WO2023056776A1 - 一种NiCuZn铁氧体材料及其制备方法和用途 - Google Patents

一种NiCuZn铁氧体材料及其制备方法和用途 Download PDF

Info

Publication number
WO2023056776A1
WO2023056776A1 PCT/CN2022/110190 CN2022110190W WO2023056776A1 WO 2023056776 A1 WO2023056776 A1 WO 2023056776A1 CN 2022110190 W CN2022110190 W CN 2022110190W WO 2023056776 A1 WO2023056776 A1 WO 2023056776A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
ball milling
temperature
preparation
sintering
Prior art date
Application number
PCT/CN2022/110190
Other languages
English (en)
French (fr)
Inventor
陈军林
张利康
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22877800.7A priority Critical patent/EP4371963A1/en
Publication of WO2023056776A1 publication Critical patent/WO2023056776A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives

Definitions

  • the embodiments of the present application relate to the technical field of soft ferrite materials, such as a NiCuZn ferrite material and its preparation method and application.
  • NiCuZn ferrite is the same as other materials, its performance is not only related to chemical composition, but also affected by particle morphology, size and microstructure. Among them, NiCuZn ferrite powder with high purity, fine particles and uniform size distribution has excellent performance.
  • NiCuZn ferrite materials need to have higher initial magnetic permeability, wider frequency band and Lower loss, NiCuZn ferrite material is also required to have good high-frequency characteristics, high Curie temperature and low temperature coefficient.
  • CN109320227A discloses a NiCuZn ferrite material and its preparation method and application.
  • the NiCuZn ferrite material is mainly composed of 48.8-50mol% Fe 2 O 3 , 32-34mol% ZnO, 6.5-8mol% NiO and 8.5-12.7mol% CuO.
  • the preparation method includes: (1) wet mixing and crushing of ingredients, and then drying to obtain powder: (2) pre-calcining the powder after heating; (3) crushing and drying; (4) making green body; (5) Sintering.
  • the initial magnetic permeability of the NiCuZn ferrite material is not high, and it cannot solve the powder technical problem of the ultra-high initial magnetic permeability of the soft magnetic NiCuZn ferrite.
  • CN101236819B discloses a nickel-copper-zinc ferrite and its manufacturing method.
  • the ferrite includes a main component and an auxiliary component.
  • the main component includes 48mol%-50mol% Fe2O3 , 13mol%-16mol% NiO , 29mol% %-31.5mol% ZnO, 4.5mol%-6.5mol% CuO; subcomponents include V 2 O 5 , MoO 3 , TiO 2 , relative to the total amount of main components, the total content of subcomponents is 0.01wt%-0.08wt%.
  • the nickel-copper-zinc ferrite has a relatively high Curie temperature, its initial magnetic permeability is not high, and it cannot solve the powder technology problem of ultra-high initial magnetic permeability of soft magnetic NiCuZn ferrite.
  • CN1631839 discloses a low-temperature co-fired NiCuZn ferrite material and its preparation method, the main phase is a spinel structure, and the main phase includes Fe2O3 , ZnO , CuO and NiO, and the added impurities are cobalt nitrate and Manganese nitrate to form a low temperature co-fired NiCuZn ferrite material.
  • NiCuZn ferrite powder is obtained by dissolving, preparing sol, and self-propagating combustion with prepared nitrates of various ions as raw materials.
  • the NiCuZn ferrite material has low magnetic loss and temperature coefficient, but the initial magnetic permeability and Curie temperature are not introduced.
  • the embodiment of the present application provides a NiCuZn ferrite material and its preparation method and application.
  • the internal stress of the pretreated powder can be released faster and reduce the The temperature of pre-sintering and sintering promotes the solid phase reaction to proceed more quickly and fully, thereby preparing NiCuZn ferrite powder materials with smaller particle size, excellent initial magnetic permeability and higher Curie temperature.
  • the embodiment of the present application provides a method for preparing a NiCuZn ferrite material, the preparation method comprising:
  • the precursor powder is obtained after the raw materials are pretreated and magnetic field heat treated in sequence, and then the precursor powder is subjected to microwave pre-sintering, compression molding and microwave sintering in sequence to obtain the NiCuZn ferrite material.
  • the preparation method of the NiCuZn ferrite material provided by this application can release the internal stress of the pretreated powder faster and reduce the temperature of pre-sintering and sintering through the synergy between the magnetic field heat treatment, microwave pre-sintering and microwave sintering technology , to promote the solid-state reaction to proceed more quickly and fully, thereby preparing NiCuZn ferrite powder materials with smaller particle size, excellent initial magnetic permeability and higher Curie temperature.
  • the pretreatment process includes:
  • the raw material is dissolved in a solvent to form a raw material liquid, and an alkali solution is added dropwise to adjust the pH of the raw material liquid to neutrality, followed by stirring and drying in sequence.
  • This application uses a wet process to pretreat the raw materials, which can release the internal stress of the pretreated powder faster, reduce the temperature of pre-sintering and sintering, and promote the solid-phase reaction to proceed more quickly and fully.
  • the raw materials include iron oxide, nickel oxide, zinc oxide and copper oxide.
  • the molar ratio of iron oxide, nickel oxide, zinc oxide and copper oxide is 50:(11-13):(32-34):(5-6), for example, it may be 50:11:34:5 , 50:11.2:33.8:5.8, 50:11.5:33.5:5.8, 50:11.8:33.2:5.6, 50:12:33:5.5, 50:12.3:32.8:5.5, 50:12.5:32.5:5.3, 50 :12.8:32.2:5 or 50:13:32:5, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the raw material also includes carbon materials.
  • the carbon material includes graphene and/or carbon fibers.
  • the solvent includes deionized water.
  • citric acid is added to the raw material liquid.
  • adding citric acid to the raw material liquid can make the raw material liquid coagulate and reduce the distance between particles, thereby improving its calcining activity and rate in the microwave calcining process.
  • the pH of the raw material solution is adjusted to 6-8, such as 6, 6.2, 6.5, 6.8, 7, 7.2, 7.5, 7.8 or 8, but not limited to the listed values, other values within the range Values not listed also apply.
  • adjusting the pH of the raw material solution to neutral can prevent equipment from being corroded; at the same time, acidic or alkaline raw material solution will affect the subsequent compression molding process, thereby affecting product performance. Therefore, the initial magnetic permeability and Curie temperature of the NiCuZn ferrite material can be increased by dropping the lye to adjust the pH of the raw material solution to neutral.
  • the alkaline solution includes ammonia water.
  • the mass concentration of the alkaline solution is 1.5-3.8wt%, such as 1.5wt%, 1.8wt%, 2wt%, 2.3wt%, 2.5wt%, 2.8wt%, 3wt%, 3.2wt%, 3.5wt% or 3.8wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the temperature of the stirring treatment is 70-75°C, for example, it can be 70°C, 71°C, 72°C, 73°C, 74°C or 75°C, but it is not limited to the listed values, other values within this range Values not listed also apply.
  • the time for the stirring treatment is 5-10 minutes, for example, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes or 10 minutes, but it is not limited to the listed values, and other unlisted values within this value range are also applicable.
  • the rate of the stirring treatment is 20-26rpm/min, such as 20rpm/min, 21rpm/min, 22rpm/min, 23rpm/min, 24rpm/min, 25rpm/min or 26rpm/min, but not only Limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
  • stirring under heating conditions can promote the further coagulation of the raw material liquid to form a slurry and reduce the distance between particles, thereby increasing its calcining activity and rate in the microwave calcining process.
  • the drying temperature is 155-165°C, such as 155°C, 156°C, 157°C, 158°C, 159°C, 160°C, 161°C, 162°C, 163°C, 164°C or 165°C, However, it is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the drying time is 2 to 2.5 hours, such as 2 hours, 2.1 hours, 2.2 hours, 2.3 hours, 2.4 hours or 2.5 hours, but it is not limited to the listed values, other values not listed within the range values are also applicable.
  • the raw materials also include graphene and/or carbon fiber.
  • graphene and/or carbon fiber are interspersed and compounded and evenly covered by pretreatment powder. Since the pretreatment powder is coated on the surface of the composite, the pretreatment can be effectively activated. Powder, so that the product has a high magnetic permeability, and at the same time, it can also refine the pre-treated powder to make it appear in a superparamagnetic state, thereby effectively improving the activity and speed of subsequent microwave pre-firing.
  • the magnetic field strength of the magnetic field heat treatment is 40-55mT, for example, it can be 40mT, 42mT, 45mT, 48mT, 50mT, 52mT or 55mT, but it is not limited to the listed values. Other unrecited values within the range also apply.
  • This application limits the magnetic field strength of the magnetic field heat treatment to 40-55mT.
  • the magnetic field strength is higher than 55mT, it will cause agglomeration between the precursor powders, which is caused by the enhancement of anisotropy; when the magnetic field strength is lower than 40mT , will lead to uneven distribution of precursor powder, which is due to the too low magnetic field strength to make the powder exhibit a superparamagnetic state.
  • the temperature of the magnetic field heat treatment is 465-475°C, such as 465°C, 466°C, 467°C, 468°C, 469°C, 470°C, 471°C, 472°C, 473°C, 474°C or 475°C , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the application limits the temperature of the magnetic field heat treatment to 465-475°C. When the temperature is higher than 475°C, the cooling time will be prolonged; when the temperature is lower than 465°C, the synthesis of the target product will not be promoted.
