및 치환 또는 비치환된 탄소수 2 내지 20의 알카이닐기, 시아노기(-CN), 플루오로기(F), 에테르기(C-O-C), 카르복실기(O-C=O), 트라이메틸실릴기(-TMS), 아이소시아네이트기(-NCO), 및/또는 아이소싸이오시아네이트기(-NCS)를 포함할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다.
제조예 1
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 97.7 : 0.9 : 1.4의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 LiNi0.86Co0.05Mn0.07Al0.02O2을 사용하였으며, 도전재로는 CNT를 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 4.52mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Elkem社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 8.73mAh/cm2인 음극을 제조하였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지 A를 제조하였다.
제조예 2
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 96.25 : 1.5 : 2.25의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 LiNi0.83Co0.11Mn0.06O2을 사용하였으며, 도전재로는 덴카 블랙을 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 3.50mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Waker社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 7.36mAh/cm2인 음극을 제조하였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지 B를 제조하였다.
제조예 3
양극 및 음극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 2와 동일한 방법으로 리튬 이차 전지 C를 제조하였다.
제조예 4 ~ 6
양극 및 음극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차 전지 D ~ F를 제조하였다.
제조예 7
양극 및 음극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 2와 동일한 방법으로 리튬 이차 전지 G를 제조하였다.
제조예 8
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 97.7 : 0.9 : 1.4의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 LiNi0.86Co0.05Mn0.07Al0.02O2을 사용하였으며, 도전재로는 CNT를 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 3.03mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Elkem社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 7.75mAh/cm2인 음극을 제조하였다.
상기 음극 상에 리튬 금속을 압착시켜 전리튬화를 진행하였으며, 이때 전리튬화도가 7.38%였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 전리튬화된 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지 H를 제조하였다.
제조예 9 ~ 11
양극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 8과 동일한 방법으로 리튬 이차 전지 I ~ K를 제조하였다.
제조예 12
음극 전리튬화 시에 전리튬화도(%)가 16.5%이 되도록 전리튬화를 수행한 점을 제외하고는 제조예 8과 동일한 방법으로 리튬 이차 전지 L을 제조하였다.
