JP2018179682A - 二次電池の状態推定方法および状態推定システム - Google Patents

二次電池の状態推定方法および状態推定システム Download PDF

Info

Publication number
JP2018179682A
JP2018179682A JP2017077748A JP2017077748A JP2018179682A JP 2018179682 A JP2018179682 A JP 2018179682A JP 2017077748 A JP2017077748 A JP 2017077748A JP 2017077748 A JP2017077748 A JP 2017077748A JP 2018179682 A JP2018179682 A JP 2018179682A
Authority
JP
Japan
Prior art keywords
secondary battery
time
terminal voltage
discharge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017077748A
Other languages
English (en)
Other versions
JP6898585B2 (ja
Inventor
伊久磨 高橋
Ikuma Takahashi
伊久磨 高橋
佳久 古谷
Yosihisa Furuya
佳久 古谷
大間 敦史
Atsushi Oma
敦史 大間
健介 山本
Kensuke Yamamoto
健介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017077748A priority Critical patent/JP6898585B2/ja
Publication of JP2018179682A publication Critical patent/JP2018179682A/ja
Application granted granted Critical
Publication of JP6898585B2 publication Critical patent/JP6898585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】二次電池の正極活物質および負極活物質の過電圧が大きく、過電圧がSOCに強く依存している場合であっても、SOCを正確に推定できる二次電池の状態推定方法および状態推定装置を提供する。【解決手段】二次電池のSOCを推定する方法は、二次電池の端子電圧の放電を停止した後の緩和時における平均変化率と、端子電圧の放電時における平均変化率との差分を算出するステップ(S101)と、上記差分に基づいて、電池の等価回路を選択するステップ(S102)と、上記等価回路を使用して、電池のOCVを推定するステップ(S103)と、上記OCVに基づいて、電池のSOCを推定するステップ(S104)と、を有する。【選択図】図5