  • the time for the magnetic field heat treatment is 60 to 70 minutes, for example, it can be 60 minutes, 61 minutes, 62 minutes, 63 minutes, 64 minutes, 65 minutes, 66 minutes, 67 minutes, 68 minutes, 69 minutes or 70 minutes, but it is not limited to the listed values, the values Other unrecited values within the range also apply.
  • This application limits the time of magnetic field heat treatment to 60-70min.
  • the cooling time will be too long, which is not conducive to the improvement of product performance;
  • the time is lower than 60min, the internal stress of the pretreated powder cannot be obtained. Fully released, thus affecting the performance of the material.
  • magnetic field heat treatment is carried out before microwave pre-burning.
  • the heat treatment can release the internal stress of the pretreated powder, weaken the anisotropy and distribute it evenly, and then improve the magnetic permeability.
  • This The strength of the release is improved, and at the same time, because the pretreatment powder is coated on the surface of the graphene-carbon fiber composite, the release speed is improved, and the magnetic permeability of the ferrite material is significantly improved after the magnetic field heat treatment and the coating effect are coordinated. and Curie temperature.
  • the precursor powder is obtained after cooling treatment after the magnetic field heat treatment.
  • the cooling treatment is natural cooling.
  • the precursor powder before the microwave pre-burning, is sequentially subjected to ball milling, centrifugal spray granulation and sieving once.
  • the primary ball milling is wet ball milling.
  • the time for one ball milling is 50-70min, for example, it can be 50min, 52min, 55min, 58min, 60min, 63min, 65min, 67min or 70min, but it is not limited to the enumerated values, and other values not included in this value range The listed values also apply.
  • the rotational speed of the primary ball mill is 20-30rpm/min, such as 20rpm/min, 21rpm/min, 22rpm/min, 23rpm/min, 24rpm/min, 25rpm/min, 26rpm/min, 27rpm/min , 28rpm/min, 29rpm/min or 30rpm/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the grinding balls of the primary ball milling are zirconia balls.
  • the mass ratio of the grinding balls, water and precursor powder is (5-6):(0.8-1.0):1, for example, it can be 5:0.8:1, 5.2:0.8: 1, 5.5:0.9:1, 5.8:0.9:1 or 6:1:1, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the primary ball milling product is obtained after the primary ball milling, and the particle size of the primary ball milling product is 1-1.5 ⁇ m, such as 1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m or 1.5 ⁇ m, but not limited to the listed
  • the numerical value of , other unlisted numerical values in this numerical range are also applicable.
  • the inlet temperature of the centrifugal spray granulation is 250-350°C, for example, it can be 250°C, 280°C, 300°C, 320°C or 350°C, but it is not limited to the listed values, other values within this range Values not listed also apply.
  • the outlet temperature of the centrifugal spray granulation is 80-110°C, such as 80°C, 85°C, 90°C, 95°C, 100°C, 105°C or 350°C, but not limited to the listed values , other unlisted values within this value range are also applicable.
  • centrifugal spray granulation is due to the large surface area of the droplet group, the time required for material drying is very short (usually 15 ⁇ 30S), and the particles obtained after spray drying are very fine, which is conducive to improving the quality of the formed blank. Density and sintered density, which is beneficial to improve the initial magnetic permeability performance of the material.
  • the mesh size of the sieve used for the primary sieving is 100-400 mesh, such as 100 mesh, 150 mesh, 200 mesh, 250 mesh, 300 mesh, 350 mesh or 400 mesh, but not limited to the listed
  • the numerical value of , other unlisted numerical values in this numerical range are also applicable.
  • the power of the microwave pre-burning is 2.5-8.5kw, such as 2.5kw, 3kw, 3.5kw, 4kw, 4.5kw, 5kw, 5.5kw, 6kw, 6.5kw, 7kw , 7.5kw, 8kw or 8.5kw, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the microwave burn-in frequency is 2.4-2.45GHz, for example, it can be 2.4GHz, 2.42GHz, 2.43GHz, 2.44GHz or 2.45GHz, but it is not limited to the listed values, and other values not listed within this range values are also applicable.
  • the microwave pre-burning temperature is 650-750°C, for example, 650°C, 660°C, 670°C, 680°C, 690°C, 700°C, 710°C, 720°C, 730°C, 740°C or 750°C °C, but not limited to the listed values, other unlisted values within this range of values are also applicable; more preferably 700-720 °C.
  • This application limits the temperature of microwave pre-calcination to 650-750°C.
  • the temperature is higher than 750°C, the powder particles will be too hard, prolonging the time of secondary grinding, and the reduction of powder activity is not conducive to the solid-state reaction of secondary sintering ;
  • the temperature is lower than 650°C, the activity of secondary sintering will be too high, the size shrinkage will be too large, and the product will be easily deformed.
  • the microwave pre-burning time is 20 to 40 minutes, for example, it can be 20 minutes, 23 minutes, 25 minutes, 28 minutes, 30 minutes, 32 minutes, 35 minutes, 38 minutes or 40 minutes, but it is not limited to the listed values, other values within this value range Numerical values not listed are also applicable; more preferably 25 to 35 minutes.
  • This application limits the microwave pre-burning time to 20-40 minutes.
  • the pre-burning temperature will be too high, the distribution of crushed particles will be uneven, and discontinuous crystal growth will occur during sintering, which will greatly reduce product performance.
  • the time is lower than 20min, the pre-firing temperature will be low, the bulk density of the ferrite powder will be small, and the shrinkage rate of the blank after sintering will be large, which will not reach the expected process purpose.
  • the atmosphere of the microwave pre-firing is air.
  • secondary ball milling, spray granulation and secondary sieving are sequentially carried out between the microwave calcining and compression molding.
  • the secondary ball milling is wet ball milling.
  • the time for the secondary ball milling is 170-190min, for example, it can be 170min, 172min, 175min, 178min, 180min, 182min, 185min, 188min, or 190min, but it is not limited to the listed values, within this value range Other values not listed also apply.
  • the rotational speed of the secondary ball mill is 20-30rpm/min, for example, 20rpm/min, 21rpm/min, 22rpm/min, 23rpm/min, 24rpm/min, 25rpm/min, 26rpm/min, 27rpm/min min, 28rpm/min, 29rpm/min or 30rpm/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the grinding balls of the secondary ball milling are zirconia balls.
  • the mass ratio of the grinding balls, water and microwave calcined product is (5-6):(0.8-1.0):1, for example, it can be 5:0.8:1, 5.2 :0.8:1, 5.5:0.9:1, 5.8:0.9:1 or 6:1:1, but not limited to the listed values, other unlisted values within this range are also applicable.
  • molybdenum oxide is also added to the secondary ball milling.
  • the amount of molybdenum oxide added is 0-0.15wt%, for example, it can be 0wt%, 0.02wt%, 0.05wt% wt%, 0.08wt%, 0.1wt%, 0.12wt% or 0.15wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • molybdenum oxide is a substance with a low melting point, adding an appropriate amount can promote the densification of the material, and can promote the growth of crystal grains, increase the initial magnetic permeability of the material, and also reduce the pre-sintering and sintering temperature to a certain extent.
  • molybdenum oxide is a non-magnetic substance, excessive addition will lead to a decrease in the Curie temperature of the NiZnCu ferrite material.
  • the secondary ball milling product is obtained after the secondary ball milling, and the particle size of the secondary ball milling product is 0.8-0.95 ⁇ m, such as 0.8 ⁇ m, 0.82 ⁇ m, 0.85 ⁇ m, 0.87 ⁇ m, 0.9 ⁇ m, 0.92 ⁇ m Or 0.95 ⁇ m, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the inlet temperature of the spray granulation is 250-400°C, such as 250°C, 280°C, 300°C, 320°C, 350°C, 380°C or 400°C, but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the outlet temperature of the spray granulation is 80-110°C, such as 80°C, 85°C, 90°C, 95°C, 100°C, 105°C or 350°C, but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the use of spray granulation is due to the large surface area of the droplet group, the time required for material drying is very short (usually 15-30S), and the particles obtained after spray drying are very fine, which is conducive to improving the density of the formed blank And the sintered density, which is beneficial to improve the initial magnetic permeability performance of the material.
  • the mesh size of the sieve used for the secondary screening is 30-200 mesh, such as 30 mesh, 50 mesh, 80 mesh, 100 mesh, 120 mesh, 150 mesh, 180 mesh or 200 mesh, but not Not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the compression-molded density is 3.3-3.5 g/cm 3 , for example, 3.3 g/cm 3 , 3.32 g/cm 3 , 3.35 g/cm 3 , 3.4 g/cm 3 , 3.43 g/cm 3 , 3.45g/cm 3 , 3.48g/cm 3 or 3.5g/cm 3 , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the microwave sintering power is 3.5-11.7kw, such as 3.5kw, 4kw, 4.5kw, 5kw, 5.5kw, 6kw, 6.5kw, 7kw, 7.5kw, 8kw, 8.5kw, 9kw, 9.5kw , 10kw, 10.5kw, 11kw or 11.7kw, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the microwave sintering frequency is 2.43-2.48GHz, for example, it can be 2.43GHz, 2.44GHz, 2.45GHz, 2.46GHz, 2.47GHz or 2.48GHz, but it is not limited to the listed values, other values within this range Values not listed also apply.
  • the microwave sintering temperature is 1000-1200°C, such as 1000°C, 1020°C, 1050°C, 1080°C, 1100°C, 1120°C, 1150°C, 1180°C or 1200°C, but not limited to Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
  • This application limits the microwave sintering temperature to 1000-1200°C.