상기와 같이 제조된 리튬 이차 전지 A ~ L의 N/P ratio 및 Si 충전 심도는 하기 표 1에 나타난 바와 같다.
구분 전지 # 양극 로딩량
(mAh/cm2)
음극 로딩량
(mAh/cm2)
전리튬화도 % NP ratio (%) Si 충전심도
제조예 1 A 4.52 8.73 - 193.1 51.8
제조예 2 B 3.50 7.36 - 210.3 47.6
제조예 3 C 4.00 7.36 - 184.0 54.3
제조예 4 D 3.03 11.90 - 392.7 25.5
제조예 5 E 3.03 7.75 - 255.8 39.1
제조예 6 F 4.03 7.75 - 192.3 52.0
제조예 7 G 4.50 7.36 - 163.6 61.1
제조예 8 H 3.03 7.75 7.38 255.8 46.5
제조예 9 I 3.52 7.75 7.38 220.2 52.8
제조예 10 J 4.03 7.75 7.38 192.3 59.4
제조예 11 K 4.50 7.75 7.38 172.2 65.5
제조예 12 L 3.03 7.75 16.5 255.8 54.1
실시예 및 비교예
리튬 이차 전지 A ~ L을 충/방전시키면서 용량 유지율이 80%에 도달할 때까지의 사이클 횟수(80% 수명 도달 횟수) 및 셀 에너지 밀도를 측정하였다. 이때, 상기 충/방전은 25℃, 1C/0.5C, CCCV 모드로 수행하였으며, 충전 컷-오프 전압은 4.2V, 방전 컷-오프 전압은 Si 방전 심도가 하기 [표 2]에 기재된 값을 갖도록 설정하였다. 측정 결과는 하기 [표 2]에 나타내었다. 또한, 각 리튬 이차 전지의 충/방전 전압 범위에서 가용 SOC를 표 2에 나타내었다.
구분 전지 # 가용 SOC NP ratio(%) Si 충전 심도(%) Si 방전 심도(%) Si 사용 범위(%) 셀 에너지 밀도
(Wh/L)
80% 수명 도달
cycle 횟수
실시예 1 A 63 193.1 51.8 19.2 32.6 581 857
실시예 2 A 69 193.1 51.8 16.1 35.7 631 690
실시예 3 A 75 193.1 51.8 12.9 38.9 680 548
실시예 4 B 65 210.3 47.6 16.6 31.0 595 530
실시예 5 C 65 184.0 54.3 19.0 35.3 593 500
실시예 6 H 85 255.8 46.5 13.3 33.2 629 481
실시예 7 H 80 255.8 46.5 15.2 31.3 596 572
실시예 8 H 70 255.8 46.5 19.1 27.4 529 784
실시예 9 L 100 255.8 54.1 15.0 39.1 715 483
비교예 1 A 91 193.1 51.8 4.7 47.1 805 320
비교예 2 A 97 193.1 51.8 1.6 50.2 856 238
비교예 3 D 100 392.7 25.5 0.0 25.5 659 148
비교예 4 E 100 255.8 39.1 0.0 39.1 730 172
비교예 5 F 100 192.3 52.0 0.0 52.0 847 150
비교예 6 G 65 163.6 61.1 21.4 39.7 574 330
비교예 7 H 100 255.8 46.5 7.4 39.1 723 289
비교예 8 H 95 255.8 46.5 9.4 37.1 693 354
비교예 9 I 100 220.2 52.8 7.4 45.4 770 199
비교예 10 J 100 192.3 59.4 7.4 52.0 813 187
비교예 11 K 100 172.2 65.5 7.4 58.1 841 110
비교예 12 K 65 172.2 65.5 27.7 37.9 577 269
상기 표 1에 나타난 바와 같이, Si 충전 심도가 30 ~ 60% 이하이고, Si 방전 심도가 10 ~ 20%를 만족하는 실시예 1 ~ 9의 리튬 이차 전지의 경우, Si를 음극 활물질로 사용함에도 불구하고, 80% 수명 도달 횟수가 480회 이상으로 높게 나타났다. 또한, 셀 에너지 밀도로 500Wh/L 이상으로 양호하게 나타났다. 이에 비해, Si 충전 심도나 Si 방전 심도 중 하나가 본 발명의 범위를 벗어나는 비교예 1 ~ 12의 경우, 용량 특성은 우수하게 나타나지만, 80% 수명 도달 횟수가 현저하게 감소함을 확인할 수 있다.