Description

二次電池の状態推定方法および状態推定システムに関する。
近年、地球温暖化に対処するため、二酸化炭素量の削減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)(以下、「車両」と書く)の導入による二酸化炭素排出量の削減に期待が集まっており、これらの普及に欠かせない充放電可能な電池である二次電池の開発が盛んに行われている。
二次電池としては、とくに、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。リチウムイオン二次電池は、一般に、活物質等がバインダとともに集電体に塗布されてなる活物質層を有する正極および負極が、電解質層を介して接続され、電池外装体に収納される構成を有する。
車両の電源システムは、リチウムイオン二次電池に蓄積されている電気エネルギーを使用してモータを駆動するとともに、モータの回生発電によってリチウムイオン二次電池に電気エネルギーを蓄積する。このように、リチウムイオン二次電池は、蓄積されている電気エネルギーを放電により使用した後も、充電することにより電気エネルギーを蓄積し、再び取り出すことができる。
しかし、二次電池は、何度も充放電を繰り返すうちに内部抵抗が徐々に大きくなり、充電可能な電池容量が低下していくことが知られている。さらに、過剰な充放電が繰り返された場合、二次電池が劣化するだけではなく、損傷する可能性もあるため、車両の電源システムは使用中の二次電池の充電状態(SOC:State of Charge)を可能な限り正確に把握することが求められる。
これに関連して、下記特許文献1には、所定周期ごとにサンプリングして得られた二次電池の電流値と、交流インピーダンス法で抵抗値および容量値を測定してモデル化された等価回路とに基づいて、二次電池のSOCを推定する技術が開示されている。
しかしながら、特許文献1の技術では、等価回路の抵抗値および容量値が一定であると仮定して二次電池の過電圧を推定している。したがって、たとえば二次電池の正極活物質および負極活物質の過電圧が大きく、過電圧がSOCに強く依存している場合、過電圧の推定に誤差が生じ、SOCを精度良く推定できないという問題がある。
特許第4984527号公報 国際公開第2014/128904号パンフレット
本発明は、上記問題に鑑みてなされたものである。したがって、本発明の目的は、二次電池の正極活物質および負極活物質の過電圧が大きく、過電圧がSOCに強く依存している場合であっても、SOCを精度良く推定できる二次電池の状態推定方法および状態推定システムを提供することである。
本発明の上記目的は、下記によって達成される。
二次電池の充電状態を推定する方法は、前記二次電池の端子電圧の放電を停止した後の緩和時における平均変化率と、前記端子電圧の放電時における平均変化率との差分を算出する。続いて、前記差分に基づいて、前記二次電池の等価回路を選択する。そして、前記等価回路を使用して、前記二次電池の開放電圧を推定し、前記開放電圧に基づいて、前記二次電池の充電状態を推定する。
また、二次電池の状態推定システムは、差分算出部と、等価回路選択部と、開放電圧推定部と、充電状態推定部と、を有する。差分算出部は、二次電池の端子電圧の放電を停止した後の緩和時における平均変化率と、前記端子電圧の放電時における平均変化率との差分を算出する。等価回路選択部は、前記差分に基づいて、前記二次電池の等価回路を選択する。開放電圧推定部は、前記等価回路を使用して、前記二次電池の開放電圧を推定する。充電状態推定部は、前記開放電圧に基づいて、前記二次電池の充電状態を推定する。
二次電池の端子電圧の緩和時と放電時とにおける平均変化率の差分からリチウム拡散過電圧が増加しているか否かを判断できるので、リチウム拡散過電圧が増加している場合にリチウム拡散過電圧を考慮した等価回路を選択できる。したがって、短時間で精度良く二次電池のSOCを推定できる。
一実施形態に係る二次電池の状態推定システムの構成を示す概略ハードウェアブロック図である。 図1に示す二次電池の概略構成を示す断面図である。 図1に示す制御部の機能を示す機能ブロック図である。 リチウム拡散過電圧を考慮した等価回路を例示する回路図である。 一実施形態において、二次電池のSOCを推定する手順を例示するフローチャートである。 放電時および緩和時における二次電池の端子電圧の時間に対する変化について説明する模式図である。 現行セルおよびリチウムリッチ/シリコン合金セルについて差分Vsubと二次電池の端子電圧との関係を例示するグラフである。 リチウムリッチ/シリコン合金セルについて放電末期における過電圧の増加を例示するグラフである。
以下、添付した図面を参照して二次電池の状態推定システムの実施形態を説明する。なお、図中、同一の部材には同一の符号を用いた。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
(実施形態)
図1は一実施形態に係る二次電池の状態推定システムの構成を示す概略ハードウェアブロック図であり、図2は図1に示す二次電池の概略構成を示す断面図である。また、図3は図1に示す制御部の機能を示す機能ブロック図であり、図4はリチウム拡散過電圧を考慮した等価回路を例示する回路図である。
<二次電池の状態推定システム100>
図1に示すように、二次電池の状態推定システム(以下、単に「システム」とも書く)100は、二次電池200、電流測定部300、電圧測定部400、負荷500および制御部600を有する。システム100は、たとえば車両に搭載される。