  • the temperature is higher than 1200°C, ferrite crystal grains will grow wildly to form giant crystals, thereby reducing the magnetic permeability and Curie temperature of the material; when the temperature When the temperature is lower than 1000°C, the crystal grains will not grow completely, resulting in uneven grain growth, and the insufficiency and incompleteness of the grains are also not conducive to improving the magnetic permeability and Curie temperature of the material.
  • the microwave sintering time is 7-8h, such as 7h, 7.1h, 7.2h, 7.3h, 7.4h, 7.5h, 7.6h, 7.7h, 7.8h, 7.9h, or 8h, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • This application limits the microwave sintering time to 7-8 hours. When the time is higher than 8 hours, it will lead to the prolongation of the holding time and the increase of the grain size, and when the control of the grain growth conditions is slightly improper, abnormal crystals will appear. The result is a double structure for the ferrite material, which directly leads to performance degradation; when the time is less than 7h, the grain size is too small and the grain is incomplete, which also leads to performance degradation.
  • the atmosphere of the microwave sintering is air.
  • the preparation method includes the following steps:
  • the density of the compression molding is 3.3-3.5g/cm 3 , and then raise the temperature to 1000-1000 ⁇
  • the NiCuZn ferrite material is obtained after microwave sintering at 1200° C. for 7-8 hours in an air atmosphere.
  • the embodiment of the present application provides a NiCuZn ferrite material, which is obtained by the preparation method described in the first aspect.
  • the NiCuZn ferrite material is powdery particles.
  • the particle size of the NiCuZn ferrite material is 100-156 ⁇ m, such as 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m or 156 ⁇ m, but it is not limited to the listed values. The listed values also apply.
  • the NiCuZn ferrite material provided by the present application has a small particle size, and on the basis of the small particle size, the NiCuZn ferrite material has excellent initial magnetic permeability and a relatively high Curie temperature.
  • the embodiment of the present application provides the use of the NiCuZn ferrite material described in the second aspect, and the NiCuZn ferrite material is used in the field of wireless charging.
  • NiCuZn ferrite material provided in the examples of this application, its preparation method and application, through the synergistic effect between magnetic field heat treatment, microwave pre-sintering and microwave sintering technology, can release the internal stress of the pretreated powder faster and reduce the pre-sintering and sintering temperature, promote the solid state reaction to proceed more quickly and fully, thereby preparing NiCuZn ferrite powder material with smaller particle size, excellent initial magnetic permeability and higher Curie temperature.
  • This embodiment provides a method for preparing a NiCuZn ferrite material.
  • the preparation method specifically includes the following steps:
  • the mass ratio of grinding balls, water and precursor powder is 5.5:0.9:1, and the mass ratio of 25rpm/min is used for wet ball milling for 60min to obtain a ball milled product with a particle size of 1.2 ⁇ m, followed by ball milling
  • the product is subjected to centrifugal spray granulation and primary sieving, the inlet temperature of centrifugal spray granulation is 300°C, the outlet temperature is 95°C, and the mesh number of primary sieving is 300 mesh;
  • This embodiment provides a method for preparing a NiCuZn ferrite material.
  • the preparation method specifically includes the following steps:
  • This embodiment provides a method for preparing a NiCuZn ferrite material.
  • the preparation method specifically includes the following steps:
  • the mass ratio of grinding balls, water and precursor powder is 6:1:1 and the speed of 20rpm/min is used for wet ball milling for 70 minutes to obtain a ball milled product with a particle size of 1.5 ⁇ m, followed by ball milling
  • the product is subjected to centrifugal spray granulation and primary sieving, the inlet temperature of centrifugal spray granulation is 350°C, the outlet temperature is 110°C, and the mesh number of primary sieving is 400 mesh;
  • This embodiment provides a method for preparing a NiCuZn ferrite material.
  • the preparation method specifically includes the following steps:
  • the mass ratio of grinding balls, water and precursor powder is 5.5:0.9:1, and the mass ratio of 25rpm/min is used for wet ball milling for 60min to obtain a ball milled product with a particle size of 1.2 ⁇ m, followed by ball milling
  • the product is subjected to centrifugal spray granulation and primary sieving, the inlet temperature of centrifugal spray granulation is 300°C, the outlet temperature is 95°C, and the mesh number of primary sieving is 300 mesh;
  • This embodiment provides a method for preparing a NiCuZn ferrite material.
  • the preparation method specifically includes the following steps:
  • the mass ratio of grinding balls, water and precursor powder is 5.5:0.9:1, and the mass ratio of 25rpm/min is used for wet ball milling for 60min to obtain a ball milled product with a particle size of 1.2 ⁇ m, followed by ball milling
  • the product is subjected to centrifugal spray granulation and primary sieving, the inlet temperature of centrifugal spray granulation is 300°C, the outlet temperature is 95°C, and the mesh number of primary sieving is 300 mesh;
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the magnetic field strength of the magnetic field heat treatment in step (1) is 58 mT, and the rest of the process parameters and operation steps are the same as in Embodiment 1.
  • the magnetic field strength of the magnetic field heat treatment in step (1) is 38mT, and all the other process parameters and operation steps are the same as embodiment 1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the temperature of the magnetic field heat treatment in step (1) is 480° C., and the rest of the process parameters and operation steps are the same as in Embodiment 1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the temperature of the magnetic field heat treatment in step (1) is 460° C., and the rest of the process parameters and operation steps are the same as in Embodiment 1.
  • microwave pre-burning time in step (3) is 15 minutes, and the remaining process parameters and operation steps are the same as in embodiment 1.
  • Example 1 The difference between this example and Example 1 is that the process of dropping ammonia water to adjust the pH of the raw material solution is omitted in step (1), and the rest of the process parameters and operation steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the microwave pre-burning process of step (3) is omitted, and the rest of the process parameters and operating steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the microwave pre-firing in step (3) is replaced by kiln pre-firing, and the rest of the process parameters and operating steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the magnetic field heat treatment process in step (1) is omitted, and the remaining process parameters and operating steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the magnetic field heat treatment in step (1) is replaced by a heat treatment process without applying a magnetic field, and the rest of the process parameters and operating steps are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the microwave sintering in step (5) is replaced by kiln sintering, and the rest of the process parameters and operation steps are the same as in Example 1.
  • Table 1 shows the performance test results of the NiCuZn ferrite materials prepared in Examples 1-20 and Comparative Examples 1-5.
  • Example 2 4200 105
  • Example 4 4350 110
  • Example 5 4260 108
  • Example 6 3228
  • Example 7 3110 101
  • Example 8 3155
  • Example 9 3202
  • Example 10 3194
  • Example 11 2906 101
  • Example 12 2993
  • Example 13 3002
  • Example 14 3067 97
  • Example 15 3039 99
  • Example 16 3506 102
  • Example 17 3510 101
  • Example 18 3688 101
  • Example 19 3647
  • Example 20 3650 110 Comparative example 1 3000 95 Comparative example 2 3025 98 Comparative example 3 3041 98 Comparative example 4 3033 101 Comparative example 5 3021 100
  • the NiCuZn ferrite material of Examples 1-5 has high initial magnetic permeability and Curie temperature, indicating that the NiCuZn ferrite material obtained by the preparation method of the NiCuZn ferrite material provided by the application has excellent performance.
  • both the initial magnetic permeability and the Curie temperature of the NiCuZn ferrite material in Embodiment 6-11 are lower than those in Embodiment 1.
  • the magnetic field intensity of the magnetic field heat treatment in embodiment 6 and embodiment 7 is too high and too low respectively, and when the magnetic field intensity is too high, because the anisotropy strengthens, can cause agglomeration phenomenon between precursor powder;
  • the magnetic field intensity is too high
  • it is low due to the too low magnetic field strength, the powder cannot be in a superparamagnetic state, which will lead to uneven distribution of the precursor powder.
  • the temperature of the magnetic field heat treatment in Example 8 and Example 9 is too high and too low respectively.
  • the cooling time is too long, which is not conducive to the improvement of product performance; when the temperature is too low, the synthesis of the target product cannot be promoted.
  • the time of magnetic field heat treatment in embodiment 10 and embodiment 11 is too long and too short respectively, and when the time of magnetic field heat treatment is too long, cooling time is too long, is unfavorable for the raising of product performance; When the time of magnetic field heat treatment is too short, preheating The internal stress of the treated powder is not fully released, which affects the performance of the material. Therefore, the conditions of magnetic field heat treatment have a significant impact on the properties of NiCuZn ferrite materials.
  • Example 1 the temperature of microwave calcining in embodiment 12 and embodiment 13 is too high and too low respectively, when the temperature of microwave calcining is too high, can cause powder particle too hard, prolong the time of secondary grinding, simultaneously the reduction of powder activity It is not conducive to the solid phase reaction of secondary sintering; when the temperature of microwave pre-calcination is too low, the activity of secondary sintering will be too high, the size shrinkage will be too large, and the product will be easily deformed.
  • the time of microwave pre-burning in embodiment 14 and embodiment 15 is too long and too short respectively, when the time of microwave pre-burning is too long, can cause pre-burning temperature to be on the high side, make pulverized particle distribution uneven, occur when sintering.
  • the initial magnetic permeability and Curie temperature of the NiCuZn ferrite material in Embodiments 16-19 are both lower than those in Embodiment 1.
  • the microwave sintering temperature in Example 16 and Example 17 is too high and too low respectively, when the microwave sintering temperature is too high, it will cause the ferrite crystal grains to grow wildly and form giant crystals, thereby reducing the magnetic permeability of the material rate and Curie temperature; when the microwave sintering temperature is too low, the grains will not grow completely, resulting in uneven grain growth, and the incomplete and incomplete grains are also not conducive to improving the magnetic permeability and Curie temperature.
