WO2023059070A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2023059070A1
WO2023059070A1 PCT/KR2022/015006 KR2022015006W WO2023059070A1 WO 2023059070 A1 WO2023059070 A1 WO 2023059070A1 KR 2022015006 W KR2022015006 W KR 2022015006W WO 2023059070 A1 WO2023059070 A1 WO 2023059070A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium secondary
active material
loading amount
Prior art date
Application number
PCT/KR2022/015006
Other languages
English (en)
French (fr)
Inventor
박승원
박현우
권요한
이재욱
전찬수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280066995.4A priority Critical patent/CN118077082A/zh
Priority claimed from KR1020220127249A external-priority patent/KR20230049046A/ko
Publication of WO2023059070A1 publication Critical patent/WO2023059070A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery using silicon (Si) particles as an anode active material.
  • lithium secondary batteries are in the spotlight as an energy source for electric vehicles.
  • electric vehicles With the spread of electric vehicles, there is an increasing demand for lithium secondary batteries capable of providing a longer mileage and shortening the rapid charging time upon a single charge.
  • a lithium secondary battery generally forms an electrode assembly by interposing a separator between a positive electrode including a positive electrode active material made of a transition metal oxide containing lithium and a negative electrode including a negative electrode active material capable of storing lithium ions, and the electrode It is manufactured by inserting the assembly into a battery case, injecting a non-aqueous electrolyte serving as a medium for delivering lithium ions, and then sealing the assembly.
  • the non-aqueous electrolyte is generally composed of a lithium salt and an organic solvent capable of dissolving the lithium salt.
  • a carbon-based material such as natural graphite or artificial graphite has been mainly used as an anode active material of a lithium secondary battery.
  • the carbon-based negative electrode active material has a small capacity and a slow reaction rate with lithium, secondary batteries using the carbon-based negative electrode active material have limitations in realizing high capacity and rapid charging performance.
  • the present invention is to solve the above problems, and to provide a lithium secondary battery having excellent lifespan characteristics while implementing high capacity characteristics by applying silicon (Si) particles as an anode active material.
  • a negative electrode comprising a negative electrode active material; a positive electrode including a positive electrode active material; a separator interposed between the cathode and anode; and an electrolyte
  • the negative electrode active material includes silicon particles
  • the positive electrode active material includes a lithium manganese-based oxide represented by the following [Formula 1] and Si represented by the following formula (1)
  • a lithium secondary battery having a charge depth of 30% to 60% and a Si discharge depth of 10% or more represented by the following formula (2) is provided.
  • M is Al, B, Co, W, Mg, V, Ti, At least one selected from the group consisting of Zn, Ga, In, Ru, Nb, Sn, Sr, and Zr.
  • Si filling depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode)/cathode loading amount ⁇ ⁇ 100
  • the positive loading amount is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative loading amount is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is Capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 ).
  • Si discharge depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode - discharge loading amount) / cathode loading amount ⁇ ⁇ 100
  • the positive electrode loading is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative electrode loading is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is The capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 )
  • the discharge loading amount is a value obtained by dividing the discharge capacity of the secondary battery by the positive electrode area at the discharge cut-off voltage.
  • the lithium secondary battery according to the present invention is designed such that the Si charge depth and the Si discharge depth satisfy a specific range, and exhibits excellent lifespan characteristics despite the use of Si particles as an anode active material.
  • Si particles have excellent reactivity with lithium and capacity characteristics compared to carbon-based negative electrode active materials and/or SiOx-based negative electrode active materials, the lithium secondary battery of the present invention to which they are applied can realize excellent capacity characteristics and fast charging performance. can That is, the lithium secondary battery according to the present invention exhibits excellent capacity characteristics, lifespan characteristics, and rapid charging performance.
  • the negative electrode when using a lithium manganese-based oxide in which a rock salt Li 2 MnO 3 phase and a layered LiMO 2 phase (where M is Ni, Co, and Mn) are mixed as the positive electrode active material, the negative electrode By performing the activation process at a high voltage of 4.6 V or more, without using a sacrificial cathode material for compensation or a separate process for prelithiation, the Si anode can be prelithiated with excess lithium generated from the LiMO 2 phase. there is.
  • primary particle means a particle unit in which grain boundaries do not exist in appearance when observed under a 5000-fold to 20000-fold field of view using a scanning electron microscope.
  • Average particle diameter of primary particles means an arithmetic average value calculated after measuring the particle diameters of primary particles observed in a scanning electron microscope image.
  • second particles are particles formed by aggregation of a plurality of primary particles.
  • average particle diameter D 50 means a particle size based on 50% of a volume cumulative particle size distribution of particle powder to be measured (eg, positive electrode active material powder, negative electrode active material powder, etc.).
  • the average particle diameter D50 may be measured using a laser diffraction method. For example, after dispersing the powder of the particle to be measured in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000), irradiating ultrasonic waves of about 28kHz with an output of 60W, and then volume cumulative particle size After obtaining the distribution graph, it can be measured by finding the particle size corresponding to 50% of the cumulative volume.
  • a laser diffraction particle size measuring device e.g., Microtrac MT 3000
  • Si has excellent capacity characteristics and lithium reactivity compared to silicon-based negative active materials such as SiOx and SiC as well as carbon-based negative active materials such as graphite. Therefore, when Si is applied as an anode active material, improved energy density and rapid charging performance can be obtained. However, when Si is applied as an anode active material, it is difficult to implement satisfactory lifespan characteristics because the negative electrode degrades rapidly during charging and discharging due to severe volume change during charging and discharging. As a result of repeated research to improve the lifespan characteristics of a lithium secondary battery to which Si is applied as an anode active material, the present inventors have found that Si is used as an anode active material when a battery is designed such that the Si charge depth and Si discharge depth satisfy a specific range. However, the present invention was completed by finding out that excellent lifespan characteristics can be implemented.
  • the lithium secondary battery according to the present invention includes a negative electrode including a negative electrode active material; a positive electrode including a positive electrode active material; a separator interposed between the cathode and anode; and an electrolyte, wherein the negative electrode active material includes silicon particles, and the positive electrode active material includes a lithium manganese-based oxide represented by the following [Formula 1] and Si represented by the following formula (1)
  • the charge depth is 30% to 60%, and the Si discharge depth represented by the following formula (2) is 10% or more.
  • the negative electrode active material does not include other types of negative electrode active materials and may be made of only silicon.
  • M is Al, B, Co, W, Mg, V, Ti, At least one selected from the group consisting of Zn, Ga, In, Ru, Nb, Sn, Sr, and Zr.
  • Si filling depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode)/cathode loading amount ⁇ ⁇ 100
  • the positive loading amount is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative loading amount is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is It is the capacity per unit area (unit: mAh/cm 2 ) of lithium (Li) inserted into the negative electrode by prelithiation.
  • the positive electrode loading amount means a capacity value per unit area of the positive electrode measured when the secondary battery is charged and discharged in a voltage range of 2.25V to 4.45V.
  • Si discharge depth (%) ⁇ (anode loading amount + total lithiation capacity of cathode - discharge loading amount) / cathode loading amount ⁇ ⁇ 100
  • the positive electrode loading is the capacity per unit area of the positive electrode (unit: mAh/cm 2 )
  • the negative electrode loading is the capacity per unit area of the negative electrode (unit: mAh/cm 2 )
  • the prelithiation capacity of the negative electrode is The capacity per unit area of lithium (Li) inserted into the negative electrode by prelithiation (unit: mAh/cm 2 )
  • the discharge loading amount is the discharge capacity of the secondary battery at the discharge cut-off voltage as the positive electrode area is the value divided by
  • the Si filling depth may be 40% to 60%, more preferably 45% to 60%.
  • the Si filling depth can be adjusted by controlling the positive electrode loading amount, the negative electrode loading amount, and/or the degree of prelithiation of the negative electrode.
  • the positive electrode loading amount and/or negative electrode loading amount depend on the type and content of the active material used, It may be set in consideration of the porosity and/or the thickness of the active material layer.
  • the Si discharge depth indicates the capacity of lithium remaining in the negative electrode at a discharge cut-off voltage. According to the study of the present inventors, even if the Si charge depth satisfies 30 to 60%, when the Si discharge depth is less than 10%, it was found that life characteristics are rapidly deteriorated.
  • the Si discharge depth may be 10% to 30%, more preferably 10% to 25%, even more preferably 15% to 25%, and still more preferably 17% to 25%.
  • the Si discharge depth is complexly influenced by the ratio of negative electrode capacity to positive electrode capacity (N/P ratio), the driving voltage range of the battery (charge/discharge cut-off voltage), and the prelithiation degree of the negative electrode, and these factors By appropriately controlling the Si discharge depth can be adjusted.
  • the lithium secondary battery of the present invention may be designed so that the Si usage range is 10 to 50%, preferably 20 to 40%, and more preferably 30% to 40%.
  • the Si use range as shown in Equation (3) below, means the difference between the Si charge depth and the Si discharge depth. When the Si use range is high, the energy density increases, but the life characteristics are significantly lowered, and the Si use range If is too low, the energy density decreases.
  • the N/P ratio which is the percentage of the negative electrode loading amount to the positive electrode loading amount
  • the Si filling depth may increase, resulting in a decrease in lifespan.
  • a decrease in lifespan may occur.
  • the lithium secondary battery according to the present invention designed to satisfy the above conditions can realize excellent energy density and rapid charging performance by using Si particles, and exhibits excellent lifespan characteristics.
  • the lithium secondary battery according to the present invention may reach 80% lifespan 400 times or more, preferably 450 times or more, and more preferably 500 times or more.
  • the negative electrode according to the present invention may include silicon (Si) as an anode active material, and preferably, 100% silicon (Si) may be used as an anode active material. Silicon used in the present invention may be pure silicon not bonded to other metals or oxygen.
  • the negative electrode according to the present invention includes an anode current collector and an anode active material layer formed on at least one surface of the anode current collector, and the anode active material layer may include silicon (Si) as an anode active material.
  • Si has excellent capacity characteristics and lithium reactivity compared to silicon-based negative active materials such as SiOx and SiC as well as carbon-based negative active materials such as graphite. Therefore, when Si is applied as an anode active material, improved energy density and rapid charging performance can be obtained.
  • the average particle diameter (D50) of the silicon may be 1 ⁇ m to 10 ⁇ m, specifically 2 ⁇ m to 8 ⁇ m, and more specifically 3 ⁇ m to 7 ⁇ m.
  • the average particle diameter is less than 5 ⁇ m, the specific surface area of the particles is excessively increased, and thus the viscosity of the negative electrode slurry is excessively increased. Accordingly, the dispersion of the particles constituting the negative electrode slurry is not smooth.