システム100は、二次電池200の電池モデル(等価回路)を使用して、二次電池200のSOCを推定する。以下、システム100の構成について詳細に説明する。
<二次電池200>
図2に示すように、二次電池(以下、単に「電池」とも書く)200は、発電要素21が、電池外装体29の内部に封止された構造を有する。
[発電要素]
発電要素21は、略矩形状を呈し、充電反応を通じて充電が行われ、放電反応を通じて放電が行われる。発電要素21は、正極と、セパレータ17と、負極とが積層された構成を有する。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。
一対の正極活物質層15と負極活物質層13とは、セパレータ17を挟んで対向して配置されている。また、負極(負極集電体11および負極活物質層13)、セパレータ17、および正極(正極集電体12および正極活物質層15)は、この順に積層されており、隣接する負極、セパレータ17、および正極により、1つの単電池19が構成されている。各々の単電池19は、電気的に並列接続されている。
正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装体29の端部に挟まれるように電池外装体29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に取り付けられていてもよい。取り付けには、たとえば超音波溶接や抵抗溶接などが使用されうる。
[集電体]
負極集電体11および正極集電体12を構成する材料に特に制限はないが、好適には金属が用いられる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
負極集電体11および正極集電体12の大きさは、電池200の使用用途に応じて決定される。たとえば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。負極集電体11および正極集電体12の厚さについても特に制限はなく、通常は1〜100μm程度である。
[正極活物質層]
正極活物質層15は、電極反応において正極活物質層15と負極活物質層13との間を往来する物質(イオン)を蓄積および放出できる正極活物質を含む。
たとえば、電池200がリチウムイオン二次電池である場合には、リチウム−遷移金属複合酸化物が好ましく、正極活物質としては、LiCoO、LiNiO,LiMnO、LiFeO2、LiNi0.5Mn0.5、LiNi1/3Mn1/3Co1/3、LiMnOなどの層状岩塩型構造を持つ酸化物、LiMn、LiNi0.5Mn1.5などのスピネル型構造を持つ酸化物、LiFePO、LiCoPOなどのオリビン型構造を持つ酸化物などを用いうる。
この他、V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物、PbO、AgO、NiOOHなどを用いることができる。また、場合によっては、二種以上の正極活物質を併用してもよい。
さらに、本実施形態では、Li(Li1−x)O、M(遷移金属)の位置をCo,Ni,Mnで置換したリチウムリッチ系(リチウム過剰型)の金属複合酸化物を正極活物質層15に使用できる。これらのリチウムリッチ系の材料を含む正極活物質は、リチウムリッチ系ではない従来の材料と比較して、過電圧が高いことが知られている。
正極活物質層15に含まれる導電助剤は、正極活物質の導電性を改善する機能を有し、たとえば、黒鉛などのカーボン粉末や、気相成長炭素繊維(VGCF)などの種々の炭素繊維により構成する。
正極活物質層15に含まれるバインダは、正極集電体12と正極活物質層15との結着材としての機能を有する。たとえば、バインダとしては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはこれらの混合物を用いることができる。
[負極活物質層]
負極活物質層13は、負極活物質、導電助剤、バインダなどを含む。負極活物質層13は、電極反応において正極活物質層15と負極活物質層13との間を往来する物質(イオン)を蓄積および放出できる負極活物質を含む。負極活物質としては、たとえば、炭素材料として、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料(黒鉛)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボンなどを用いることができる。より好ましくは、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛を用いることができる。天然黒鉛は、たとえば、鱗片状黒鉛、塊状黒鉛などが使用できる。人造黒鉛としては塊状黒鉛、気相成長黒鉛、鱗片状黒鉛、繊維状黒鉛が使用できる。これらの中で、特に好ましい材料は、鱗片状黒鉛、塊状黒鉛である。鱗片状黒鉛、塊状黒鉛を用いた場合、充填密度が高くなるため、特に有利である。また、場合によっては、二種以上の負極活物質を併用してもよい。
また、本実施形態では、負極活物質層13にシリコン合金などのシリコン系材料を使用することができる。シリコン合金は、炭素材料と比較して過電圧が高いことが知られている。さらに、負極活物質としては、金属酸化物(MeO)、SiO、Snなども使用できる。上記Meは金属を表し、たとえばMn、Co、Ni、Cu、Fe、Snなどから選択される。上記金属酸化物、SiOおよびSnは、高容量ではあるものの、過電圧が大きくなる材料である。