  • the time of microwave sintering in Example 18 and Example 19 is too long and too short respectively.
  • the initial magnetic permeability of the NiCuZn ferrite material in Example 20 is lower than that of Example 1, because the acidic or alkaline raw material liquid will affect the subsequent compression molding process, thereby affecting the magnetic permeability of the product. Therefore, the initial magnetic permeability of the NiCuZn ferrite material can be improved by adding the lye dropwise to adjust the pH of the raw material solution to neutral.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本文公布一种NiCuZn铁氧体材料及其制备方法和用途,所述制备方法包括:原料依次进行预处理和磁场热处理后得到前驱体粉末,随后对前驱体粉末依次进行微波预烧、压制成型和微波烧结,得到所述的NiCuZn铁氧体材料。本申请提供的NiCuZn铁氧体材料制备方法,通过磁场热处理、微波预烧和微波烧结技术之间的协同作用,能够使预处理粉末的内应力得到更快释放,降低预烧和烧结的温度,促进固相反应更加快速充分地进行,从而制备得到粒径较小,同时具有优异的初始磁导率和较高居里温度的NiCuZn铁氧体粉体材料。

Description

一种NiCuZn铁氧体材料及其制备方法和用途 技术领域
本申请实施例涉及软磁铁氧体材料技术领域,例如一种NiCuZn铁氧体材料及其制备方法和用途。
背景技术
随着电子行业的发展与应用领域的扩展,人们对NiCuZn铁氧体材料的要求也越来越高。而NiCuZn铁氧体与其它材料一样,其性能除了与化学组成有关外,还受到颗粒形貌、尺寸及微观结构等影响。其中,高纯度、颗粒细、尺寸分布均匀的NiCuZn铁氧体粉体具有优异的性能。
目前,除了传统的干法生产工艺外,多种湿化学方法成功地应用于铁氧体的合成。但现有的NiCuZn铁氧体材料的初始磁导率最大值约为3000,且使用频率范围小、高频损耗大。随着器件小型化、微型化、高性能化的发展趋势以及现阶段对短波、超短波通信设备提出的更高要求,使得NiCuZn铁氧体材料需要具备更高的初始磁导率、更宽频带及更低的损耗,同时还要求NiCuZn铁氧体材料的高频特性好,居里温度高及温度系数低。
CN109320227A公开了一种NiCuZn铁氧体材料及其制备方法和用途。所述NiCuZn铁氧体材料主要由48.8~50mol%的Fe 2O 3、32~34mol%的ZnO、6.5~8mol%的NiO和8.5~12.7mol%的CuO组成。其制备方法包括:(1)配料湿法混合并破碎,然后烘干,得到粉料:(2)对粉料升温后进行预烧;(3)破碎烘干;(4)制成生坯;(5)烧结。但是该NiCuZn铁氧体材料的初始磁导率并不高,也无法解决软磁NiCuZn铁氧体超高初始磁导率的粉料技术问题。
CN101236819B公开了一种镍铜锌铁氧体及其制造方法,该铁氧体包括主成分和副成分,主成分包括48mol%~50mol%的Fe 2O 3,13mol%~16mol%的NiO,29mol%~31.5mol%的ZnO,4.5mol%~6.5mol%CuO;副成分包括V 2O 5、MoO 3、TiO 2,相对主成分总量,副成分总含量为0.01wt%~0.08wt%。虽然该镍铜锌铁氧体具有较高的居里温度,但其初始磁导率并不高,并且无法解决软磁NiCuZn铁氧体超高初始磁导率的粉料技术问题。
CN1631839公开了一种低温共烧NiCuZn铁氧体材料及其制备方法,主相为 尖晶石结构,并且主相包括Fe 2O 3、ZnO、CuO和NiO,添加杂质为分析纯度的硝酸钴和硝酸锰,以此构成低温共烧NiCuZn铁氧体材料。此外,以配制量的各离子的硝酸盐为原材料,经溶解、溶胶制备、自蔓延燃烧得NiCuZn铁氧体粉末。该NiCuZn铁氧体材料具有较低的磁损耗和温度系数,但是对初始磁导率和居里温度并没有进行介绍。
因此,如何制备粉体状NiCuZn铁氧体材料,并且能够同时具有超高初始磁导率和高居里温度,对于器件小型化、微型化、高性能化的发展以及短波、超短波通信设备等的发展具有重要作用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种NiCuZn铁氧体材料及其制备方法和用途,通过磁场热处理、微波预烧和微波烧结技术之间的协同作用,能够使预处理粉末的内应力得到更快释放,降低预烧和烧结的温度,促进固相反应更加快速充分地进行,从而制备得到粒径较小,同时具有优异的初始磁导率和较高居里温度的NiCuZn铁氧体粉体材料。
第一方面,本申请实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法包括:
原料依次进行预处理和磁场热处理后得到前驱体粉末,随后对前驱体粉末依次进行微波预烧、压制成型和微波烧结,得到所述的NiCuZn铁氧体材料。
本申请提供的NiCuZn铁氧体材料的制备方法,通过磁场热处理、微波预烧和微波烧结技术之间的协同作用,能够使预处理粉末的内应力得到更快释放,降低预烧和烧结的温度,促进固相反应更加快速充分地进行,从而制备得到粒径较小,同时具有优异的初始磁导率和较高居里温度的NiCuZn铁氧体粉体材料。
作为本申请一种优选的技术方案,所述预处理的过程包括:
将原料溶于溶剂形成原料液,滴加碱溶液调节原料液的pH至中性后依次进行搅拌处理和干燥。
本申请采用湿法工艺对原料进行预处理,能够使预处理粉末的内应力得到 更快释放,降低预烧和烧结的温度,促进固相反应更加快速充分地进行。
优选地,所述原料包括氧化铁、氧化镍、氧化锌和氧化铜。
优选地,所述氧化铁、氧化镍、氧化锌和氧化铜的摩尔比为50:(11~13):(32~34):(5~6),例如可以是50:11:34:5、50:11.2:33.8:5.8、50:11.5:33.5:5.8、50:11.8:33.2:5.6、50:12:33:5.5、50:12.3:32.8:5.5、50:12.5:32.5:5.3、50:12.8:32.2:5或50:13:32:5,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述原料还包括碳材料。
优选地,所述碳材料包括石墨烯和/或碳纤维。
优选地,所述溶剂包括去离子水。
需要注意的是,本申请对溶剂的加入量不作具体要求和特殊限定,只要加入的溶剂能将原料溶剂即可。因此,可以理解的是,本领域技术人员可以根据使用的场景和原料的加入量对选择溶剂的加入量。
优选地,所述碱溶液调节原料液的pH前,向所述原料液中加入柠檬酸。
本申请中,在原料液中加入柠檬酸能够使得原料液凝聚,减小颗粒间距,从而提高其在微波预烧过程中的预烧活性和速率。
优选地,所述原料液的pH调至6~8,例如可以是6、6.2、6.5、6.8、7、7.2、7.5、7.8或8,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,将原料液的pH调至中性,可以防止设备被腐蚀;同时,酸性或碱性的原料液会影响后续的压制成型过程,进而影响产品性能。因此,滴加碱液将原料液的pH调至中性,能够提高NiCuZn铁氧体材料的初始磁导率和居里温度。
优选地,所述碱溶液包括氨水。
优选地,所述碱溶液的质量浓度为1.5~3.8wt%,例如可以是1.5wt%、1.8wt%、2wt%、2.3wt%、2.5wt%、2.8wt%、3wt%、3.2wt%、3.5wt%或3.8wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
需要注意的是,本申请对碱溶液的加入量不作具体要求和特殊限定,只要加入的碱溶液能将原料液的pH调至中性即可。因此,可以理解的是,本领域技术人员可以根据使用的场景对调节碱溶液的加入量。
优选地,所述搅拌处理的温度为70~75℃,例如可以是70℃、71℃、72℃、73℃、74℃或75℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述搅拌处理的时间为5~10min,例如可以是5min、6min、7min、8min、9min或10min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述搅拌处理的速率为20~26rpm/min,例如可以是20rpm/min、21rpm/min、22rpm/min、23rpm/min、24rpm/min、25rpm/min或26rpm/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,在加热条件下进行搅拌,可以促使原料液进一步凝聚,形成浆料,减小颗粒间距,从而提高其在微波预烧过程中的预烧活性和速率。
优选地,所述干燥的温度为155~165℃,例如可以是155℃、156℃、157℃、158℃、159℃、160℃、161℃、162℃、163℃、164℃或165℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述干燥的时间为2~2.5h,例如可以是2h、2.1h、2.2h、2.3h、2.4h或2.5h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,在干燥过程中,主要原材料之间发生氧化还原反应,引发自燃烧并使体系瞬间达到高温,从而得到预处理粉末。同时,在155~165℃较高的温度下进行干燥,能够使得原材料在该过程中的燃烧反应进行的更加充分。
此外,原料还包括石墨烯和/或碳纤维,而在高温环境中,石墨烯与碳纤维穿插复合后被预处理粉末均匀地包覆,由于预处理粉末包覆在复合物表面,可以有效活化预处理粉末,使产品具有较高的磁导率,同时还能细化预处理粉末,使其呈现超顺磁态,进而有效提高后续微波预烧的活性和速度。
作为本申请一种优选的技术方案,所述磁场热处理的磁场强度为40~55mT,例如可以是40mT、42mT、45mT、48mT、50mT、52mT或55mT,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请限定了磁场热处理的磁场强度为40~55mT,当磁场强度高于55mT时,会导致前躯体粉末之间发生团聚现象,这是由于各向异性增强导致的;当磁场强度低于40mT时,会导致前躯体粉末分布不均,这是由于过低的磁场强度 不能使粉末呈现超顺磁态。
优选地,所述磁场热处理的温度为465~475℃,例如可以是465℃、466℃、467℃、468℃、469℃、470℃、471℃、472℃、473℃、474℃或475℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请限定了磁场热处理的温度为465~475℃,当温度高于475℃时,会导致冷却时间延长;当温度低于465℃时,会导致不能促进目标产物的合成。
优选地,所述磁场热处理的时间为60~70min,例如可以是60min、61min、62min、63min、64min、65min、66min、67min、68min、69min或70min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请限定了磁场热处理的时间为60~70min,当时间高于70min时,会导致冷却时间过长,不利于产品性能的提高;当时间低于60min时,预处理粉末的内应力得不到充分释放,从而影响材料的性能。