  • the size of the silicon particles is too small, the contact area between the silicon particles and the conductive materials is reduced by the composite of the conductive material and the binder in the negative electrode slurry, so the possibility of disconnection of the conductive network increases, resulting in a decrease in capacity retention rate.
  • the BET specific surface area of the silicon is preferably 0.01 to 150.0 m 2 /g, more preferably 0.1 to 100.0 m 2 /g, particularly preferably 0.2 to 80.0 m 2 /g, and most preferably 0.2 to 18.0 m 2 /g.
  • the BET surface area can be determined according to DIN 66131 using nitrogen.
  • the silicon may exist in crystalline or amorphous form, and is preferably not porous.
  • the silicon particles may be spherical or fragment-shaped, but are not limited thereto, and may have a fibrous structure or be present in the form of a silicon-containing film or coating.
  • Silicon may be included in an amount of 50% by weight or more, 60% by weight or more, preferably 65% by weight or more, more preferably 70% by weight or more based on the total weight of the negative electrode active material layer, and 99% by weight or less, preferably may be included in an amount of 95% by weight or less, more preferably 90% by weight or less, and even more preferably 80% by weight or less.
  • the negative electrode according to the present invention may further include other negative electrode active materials other than the silicon, if necessary.
  • the other anode active material may be SiOx (where 0 ⁇ x ⁇ 2), a carbon-based anode active material, and the like.
  • the carbon-based negative electrode active material may be, for example, artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, soft carbon, or hard carbon, but is not limited thereto.
  • the other negative active material may be included in an amount of 50% by weight or less, preferably 45% by weight or less, and more preferably 30% by weight or less based on the total weight of the negative electrode active material layer.
  • the negative electrode active material layer may further include a conductive material and a binder, if necessary.
  • the conductive material examples include spherical or scaly graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, single-walled carbon nanotubes, and multi-walled carbon nanotubes; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 to 40% by weight, 1 to 30% by weight, or 5 to 30% by weight based on the total weight of the negative electrode active material layer.
  • the negative electrode active material layer according to the present invention may include two or more types of conductive materials, and in this case, the conductive materials may include a point-shaped conductive material and a plate-shaped conductive material.
  • the dotted conductive material may be used to improve the conductivity of the negative electrode, and preferably has conductivity without causing chemical change.
  • the conductive material is natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, titanic acid It may be at least one selected from the group consisting of potassium, titanium oxide, and polyphenylene derivatives, and preferably may include carbon black in terms of implementing high conductivity and excellent dispersibility.
  • the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g or more and 60 m 2 /g or less. there is.
  • the point-like conductive material may satisfy a functional group content (Volatile matter) of 0.01% or more and 0.05% or less, preferably 0.01% or more and 0.04% or less, more preferably 0.01% or more and 0.03% or less.
  • a functional group content Volatile matter
  • Control of the functional group content can be adjusted according to the degree of heat treatment of the point-shaped conductive material. That is, in the production of the point-like conductive material, a high functional group content means a lot of foreign substances, and a low functional group content means more heat treatment processing, and the point-like conductive material according to the present application has a functional group content within the above range. In order to satisfy, it is characterized in that the point-shaped conductive material is subjected to a certain portion of heat treatment to satisfy the functional group content range.
  • the particle size of the dot-shaped conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
  • the plate-shaped conductive material can improve conductivity by increasing the surface contact between silicon particles in the negative electrode and at the same time suppress the disconnection of the conductive path due to volume expansion, and can be expressed as a planar conductive material or a bulk type conductive material.
  • the plate-like conductive material may include at least one selected from the group consisting of plate-like graphite, graphene, graphene oxide, and graphite flakes, and preferably may be plate-like graphite.
  • An average particle diameter (D50) of the plate-shaped conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 4 ⁇ m to 5 ⁇ m.
  • the plate-shaped conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g or more and 300 m 2 /g or less. there is.
  • binder for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylic acid , polyacrylamide, polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one of them alone Alternatively, a mixture of two or more may be used.
  • the binder may be included in an amount of 1 to 20% by weight, 2 to 20% by weight, or 2 to 10% by weight based on the total weight of the negative electrode active material layer.
  • the negative electrode may have a multi-layered structure in which a negative electrode active material layer is composed of a single layer or two or more layers.
  • a negative electrode active material layer is composed of a single layer or two or more layers.
  • each layer may have different types and/or contents of the negative active material, the binder, and/or the conductive material.
  • the negative electrode according to the present invention may have a two-layer structure, and a layer adjacent to the current collector (hereinafter referred to as a lower layer) and an upper layer formed on the lower layer may have different types of negative electrode active materials.
  • the anode active material of the lower layer may be silicon
  • the anode active material of the upper layer may be SiOx (where 0 ⁇ x ⁇ 2).
  • the negative electrode active material layer may have a porosity of 20% to 70% or 20% to 50%. If the porosity of the negative electrode active material layer is too small, the impregnability of the electrolyte solution may be lowered and thus lithium mobility may be lowered, and if the porosity is too large, the energy density may be lowered.
  • the negative electrode may be a pre-lithiated negative electrode.
  • the prelithiation of the negative electrode is a method of compressing or depositing lithium metal on the negative electrode active material layer, a method of inserting lithium into the negative electrode active material layer through an electrochemical method, a sacrificial positive electrode material or positive electrode active material included in the positive electrode Excess lithium contained in the anode is inserted into the anode through an activation process, or excess lithium is imparted to the anode through an electrochemical method or a method of compressing or depositing lithium metal, and the excess lithium provided to the anode through the activation process is applied to the anode. It may be performed by a method of inserting into, etc., and may be performed by combining two or more of the above methods.
  • the pre-lithiated negative electrode is performed by performing an activation process at a high voltage of 4.6V or higher after cell assembly to insert lithium generated as the Li 2 MnO 3 phase of the positive electrode active material is activated into the negative electrode.
  • the negative electrode of the present invention may have a prelithiation degree of 5 to 50%, preferably 5 to 30%, more preferably 5 to 20%, represented by the following formula (4).
  • the pre-lithiation degree of the negative electrode satisfies the above range, a lithium secondary battery having excellent capacity and lifespan characteristics may be implemented. Specifically, if the degree of prelithiation of the negative electrode is too small, it is necessary to adjust the depth of discharge to secure life characteristics, and in this case, it may be difficult to sufficiently secure energy density. In addition, if the degree of prelithiation of the negative electrode is too high, degradation of silicon particles in the electrode may be accelerated, and thus capacity characteristics may deteriorate.
  • the positive electrode according to the present invention includes a lithium manganese-based oxide represented by Chemical Formula 1 as a positive electrode active material.
  • the positive electrode of the present invention includes a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material including a lithium manganese-based oxide represented by Formula 1 below can include
  • M may be at least one selected from the group consisting of Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr, and Zr.
  • a is the molar ratio of Li in the lithium manganese-based oxide and may be 1 ⁇ a, 1.1 ⁇ a ⁇ 1.5, or 1.1 ⁇ a ⁇ 1.3.
  • b is the molar ratio of Ni in the lithium manganese-based oxide, and may be 0 ⁇ b ⁇ 0.5, 0.1 ⁇ b ⁇ 0.4, or 0.2 ⁇ b ⁇ 0.4.
  • the c is the molar ratio of Co in the lithium manganese-based oxide, and may be 0 ⁇ c ⁇ 0.1, 0 ⁇ c ⁇ 0.08, or 0 ⁇ c ⁇ 0.05.
  • c exceeds 0.1, it is difficult to secure a high capacity, and gas generation and deterioration of the cathode active material are intensified due to an increase in oxygen-oxidation-reduction reaction, and life characteristics may be deteriorated.
  • d is the molar ratio of Mn in the lithium manganese-based oxide, and may be 0.5 ⁇ d ⁇ 1.0, 0.50 ⁇ d ⁇ 0.80, or 0.50 ⁇ d ⁇ 0.70. When d is less than 0.5, the ratio of the rock salt phase is too small, so that the negative electrode irreversible compensation and capacity improvement effects are insignificant.
  • the e is the molar ratio of the doping element M in the lithium manganese-based oxide, and may be 0 ⁇ e ⁇ 0.2, 0 ⁇ e ⁇ 0.1, or 0 ⁇ e ⁇ 0.05. Too much content of the doping element may adversely affect the capacity of the active material.
  • lithium manganese-based oxide containing excess lithium it has a structure in which a layered phase (LiM'O 2 ) and a rock salt phase (Li 2 MnO 3 ) are mixed. causes Therefore, when lithium manganese-based oxide is used as a positive electrode active material as in the present invention, an activation process is performed at a high voltage of 4.6V or more without performing a separate compensation material or a prelithiation process, thereby reducing the excess amount generated while the rock salt phase is activated.
  • a prelithiation effect in which the irreversible capacity of the negative electrode is compensated can be obtained by intercalating lithium ions into the negative electrode.
  • the ratio of the number of moles of Li to the number of moles of all metal elements excluding Li is 1.2 to 1.5, 1.25 to 1.5, or 1.25 to 1.4 days.
  • rate characteristics and capacity characteristics are excellent. If the Li/Me ratio is too high, the electrical conductivity decreases and the salt phase (Li 2 MnO 3 ) increases to increase the degradation rate. If the ratio is too low, the energy density improvement effect is insignificant.
  • composition of the perlithium manganese-based oxide may be represented by the following [Chemical Formula 2].
  • M may be at least one selected from the group consisting of metal ions Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr, and Zr. .
  • the X denotes a ratio of the Li 2 MnO 3 phase in the lithium manganese-based oxide, and may be 0.2 ⁇ X ⁇ 0.5, 0.25 ⁇ X ⁇ 0.5, or 0.25 ⁇ X ⁇ 0.4.
  • the ratio of the Li 2 MnO 3 phase in the lithium manganese-based oxide satisfies the above range, the irreversible capacity of the Si-based negative electrode active material may be sufficiently compensated, and high-capacity characteristics may be implemented.
  • the y is the molar ratio of Mn on the LiM'O 2 layer, and may be 0.4 ⁇ y ⁇ 1, 0.4 ⁇ y ⁇ 0.8, or 0.4 ⁇ y ⁇ 0.7.
  • the z is a molar ratio of Co on the LiM'O 2 layer, and may be 0 ⁇ z ⁇ 0.1, 0 ⁇ z ⁇ 0.08, or 0 ⁇ z ⁇ 0.05. When z exceeds 0.1, gas generation and deterioration of the cathode active material may be intensified, resulting in deterioration of lifespan characteristics.
  • the w is the molar ratio of the doping element M on the LiM'O 2 layer, and may be 0 ⁇ w ⁇ 0.2, 0 ⁇ w ⁇ 0.1 or 0 ⁇ w ⁇ 0.05.
  • the cathode active material according to the present invention may further include a coating layer on the surface of the lithium manganese-based oxide, if necessary.
  • the cathode active material includes a coating layer, contact between the lithium manganese oxide and the electrolyte is suppressed by the coating layer, thereby reducing side reactions in the electrolyte solution, thereby improving lifespan characteristics.
  • the coating layer may include a coating element M 1 , and the coating element M 1 may include, for example, Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, It may be at least one or more selected from the group consisting of Sr and Zr, preferably Al, Co, Nb, W and combinations thereof, and more preferably Al, Co and combinations thereof.
  • the coating element M 1 may include two or more types, and may include, for example, Al and Co.
  • the coating element may exist in an oxide form, that is, M 1 Oz (1 ⁇ z ⁇ 4) in the coating layer.