負極活物質層13に含まれる導電助剤は、負極活物質の導電性を改善する機能を有し、たとえば、黒鉛などのカーボン粉末や、気相成長炭素繊維(VGCF)などの種々の炭素繊維により構成する。
負極活物質層13に含まれるバインダは、負極集電体11と負極活物質層13との結着材としての機能を有し、たとえば、ポリフッ化ビニリデン(PVdF)により構成する。また、ポリフッ化ビニリデンのような溶剤系バインダ以外に、ポリマー微粒子、ゴム材料を水に分散させた水系バインダ(たとえば、スチレン−ブタジエンゴム)を用いてもよい。
[セパレータ]
セパレータ17は、正極活物質層15と負極活物質層13の間に設けられ、正極活物質層15と負極活物質層13を電気的に隔離している。セパレータ17は、正極活物質層15と負極活物質層13との間に電解液を保持して、イオンの伝導性を担保している。たとえば、セパレータ17は、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、セラミック製の多孔質膜などを用いる。また、耐熱性を有するアラミドなどを用いてもよい。
電解液は、非水(系)電解液である。電解液を介して正極活物質層15と負極活物質層13の間をイオンが移動することで、発電要素21に蓄電された電気を充放電する。たとえば、電解液は、有機溶媒に支持塩であるリチウム塩等が溶解した形態である。有機溶媒としては、支持塩を十分に溶解させ得るものであればよく、たとえば、(1)プロピレンカーボネート、エチレンカーボネートなどの環状カーボネート類、(2)ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類、(3)テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジブトキシエタン等のエーテル類、(4)γ−ブチロラクトン等のラクトン類、(5)アセトニトリル等のニトリル類、(6)プロピオン酸メチル等のエステル類、(7)ジメチルホルムアミド等のアミド類、(8)酢酸メチル、蟻酸メチルの中から選ばれる少なくともから一種類または二種以上を混合した非プロトン性溶媒等の可塑剤などが挙げられる。これら有機溶媒は、単独で用いても二種類以上を組み合わせて用いてもよい。支持塩としては、従来公知のものが用いられる。たとえば、Li(CSON(LiBETI)、LiPF、LiBF、LiClO、LiAsF、LiCFSO、Li(CFSON、Li(CSON等を用いる。
[集電板]
集電板25、27を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、たとえば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[電池外装体]
電池外装体29は、たとえば、内部に金属板を備えたラミネートシートから構成され、発電要素21を両側から被覆して封止し、発電要素21を収容する。
<電流測定部300>
電流測定部300は、電池200に流れる電流(以下、「電池電流Ib」と書く)を測定する。電池200の放電時には電池電流(放電電流)Ib<0であり、電池200の充電時には電池電流(充電電流)Ib>0である。電池電流Ibの測定結果は、制御部600に送信される(破線の矢印を参照)。
<電圧測定部400>
電圧測定部400は、電池200の端子電圧(以下、「端子電圧Vb」と書く)を測定する。とくに、本実施形態では、電圧測定部400は、電池200の放電時の端子電圧Vbと、電池200の放電を停止した後の緩和時の端子電圧Vbとを測定する。端子電圧Vbの測定結果は、制御部600に送信される(破線の矢印を参照)。
<負荷500>
負荷500は、たとえば、車両に搭載される走行用モータを有する。負荷500は、電池200からの出力電力によって駆動される。また、負荷500は、走行用モータの回生電力により電池200を充電する。あるいは、負荷500とは別個に発電・給電機構が配置され、電池200を上記発電・給電機構からの充電電流によって充電するように構成されていてもよい。
<制御部600>
制御部600は、負荷500を制御し、電池200のSOCを推定して出力する。制御部600は、電流測定部300にて測定した電池電流Ibと電圧測定部400にて測定した端子電圧Vbとに基づいて、負荷500の駆動を制御するための制御信号Scを生成する。
制御部600は、演算部610および記憶部620を有する。演算部610は不図示のCPUを備え、記憶部620は不図示のRAMおよびROMを含むメモリーを備える。CPUがRAMに記憶されたプログラムを実行することにより、様々な機能が実現される。なお、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)により制御部600を構成してもよい。
図3に示すように、本実施形態では、制御部600は、差分算出部630、等価回路選択部640、開放電圧推定部650および充電状態推定部660の各機能部を備える。
差分算出部630は、電圧測定部400の測定結果に基づいて、電池200の放電時と放電を停止した後の緩和時とにおける、時間に対する端子電圧Vbの平均変化率をそれぞれ算出し、これらの平均変化率の差分を算出する。平均変化率の具体的な算出方法については後述する。
等価回路選択部640は、上記平均変化率の差分に基づいて、電池200の等価回路を選択する。等価回路選択部640は、電池200の等価回路として、抵抗値および容量値を一定とした現行型等価回路と、リチウム拡散過電圧を考慮した等価回路と、を含む複数の等価回路のうちから1つを選択する。現行型等価回路については従来から知られている等価回路であるので、ここでは詳細な説明を省略する。