本申请在微波预烧前进行磁场热处理,该过程中,热处理能够使预处理粉末的内应力得到释放,各向异性减弱并分布均匀,进而磁导率得到提高,而在磁场的作用下,这种释放的强度得到提高,同时由于预处理粉末包覆在石墨烯-碳纤维复合物表面,使得这种释放的速度得到提高,磁场热处理与包覆作用协同后显著提高铁氧体材料的磁导率和居里温度。
优选地,所述磁场热处理后进行冷却处理后,得到所述前驱体粉末。
优选地,所述冷却处理为自然冷却。
作为本申请一种优选的技术方案,所述微波预烧前,对所述前驱体粉末依次进行一次球磨、离心喷雾造粒和一次过筛。
优选地,所述一次球磨为湿法球磨。
优选地,所述一次球磨的时间为50~70min,例如可以是50min、52min、55min、58min、60min、63min、65min、67min或70min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述一次球磨的转速为20~30rpm/min,例如可以是20rpm/min、21rpm/min、22rpm/min、23rpm/min、24rpm/min、25rpm/min、26rpm/min、27rpm/min、28rpm/min、29rpm/min或30rpm/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述一次球磨的研磨球为氧化锆球。
优选地,所述一次球磨中,所述研磨球、水和前驱体粉末的质量比为(5~6):(0.8~1.0):1,例如可以是5:0.8:1、5.2:0.8:1、5.5:0.9:1、5.8:0.9:1或6:1:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述一次球磨后得到一次球磨产物,所述一次球磨产物的粒径为1~1.5μm,例如可以是1μm、1.2μm、1.3μm、1.4μm或1.5μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述离心喷雾造粒的入口温度为250~350℃,例如可以是250℃、280℃、300℃、320℃或350℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述离心喷雾造粒的出口温度为80~110℃,例如可以是80℃、85℃、90℃、95℃、100℃、105℃或350℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,采用离心喷雾造粒是由于雾滴群的表面积很大,物料干燥所需的时间很短(通常为15~30S),喷雾干燥后得到的颗粒很细,有利于提高成型的毛坯密度以及烧结密度,从而有利于提高材料的初始磁导率性能。
优选地,所述一次过筛所用筛网的目数为100~400目,例如可以是100目、150目、200目、250目、300目、350目或400目,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请一种优选的技术方案,所述微波预烧的功率为2.5~8.5kw,例如可以是2.5kw、3kw、3.5kw、4kw、4.5kw、5kw、5.5kw、6kw、6.5kw、7kw、7.5kw、8kw或8.5kw,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述微波预烧的频率为2.4~2.45GHz,例如可以是2.4GHz、2.42GHz、2.43GHz、2.44GHz或2.45GHz,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述微波预烧的温度为650~750℃,例如可以是650℃、660℃、670℃、680℃、690℃、700℃、710℃、720℃、730℃、740℃或750℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;进一步优选为700~720℃。
本申请限定了微波预烧的温度为650~750℃,当温度高于750℃时,会导致 粉末颗粒过硬,延长二次研磨的时间,同时粉末活性的降低不利于二次烧结的固相反应;当温度低于650℃时,会导致二次烧结的活性过高,尺寸收缩过大,产品容易变形。
优选地,所述微波预烧的时间为20~40min,例如可以是20min、23min、25min、28min、30min、32min、35min、38min或40min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;进一步优选为25~35min。
本申请限定了微波预烧的时间为20~40min,当时间高于40min时,会导致预烧温度偏高,使粉碎颗粒分布不均匀,烧结时出现不连续晶体生长,使产品性能大幅度下降;当时间低于20min时,会导致预烧温度偏低,铁氧体粉料的松装密度较小,坯件烧结后的收缩率较大,达不到预期的工艺目的。
优选地,所述微波预烧的气氛为空气。
作为本申请一种优选的技术方案,所述微波预烧和压制成型之间还依次进行二次球磨、喷雾造粒和二次过筛。
优选地,所述二次球磨为湿法球磨。
优选地,所述二次球磨的时间为170~190min,例如可以是170min、172min、175min、178min、180min、182min、185min、188min、或190min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述二次球磨的转速为20~30rpm/min,例如可以是20rpm/min、21rpm/min、22rpm/min、23rpm/min、24rpm/min、25rpm/min、26rpm/min、27rpm/min、28rpm/min、29rpm/min或30rpm/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述二次球磨的研磨球为氧化锆球。
优选地,所述二次球磨中,所述研磨球、水和微波预烧的产物的质量比为(5~6):(0.8~1.0):1,例如可以是5:0.8:1、5.2:0.8:1、5.5:0.9:1、5.8:0.9:1或6:1:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述二次球磨中还加入氧化钼。
优选地,以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,所述氧化钼的加入量为0~0.15wt%,例如可以是0wt%、0.02wt%、0.05wt%、0.08wt%、0.1wt%、0.12wt%或0.15wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,氧化钼为低熔点物质,适量添加可以促使材料致密化,并且可以促进晶粒的生长,提高材料的起始磁导率,一定程度上也可以降低预烧和烧结温度。但由于氧化钼为非磁性物质,过量添加会导致NiZnCu铁氧体材料居里温度降低。
优选地,所述二次球磨后得到二次球磨产物,所述二次球磨产物的粒径为0.8~0.95μm,例如可以是0.8μm、0.82μm、0.85μm、0.87μm、0.9μm、0.92μm或0.95μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述喷雾造粒的入口温度为250~400℃,例如可以是250℃、280℃、300℃、320℃、350℃、380℃或400℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述喷雾造粒的出口温度为80~110℃,例如可以是80℃、85℃、90℃、95℃、100℃、105℃或350℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,采用喷雾造粒是由于雾滴群的表面积很大,物料干燥所需的时间很短(通常为15~30S),喷雾干燥后得到的颗粒很细,有利于提高成型的毛坯密度以及烧结密度,从而有利于提高材料的初始磁导率性能。
优选地,所述二次过筛所用筛网的目数为30-200目,例如可以是30目、50目、80目、100目、120目、150目、180目或200目,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述压制成型的密度为3.3~3.5g/cm 3,例如可以是3.3g/cm 3、3.32g/cm 3、3.35g/cm 3、3.4g/cm 3、3.43g/cm 3、3.45g/cm 3、3.48g/cm 3或3.5g/cm 3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述微波烧结的功率为3.5~11.7kw,例如可以是3.5kw、4kw、4.5kw、5kw、5.5kw、6kw、6.5kw、7kw、7.5kw、8kw、8.5kw、9kw、9.5kw、10kw、10.5kw、11kw或11.7kw,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述微波烧结的频率为2.43~2.48GHz,例如可以是2.43GHz、2.44GHz、2.45GHz、2.46GHz、2.47GHz或2.48GHz,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述微波烧结的温度为1000~1200℃,例如可以是1000℃、1020℃、1050℃、1080℃、1100℃、1120℃、1150℃、1180℃或1200℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请限定了微波烧结的温度为1000~1200℃,当温度高于1200℃时,会导致铁氧体晶粒的狂长形成巨晶,从而降低材料的磁导率和居里温度;当温度低于1000℃时,会导致晶粒还没有完全生长,造成不均匀的晶粒生长,晶粒的不饱满和不完整同样不利于提高材料的磁导率和居里温度。
优选地,所述微波烧结的时间为7~8h,例如可以是7h、7.1h、7.2h、7.3h、7.4h、7.5h、7.6h、7.7h、7.8h、7.9h、或8h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请限定了微波烧结的时间为7~8h,当时间高于8h时,会导致保温时间的延长,晶粒尺寸增大,并且当晶粒生长条件的控制稍有不当,便会出现异常晶粒的生长,其结果是给铁氧体材料造成双重结构,直接导致性能下降;当时间低于7h时,会导致晶粒尺寸过小,晶粒不完整,同样会导致性能下降。
优选地,所述微波烧结的气氛为空气。
作为本申请一种优选的技术方案,所述制备方法包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:(11~13):(32~34):(5~6)的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为1.5~3.8wt%的氨水将原料液pH调至6~8后,在温度为70~75℃下,以20~26rpm/min的速率搅拌处理5~10min,然后在155~165℃的温度下干燥2~2.5h,随后在磁场强度为40~55mT,温度为465~475℃下对干燥后的产物进行磁场热处理60~70min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按(5~6):(0.8~1.0):1的质量比在20~30rpm/min的转速下进行湿法球磨50~70min,得到粒径为1~1.5μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为250~350℃,出口温度为80~110℃,一次过筛的筛网目数为100~400目;