  • the coating layer may be formed through a method such as dry coating, wet coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). Among them, it is preferable to form the coating layer through the atomic layer deposition method in that it can form a wide area.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • the formation area of the coating layer may be 10 to 100%, preferably 30 to 100%, and more preferably 50 to 100% based on the total surface area of the perlithium manganese-based oxide particles.
  • the coating layer formation area satisfies the above range, the effect of improving lifespan characteristics is excellent.
  • the positive electrode active material according to the present invention may be in the form of secondary particles in which a plurality of primary particles are aggregated, and the average particle diameter D 50 of the secondary particles is 2 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 8 ⁇ m, more preferably It may be 4 ⁇ m to 8 ⁇ m.
  • D 50 of the positive electrode active material satisfies the above range, excellent electrode density may be realized, and deterioration in capacity and rate characteristics may be minimized.
  • the cathode active material may have a BET specific surface area of 1 m 2 /g to 10 m 2 /g, 3 to 8 m 2 /g, or 4 to 6 m 2 /g. If the BET specific surface area of the cathode active material is too low, it is difficult to realize sufficient capacity due to insufficient reaction area with the electrolyte, and if the specific surface area is too high, moisture absorption is fast and side reactions with the electrolyte are accelerated, making it difficult to secure lifespan characteristics.
  • the positive electrode according to the present invention preferably has an initial irreversible capacity of 5 to 70%, 5 to 50%, or 5 to 30%.
  • the initial irreversible capacity of the positive electrode is the high voltage charge capacity when the half battery is activated at a high voltage of 4.6V or more after the half battery is manufactured with the positive electrode and the lithium metal counter electrode, and the discharge capacity when the half battery is charged and discharged in the voltage range of 2.5 to 4.4V. It is a value measured on the basis of 0.1C as a ratio of
  • the irreversible capacity of the Si negative electrode active material can be sufficiently compensated without using a separate compensation material such as a sacrificial positive electrode material.
  • the perlithium manganese-based oxide may be prepared by mixing a transition metal precursor and a lithium raw material and then firing them.
  • lithium raw material for example, lithium-containing carbonate (eg, lithium carbonate, etc.), hydrate (eg, lithium hydroxide hydrate (LiOH H 2 O), etc.), hydroxide (eg, lithium hydroxide, etc.) ), nitrates (eg, lithium nitrate (LiNO 3 ), etc.), chlorides (eg, lithium chloride (LiCl), etc.) and the like, and one of these may be used alone or in a mixture of two or more kinds. .
  • lithium-containing carbonate eg, lithium carbonate, etc.
  • hydrate eg, lithium hydroxide hydrate (LiOH H 2 O), etc.
  • hydroxide eg, lithium hydroxide, etc.
  • nitrates eg, lithium nitrate (LiNO 3 ), etc.
  • chlorides eg, lithium chloride (LiCl), etc.
  • the transition metal precursor may be in the form of a hydroxide, oxide or carbonate.
  • a precursor in the form of carbonate it is more preferable in that a positive electrode active material having a relatively high specific surface area can be prepared.
  • the transition metal precursor may be prepared through a coprecipitation process.
  • the transition metal precursor is prepared by dissolving each transition metal-containing raw material in a solvent to prepare a metal solution, mixing the metal solution, an ammonium cation complex forming agent, and a basic compound, and then performing a co-precipitation reaction. can be manufactured.
  • an oxidizing agent or oxygen gas may be further added during the co-precipitation reaction, if necessary.
  • the transition metal-containing raw material may be an acetate, carbonate, nitrate, sulfate, halide, sulfide, or the like of each transition metal.
  • the transition metal-containing raw material is NiO, NiCO 3 2Ni(OH) 2 4H 2 O, NiC 2 O 2 2H 2 O, Ni(NO 3 ) 2 6H 2 O, NiSO 4 , NiSO 4 6H 2 O, Mn 2 O 3 , MnO 2 , Mn 3 O 4 MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 H 2 O, manganese acetate, manganese halide, Mn 2 O 3 , MnO 2 , Mn 3 O 4 MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 H 2 O, manganese acetate, manganese halides, Mn 2 O 3 , MnO 2 , Mn 3 O 4 MnCO 3 , Mn(NO 3 ) 2
  • the ammonium cation complex forming agent may be at least one selected from the group consisting of NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , and NH 4 CO 3 .
  • the basic compound may be at least one selected from the group consisting of NaOH, Na 2 CO 3 , KOH, and Ca(OH) 2 .
  • the form of the precursor may vary depending on the type of basic compound used. For example, when NaOH is used as a basic compound, a hydroxide-type precursor can be obtained, and when Na 2 CO 3 is used as a basic compound, a carbonate-type precursor can be obtained. In addition, when a basic compound and an oxidizing agent are used together, an oxide-type precursor can be obtained.
  • the transition metal precursor and the lithium source material have a total transition metal (Ni+Co+Mn):Li molar ratio of 1:1.05 to 1:2, preferably 1:1.1 to 1:1.8, more preferably 1 : 1.25 to 1: can be mixed in an amount such that 1.8.
  • the firing may be performed at a temperature of 600 °C to 1000 °C or 700 °C to 950 °C, and the firing time may be 5 hours to 30 hours or 5 hours to 20 hours.
  • the firing atmosphere may be an air atmosphere or an oxygen atmosphere, and may be, for example, an atmosphere containing 20 to 100% by volume of oxygen.
  • the cathode active material layer may further include a conductive material and a binder in addition to the cathode active material.
  • the conductive material examples include spherical or scaly graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, single-walled carbon nanotubes, and multi-walled carbon nanotubes; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 to 20% by weight, 1 to 20% by weight, or 1 to 10% by weight based on the total weight of the positive electrode active material layer.
  • binder for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile (polyacrylonitrile) , carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and one of these may be used alone or a mixture of two or more thereof.
  • the binder may be included in an amount of 1 to 20% by weight, 2 to 20% by weight, or 2 to 10% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode according to the present invention may have an electrode density of 2.5 to 3.8 g/cc, 2.5 to 3.5 g/cc, or 3.0 to 3.3 g/cc.
  • the electrode density of the anode satisfies the above range, high energy density can be implemented.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions. If it is normally used as a separator in a lithium secondary battery, it can be used without particular limitation. It is preferable to have an excellent ability to absorb the electrolyte while being resistant.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention includes organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a straight-chain, branched or cyclic hydrocarbon group having 2
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiN(FSO
  • additives may be included in the electrolyte for the purpose of improving life characteristics of a battery, suppressing capacity decrease, suppressing gas generation, and the like.
  • various additives used in the art for example, fluoro ethylene carbonate (FEC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfate (ESa), lithium difluoro Phosphate (LiPO2F2), lithium bisoxalato borate (LiBOB), lithium tetrafluoro borate (LiBF4), lithium difluorooxalato borate (LiDFOB), lithium difluorobisoxalato phosphate (LiDFBP), lithium tetrafluoro oxalato phosphate (LiTFOP), lithium methyl sulfate (LiMS), lithium ethyl sulfate (LiES) propanesultone (PS), propensultone (PRS), succinonitrile (SN
  • n and n are each independently an integer of 1 to 100.
  • R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN
  • D is CH, or N.
  • R 1 R 2 , R 3 , and R 4 are each independently hydrogen; Or an alkyl group having 1 to 5 carbon atoms, a cyano group (CN), an allyl group, a propargyl group, an amine group, a phosphate group, an ether group, a benzene group, a cyclohexyl group, a silyl group, an isocyanate group (-NCO), a fluorine group (-F) may be included.
  • compounds acting as oxygen scavengers may be used as the additive.
  • Materials with phosphite-based structures such as tris tri(methylsilyl)phosphite (TMSPi), tris trimethylphosphite (TMPi), and tris(2,2,2-trifluoroethyl)phosphite (TTFP) (see Formula E); tristri(methylsilyl)phosphate (TMSPa); polyphosphoric acid trimethylsilyl ester (PPSE); tris(pentafluorophenyl)borane (TPFPB); Compounds containing a Coumarin structure, such as coumarin-3-carbonitrile (CMCN), 7-ethynylcoumarin (ECM), 3-acetylcoumarin (AcCM), and 3-(trimethylsilyl)coumarin (TMSCM) (see Formula F); 3-[(trimethylsilyl)oxyl]-2H-1-benzopyran-2-one (TMSOCM), 3-(2-propy
  • a cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 96:1:3 to prepare a cathode slurry. At this time, Li 1.143 [Ni 0.35 Mn 0.65 ] 0.857 O 2 coated with 1500 ppm Al was used as the positive electrode active material, and carbon nanotubes were used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 3.50 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Waker Co., Ltd.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed and used in a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 7.36 mAh/cm 2 .
  • a lithium secondary battery A was prepared by preparing an electrode assembly by interposing a separator between the positive electrode and the negative electrode prepared as described above, inserting the electrode assembly into a battery case, and then injecting an electrolyte solution.
  • Lithium secondary batteries B to C were prepared in the same manner as in Preparation Example 1, except that the loading amounts of the positive and negative electrodes were changed as described in Table 1 below.
  • a cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 96:1:3 to prepare a cathode slurry. At this time, Li 1.143 [Ni 0.35 Mn 0.65 ] 0.857 O 2 coated with 1500 ppm Al was used as the positive electrode active material, and carbon nanotubes were used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 3.03 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Elkem Co.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed and used in a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 11.90 mAh/cm 2 .
  • a lithium secondary battery D was manufactured by preparing an electrode assembly by interposing a separator between the positive electrode and the negative electrode prepared as described above, inserting the electrode assembly into a battery case, and then injecting an electrolyte solution.
  • Lithium secondary batteries E to G were manufactured in the same manner as in Preparation Example 4, except that the loading amounts of the positive and negative electrodes were changed as described in Table 1 below.
  • a cathode active material conductive material: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 96:1:3 to prepare a cathode slurry. At this time, Li 1.143 [Ni 0.35 Mn 0.65 ] 0.857 O 2 coated with 1500 ppm Al was used as the positive electrode active material, and carbon nanotubes were used as the conductive material.
  • the positive electrode slurry was applied on an aluminum current collector sheet, dried, and rolled to prepare a positive electrode having a loading amount of 3.03 mAh/cm 2 .
  • a negative electrode slurry was prepared by mixing negative electrode active material: conductive material: acrylic binder in water at a weight ratio of 70:20.3:9.7. At this time, Si particles (Elkem Co.) having an average particle diameter of 5 ⁇ m were used as the anode active material, and carbon black:graphite:CNT was mixed and used in a weight ratio of 9.8:10:0.52 as the conductive material.
  • the negative electrode slurry was applied on a copper current collector sheet, dried, and then rolled to prepare a negative electrode having a loading amount of 7.75 mAh/cm 2 .
  • a lithium secondary battery was manufactured by preparing an electrode assembly by interposing a separator between the positive electrode and the negative electrode prepared as described above, inserting the electrode assembly into a battery case, and then injecting an electrolyte solution.
  • the lithium secondary battery was charged to 4.65V to activate the Li 2 MnO 3 phase of the positive electrode active material to pre-lithiate the negative electrode to prepare a lithium secondary battery H.
  • the degree of pre-lithiation of the negative electrode was 5.4%. .
  • Lithium secondary batteries I to K were prepared in the same manner as in Preparation Example 8, except that the loading amount of the positive electrode was changed as described in Table 1 below. At this time, the pre-lithiation degree of the negative electrode of I to K of the lithium secondary battery is as shown in Table 1 below.
  • the N/P ratio, Si charge depth, and prelithiation degree of the lithium secondary batteries A to K prepared as described above are shown in Table 1 below.
  • Example 1 A 65 210.3 47.6 16.6 31.0 476 506
  • Example 2 B 65 184.0 54.3 19.0 35.3 477 459
  • Example 3 E 63 193.1 51.8 19.2 32.6 467 818
  • Example 4 E 69 193.1 51.8 16.1 35.7 502 664
  • Example 5 E 75 193.1 51.8 12.9 38.9 546 497
  • Example 6 H 85 255.8 44.5 11.2 33.3 506 477
  • Example 8 H 70 256.0 44.5 17.1 27.4 426 749
  • Comparative Example 1 C 65 163.6 61.1 21.4 39.7 458 306
  • Comparative Example 2 D 100 392.7 25.5 0.0 25.5 528 143
  • Comparative Example 3 E 91 193.1 51.8 4.7 47.1 643 299
  • Comparative Example 4 E 97 193.1 51.8 1.6 50.2 682 214 Comparative