図4に示すように、リチウム拡散過電圧を考慮した等価回路は、電解液抵抗Rsと、正極側の抵抗Rpおよび容量Cpと、負極側の抵抗Rnおよび容量Cnと、電池200の開放電圧(OCV:Open Circuit Voltage)表す電源と、を有する。
抵抗Rpの値および抵抗Rnの値は、それぞれ正極活物質および負極活物質の材料に応じて設定されうる。本実施形態では、リチウムリッチ系の材料を含む正極活物質およびシリコン合金を含む負極活物質にそれぞれ対応する抵抗Rpおよび抵抗Rnがあらかじめ記憶部620に記憶されている。
開放電圧推定部650は、電池200のOCVを推定する。開放電圧推定部650は、等価回路選択部640により選択された等価回路を使用して電池200の過電圧ΔVを算出し、当該過電圧ΔVおよび端子電圧Vbを用いて電池200のOCVを推定する。過電圧ΔVは、下記の数式(1)により算出される。
ΔVpおよびΔVnについては公知のアルゴリズムを使用して近似的に算出できるので、ここではその詳細な説明を省略する。
充電状態推定部660は、上記OCVに基づいて、放電時の電池200のSOCを推定する。たとえば、リチウムイオン二次電池においては、OCVとSOCとの間には強い相関関係があることが知られている。記憶部620はOCVとSOCとの間の関係を表すマップデータまたは関係式を保持しており、充電状態推定部660は開放電圧推定部650によって推定されたOCVに対応するSOCを出力する。
以下、図5〜図8を参照して、電池200のSOCを推定する方法について説明する。図5は本実施形態において、電池200のSOCを推定する処理の手順を例示するフローチャートである。図5に示すフローチャートの処理は、RAMに記憶されている、電池200のSOCを推定するためのプログラムをCPUが実行することにより実現される。
また、図6は放電時および緩和時における二次電池の端子電圧の時間に対する変化について説明する模式図であり、図7は現行セルおよびリチウムリッチ/シリコン合金セルについて差分Vsubと二次電池の端子電圧との関係を例示するグラフである。
また、図8は、リチウムリッチ/シリコン合金セルについて放電末期における過電圧の増加を例示するグラフである。
図5に示すように、まず、電池200の端子電圧Vbを測定する(ステップS101)。図6に示すように、制御部600は、時間tにおいて電池200の放電を開始する。制御部600は、電池200からの放電電流Ibが一定になるように負荷500を制御する。電池200の端子電圧Vbは、時間tの経過に伴い放電曲線Kdに沿ってVからVに変化する。電圧測定部400は、電池200が放電している間に端子電圧Vbを測定する。
続いて、制御部600は、時間tにおいて電池200の放電を停止する。電池200の端子電圧Vbは、時間tの経過に伴い緩和曲線Krに沿って変化する。電圧測定部400は、電池200が緩和している間に端子電圧Vbを測定する。放電時および緩和時に測定された端子電圧Vbのデータは、制御部600に送信され、記憶部620に記憶される。放電時および緩和時の端子電圧Vbの測定に要する時間は、数十秒程度である。
次に、平均変化率の差分を算出する(ステップS102)。差分算出部630は、電池200の緩和時における、時間に対する端子電圧Vbの平均変化率と、電池200の放電時における、時間に対する端子電圧Vbの平均変化率との差分を算出する。
具体的には、電池200の放電時における第1の時間Δtの間に端子電圧Vbが変化量ΔVoutだけ変化した場合の平均変化率ΔVout/Δtが算出される。また、電池200の放電時における第2の時間Δtの間に端子電圧Vbが変化量ΔVrelaxだけ変化した場合の平均変化率ΔVrelax/Δtが算出される。Vsubは、下記の数式(2)のように表わすことができる。
上記数式(1)において、ΔVout/Δtは、放電電流Ibと電解液抵抗Rsとの積(Ib・Rs)と、反応過電圧Vrとの和に対応する。反応過電圧Vrは、所定電荷を放電するとき、Δtまでに現れる抵抗成分による過電圧と定義される。また、ΔVrelax/Δtは、リチウム拡散過電圧Vdに対応する。リチウム拡散過電圧Vdは、無負荷のとき、Δtまでに現れる抵抗成分による過電圧と定義される。したがって、Vsubは、下記の数式(3)のように表わすことができる。
なお、通常、二次電池の緩和時間は放電時間よりも長いので、Δt>Δtに設定される。本実施形態では、たとえばΔt=3(s),Δt=10(s)に設定される。
次に、電池200の等価回路を選択する(ステップS103)。等価回路選択部640は、差分Vsubに基づいて、電池200の等価回路を選択する。
図7に示すように、たとえば、層状型LiMO、スピンネル型LiM、オリビン型LiMPOを正極活物質に使用し、黒鉛を負極活物質に使用した現行セルでは、Vsubは端子電圧Vbに依存せず、概ね0.001〜0.002(V)の一定値を示す。
また、Li rich/Siセル、すなわちリチウムリッチ系の正極活物質とシリコン合金を含む負極活物質を使用した電池では、Vsubが4(mV)未満の範囲(一定域)では、Vsubは端子電圧Vbに対して概ね0.004(V)一定の値を示す。一方、Vsubが4(mV)以上の範囲(増加域)では、Vsubは端子電圧Vbが低下するにつれて増加する。このように、本発明者は、Li rich/Siセルにおいて、Vsubが端子電圧Vbに依存することを見出した。