(3)在2.5~10.5kw的微波功率和2.4~2.45GHz的微波频率下升温至650~750℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧20~40min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按(5~6):(0.8~1.0):1的质量比在20~30rpm/min的转速下进行湿法球磨170~190min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0~0.15wt%的氧化钼,得到粒径为0.8~0.95μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为250~400℃,出口温度为80~110℃,二次过筛的筛网目数为30~200目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.3~3.5g/cm 3,随后在3.5~11.7kw的微波功率、2.43~2.48GHz的微波频率下升温至1000~1200℃,在空气气氛中进行微波烧结7~8h后,得到所述NiCuZn铁氧体材料。
第二方面,本申请实施例提供了一种NiCuZn铁氧体材料,所述NiCuZn铁氧体材料采用第一方面所述的制备方法得到。
作为本申请一种优选的技术方案,所述NiCuZn铁氧体材料为粉末状颗粒。
优选地,所述NiCuZn铁氧体材料的粒径为100~156μm,例如可以是100μm、110μm、120μm、130μm、140μm、150μm或156μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请提供的NiCuZn铁氧体材料的粒径小,并且在较小粒径的基础上,NiCuZn铁氧体材料具有优异的初始磁导率和较高的居里温度。
第三方面,本申请实施例提供了一种第二方面所述的NiCuZn铁氧体材料的用途,所述NiCuZn铁氧体材料用于无线充电领域。
与相关技术相比,本申请实施例的有益效果为:
本申请实施例提供的NiCuZn铁氧体材料及制备方法和用途,通过磁场热处理、微波预烧和微波烧结技术之间的协同作用,能够使预处理粉末的内应力得到更快释放,降低预烧和烧结的温度,促进固相反应更加快速充分地进行,从而制备得到粒径较小,同时具有优异的初始磁导率和较高居里温度的NiCuZn铁氧体粉体材料。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员 应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法具体包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:12:33:5.5的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为2.6wt%的氨水将原料液pH调至7后,在温度为73℃下,以23rpm/min的速率搅拌处理8min,然后在160℃的温度下干燥2.3h,随后在磁场强度为47mT,温度为470℃下对干燥后的产物进行磁场热处理65min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨60min,得到粒径为1.2μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为300℃,出口温度为95℃,一次过筛的筛网目数为300目;
(3)在5.5kw的微波功率和2.42GHz的微波频率下升温至710℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧30min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨180min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0.13wt%的氧化钼,得到粒径为0.9μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为350℃,出口温度为95℃,二次过筛的筛网目数为100目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.4g/cm 3,随后在7.6kw的微波功率、2.45GHz的微波频率下升温至1150℃,在空气气氛中进行微波烧结7.5h后,得到所述NiCuZn铁氧体材料。
实施例2
本实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法具体包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:11:34:5的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为3.8wt%的氨水将原料液pH调至6后,在温度为70℃下,以 20rpm/min的速率搅拌处理10min,然后在155℃的温度下干燥2.5h,随后在磁场强度为40mT,温度为475℃下对干燥后的产物进行磁场热处理60min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按5:0.8:1的质量比在30rpm/min的转速下进行湿法球磨50min,得到粒径为1μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为250℃,出口温度为80℃,一次过筛的筛网目数为100目;
(3)在2.5kw的微波功率和2.4GHz的微波频率下升温至650℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧40min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按5:0.8:1的质量比在20rpm/min的转速下进行湿法球磨190min,得到粒径为0.8μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为250℃,出口温度为80℃,二次过筛的筛网目数为30目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.3g/cm 3,随后在3.5kw的微波功率、2.43GHz的微波频率下升温至1000℃,在空气气氛中进行微波烧结8h后,得到所述NiCuZn铁氧体材料。
实施例3
本实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法具体包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:13:32:6的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为1.5wt%的氨水将原料液pH调至8后,在温度为75℃下,以26rpm/min的速率搅拌处理5min,然后在165℃的温度下干燥2h,随后在磁场强度为55mT,温度为465℃下对干燥后的产物进行磁场热处理70min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按6:1:1的质量比在20rpm/min的转速下进行湿法球磨70min,得到粒径为1.5μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为350℃,出口温度为110℃,一次过筛的筛网目数为400目;
(3)在8.5kw的微波功率和2.45GHz的微波频率下升温至750℃,在空气 气氛中,对一次过筛得到的颗粒进行微波预烧20min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按6:1:1的质量比在30rpm/min的转速下进行湿法球磨170min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0.15wt%的氧化钼,得到粒径为0.95μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为400℃,出口温度为110℃,二次过筛的筛网目数为200目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.5g/cm 3,随后在11.7kw的微波功率、2.48GHz的微波频率下升温至1200℃,在空气气氛中进行微波烧结7h后,得到所述NiCuZn铁氧体材料。
实施例4
本实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法具体包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:12:33:5.5的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为2.6wt%的氨水将原料液pH调至7后,在温度为73℃下,以23rpm/min的速率搅拌处理8min,然后在160℃的温度下干燥2.3h,随后在磁场强度为47mT,温度为470℃下对干燥后的产物进行磁场热处理65min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨60min,得到粒径为1.2μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为300℃,出口温度为95℃,一次过筛的筛网目数为300目;
(3)在5.5kw的微波功率和2.42GHz的微波频率下升温至700℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧35min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨180min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0.13wt%的氧化钼,得到粒径为0.9μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为350℃,出口温度为95℃,二次过筛的筛网目数为100目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.4g/cm 3, 随后在7.6kw的微波功率、2.45GHz的微波频率下升温至1150℃,在空气气氛中进行微波烧结7.5h后,得到所述NiCuZn铁氧体材料。
实施例5
本实施例提供了一种NiCuZn铁氧体材料的制备方法,所述制备方法具体包括如下步骤:
(1)将氧化铁、氧化镍、氧化锌和氧化铜按50:12:33:5.5的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为2.6wt%的氨水将原料液pH调至7后,在温度为73℃下,以23rpm/min的速率搅拌处理8min,然后在160℃的温度下干燥2.3h,随后在磁场强度为47mT,温度为470℃下对干燥后的产物进行磁场热处理65min,冷却后得到前驱体粉末;
(2)将研磨球、水和前驱体粉末按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨60min,得到粒径为1.2μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为300℃,出口温度为95℃,一次过筛的筛网目数为300目;
(3)在5.5kw的微波功率和2.42GHz的微波频率下升温至720℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧25min后得到微波预烧产物;
(4)将研磨球、水和微波预烧产物按5.5:0.9:1的质量比在25rpm/min的转速下进行湿法球磨180min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0.13wt%的氧化钼,得到粒径为0.9μm的二次球磨产物,随后依次对二次球磨产物进行喷雾造粒和二次过筛,喷雾造粒的入口温度为350℃,出口温度为95℃,二次过筛的筛网目数为100目;