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하고, 상기 음극 활물질이 실리콘 입자를 포함하고, 상기 양극 활물질은 [화학식 1]로 표시되는 과리튬 망간계 산화물을 포함하며, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지에 관한 것이다. 식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100 식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100 상기 식 (1) 및 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값이다.

Description

리튬 이차 전지
본 출원은 2021년 10월 5일에 출원된 한국특허출원 제10-2021-0131946호 및 2022년 10월 5일에 출원된 10-2022-0127249에 기초한 우선권의 이익을 주장하며, 해당 한구특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차 전지에 관한 것으로, 보다 구체적으로는 음극 활물질로 실리콘(Si) 입자를 적용한 리튬 이차 전지에 관한 것이다.
최근 전기 자동차의 에너지원으로 리튬 이차 전지가 각광받고 있다. 전기 자동차의 보급이 확산됨에 따라 1회 충전 시 주행거리가 더 길고, 급속 충전 시간을 단축할 수 있는 리튬 이차 전지에 대한 요구가 증가하고 있다.
리튬 이차 전지는 일반적으로 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극 활물질을 포함하는 양극과, 리튬 이온을 저장할 수 있는 음극 활물질을 포함하는 음극 사이에 분리막을 개재하여 전극 조립체를 형성하고, 상기 전극 조립체를 전지 케이스에 삽입한 후, 리튬 이온을 전달하는 매개체가 되는 비수 전해질을 주입한 다음 밀봉하는 방법으로 제조된다. 상기 비수 전해질은 일반적으로 리튬염과, 상기 리튬 염을 용해시킬 수 있는 유기 용매로 구성된다. 종래에는 리튬 이차 전지의 음극 활물질로 천연 흑연이나 인조 흑연과 같은 탄소계 소재가 주로 이용되었다. 그러나, 이와 같이 탄소계 음극 활물질은 용량이 작고, 리튬과의 반응 속도가 느리기 때문에, 이를 적용한 이차 전지로는 고용량 및 급속 충전 성능 구현에 한계가 있다.
이에 따라 탄소계 소재 대비 이론 용량이 10배 이상 큰 실리콘계 음극 활물질을 적용한 리튬 이차 전지의 개발이 시도되고 있다. 실리콘계 음극 활물질의 경우, 탄소계 소재와 비교하여 이론 용량이 높고, 리튬과의 반응 속도가 빨라, 용량 특성 및 급속 충전 성능을 향상시킬 수 있다는 장점이 있으나, 충전 과정에서 급격하게 부피가 팽창되어 음극 손상 및 도전 경로 단절이 발생할 수 있으며, 이로 인해 전지 성능이 급격하게 퇴화되는 문제점이 있다.
따라서, 실리콘계 음극 활물질을 적용하면서도 우수한 수명 특성을 갖는 리튬 이차 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 음극 활물질로 실리콘(Si) 입자를 적용하여 높은 용량 특성을 구현하면서도 수명 특성이 우수한 리튬 이차 전지를 제공하고자 한다.
일 측면에서, 본 발명은, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차 전지이며, 상기 음극 활물질이 실리콘 입자를 포함하고, 상기 양극 활물질은 하기 [화학식 1]로 표시되는 과리튬 망간계 산화물을 포함하며, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지를 제공한다.
[화학식 1]
LiaNibCocMndMeO2
상기 화학식 1에서, 1 < a, 0≤b≤0.5, 0≤c≤0.1, 0.5≤d<1.0, 0≤e≤0.2이고, M은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상임.
식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)임.
식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 cut-off 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값임.
본 발명에 따른 리튬 이차 전지는, Si 충전 심도 및 Si 방전 심도가 특정 범위를 만족하도록 설계되어, 음극 활물질로 Si 입자를 사용함에도 불구하고 우수한 수명 특성을 나타낸다. 한편, Si 입자는 탄소계 음극 활물질 및/또는 SiOx계 음극 활물질과 비교하여, 리튬과의 반응성 및 용량 특성이 우수하기 때문에, 이를 적용한 본 발명의 리튬 이차 전지는 우수한 용량 특성 및 급속 충전 성능을 구현할 수 있다. 즉, 본 발명에 따른 리튬 이차 전지는 용량 특성, 수명 특성 및 급속 충전 성능이 모두 우수하게 나타난다.
또한, 본 발명과 같이, 양극 활물질로 암염 구조의 Li2MnO3 상과 층상 구조의 LiMO2 상(여기서, M은 Ni, Co, Mn)이 혼재되어 있는 과리튬 망간계 산화물을 사용할 경우, 음극 보상을 위한 희생 양극재 사용이나, 전리튬화를 위한 별도의 공정 없이, 활성화 공정을 4.6V 이상의 고전압으로 수행함으로써, LiMO2 상으로부터 발생되는 과량의 리튬으로 Si 음극의 전리튬화를 수행할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명에서 "1차 입자"는 주사전자현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
본 발명에서 "2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다.
본 발명에서 "평균 입경 D50"은 측정 대상 입자 분말(예를 들면, 양극 활물질 분말, 음극 활물질 분말 등)의 체적누적 입도분포의 50% 기준에서의 입자 크기를 의미한다. 상기 평균 입경 D50은 레이저 회절법(laser diffraction method)를 이용하여 측정될 수 있다. 예를 들면, 측정하고자 하는 입자의 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻은 후, 체적 누적량의 50%에 해당하는 입자 크기를 구함으로써 측정될 수 있다.
이하, 본 발명을 구체적으로 설명한다.
Si는 흑연과 같은 탄소계 음극 활물질 뿐 아니라 SiOx, SiC와 같은 실리콘계 음극 활물질과 비교하여도 우수한 용량 특성 및 리튬 반응성을 갖는다. 따라서, Si를 음극 활물질로 적용할 경우, 개선된 에너지 밀도 및 급속 충전 성능을 얻을 수 있다. 그러나, Si는 충방전 시에 부피 변화가 심해 충방전 시에 음극 퇴화가 급속하게 발생하기 때문에, Si을 음극 활물질로 적용할 경우, 만족할 만한 수명 특성을 구현하기 어려웠다. 본 발명자들은 음극 활물질로 Si를 적용한 리튬 이차 전지의 수명 특성을 개선하기 위해 연구를 거듭한 결과, Si 충전 심도 및 Si 방전 심도가 특정 범위를 만족하도록 전지를 설계할 경우, 음극 활물질로 Si를 사용하면서도 우수한 수명 특성을 구현할 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 리튬 이차 전지는, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차 전지이며, 상기 음극 활물질이 실리콘 입자를 포함하고, 상기 양극 활물질은 하기 [화학식 1]로 표시되는 과리튬 망간계 산화물을 포함하며, 하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상이다. 바람직하게는 상기 음극 활물질은 다른 종류의 음극 활물질을 포함하지 않고, 실리콘으로만 이루어질 수 있다.
[화학식 1]
LiaNibCocMndMeO2
상기 화학식 1에서, 1 < a, 0≤b≤0.5, 0≤c≤0.1, 0.5≤d<1.0, 0≤e≤0.2이고, M은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상임.
식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)이다. 이때, 상기 양극 로딩량은 이차 전지를 2.25V ~ 4.45V 전압 범위로 충방전하였을 때 측정되는 양극의 단위 면적당 용량 값을 의미한다.
식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷-오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값이다.
상기 Si 충전 심도는, 완전 충전 상태(즉, SOC=100)에서의 Si과 Li의 결합 정도를 나타내는 값으로, 본 발명자들의 연구에 따르면, Si 충전 심도가 60%를 초과하거나, 30% 미만인 경우, 수명 특성이 급격하게 저하되는 것으로 나타났다. 구체적으로는 Si 충전 심도가 60%를 초과할 경우, Si의 부피 팽창이 급격하게 발생하고, 이로 인해 에너지 밀도 및 수명 특성 저하가 발생하였으며, Si 충전 심도가 30% 미만인 경우에는 반응 불균일성이 심화되어 수명 특성이 저하되는 것으로 나타났다. 바람직하게는, 상기 Si 충전 심도는 40% ~ 60%, 더 바람직하게는 45% ~ 60%일 수 있다.
상기 Si 충전 심도는 양극 로딩량, 음극 로딩량 및/또는 음극의 전리튬화 도를 제어하여 조절할 수 있으며, 상기 양극 로딩량 및/또는 음극 로딩량은 사용되는 활물질의 종류 및 함량, 활물질층의 공극율, 및/또는 활물질층의 두께 등을 고려하여 설정될 수 있다.
한편, 상기 Si 방전 심도는, 방전 컷-오프(cut-off) 전압에서 음극에 잔존하는 리튬의 용량을 나타낸다. 본 발명자들의 연구에 따르면, Si 충전 심도가 30 ~ 60%를 만족하더라도, Si 방전 심도가 10% 미만인 경우에는 수명 특성이 급격하게 저하되는 것으로 나타났다. 바람직하게는 상기 Si 방전 심도는 10% 내지 30%, 더 바람직하게는 10% 내지 25%, 보다 더 바람직하게는 15% 내지 25%, 보다 더 바람직하게는 17% 내지 25%일 수 있다.
상기 Si 방전 심도는 양극 용량에 대한 음극 용량의 비(N/P ratio), 전지의 구동 전압 범위(충/방전 컷-오프 전압) 및 음극의 전리튬화도에 의해 복합적으로 영향을 받으며, 이들 인자를 적절하게 제어함으로써, Si 방전 심도를 조절할 수 있다.
한편, 본 발명의 리튬 이차 전지는 Si 사용 범위가 10 ~ 50%, 바람직하게는 20 ~ 40%, 더 바람직하게는 30% ~ 40% 정도가 되도록 설계될 수 있다. Si 사용 범위는, 하기 식 (3)에 나타난 바와 같이, Si 충전 심도와 Si 방전 심도의 차이를 의미하는 것으로, Si 사용 범위가 높으면 에너지 밀도는 증가하지만, 수명 특성이 현저하게 떨어지고, Si 사용 범위가 너무 낮으면, 에너지 밀도가 감소한다.
식 (3): Si 사용 범위(%) = Si 충전 심도 - Si 방전 심도
한편, 본 발명에 따른 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 150% 내지 300%, 바람직하게는 180% 내지 300%, 더 바람직하게는 190% 내지 300%일 수 있다. 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 상기 범위 미만인 경우, Si 충전 심도가 증가하여 수명 저하가 발생할 수 있고, 상기 범위를 초과할 경우에는, 전극 표면부의 Si 반응 불균일이 심화되어 오히려 수명 저하가 발생할 수 있다.