subが一定域にある場合、リチウム拡散過電圧Vdは、Ib・Rsと反応過電圧Vrとの和よりも大きく、かつVsubの大きさは概ね一定である。一定域では、リチウム拡散過電圧Vdの変化が小さいので、現行型等価回路を使用して電池200のSOCを推定しても誤差は小さい。したがって、等価回路選択部640は、現行型等価回路を選択する。
一方、Vsubが増加域にある場合、リチウム拡散過電圧VdはIb・Rsと反応過電圧Vrとの和よりも大きく、かつIb・Rsと反応過電圧Vrとの和に対して、リチウム拡散過電圧Vdは大きく増加している。したがって、電池200の過電圧ΔVの推定に現行型等価回路を適用したのでは誤差を生じ、電池200のSOCを精度良く推定できない可能性がある。したがって、等価回路選択部640は、Vsubが増加域にある場合、リチウム拡散過電圧を考慮した等価回路を選択する。
このように、等価回路選択部640は、差分Vsubが第1の所定電圧以下である場合、現行型等価回路を選択する一方で、差分Vsubが上記第1の所定電圧よりも大きい場合、リチウム拡散過電圧を考慮した等価回路を選択する。図7に示す例では、上記第1の所定電圧は、たとえば4(mV)である。
次に、電池200のOCVを推定する(ステップS104)。開放電圧推定部650は、選択された等価回路を使用して、電池200のOCVを推定する。OCVは、電池200の端子電圧Vbおよび過電圧ΔVに基づいて、下記の数式(4)から算出することができる。
次に、電池200のSOCを推定する(ステップS105)。充電状態推定部660は、ステップS104において算出したOCVを使用し、OCVとSOCとの間の関係を表すマップデータまたは関係式に基づいて、放電時の電池200のSOCを推定する。
次に、Vsubが第2の所定電圧よりも大きいか否かを判断する(ステップS106)。上述のとおり、電池200の端子電圧Vbを測定する際に、電池200からの放電電流Ibが一定になるように制御される。しかし、リチウムイオン二次電池では、放電末期において急激にリチウム拡散過電圧Vdが増加し、電池200の端子電圧Vbが下限電圧に達してしまうことがある。下限電圧は、たとえば2.5(V)である。電池200には、端子電圧Vbが下限電圧に達した後も電荷が残存している場合がある。
たとえば、図8に示すように、電池200には、端子電圧Vbが下限2.5(V)に達した時点で、約15%の容量が残される。そこで、本実施形態では、次に上記処理を実行する前に、差分Vsubの大きさに応じて、電池200からの放電電流Ibを絞って(制限して)放電を再開する。制御部600は、放電電流制限部として機能し、Vsubが第2の所定電圧、たとえば8(mV)よりも大きい場合、電池200からの放電電流Ibを制限するように負荷500を制御できる(ステップS107)。一方、Vsubが第2の所定電圧以下の場合、電池200からの放電電流Ibを現状のまま維持する。そして、制御部600は、制御処理を終了する(エンド)。
このように、図5に示すフローチャートの処理では、端子電圧Vbの緩和時と放電時とにおける平均変化率の差分Vsubに基づいて電池200の等価回路を選択し、当該等価回路からOCVを推定し、さらに当該OCVからSOCを推定する。
上記フローチャートの処理が実行されるタイミングは、システム100が使用される環境や条件などに応じて適宜設定されうる。たとえば、制御部600は、車両が動作している間に上記処理を常時繰り返すように構成されうる。あるいは、制御部600は、車両の運転者がアクセルを踏んだり、ブレーキを掛けたりするなどのイベントが発生したタイミングで上記処理を実行するように構成されうる。
以上で説明された本実施形態の二次電池の状態推定方法および二次電池の状態推定システムは下記の効果を奏する。
(a)電池200の端子電圧Vbの緩和時と放電時とにおける平均変化率の差分Vsubからリチウム拡散過電圧Vdが増加しているか否かを判断できるので、リチウム拡散過電圧Vdが増加している場合にリチウム拡散過電圧を考慮した等価回路を選択できる。したがって、数十秒程度の短時間で精度良く電池200のSOCを推定できる。
(b)電池200の放電時の端子電圧Vbと、電池200の放電を停止した後の緩和時の端子電圧Vbとを測定するので、実際の単電池(実セル)からの出力電圧に基づいてSOCを推定できる。
(c)放電時における第1の時間Δtよりも緩和時における第2の時間Δtを大きく設定することにより、反応過電圧Vrよりも遅い時間域で現れるリチウム拡散過電圧Vdを、緩和時における端子電圧Vbの平均変化率に反映させることができる。
(d)差分Vsubが第1の所定電圧よりも大きい場合、リチウム拡散過電圧を考慮した等価回路を使用するので、数十秒程度の短時間で精度良く電池200のSOCを推定できる。
(e)差分Vsubが第2の所定電圧よりも大きい場合、電池200の放電電流Ibを制限するので、端子電圧Vbが下限電圧に達する前に電池200に蓄積された電荷を無駄なく効率的に使い切ることができる。
(f)電池200は、リチウムを過剰に含む正極活物質150およびシリコン合金を含む負極活物質130を有するので、高容量の二次電池を実現できる。
以上のとおり、実施形態において、本発明の二次電池の状態推定方法および二次電池の状態推定システムを説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、および省略することができることはいうまでもない。
100 二次電池の状態推定システム、
200 二次電池、
300 電流測定部、
400 電圧測定部、
500 負荷、
600 制御部、
610 演算部、
620 記憶部、
630 差分算出部
640 等価回路選択部、
650 開放電圧推定部、
660 充電状態推定部。