(5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.4g/cm 3,随后在7.6kw的微波功率、2.45GHz的微波频率下升温至1150℃,在空气气氛中进行微波烧结7.5h后,得到所述NiCuZn铁氧体材料。
实施例6
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的磁场强度为58mT,其余工艺参数及操作步骤与实施例1相同。
实施例7
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的磁场强度为 38mT,其余工艺参数及操作步骤与实施例1相同。
实施例8
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的温度为480℃,其余工艺参数及操作步骤与实施例1相同。
实施例9
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的温度为460℃,其余工艺参数及操作步骤与实施例1相同。
实施例10
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的时间为75min,其余工艺参数及操作步骤与实施例1相同。
实施例11
本实施例与实施例1的区别在于:步骤(1)中磁场热处理的时间为55min,其余工艺参数及操作步骤与实施例1相同。
实施例12
本实施例与实施例1的区别在于:步骤(3)中微波预烧的温度为760℃,其余工艺参数及操作步骤与实施例1相同。
实施例13
本实施例与实施例1的区别在于:步骤(3)中微波预烧的温度为640℃,其余工艺参数及操作步骤与实施例1相同。
实施例14
本实施例与实施例1的区别在于:步骤(3)中微波预烧的时间为45min,其余工艺参数及操作步骤与实施例1相同。
实施例15
本实施例与实施例1的区别在于:步骤(3)中微波预烧的时间为15min,其余工艺参数及操作步骤与实施例1相同。
实施例16
本实施例与实施例1的区别在于:步骤(5)中微波烧结的温度为1220℃,其余工艺参数及操作步骤与实施例1相同。
实施例17
本实施例与实施例1的区别在于:步骤(5)中微波烧结的温度为980℃, 其余工艺参数及操作步骤与实施例1相同。
实施例18
本实施例与实施例1的区别在于:步骤(5)中微波烧结的时间为8.5h,其余工艺参数及操作步骤与实施例1相同。
实施例19
本实施例与实施例1的区别在于:步骤(5)中微波烧结的时间为6.5h,其余工艺参数及操作步骤与实施例1相同。
实施例20
本实施例与实施例1的区别在于:步骤(1)中省去了滴加氨水调节原料液pH的过程,其余工艺参数及操作步骤与实施例1相同。
对比例1
本对比例与实施例1的区别在于:省去了步骤(3)的微波预烧过程,其余工艺参数及操作步骤与实施例1相同。
对比例2
本对比例与实施例1的区别在于:将步骤(3)的微波预烧替换为窑炉预烧,其余工艺参数及操作步骤与实施例1相同。
对比例3
本对比例与实施例1的区别在于:省去了步骤(1)中的磁场热处理过程,其余工艺参数及操作步骤与实施例1相同。
对比例4
本对比例与实施例1的区别在于:将步骤(1)中的磁场热处理替换为不施加磁场的热处理过程,其余工艺参数及操作步骤与实施例1相同。
对比例5
本对比例与实施例1的区别在于:将步骤(5)中的微波烧结替换为窑炉烧结,其余工艺参数及操作步骤与实施例1相同。
实施例1-20与对比例1-5所制备的NiCuZn铁氧体材料的性能测试结果见表1。
表1
  初始磁导率 居里温度/℃
实施例1 4500 110
实施例2 4200 105
实施例3 4000 105
实施例4 4350 110
实施例5 4260 108
实施例6 3228 100
实施例7 3110 101
实施例8 3155 100
实施例9 3202 102
实施例10 3194 103
实施例11 2906 101
实施例12 2993 96
实施例13 3002 100
实施例14 3067 97
实施例15 3039 99
实施例16 3506 102
实施例17 3510 101
实施例18 3688 101
实施例19 3647 103
实施例20 3650 110
对比例1 3000 95
对比例2 3025 98
对比例3 3041 98
对比例4 3033 101
对比例5 3021 100
由表1的数据可得:
(1)由实施例1-5的NiCuZn铁氧体材料具有高初始磁导率和居里温度,说明通过本申请提供的NiCuZn铁氧体材料的制备方法得到的NiCuZn铁氧体材 料性能优异。
(2)实施6-11中的NiCuZn铁氧体材料的初始磁导率和居里温度均低于实施例1。其中,实施例6和实施例7中磁场热处理的磁场强度分别过高和过低,而当磁场强度过高时,由于各向异性增强会导致前躯体粉末之间发生团聚现象;当磁场强度过低时,由于过低的磁场强度不能使粉末呈现超顺磁态会导致前躯体粉末分布不均。实施例8和实施例9中磁场热处理的温度分别过高和过低,当温度过高时,冷却时间过长,不利于产品性能的提高;当温度过低时,不能促进目标产物的合成。实施例10和实施例11中磁场热处理的时间分别过长和过短,当磁场热处理的时间过长时,冷却时间过长,不利于产品性能的提高;当磁场热处理的时间过短时,预处理粉末的内应力得不到充分释放,从而影响材料的性能。因此,磁场热处理的条件对NiCuZn铁氧体材料的性能具有显著影响。
(3)实施12-15中的NiCuZn铁氧体材料的初始磁导率和居里温度均低于
实施例1。其中,实施例12和实施例13中微波预烧的温度分别过高和过低,当微波预烧的温度过高时,会导致粉末颗粒过硬,延长二次研磨的时间,同时粉末活性的降低不利于二次烧结的固相反应;当微波预烧的温度过低时,会导致二次烧结的活性过高,尺寸收缩过大,产品容易变形。实施例14和实施例15中的微波预烧的时间分别过长和过短,当微波预烧的时间过长时,会导致预烧温度偏高,使粉碎颗粒分布不均匀,烧结时出现不连续晶体生长,使产品性能大大下降。当微波预烧的时间过短时,会导致预烧温度偏低,铁氧体粉料的松装密度较小,坯件烧结后的收缩率较大,达不到预期的工艺目的。因此,微波预烧的条件对NiCuZn铁氧体材料的性能同样具有显著影响。
(4)实施16-19中的NiCuZn铁氧体材料的初始磁导率和居里温度均低于实施例1。其中,实施例16和实施例17中微波烧结的温度分别过高和过低,当微波烧结的温度过高时,会导致铁氧体晶粒的狂长形成巨晶,从而降低材料的磁导率和居里温度;当微波烧结的温度过低时,会导致晶粒还没有完全生长,造成不均匀的晶粒生长,晶粒的不饱满和不完整同样不利于提高材料的磁导率和居里温度。实施例18和实施例19中微波烧结的时间分别过长和过短,当微波烧结的时间过长时,会导致保温时间的延长,晶粒尺寸增大,并且当晶粒生长条件的控制稍有不当,便会出现异常晶粒的生长,其结果是给铁氧体材料造 成双重结构,直接导致性能下降;当微波烧结的时间过短时,会导致晶粒尺寸过小,晶粒不完整,同样会导致性能下降。因此,微波烧结的条件对NiCuZn铁氧体材料的性能也具有显著影响。
(5)实施例20中的NiCuZn铁氧体材料的初始磁导率低于实施例1,这是由于酸性或碱性的原料液会影响后续的压制成型过程,进而影响产品的磁导率。因此,滴加碱液将原料液的pH调至中性,能够提高NiCuZn铁氧体材料的初始磁导率。
(6)对比例1-5中NiCuZn铁氧体材料的初始磁导率和居里温度均低于实施例1,这是由于对比例1省去了微波预烧过程,对比例2将微波预烧替换为窑炉预烧,对比例3省去了磁场热处理过程,对比例4将磁场热处理替换为不施加磁场的热处理过程,对比例5将微波烧结替换为窑炉烧结。由对比例1-5的数据可以看出,微波工艺能够明显提高NiCuZn铁氧体粉体材料的性能,并且磁场热处理、微波预烧以及微波烧结之间的协同作用对于提高NiCuZn铁氧体粉体材料的初始磁导率和居里温度具有重要作用。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种NiCuZn铁氧体材料的制备方法,其中,所述制备方法包括:
    原料依次进行预处理和磁场热处理后得到前驱体粉末,随后对前驱体粉末依次进行微波预烧、压制成型和微波烧结,得到所述的NiCuZn铁氧体材料。
  2. 根据权利要求1所述的制备方法,其中,所述预处理的过程包括:
    将原料溶于溶剂形成原料液,滴加碱溶液调节原料液的pH至中性后依次进行搅拌处理和干燥。
  3. 根据权利要求1或2所述的制备方法,其中,所述原料包括氧化铁、氧化镍、氧化锌和氧化铜。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述氧化铁、氧化镍、氧化锌和氧化铜的摩尔比为50:(11~13):(32~34):(5~6)。
  5. 根据权利要求1-4任一项所述的制备方法,其中,所述原料还包括碳材料;
    优选地,所述碳材料包括石墨烯和/或碳纤维;
    优选地,所述溶剂包括去离子水;
    优选地,所述碱溶液调节原料液的pH前,向所述原料液中加入柠檬酸;
    优选地,所述原料液的pH调至6~8;
    优选地,所述碱溶液包括氨水;
    优选地,所述碱溶液的质量浓度为1.5~3.8wt%;
    优选地,所述搅拌处理的温度为70~75℃;
    优选地,所述搅拌处理的时间为5~10min;
    优选地,所述搅拌处理的速率为20~26rpm/min;
    优选地,所述干燥的温度为155~165℃;
    优选地,所述干燥的时间为2~2.5h。
  6. 根据权利要求1-5任一项所述的制备方法,其中,所述磁场热处理的磁场强度为40~55mT;
    优选地,所述磁场热处理的温度为465~475℃;
    优选地,所述磁场热处理的时间为60~70min;
    优选地,所述磁场热处理后进行冷却处理后,得到所述前驱体粉末;
    优选地,所述冷却处理为自然冷却。
  7. 根据权利要求1-6任一项所述的制备方法,其中,所述微波预烧前,对 所述前驱体粉末依次进行一次球磨、离心喷雾造粒和一次过筛。
  8. 根据权利要求7所述的制备方法,其中,所述一次球磨为湿法球磨;
    优选地,所述一次球磨的时间为50~70min;
    优选地,所述一次球磨的转速为20~30rpm/min;
    优选地,所述一次球磨的研磨球为氧化锆球;
    优选地,所述一次球磨中,所述研磨球、水和前驱体粉末的质量比为(5~6):(0.8~1.0):1;
    优选地,所述一次球磨后得到一次球磨产物,所述一次球磨产物的粒径为1~1.5μm;
    优选地,所述离心喷雾造粒的入口温度为250~350℃;
    优选地,所述离心喷雾造粒的出口温度为80~110℃;
    优选地,所述一次过筛所用筛网的目数为100~400目。
  9. 根据权利要求1-8任一项所述的制备方法,其中,所述微波预烧的功率为2.5~8.5kw;
    优选地,所述微波预烧的频率为2.4~2.45GHz;
    优选地,所述微波预烧的温度为650~750℃,进一步优选为700~720℃;
    优选地,所述微波预烧的时间为20~40min,进一步优选为25~35min;
    优选地,所述微波预烧的气氛为空气。
  10. 根据权利要求1-9任一项所述的制备方法,其中,所述微波预烧和压制成型之间还依次进行二次球磨、喷雾造粒和二次过筛;
    优选地,所述二次球磨为湿法球磨;
    优选地,所述二次球磨的时间为170~190min;
    优选地,所述二次球磨的转速为20~30rpm/min;
    优选地,所述二次球磨的研磨球为氧化锆球;
    优选地,所述二次球磨中,所述研磨球、水和微波预烧的产物的质量比为(5~6):(0.8~1.0):1;
    优选地,所述二次球磨中还加入氧化钼;
    优选地,以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,所述氧化钼的加入量为0~0.15wt%;
    优选地,所述二次球磨后得到二次球磨产物,所述二次球磨产物的粒径为 0.8~0.95μm;