상기와 같은 조건을 만족하도록 설계된 본 발명에 따른 리튬 이차 전지는 Si 입자를 사용하여 우수한 에너지 밀도 및 급속 충전 성능을 구현할 수 있으며, 수명 특성도 우수하게 나타난다. 구체적으로는, 본 발명에 따른 리튬 이차 전지는 80% 수명 도달 횟수가 400회 이상, 바람직하게는 450회 이상, 더 바람직하게는 500회 이상일 수 있다.
다음으로, 본 발명에 따른 리튬 이차 전지의 각 구성요소에 대해 구체적으로 설명한다.
음극
본 발명에 따른 음극은, 음극 활물질로 실리콘(Si)을 포함할 수 있으며, 바람직하게는, 음극 활물질로 실리콘(Si) 100%를 사용할 수 있다. 본 발명에서 사용되는 실리콘은 다른 금속 또는 산소 등과 결합되지 않은 순수 실리콘(Pure Si)일 수 있다. 구체적으로는, 본 발명에 따른 음극은, 음극 집전체 및 상기 음극 집전체의 적어도 일면에 형성된 음극 활물질층을 포함하고, 상기 음극 활물질층이 음극 활물질로 실리콘(Si)을 포함할 수 있다. Si는 흑연과 같은 탄소계 음극 활물질 뿐 아니라 SiOx, SiC와 같은 실리콘계 음극 활물질과 비교하여도 우수한 용량 특성 및 리튬 반응성을 갖는다. 따라서, Si를 음극 활물질로 적용할 경우, 개선된 에너지 밀도 및 급속 충전 성능을 얻을 수 있다.
상기 실리콘의 평균 입경(D50)은 1㎛ 내지 10㎛일 수 있으며, 구체적으로 2㎛ 내지 8㎛일 수 있고, 보다 구체적으로 3㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 5㎛ 미만인 경우, 입자의 비표면적이 지나치게 증가하여, 음극 슬러리의 점도가 지나치게 상승하게 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하지 않다. 또한, 실리콘 입자의 크기가 지나치게 작은 경우, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 줄어들게 되므로, 도전 네트워크가 단절될 가능성이 높아져서 용량 유지율이 저하된다. 한편, 상기 평균 입경이 10㎛ 초과인 경우, 지나치게 큰 실리콘 입자들이 존재하게 되어, 음극의 표면이 매끄럽지 못하게 되며, 이에 따라 충방전 시 전류 밀도 불균일이 발생한다. 또한, 지나치게 실리콘 입자가 큰 경우, 음극 슬러리의 상안정성이 불안정해지므로, 공정성이 저하된다. 이에 따라 전지의 용량 유지율이 저하된다.
한편, 상기 실리콘의 BET 비표면적은, 바람직하게는 0.01 내지 150.0 m2/g, 더욱 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 내지 80.0 m2/g, 가장 바람직하게는 0.2 내지 18.0 m2/g이다. BET 표면적은 질소를 사용하여 DIN 66131에 따라 측정될 수 있다.
또한, 상기 실리콘은 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 상기 실리콘 입자는 구형 또는 파편형 입자일 수 있으나, 이에 한정되는 것은 아니며, 섬유 구조를 가지거나, 규소 포함 필름 또는 코팅의 형태로 존재할 수도 있다.
상시 실리콘은 음극 활물질층 전체 중량을 기준으로 50중량% 이상, 60중량% 이상, 바람직하게는 65중량% 이상, 더 바람직하게는 70중량% 이상의 양으로 포함될 수 있으며, 99중량% 이하, 바람직하게는 95중량% 이하, 더 바람직하게는 90중량% 이하, 보다 더 바람직하게는 80중량% 이하의 양으로 포함될 수 있다.
한편, 본 발명에 따른 음극은, 필요에 따라 상기 실리콘 이외의 기타 음극 활물질을 더 포함할 수 있다. 상기 기타 음극 활물질은 SiOx(여기서 0<x<2), 탄소계 음극 활물질 등일 수 있다. 이때, 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 기타 음극 활물질은 음극 활물질층 전체 중량을 기준으로 50중량% 이하, 바람직하게는 45중량% 이하, 더 바람직하게는 30중량% 이하의 양으로 포함될 수 있다.
한편, 상기 음극 활물질층은, 필요에 따라, 도전재 및 바인더를 더 포함할 수 있다.
상기 도전재로는 예를 들면, 구형 또는 인편상 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 음극 활물질층 총 중량을 기준으로 0.1 ~ 40중량%, 1 ~ 30중량% 또는 5 ~ 30중량%의 양으로 포함될 수 있다.
바람직하게는 본 발명에 따른 음극 활물질층은 2종 이상의 도전재를 포함할 수 있으며, 이 경우 상기 도전재는 점형 도전재와 판상형 도전재를 포함할 수 있다.
상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이 좋다. 구체적으로 상기 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.
상기 점형 도전재는 작용기 함량(Volatile matter)이 0.01% 이상 0.05% 이하, 바람직하게는 0.01% 이상 0.04% 이하, 더욱 바람직하게는 0.01% 이상 0.03% 이하를 만족할 수 있다.
상기 작용기 함량의 조절은 점형 도전재를 열처리의 정도에 따라 조절할 수 있다. 즉, 점형 도전재의 제작에 있어, 작용기 함량이 높다는 것은 이물질이 많은 것을 의미하고, 작용기 함량이 적은 것은 열처리 가공을 더 많이한 것을 의미할 수 있으며, 본 출원에 따른 점형 도전재는 작용기 함량을 상기 범위로 만족하기 위하여, 점형 도전재를 일정 부분 열처리를 진행하여 상기 작용기 함량 범위를 만족시킨 것을 특징으로 한다.
상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다.
상기 판상형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할을 할 수 있는 것으로 면형 도전재 또는 bulk형 도전재로 표현될 수 있다.
상기 판상형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
상기 판상형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 4㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.
상기 판상형 도전재는 BET 비표면적이 1m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 300m2/g 이하일 수 있다.
다음으로, 상기 바인더로는, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴산(Polyacrylic acid), 폴리아크릴아미드(Polyacrylamide), 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량을 기준으로 1 ~ 20중량%, 2 ~ 20중량%, 또는 2 ~ 10중량%로 포함될 수 있다.
한편, 상기 음극은 음극 활물질층이 단일층 또는 2 이상의 층으로 구성된 다층 구조일 수 있다. 음극 활물질층이 2 이상의 층으로 구성된 다층 구조일 경우, 각 층은 음극 활물질, 바인더 및/또는 도전재의 종류 및/또는 함량이 서로 상이할 수 있다.
예를 들면, 본 발명에 따른 음극은 2층 구조일 수 있으며, 집전체와 인접한 층(이하, 하부층이라 함)과 상기 하부층 상에 형성되는 상부층의 음극 활물질의 종류가 서로 상이한 것일 수 있다. 구체적으로는, 2층 구조의 음극에 있어서, 하부층의 음극 활물질이 실리콘이고, 상부층의 음극 활물질로 SiOx(여기서 0<x<2)일 수 있다.
한편, 상기 음극 활물질층은 공극율이 20% ~ 70% 또는 20% ~ 50%일 수 있다. 음극 활물질층의 공극율이 너무 작으면 전해액 함침성이 저하되어 리튬 이동성이 저하될 수 있으며, 공극율이 너무 크면 에너지 밀도가 저하될 수 있다.
한편, 본 발명에 있어서, 상기 음극은 전리튬화된 음극일 수 있다.
예를 들면, 상기 음극의 전리튬화는, 음극 활물질층 상에 리튬 금속을 압착 또는 증착하는 방법, 전기화학적 방법을 통해 음극 활물질층에 리튬을 삽입하는 방법, 양극에 포함된 희생 양극재나 양극 활물질에 포함된 과잉 리튬을 활성화 공정을 통해 음극에 삽입하는 방법, 또는 전기화학적 방법이나 리튬 금속을 압착 또는 증착하는 방법으로 양극에 과잉 리튬을 부여하고, 활성화 공정을 통해 양극에 부여된 과잉 리튬을 음극에 삽입하는 방법 등으로 수행될 수 있으며, 상기 방법들 중 2 이상의 방법을 조합하여 실시할 수 있다.
보다 구체적으로는, 본 발명에서 전리튬화된 음극은, 셀 조립 후 4.6V 이상의 고전압으로 활성화 공정을 수행하여 양극 활물질의 Li2MnO3 상이 활성화되면서 발생된 리튬을 음극에 삽입하는 방법으로 수행될 수 있다. 상기 방법으로 음극 전리튬화를 수행할 경우, 전리튬화를 위한 별도의 공정을 수행하지 않아도 되고, 희생 양극재 등의 사용을 최소화할 수 있어, 양극 용량을 증가시킬 수 있다.
상기와 같이 전리튬화된 음극을 사용할 경우, 전리튬화되지 않은 음극에 비해 상대적으로 낮은 컷-오프(cut-off) 전압까지 방전시키더라도 수명 특성 열화가 적게 일어나기 때문에, 리튬 이차 전지의 구동 전압 범위를 상대적으로 넓은 범위로 설정할 수 있어 가용 SOC(Usable SOC)를 증가시킬 수 있다.
바람직하게는 본 발명의 음극은 하기 식 (4)로 표시되는 전리튬화도가 5 내지 50%, 바람직하게는 5 내지 30%, 더 바람직하게는 5 내지 20%일 수 있다.
식 (4): 전리튬화도(%) = {전리튬화에 의해 음극에 삽입된 Li의 단위 면적당 용량 / Si의 단위 면적당 용량} ×100
음극의 전리튬화도가 상기 범위를 만족할 때, 용량 및 수명 특성이 모두 우수한 리튬 이차 전지를 구현할 수 있다. 구체적으로는 음극의 전리튬화도가 너무 작으면, 수명 특성 확보를 위해 방전 심도 조절이 필요하며, 이 경우 에너지 밀도를 충분히 확보하기 어려울 수 있다. 또한, 음극의 전리튬화도가 너무 크면 전극 내 실리콘 입자 퇴화가 가속화되어 용량 특성이 저하될 수 있다.
양극
본 발명에 따른 양극은 양극 활물질로 화학식 1로 표시되는 과리튬 망간계 산화물을 포함한다. 구체적으로는 본 발명의 양극은 양극 집전체, 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층을 포함하고, 상기 양극 활물질층이 하기 화학식 1로 표시되는 과리튬 망간계 산화물을 포함하는 양극 활물질을 포함할 수 있다.
[화학식 1]
LiaNibCocMndMeO2
상기 화학식 1에서, M은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다.
한편, a는 과리튬 망간계 산화물 내 Li의 몰비로 1<a, 1.1≤a≤1.5, 또는 1.1≤a≤1.3일 수 있다. a가 상기 범위를 만족할 때, Si 음극 활물질의 비가역용량을 충분히 보상할 수 있고, 고용량 특성을 구현할 수 있다.
상기 b는 과리튬 망간계 산화물 내 Ni의 몰비로, 0≤b≤0.5, 0.1≤b≤0.4 또는 0.2≤b≤0.4일 수 있다.
상기 c는 과리튬 망간계 산화물 내 Co의 몰비로, 0≤c≤0.1, 0≤c≤0.08, 또는0≤c≤0.05일 수 있다. c가 0.1을 초과할 경우, 고용량 확보가 어렵고, 산소-산화환원반응 증가로 인해 가스 발생 및 양극 활물질의 퇴화가 심화되어 수명 특성이 저하될 수 있다.