Claims (12)

  1. 二次電池の充電状態を推定する方法であって、
    前記二次電池の端子電圧の放電を停止した後の緩和時における平均変化率と、前記端子電圧の放電時における平均変化率との差分を算出するステップ(a)と、
    前記差分に基づいて、前記二次電池の等価回路を選択するステップ(b)と、
    前記等価回路を使用して、前記二次電池の開放電圧を推定するステップ(c)と、
    前記開放電圧に基づいて、前記二次電池の充電状態を推定するステップ(d)と、
    を有する、方法。
  2. 前記ステップ(a)の前に、
    前記二次電池を放電させつつ前記二次電池の端子電圧を測定した後、前記二次電池の放電を停止し、前記二次電池を緩和させつつ前記端子電圧を測定するステップをさらに有する、請求項1に記載の方法。
  3. 前記放電時の前記端子電圧の平均変化率は、
    前記放電時の第1の時間における前記端子電圧の変化量を前記第1の時間で除した値であり、
    前記緩和時の前記端子電圧の平均変化率は、
    前記緩和時の第2の時間における前記端子電圧の変化量を前記第2の時間で除した値であり、
    前記第2の時間は、前記第1の時間よりも長い値に設定される、請求項1または2に記載の方法。
  4. 前記ステップ(b)では、
    前記差分が第1の所定電圧よりも大きい場合、リチウム拡散過電圧を考慮した等価回路を選択する、請求項1〜3のいずれか1項に記載の方法。
  5. 前記差分が第2の所定電圧よりも大きい場合、
    前記ステップ(d)の後に、前記二次電池の放電電流を制限して放電を開始するステップをさらに有する、請求項1〜4のいずれか1項に記載の方法。
  6. 前記二次電池は、リチウムを過剰に含む正極活物質と、シリコン合金を含む負極活物質とを有する、請求項1〜5のいずれか1項に記載の方法。
  7. 二次電池の端子電圧の放電を停止した後の緩和時における平均変化率と、前記端子電圧の放電時における平均変化率との差分を算出する差分算出部と、
    前記差分に基づいて、前記二次電池の等価回路を選択する等価回路選択部と、
    前記等価回路を使用して、前記二次電池の開放電圧を推定する開放電圧推定部と、
    前記開放電圧に基づいて、前記二次電池の充電状態を推定する充電状態推定部と、
    を有する、二次電池の状態推定システム。
  8. 前記二次電池の前記放電時の前記端子電圧と、前記二次電池の放電を停止した後の前記緩和時の前記端子電圧とを測定する電圧測定部と、をさらに有する、請求項7に記載の二次電池の状態推定システム。
  9. 前記放電時の前記端子電圧の平均変化率は、
    前記放電時の第1の時間における前記端子電圧の変化量を前記第1の時間で除した値であり、
    前記緩和時の前記端子電圧の平均変化率は、
    前記緩和時の第2の時間における前記端子電圧の変化量を前記第2の時間で除した値であり、
    前記第2の時間は、前記第1の時間よりも長い値に設定される、請求項7または8に記載の二次電池の状態推定システム。
  10. 前記等価回路選択部は、
    前記差分が第1の所定電圧よりも大きい場合、リチウム拡散過電圧を考慮した等価回路を選択する、請求項7〜9のいずれか1項に記載の二次電池の状態推定システム。
  11. 前記差分が第2の所定電圧よりも大きい場合、前記二次電池の放電電流を制限する放電電流制限部をさらに有する、請求項7〜10のいずれか1項に記載の二次電池の状態推定システム。
  12. リチウムを過剰に含む正極活物質と、シリコン合金を含む負極活物質とを備えるリチウムイオン二次電池をさらに有する、請求項7〜11のいずれか1項に記載の二次電池の状態推定システム。
JP2017077748A 2017-04-10 2017-04-10 二次電池の状態推定方法および状態推定システム Active JP6898585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077748A JP6898585B2 (ja) 2017-04-10 2017-04-10 二次電池の状態推定方法および状態推定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077748A JP6898585B2 (ja) 2017-04-10 2017-04-10 二次電池の状態推定方法および状態推定システム