Claims (14)

  1. 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차 전지이며,
    상기 음극 활물질이 실리콘 입자를 포함하고,
    하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지.
    식 (1):
    Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
    상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)임.
    식 (2):
    Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
    상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값임.
  2. 제1항에 있어서,
    상기 음극 활물질은 실리콘 입자로 이루어진 것인 리튬 이차 전지.
  3. 제1항에 있어서,
    상기 Si 충전 심도가 40% ~ 60%인 리튬 이차 전지.
  4. 제1항에 있어서,
    상기 Si 방전 심도가 10% 내지 30%인 리튬 이차 전지.
  5. 제1항에 있어서,
    상기 리튬 이차 전지는 하기 식 (3)으로 표시되는 Si 사용 범위가 10% ~ 50% 이하인 리튬 이차 전지.
    식 (3): Si 사용 범위 (%) = Si 충전 심도 - Si 방전 심도
  6. 제1항에 있어서,
    상기 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 150% 내지 300%인 리튬 이차 전지.
  7. 제1항에 있어서,
    상기 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 180% 내지 300%인 리튬 이차 전지.
  8. 제1항에 있어서,
    상기 음극은 전리튬화된 음극이며, 하기 식 (4)로 표시되는 전리튬화도가 5 내지 50%인 리튬 이차 전지.
    식 (4):
    전리튬화도(%) = {전리튬화에 의해 음극에 삽입된 Li의 단위면적당 용량 / Si의 단위 면적당 용량} ×100
  9. 제8항에 있어서,
    상기 전리튬화도가 5% 내지 30%인 리튬 이차 전지.
  10. 제1항에 있어서,
    상기 양극 활물질은 리튬을 제외한 전체 금속 중 니켈의 함량이 60몰% 이상인 리튬 니켈계 산화물을 포함하는 것인 리튬 이차 전지.
  11. 제10항에 있어서,
    상기 리튬 니켈계 산화물은 하기 화학식 1로 표시되는 것인 리튬 이차 전지.
    [화학식 1]
    Li1+x1[Nia1Cob1Mnc1M2 d1]O2
    상기 화학식 1에서, -0.2≤x1≤0.2, 0.6≤a1<1, 0<b1<0.4, 0<c1<0.4, 0≤d1≤0.2이고, M2는 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상임.
  12. 제1항에 있어서,
    상기 리튬 이차 전지는 셀 에너지 밀도가 500Wh/L 이상이고, 80% 수명 도달 횟수가 450회 이상인 리튬 이차 전지.
  13. 제1항에 있어서,
    상기 리튬 이차 전지는 셀 에너지 밀도가 650Wh/L 이상이고, 80% 수명 도달 횟수가 480회 이상인 리튬 이차 전지.
  14. 제1항에 있어서,
    상기 리튬 이차 전지는 셀 에너지 밀도가 500Wh/L 내지 600Wh/L이고, 80% 수명 도달 횟수가 700회 이상인 리튬 이차 전지.
PCT/KR2022/015008 2021-10-05 2022-10-05 리튬 이차 전지 WO2023059072A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280067006.3A CN118056312A (zh) 2021-10-05 2022-10-05 锂二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210131946 2021-10-05
KR10-2021-0131946 2021-10-05
KR1020220127248A KR20230049045A (ko) 2021-10-05 2022-10-05 리튬 이차 전지
KR10-2022-0127248 2022-10-05

Publications (1)

Publication Number Publication Date
WO2023059072A1 true WO2023059072A1 (ko) 2023-04-13

Family

ID=85803586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015008 WO2023059072A1 (ko) 2021-10-05 2022-10-05 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2023059072A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073217A1 (ja) * 2012-11-12 2014-05-15 パナソニック株式会社 非水電解質電池の製造方法及び非水電解質電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2018179682A (ja) * 2017-04-10 2018-11-15 日産自動車株式会社 二次電池の状態推定方法および状態推定システム
JP6511222B2 (ja) * 2013-01-16 2019-05-15 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウム電池
KR20200089182A (ko) * 2019-01-16 2020-07-24 주식회사 엘지화학 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
KR20210131946A (ko) 2019-05-17 2021-11-03 한국전력공사 산성가스 포집공정 자동제어방법
KR20220127248A (ko) 2020-01-10 2022-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Iii 족 질화물 기판의 제조 방법 및 iii 족 질화물 기판

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073217A1 (ja) * 2012-11-12 2014-05-15 パナソニック株式会社 非水電解質電池の製造方法及び非水電解質電池
JP6511222B2 (ja) * 2013-01-16 2019-05-15 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウム電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2018179682A (ja) * 2017-04-10 2018-11-15 日産自動車株式会社 二次電池の状態推定方法および状態推定システム
KR20200089182A (ko) * 2019-01-16 2020-07-24 주식회사 엘지화학 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
KR20210131946A (ko) 2019-05-17 2021-11-03 한국전력공사 산성가스 포집공정 자동제어방법
KR20220127248A (ko) 2020-01-10 2022-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Iii 족 질화물 기판의 제조 방법 및 iii 족 질화물 기판

Similar Documents

Publication Publication Date Title
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020180160A1 (ko) 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2017074109A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2020180125A1 (ko) 리튬 이차전지
WO2023059072A1 (ko) 리튬 이차 전지
WO2021066462A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2023059074A1 (ko) 리튬 이차 전지
WO2023059070A1 (ko) 리튬 이차 전지
WO2023059069A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022878893

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878893

Country of ref document: EP

Effective date: 20240408

NENP Non-entry into the national phase

Ref country code: DE