상기 d는 과리튬 망간계 산화물 내 Mn의 몰비로, 0.5≤d<1.0, 0.50≤d≤0.80, 또는 0.50≤d≤0.70일 수 있다. d가 0.5 미만인 경우, 암염상의 비율이 너무 적어져 음극 비가역 보상 및 용량 개선 효과가 미미하다.
상기 e는 과리튬 망간계 산화물 내 도핑 원소 M의 몰비로, 0≤e≤0.2, 0≤e≤0.1 또는 0≤e≤0.05일 수 있다. 도핑 원소의 함량이 너무 많으면 활물질 용량에 악영향을 미칠 수 있다.
리튬을 과잉으로 포함하는 과리튬 망간계 산화물의 경우, 층상(LiM'O2)과 암염상(Li2MnO3)이 혼재된 구조를 갖는데, 상기 암염상은 4.6V 이상의 고전압에서 활성화되어 과량의 이온을 발생시킨다. 따라서, 본 발명과 같이 양극 활물질로 과리튬 망간계 산화물을 사용하면, 별도의 보상물질이나 전리튬화 공정을 수행하지 않고, 활성화 공정을 4.6V 이상의 고전압에서 수행함으로써 암염상이 활성화되면서 발생시키는 과량의 리튬 이온이 음극에 삽입되어 음극의 비가역 용량이 보상되는 전리튬화 효과를 얻을 수 있다.
한편, 상기 [화학식 1]로 표시되는 과리튬 망간계 산화물에서, Li을 제외한 전체 금속원소의 몰수에 대한 Li의 몰수 비(Li/Me)는 1.2 ~ 1.5, 1.25 ~ 1.5, 또는 1.25 ~ 1.4일 수 있다. Li/Me 비가 상기 범위를 만족할 때, 율 특성 및 용량 특성이 우수하게 나타난다. Li/Me비가 너무 높으면 전기 전도도가 떨어지고 암염상(Li2MnO3)이 증가하여 퇴화 속도가 빨라질 수 있으며, 너무 낮으면 에너지 밀도 향상 효과가 미미하다.
한편, 상기 과리튬 망간계 산화물의 조성은 하기 [화학식 2]로 표시될 수도 있다.
[화학식 2]
X Li2MnO3·(1-X)Li[Ni1-y-z-wMnyCozMw]O2
상기 [화학식 2]에서, M은 금속 이온 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다.
상기 X는 과리튬 망간계 산화물 내 Li2MnO3상의 비율을 의미하는 것으로, 0.2≤X≤0.5, 0.25≤X≤0.5, 또는 0.25≤X≤0.4일 수 있다. 과리튬 망간계 산화물 내 Li2MnO3상의 비율이 상기 범위를 만족할 때, Si계 음극 활물질의 비가역용량을 충분히 보상할 수 있고, 고용량 특성을 구현할 수 있다.
상기 y는 LiM'O2 층상에서 Mn의 몰비로, 0.4≤y<1, 0.4≤y≤0.8, 또는 0.4≤y≤0.7일 수 있다.
상기 z는 LiM'O2 층상에서 Co의 몰비로, 0≤z≤0.1, 0≤z≤0.08 또는 0≤z≤0.05일 수 있다. z가 0.1을 초과할 경우, 가스 발생 및 양극 활물질의 퇴화가 심화되어 수명 특성이 저하될 수 있다.
상기 w는 LiM'O2 층상에서 도핑원소 M의 몰비로, 0≤w≤0.2, 0≤w≤0.1 또는 0≤w≤0.05일 수 있다.
한편, 본 발명에 따른 양극 활물질은, 필요에 따라, 상기 과리튬 망간계 산화물의 표면에 코팅층을 더 포함할 수 있다. 양극 활물질이 코팅층을 포함할 경우, 코팅층에 의해 과리튬 망간계 산화물과 전해질과의 접촉이 억제되어 전해액 부반응이 감소하고, 이로 인해 수명 특성이 개선되는 효과를 얻을 수 있다.
상기 코팅층은, 코팅 원소 M1을 포함할 수 있으며, 상기 코팅 원소 M1은 예를 들면, Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상일 수 있고, 바람직하게는 Al, Co, Nb, W 및 이들의 조합일 수 있고, 더 바람직하게는 Al, Co 및 이들의 조합일 수 있다. 상기 코팅 원소 M1은 2종 이상 포함될 수 있으며, 예를 들면, Al 및 Co를 포함할 수 있다.
상기 코팅 원소는 코팅층 내에서 산화물 형태, 즉, M1Oz(1≤z≤4)로 존재할 수 있다.
상기 코팅층은, 건식 코팅, 습식 코팅, 화학기상증착(CVD), 물리기상증착(PVD), 원자층증착(ALD) 등의 방식을 통해 형성할 수 있다. 이 중에서도 코팅층 면적을 넓게 형성할 수 있다는 점에서 원자층 증착법을 통해 형성되는 것이 바람직하다.
상기 코팅층의 형성 면적은 상기 과리튬 망간계 산화물 입자의 전체 표면적을 기준으로 10~100%, 바람직하게는 30~100%, 더 바람직하게는 50~100%일 수 있다. 코팅층 형성 면적이 상기 범위를 만족할 때, 수명 특성 개선 효과가 우수하다.
한편, 본 발명에 따른 양극 활물질은 복수 개의 1차 입자들이 응집된 2차 입자 형태일 수 있으며, 상기 2차 입자의 평균 입경 D50이 2μm 내지 10μm, 바람직하게는 2μm 내지 8μm, 더 바람직하게는 4μm 내지 8μm일 수 있다. 양극 활물질의 D50이 상기 범위를 만족할 때, 전극 밀도를 우수하게 구현할 수 있으며, 용량 및 율 특성 저하를 최소화할 수 있다.
또한, 상기 양극 활물질은 BET 비표면적이 1m2/g ~ 10m2/g, 3 ~ 8m2/g 또는 4 ~ 6m2/g일 수 있다. 양극 활물질 BET 비표면적이 너무 낮으면 전해질과의 반응 면적이 부족하여 충분한 용량 구현이 어렵고, 비표면적이 너무 높으면 수분 흡습이 빠르고, 전해질과의 부반응이 가속화되어 수명 특성 확보가 어렵다.
또한, 본 발명에 따른 양극은 초기 비가역 용량이 5 ~ 70%, 5 ~ 50%, 또는 5 ~ 30% 정도인 것이 바람직하다. 양극의 초기 비가역 용량은 상기 양극과 리튬 금속 대극으로 반전지를 제조한 후, 상기 반전지를 4.6V 이상 고전압에서 활성화하였을 때 고전압 충전 용량과 상기 반전지를 2.5 ~ 4.4V 전압 범위에 충방전했을 때 방전용량의 비율로 0.1C 기준으로 측정된 값이다.
양극의 초기 비가역 용량이 상기 범위를 만족할 때, 희생 양극재와 같은 별도의 보상 물질을 사용하지 않아도 Si 음극 활물질의 비가역 용량을 충분히 보상할 수 있다.
한편, 상기 과리튬 망간계 산화물은 전이금속 전구체와 리튬 원료 물질을 혼합한 후 소성하여 제조될 수 있다.
상기 리튬 원료물질로는, 예를 들면, 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
한편, 상기 전이금속 전구체는 수산화물, 산화물 또는 탄산염 형태일 수 있다. 탄산염 형태의 전구체를 사용할 경우, 상대적으로 비표면적이 높은 양극 활물질을 제조할 수 있다는 점에서 보다 바람직하다.
상기 전이금속 전구체는 공침 공정을 통해 제조될 수 있다. 예를 들면, 상기 전이금속 전구체는 각 전이금속 함유 원료 물질을 용매에 용해시켜 금속 용액을 제조한 후, 상기 금속 용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 혼합한 후 공침 반응을 진행하는 방법으로 제조될 수 있다. 또한, 필요에 따라 상기 공침 반응 시에 산화제 혹은 산소 기체를 더 투입할 수 있다.
이때, 상기 전이금속 함유 원료 물질은 각 전이금속의 아세트산염, 탄산염, 질산염, 황산염, 할라이드, 황화물 등일 수 있다. 구체적으로는 상기 전이금속 함유 원료 물질은 NiO, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, Mn2O3, MnO2, Mn3O4 MnCO3, Mn(NO3)2, MnSO4 H2O, 아세트산 망간, 망간 할로겐화물, Mn2O3, MnO2, Mn3O4 MnCO3, Mn(NO3)2, MnSO4 H2O, 아세트산 망간, 망간 할로겐화물 등일 수 있다.
상기 암모늄 양이온 착물 형성제는, NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다.
상기 염기성 화합물은, NaOH, Na2CO3, KOH, 및 Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다. 사용되는 염기성 화합물의 종류에 따라 전구체의 형태가 달라질 수 있다. 예를 들면, 염기성 화합물로 NaOH를 사용할 경우 수산화물 형태의 전구체를 얻을 수 있고, 염기성 화합물로 Na2CO3를 사용할 경우 탄산염 형태의 전구체를 얻을 수 있다. 또한, 염기성 화합물과 산화제를 함께 사용할 경우, 산화물 형태의 전구체를 얻을 수 있다.
한편, 상기 전이금속 전구체와 리튬 원료 물질은 전체 전이금속(Ni+Co+Mn) : Li의 몰비가 1 : 1.05 ~ 1: 2, 바람직하게는 1 : 1.1 ~ 1 : 1.8, 더 바람직하게는 1 : 1.25 ~ 1 : 1.8이 되도록 하는 양으로 혼합될 수 있다.
한편, 상기 소성은 600℃ 내지 1000℃ 또는 700℃ 내지 950℃의 온도에서 수행될 수 있으며, 소성 시간은 5시간 내지 30시간 또는 5시간 내지 20시간일 수 있다. 또한, 소성 분위기는 대기 분위기 또는 산소 분위기일 수 있고, 예를 들면, 산소를 20 ~ 100부피%로 포함하는 분위기일 수 있다.
한편, 상기 양극 활물질층은 양극 활물질 이외에 도전재 및 바인더를 더 포함할 수 있다.
상기 도전재로는 예를 들면, 구형 또는 인편상 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량을 기준으로 0.1 ~ 20중량%, 1 ~ 20중량% 또는 1 ~ 10중량%의 양으로 포함될 수 있다.
또한, 상기 바인더로는, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량을 기준으로 1 ~ 20중량%, 2 ~ 20중량%, 또는 2 ~ 10중량%로 포함될 수 있다.
한편, 본 발명에 따른 양극은 전극 밀도가 2.5 ~ 3.8g/cc, 2.5 ~ 3.5g/cc 또는 3.0 ~ 3.3g/cc 정도일 수 있다. 양극의 전극 밀도가 상기 범위를 만족할 때, 높은 에너지 밀도를 구현할 수 있다.
분리막
본 발명의 리튬 이차 전지에서 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
전해질
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiN(FSO2)2, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 5.0M 범위 내에서 사용하는 것이 좋다.
또한 상기 전해질에는 전지의 수명특성 향상, 용량 감소 억제, 가스 발생 억제 등을 목적으로, 첨가제가 포함될 수 있다. 상기 첨가제로는 당해 기술분야에서 사용되는 다양한 첨가제들, 예를 들면, 플루오로 에틸렌 카보네이트(FEC),비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트 (VEC), 에틸렌 설페이트 (ESa), 리튬 다이플루오로포스페이트 (LiPO2F2), 리튬 비스옥살레이토 보레이트 (LiBOB), 리튬 테트라플루오로 보레이트 (LiBF4), 리튬 다이플루오로옥살레이토 보레이트 (LiDFOB), 리튬 다이플루오로비스옥살레이토포스페이트 (LiDFBP), 리튬 테트라플루오로옥살레이토 포스페이트 (LiTFOP), 리튬메틸설페이트 (LiMS), 리튬에틸설페이트 (LiES) 프로판술톤(PS), 프로펜술톤(PRS), 숙시노니트릴(SN), 아디포나이트릴 (AND), 1,3,6-헥세인트라이카보나이트릴 (HTCN), 1,4-다이시아노-2-부텐 (DCB), 플로오로벤젠 (FB), 에틸다이(프로-2-이-1-닐) 포스페이트 (EDP), 5-메틸-5프로파질옥실카보닐-1,3-다이옥세인-2-온 (MPOD), 하기 화학식 A로 표시되는 화합물(예를 들면, 시아노에틸폴리비닐알코올, PVA-CN), 하기 화학식 B로 표시되는 화합물(예를 들면, 헵타플루오로뷰티르 시아노에틸폴리비닐알코올, PF-PVA-CN), 하기 화학식 C로 표시되는 화합물(예를 들면, 프로파질 1H-이미다졸-1-카르복실레이트, PAC), 및/또는 하기 화학식 D로 표시되는 화합물(예를 들면, C6H8N2 등과 같은 아릴이미다졸) 등이 사용될 수 있다.