Publications (2)

Publication Number Publication Date
JP2018179682A true JP2018179682A (ja) 2018-11-15
JP6898585B2 JP6898585B2 (ja) 2021-07-07

Family

ID=64276005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077748A Active JP6898585B2 (ja) 2017-04-10 2017-04-10 二次電池の状態推定方法および状態推定システム

Country Status (1)

Country Link
JP (1) JP6898585B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596596A (zh) * 2019-10-12 2019-12-20 深圳中科新能源汽车技术有限公司 一种新型的基于ocv曲线的soc逐次校正方法
CN110797577A (zh) * 2019-10-29 2020-02-14 中兴高能技术有限责任公司 一种锂离子电池充电方法、装置及计算机存储介质
CN113711067A (zh) * 2019-04-03 2021-11-26 雷诺股份公司 用于对电池的荷电状态进行初始化的方法
WO2023059070A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2023059072A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2023090180A1 (ja) * 2021-11-16 2023-05-25 株式会社日立ハイテク 電池管理装置、電池管理方法、電池管理プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206952A1 (en) * 2010-02-22 2011-08-25 Ryo Mano Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system
WO2012118052A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極
JP2013210257A (ja) * 2012-03-30 2013-10-10 East Japan Railway Co 鉄道車両用の蓄電装置
US20150212160A1 (en) * 2014-01-30 2015-07-30 Infineon Technologies Ag Method and Apparatuses for Determining a State of Charge
JP2016095959A (ja) * 2014-11-13 2016-05-26 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
US20160187429A1 (en) * 2014-12-26 2016-06-30 Denso Corporation Apparatus For Predicting Power Parameter of Secondary Battery
JP2016126999A (ja) * 2014-12-26 2016-07-11 株式会社デンソー 電池電力予測装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206952A1 (en) * 2010-02-22 2011-08-25 Ryo Mano Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system
JP2011171213A (ja) * 2010-02-22 2011-09-01 Toyota Motor Corp リチウムイオン二次電池のリチウム析出判別装置,その方法,およびその装置を搭載する車両
WO2012118052A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極
JP2013210257A (ja) * 2012-03-30 2013-10-10 East Japan Railway Co 鉄道車両用の蓄電装置
US20150212160A1 (en) * 2014-01-30 2015-07-30 Infineon Technologies Ag Method and Apparatuses for Determining a State of Charge
JP2016095959A (ja) * 2014-11-13 2016-05-26 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
US20160187429A1 (en) * 2014-12-26 2016-06-30 Denso Corporation Apparatus For Predicting Power Parameter of Secondary Battery
JP2016126999A (ja) * 2014-12-26 2016-07-11 株式会社デンソー 電池電力予測装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711067A (zh) * 2019-04-03 2021-11-26 雷诺股份公司 用于对电池的荷电状态进行初始化的方法
CN110596596A (zh) * 2019-10-12 2019-12-20 深圳中科新能源汽车技术有限公司 一种新型的基于ocv曲线的soc逐次校正方法
CN110797577A (zh) * 2019-10-29 2020-02-14 中兴高能技术有限责任公司 一种锂离子电池充电方法、装置及计算机存储介质
CN110797577B (zh) * 2019-10-29 2020-10-09 中兴高能技术有限责任公司 一种锂离子电池充电方法、装置及计算机存储介质
WO2023059070A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2023059072A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2023090180A1 (ja) * 2021-11-16 2023-05-25 株式会社日立ハイテク 電池管理装置、電池管理方法、電池管理プログラム

Also Published As

Publication number Publication date
JP6898585B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6898585B2 (ja) 二次電池の状態推定方法および状態推定システム
JP5682955B2 (ja) リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
US10700376B2 (en) Methods for fast-charging and detecting lithium plating in lithium ion batteries
KR101487495B1 (ko) 혼합 양극재를 포함하는 이차 전지의 충전 상태 추정 장치 및 방법
JP5904039B2 (ja) 二次電池の制御装置
JP6135110B2 (ja) 二次電池の制御装置、充電制御方法およびsoc検出方法
WO2013133113A1 (ja) 二次電池の制御装置およびsoc検出方法
KR101793849B1 (ko) 비수전해질 이차 전지 및 조전지
JP5896024B2 (ja) 二次電池の充電制御方法および充電制御装置
JP4710212B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池の運転方法
JP2017073331A (ja) 二次電池装置
US11460510B1 (en) All-solid-state lithium ion secondary battery system and charging device for all-solid-state lithium ion secondary batteries
JP4714229B2 (ja) リチウム二次電池
JP2009181907A (ja) リチウムイオン二次電池の充電方法及び充電システム
CN110247101B (zh) 用于对电池快速充电的方法
JP6260835B2 (ja) 再利用可能な非水電解液二次電池の選別方法
CN105900276B (zh) 锂离子二次电池的制造方法
JP7165615B2 (ja) 二次電池用インピーダンス測定装置および二次電池の状態推定装置、並びに二次電池システムおよび二次電池用充電装置
JP2010080279A (ja) 二次電池システム、およびこの二次電池システムを用いた車両
JP2015190815A (ja) リチウムイオン二次電池の状態検知システムおよび状態検知方法
JP5998924B2 (ja) 二次電池システムおよび二次電池制御装置
JP2012252951A (ja) 非水電解質二次電池
JP2015220038A (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池の充電方法
US20220123279A1 (en) Self-lithiating battery cells and methods for pre-lithiating the same
CN113839008A (zh) 用于锂离子电池组的厚柔性阴极

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R151 Written notification of patent or utility model registration

Ref document number: 6898585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151