[화학식 A]
Figure PCTKR2022015006-appb-img-000001
상기 화학식 A에서, m 및 n은 각각 독립적으로 1 ~ 100인 정수이다.
[화학식 B]
Figure PCTKR2022015006-appb-img-000002
[화학식 C]
Figure PCTKR2022015006-appb-img-000003
상기 화학식 C에서 R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고, R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, D는 CH, 또는 N이다.
[화학식 D]
Figure PCTKR2022015006-appb-img-000004
상기 화학식 D에서,
R1 R2, R3, 및 R4는 각각 독립적으로 수소; 또는 탄소수 1 내지 5의 알킬기, 시아노기(CN), 알릴기, 프로파질기, 아민기, 포스페이트기, 에테르기, 벤젠기, 사이클로 헥실기, 실릴기, 아이소시아네이트기(-NCO), 플루오르기(-F)를 포함할 수 있다.
바람직하게는, 상기 첨가제로는 산소 스캐빈저(Oxygen scavenger)로 작용하는 화합물들이 사용될 수 있다. 트리스 트라이(메틸실릴)포스파이트 (TMSPi), 트리스 트라이메틸포스파이트 (TMPi), 트리스(2,2,2-트라이플로오로에틸)포스파이트 (TTFP)와 같은 포스파이트 (Phosphite) 기반 구조의 물질 (화학식 E 참조); 트리스 트라이(메틸실릴)포스페이트 (TMSPa); 폴리포스포릭엑시드 트라이메틸실릴 에스테르 (PPSE); 트리스(펜타플로오로페닐)보레인 (TPFPB); 쿠마린-3-카르보나이트릴 (CMCN), 7-에티닐쿠마린 (ECM), 3-아세틸쿠마린 (AcCM), 3-(트라이메틸실릴)쿠마린 (TMSCM)과 같은 쿠마린 (Coumarin) 구조를 포함하는 화합물 (화학식 F 참조); 3-[(트라이메틸실릴)옥실]-2H-1-벤조파이란-2-온 (TMSOCM), 3-(2-프로핀-1-닐옥실)-2H-1-벤조파이란-2-온 (POCM), 2-프로피-1-닐-2-옥소-2H-1-벤조파이란-3-카르복실레이트 (OBCM) 등이 산소 스캐빈저로 작용하는 화합물로 사용될 수 있다.
[화학식 E]
Figure PCTKR2022015006-appb-img-000005
[화학식 F]
Figure PCTKR2022015006-appb-img-000006
상기 화학식 E 및 F에서, R1~R6는 각각 독립적으로, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기 및 치환 또는 비치환된 탄소수 2 내지 20의 알카이닐기, 시아노기, 플루오로기 (F), 에테르기(C-O-C), 카르복실기(O-C=O), 트라이메틸실릴 기(-TMS), 아이소시아네이트 기(-NCO), 및/또는 아이소싸이오시아네이트 기(-NCS)를 포함할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다.
제조예 1
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 96 : 1 : 3의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 Al 1500ppm이 코팅된 Li1.143[Ni0.35Mn0.65]0.857O2을 사용하였으며, 도전재로는 탄소나노튜브를 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 3.50mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Waker 社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 7.36mAh/cm2인 음극을 제조하였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지 A를 제조하였다.
제조예 2 ~ 3
양극 및 음극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차 전지 B ~ C를 제조하였다.
제조예 4
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 96 : 1 : 3의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 Al 1500ppm이 코팅된 Li1.143[Ni0.35Mn0.65]0.857O2을 사용하였으며, 도전재로는 탄소나노튜브를 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 3.03mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Elkem 社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 11.90mAh/cm2인 음극을 제조하였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지 D를 제조하였다.
제조예 5 ~ 7
양극 및 음극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 4와 동일한 방법으로 리튬 이차 전지 E ~ G를 제조하였다.
제조예 8
<양극 제조>
양극 활물질 : 도전재 : PVDF 바인더를 96 : 1 : 3의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 이때, 양극 활물질로는 Al 1500ppm이 코팅된 Li1.143[Ni0.35Mn0.65]0.857O2을 사용하였으며, 도전재로는 탄소나노튜브를 사용하였다.
알루미늄 집전체 시트 상에 상기 양극 슬러리를 도포하고, 건조시킨 후, 압연하여 로딩량이 3.03mAh/cm2인 양극을 제조하였다.
<음극 제조>
음극 활물질 : 도전재 : 아크릴계 바인더를 70 : 20.3 : 9.7의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 이때, 상기 음극 활물질로는 평균 입경 5 ㎛인 Si 입자(Elkem社)를 사용하였으며, 도전재로는 카본블랙 : 흑연 : CNT를 9.8:10:0.52의 중량비로 혼합하여 사용하였다.
구리 집전체 시트 상에 상기 음극 슬러리를 도포하고 건조시킨 후, 압연하여 로딩량이 7.75mAh/cm2인 음극을 제조하였다.
<리튬 이차 전지 제조>
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스에 삽입한 후 전해액을 주입하여 리튬 이차 전지를 제조하였다.
그런 다음, 상기 리튬 이차 전지를 4.65V까지 충전시켜 양극 활물질의 Li2MnO3 상을 활성화시켜 음극을 전리튬화하여 리튬 이차 전지 H를 제조하였으며, 이때, 음극의 전리튬화도는 5.4% 수준이었다.
제조예 9 ~ 11
양극의 로딩량을 하기 [표 1]에 기재된 대로 변화시킨 점을 제외하고는 제조예 8과 동일한 방법으로 리튬 이차 전지 I ~ K를 제조하였다. 이때, 상기 리튬 이차 전지의 I ~ K의 음극 전리튬화도는 하기 표 1에 기재된 바와 같다.
상기와 같이 제조된 리튬 이차 전지 A ~ K의 N/P ratio, Si 충전 심도 및 전리튬화도는 하기 표 1에 나타난 바와 같다.
전지 # 양극 로딩량
(mAh/cm2)
음극 로딩량
(mAh/cm2)
NP ratio (%) 전리튬화도(%) Si 충전심도(%)
제조예 1 A 3.50 7.36 210.3 - 47.6
제조예 2 B 4.00 7.36 184.0 - 54.3
제조예 3 C 4.50 7.36 163.6 - 61.1
제조예 4 D 3.03 11.90 392.7 - 25.5
제조예 5 E 4.52 8.73 193.1 - 51.8
제조예 6 F 3.03 7.75 255.8 - 39.1
제조예 7 G 4.03 7.75 192.3 - 52.0
제조예 8 H 3.03 7.75 255.8 5.4 44.5
제조예 9 I 3.52 7.75 220.2 6.2 51.7
제조예 10 J 4.03 7.75 192.3 7.2 59.2
제조예 11 K 4.50 7.75 172.2 8.0 66.0
실시예 및 비교예
리튬 이차 전지 A ~ K를 충/방전시키면서 용량 유지율이 80%에 도달할 때까지의 사이클 횟수(80% 수명 도달 횟수) 및 셀 에너지 밀도를 측정하였다. 이때, 상기 충/방전은 25℃, 1C/0.5C, CCCV 모드로 수행하였으며, 충전 컷-오프 전압은 4.4V, 방전 컷-오프 전압은 Si 방전 심도가 하기 [표 2]에 기재된 값을 갖도록 설정하였다. 측정 결과는 하기 [표 2]에 나타내었다. 또한, 각 리튬 이차 전지의 충/방전 전압 범위에서 가용 SOC를 표 2에 나타내었다.
전지 # 가용 SOC NP ratio(%) Si 충전 심도(%) Si 방전 심도(%) Si 사용 범위(%) 셀 에너지 밀도
(Wh/L)
80% 수명 도달
cycle 횟수
실시예 1 A 65 210.3 47.6 16.6 31.0 476 506
실시예 2 B 65 184.0 54.3 19.0 35.3 477 459
실시예 3 E 63 193.1 51.8 19.2 32.6 467 818
실시예 4 E 69 193.1 51.8 16.1 35.7 502 664
실시예 5 E 75 193.1 51.8 12.9 38.9 546 497
실시예 6 H 85 255.8 44.5 11.2 33.3 506 477
실시예 7 H 80 255.8 44.5 13.2 31.3 480 572
실시예 8 H 70 256.0 44.5 17.1 27.4 426 749
비교예 1 C 65 163.6 61.1 21.4 39.7 458 306
비교예 2 D 100 392.7 25.5 0.0 25.5 528 143
비교예 3 E 91 193.1 51.8 4.7 47.1 643 299
비교예 4 E 97 193.1 51.8 1.6 50.2 682 214
비교예 5 H 100 255.8 44.5 5.4 39.1 580 271
비교예 6 F 100 256.8 39.1 0.0 39.1 583 171
비교예 7 I 100 220.2 51.7 6.2 45.5 617 198
비교예 8 J 100 192.3 59.2 7.2 52.0 647 174
비교예 9 G 100 192.3 52.0 0.0 52.0 674 141
비교예 10 K 100 172.2 66.0 8.0 58.0 675 109
비교예 11 K 65 172.2 66.0 28.3 37.7 460 263
비교예 12 H 95 255.8 44.5 7.3 37.2 579 264
상기 표 1에 나타난 바와 같이, Si 충전 심도가 30 ~ 60% 이하이고, Si 방전 심도가 10 ~ 20%를 만족하는 실시예 1 ~ 8의 리튬 이차 전지의 경우, Si를 음극 활물질로 사용함에도 불구하고, 80% 수명 도달 횟수가 450회 이상으로 높게 나타났다. 이에 비해, Si 충전 심도나 Si 방전 심도 중 하나가 본 발명의 범위를 벗어나는 비교예 1 ~ 12의 경우, 셀 에너지 밀도는 우수하게 나타나지만, 80% 수명 도달 횟수가 현저하게 감소함을 확인할 수 있다.

Claims (15)

  1. 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차 전지이며,
    상기 음극 활물질이 실리콘 입자를 포함하고,
    상기 양극 활물질은 하기 [화학식 1]로 표시되는 과리튬 망간계 산화물을 포함하며,
    하기 식 (1)로 표시되는 Si 충전 심도가 30% ~ 60%이고, 하기 식 (2)로 표시되는 Si 방전 심도가 10% 이상인 리튬 이차 전지.
    [화학식 1] LiaNibCocMndMeO2
    상기 화학식 1에서, 1 < a, 0≤b≤0.5, 0≤c≤0.1, 0.5≤d<1.0, 0≤e≤0.2이고, M은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상임.
    식 (1): Si 충전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량)/음극 로딩량} ×100
    상기 식 (1)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2)임.
    식 (2): Si 방전 심도(%) = {(양극 로딩량 + 음극의 전리튬화 용량 - 방전 로딩량) /음극 로딩량} ×100
    상기 식 (2)에서, 양극 로딩량은 양극의 단위 면적당 용량(단위: mAh/cm2), 음극 로딩량은 음극의 단위 면적당 용량(단위: mAh/cm2), 음극의 전리튬화 용량은 전리튬화에 의해 음극에 삽입된 리튬(Li)의 단위 면적당 용량(단위: mAh/cm2), 상기 방전 로딩량은 방전 컷 오프(cut-off) 전압에서 이차 전지의 방전 용량을 양극 면적으로 나눈 값임.
  2. 제1항에 있어서,
    상기 음극 활물질은 실리콘 입자로 이루어진 것인 리튬 이차 전지.
  3. 제1항에 있어서,
    상기 Si 충전 심도가 40% ~ 60%인 리튬 이차 전지.
  4. 제1항에 있어서,
    상기 Si 방전 심도가 10% 내지 30%인 리튬 이차 전지.
  5. 제1항에 있어서,
    상기 리튬 이차 전지는 하기 식 (3)으로 표시되는 Si 사용 범위가 10% ~ 50% 이하인 리튬 이차 전지.
    식 (3): Si 사용 범위 (%) = Si 충전 심도 - Si 방전 심도
  6. 제1항에 있어서,
    상기 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 150% 내지 300%인 리튬 이차 전지.
  7. 제1항에 있어서,
    상기 리튬 이차 전지는 양극 로딩량에 대한 음극 로딩량의 백분율인 N/P 비가 180% 내지 300%인 리튬 이차 전지.
  8. 제1항에 있어서,
    상기 음극은 전리튬화된 음극이며, 하기 식 (4)로 표시되는 전리튬화도가 5 내지 50%인 리튬 이차 전지.
    식 (4):
    전리튬화도(%) = {전리튬화에 의해 음극에 삽입된 Li의 단위면적당 용량 / Si의 단위 면적당 용량} ×100
  9. 제8항에 있어서,
    상기 전리튬화도가 5% 내지 30%인 리튬 이차 전지.
  10. 제1항에 있어서,
    상기 과리튬 망간계 산화물은 하기 [화학식 2]로 표시되는 것인 리튬 이차 전지.
    [화학식 2]
    X Li2MnO3·(1-X)Li[Ni1-y-z-wMnyCozMw]O2
    상기 [화학식 2]에서,
    M은 Al, B, Co, W, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Sn, Sr 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상이고, 0.2≤X≤0.5, 0.4≤y<1, 0≤z≤0.1, 0≤w≤0.2임.
  11. 제1항에 있어서,
    상기 양극 활물질은 D50이 2㎛ 내지 10㎛ 인 리튬 이차 전지.
  12. 제1항에 있어서,
    상기 양극 활물질은 BET 비표면적이 1 ~ 10m2/g 인 리튬 이차 전지.
  13. 제1항에 있어서,
    상기 양극은 초기 비가역 용량이 5% 내지 70%인 리튬 이차 전지.
  14. 제1항에 있어서,
    상기 양극은 전극 밀도가 2.5 내지 3.8g/cc인 리튬 이차 전지.
  15. 제1항에 있어서,
    상기 리튬 이차 전지는 80% 수명 도달 횟수가 400회 이상인 리튬 이차 전지.
PCT/KR2022/015006 2021-10-05 2022-10-05 리튬 이차 전지 WO2023059070A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066995.4A CN118077082A (zh) 2021-10-05 2022-10-05 锂二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210131946 2021-10-05
KR10-2021-0131946 2021-10-05
KR1020220127249A KR20230049046A (ko) 2021-10-05 2022-10-05 리튬 이차 전지
KR10-2022-0127249 2022-10-05

Publications (1)

Publication Number Publication Date
WO2023059070A1 true WO2023059070A1 (ko) 2023-04-13

Family

ID=85803581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015006 WO2023059070A1 (ko) 2021-10-05 2022-10-05 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2023059070A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073217A1 (ja) * 2012-11-12 2014-05-15 パナソニック株式会社 非水電解質電池の製造方法及び非水電解質電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2018179682A (ja) * 2017-04-10 2018-11-15 日産自動車株式会社 二次電池の状態推定方法および状態推定システム
JP6511222B2 (ja) * 2013-01-16 2019-05-15 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウム電池
KR20200089182A (ko) * 2019-01-16 2020-07-24 주식회사 엘지화학 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
KR20210131946A (ko) 2019-05-17 2021-11-03 한국전력공사 산성가스 포집공정 자동제어방법
KR20220127249A (ko) 2019-12-13 2022-09-19 신테카인, 인크. Il-2 오르토로그 및 사용 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073217A1 (ja) * 2012-11-12 2014-05-15 パナソニック株式会社 非水電解質電池の製造方法及び非水電解質電池
JP6511222B2 (ja) * 2013-01-16 2019-05-15 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウム電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2018179682A (ja) * 2017-04-10 2018-11-15 日産自動車株式会社 二次電池の状態推定方法および状態推定システム
KR20200089182A (ko) * 2019-01-16 2020-07-24 주식회사 엘지화학 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
KR20210131946A (ko) 2019-05-17 2021-11-03 한국전력공사 산성가스 포집공정 자동제어방법
KR20220127249A (ko) 2019-12-13 2022-09-19 신테카인, 인크. Il-2 오르토로그 및 사용 방법

Similar Documents

Publication Publication Date Title
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2022164244A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2020256440A1 (ko) 복합 음극, 및 상기 복합 음극을 포함한 리튬 이차 전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2018236166A1 (ko) 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2020111655A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2020171366A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2022169271A1 (ko) 양극 활물질 및 이의 제조방법
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020180125A1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022878891

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878891

Country of ref document: EP

Effective date: 20240402

NENP Non-entry into the national phase

Ref country code: DE