    优选地,所述喷雾造粒的入口温度为250~400℃;
    优选地,所述喷雾造粒的出口温度为80~110℃;
    优选地,所述二次过筛所用筛网的目数为30-200目。
  11. 根据权利要求1-10任一项所述的制备方法,其中,所述压制成型的密度为3.3~3.5g/cm 3
    优选地,所述微波烧结的功率为3.5~11.7kw;
    优选地,所述微波烧结的频率为2.43~2.48GHz;
    优选地,所述微波烧结的温度为1000~1200℃;
    优选地,所述微波烧结的时间为7~8h;
    优选地,所述微波烧结的气氛为空气。
  12. 根据权利要求1-11任一项所述的制备方法,其包括如下步骤:
    (1)将氧化铁、氧化镍、氧化锌和氧化铜按50:(11~13):(32~34):(5~6)的摩尔百分比溶于去离子水中,并加入碳材料溶解后得到原料液,在原料液中加入柠檬酸,并滴加质量浓度为1.5~3.8wt%的氨水将原料液pH调至6~8后,在温度为70~75℃下,以20~26rpm/min的速率搅拌处理5~10min,然后在155~165℃的温度下干燥2~2.5h,随后在磁场强度为40~55mT,温度为465~475℃下对干燥后的产物进行磁场热处理60~70min,冷却后得到前驱体粉末;
    (2)将研磨球、水和前驱体粉末按(5~6):(0.8~1.0):1的质量比在20~30rpm/min的转速下进行湿法球磨50~70min,得到粒径为1~1.5μm的一次球磨产物,随后依次对一次球磨产物进行离心喷雾造粒和一次过筛,离心喷雾造粒的入口温度为250~350℃,出口温度为80~110℃,一次过筛的筛网目数为100~400目;
    (3)在2.5~10.5kw的微波功率和2.4~2.45GHz的微波频率下升温至650~750℃,在空气气氛中,对一次过筛得到的颗粒进行微波预烧20~40min后得到微波预烧产物;
    (4)将研磨球、水和微波预烧产物按(5~6):(0.8~1.0):1的质量比在20~30rpm/min的转速下进行湿法球磨170~190min,并以所述氧化铁、氧化镍、氧化锌和氧化铜的总质量分数为100%,在二次球磨过程中加入0~0.15wt%的氧化钼,得到粒径为0.8~0.95μm的二次球磨产物,随后依次对二次球磨产物进行 喷雾造粒和二次过筛,喷雾造粒的入口温度为250~400℃,出口温度为80~110℃,二次过筛的筛网目数为30~200目;
    (5)对二次过筛得到的颗粒进行压制成型,压制成型的密度为3.3~3.5g/cm 3,随后在3.5~11.7kw的微波功率、2.43~2.48GHz的微波频率下升温至1000~1200℃,在空气气氛中进行微波烧结7~8h后,得到所述NiCuZn铁氧体材料。
  13. 一种NiCuZn铁氧体材料,其中,所述NiCuZn铁氧体材料采用权利要求1-12任一项所述的制备方法得到。
  14. 根据权利要求13所述的NiCuZn铁氧体材料,其中,所述NiCuZn铁氧体材料为粉末状颗粒;
    优选地,所述NiCuZn铁氧体材料的粒径为100~156μm。
  15. 一种如权利要求13或14所述的NiCuZn铁氧体材料的用途,其中,所述NiCuZn铁氧体材料用于无线充电领域。
PCT/CN2022/110190 2021-10-08 2022-08-04 一种NiCuZn铁氧体材料及其制备方法和用途 WO2023056776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22877800.7A EP4371963A1 (en) 2021-10-08 2022-08-04 Nicuzn ferrite material, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111171555.9 2021-10-08
CN202111171555.9A CN113816734B (zh) 2021-10-08 2021-10-08 一种NiCuZn铁氧体材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2023056776A1 true WO2023056776A1 (zh) 2023-04-13

Family

ID=78916208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110190 WO2023056776A1 (zh) 2021-10-08 2022-08-04 一种NiCuZn铁氧体材料及其制备方法和用途

Country Status (3)

Country Link
EP (1) EP4371963A1 (zh)
CN (1) CN113816734B (zh)
WO (1) WO2023056776A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816734B (zh) * 2021-10-08 2023-02-17 横店集团东磁股份有限公司 一种NiCuZn铁氧体材料及其制备方法和用途
CN114709068B (zh) * 2022-06-07 2022-09-02 四川大学 微波场电场磁场耦合提升锰锌铁氧体磁性能的装置及方法
CN115677283B (zh) * 2022-08-29 2024-03-22 东南大学 一种各向异性混杂纤维增强水泥基复合材料及制备方法
CN115521139B (zh) * 2022-10-18 2023-10-20 北京无线电测量研究所 一种石墨烯-石榴石型铁氧体复合材料,制备及应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631839A (zh) 2004-03-11 2005-06-29 横店集团东磁有限公司 一种低温共烧NiCuZn铁氧体材料及其制备方法
CN101206941A (zh) * 2006-12-21 2008-06-25 横店集团东磁股份有限公司 一种高磁导率低温共烧NiCuZn铁氧体的制备方法
CN101236819A (zh) 2007-12-11 2008-08-06 乳源东阳光磁性材料有限公司 一种镍铜锌铁氧体及其制造方法
CN101552068A (zh) * 2008-12-25 2009-10-07 广东风华高新科技股份有限公司 一种锰锌铁氧体磁芯的制备方法
CN102584198A (zh) * 2012-02-24 2012-07-18 湖南阳东微波科技有限公司 一种微波窑炉预烧软磁锰锌高导率粉料的方法和软磁锰锌高导率粉料的制备方法
CN103011793A (zh) * 2012-12-27 2013-04-03 中南大学 一种利用微波技术制备镍锌铁氧体的方法
CN104030674A (zh) * 2014-06-30 2014-09-10 电子科技大学 一种NiCuZn铁氧体材料及其制备方法
CN104761250A (zh) * 2015-01-29 2015-07-08 横店集团东磁股份有限公司 一种低温烧结镍铜锌软磁铁氧体材料及其制备方法
CN104774003A (zh) * 2015-04-22 2015-07-15 深圳振华富电子有限公司 镍铜锌铁氧体及其制备方法
CN107555980A (zh) * 2017-07-31 2018-01-09 浙江凯文磁钢有限公司 一种制造片状晶稀土永磁铁氧体材料的方法
CN109320227A (zh) 2018-06-22 2019-02-12 横店集团东磁股份有限公司 一种NiCuZn铁氧体材料及其制备方法和用途
CN109650869A (zh) * 2018-12-29 2019-04-19 天长市中德电子有限公司 一种高磁导率铁氧体材料的制备方法
CN112661501A (zh) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 一种高频功率转换用NiZn铁氧体材料及制备方法
CN113816734A (zh) * 2021-10-08 2021-12-21 横店集团东磁股份有限公司 一种NiCuZn铁氧体材料及其制备方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989475A (en) * 1955-10-25 1961-06-20 Steatit Magnesia Ag Ferrite of field independent permeability
JPH11307336A (ja) * 1998-04-16 1999-11-05 Tdk Corp 軟磁性フェライトの製造方法
CN104230325A (zh) * 2013-06-24 2014-12-24 广东江粉磁材股份有限公司 制备永磁铁氧体预烧料的方法及永磁铁氧体的制备方法
CN104671769A (zh) * 2014-11-26 2015-06-03 邹和平 一种制备MnZn铁氧体软磁材料的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631839A (zh) 2004-03-11 2005-06-29 横店集团东磁有限公司 一种低温共烧NiCuZn铁氧体材料及其制备方法
CN101206941A (zh) * 2006-12-21 2008-06-25 横店集团东磁股份有限公司 一种高磁导率低温共烧NiCuZn铁氧体的制备方法
CN101236819A (zh) 2007-12-11 2008-08-06 乳源东阳光磁性材料有限公司 一种镍铜锌铁氧体及其制造方法
CN101552068A (zh) * 2008-12-25 2009-10-07 广东风华高新科技股份有限公司 一种锰锌铁氧体磁芯的制备方法
CN102584198A (zh) * 2012-02-24 2012-07-18 湖南阳东微波科技有限公司 一种微波窑炉预烧软磁锰锌高导率粉料的方法和软磁锰锌高导率粉料的制备方法
CN103011793A (zh) * 2012-12-27 2013-04-03 中南大学 一种利用微波技术制备镍锌铁氧体的方法
CN104030674A (zh) * 2014-06-30 2014-09-10 电子科技大学 一种NiCuZn铁氧体材料及其制备方法
CN104761250A (zh) * 2015-01-29 2015-07-08 横店集团东磁股份有限公司 一种低温烧结镍铜锌软磁铁氧体材料及其制备方法
CN104774003A (zh) * 2015-04-22 2015-07-15 深圳振华富电子有限公司 镍铜锌铁氧体及其制备方法
CN107555980A (zh) * 2017-07-31 2018-01-09 浙江凯文磁钢有限公司 一种制造片状晶稀土永磁铁氧体材料的方法
CN109320227A (zh) 2018-06-22 2019-02-12 横店集团东磁股份有限公司 一种NiCuZn铁氧体材料及其制备方法和用途
CN109650869A (zh) * 2018-12-29 2019-04-19 天长市中德电子有限公司 一种高磁导率铁氧体材料的制备方法
CN112661501A (zh) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 一种高频功率转换用NiZn铁氧体材料及制备方法
CN113816734A (zh) * 2021-10-08 2021-12-21 横店集团东磁股份有限公司 一种NiCuZn铁氧体材料及其制备方法和用途

Also Published As

Publication number Publication date
CN113816734A (zh) 2021-12-21
CN113816734B (zh) 2023-02-17
EP4371963A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2023056776A1 (zh) 一种NiCuZn铁氧体材料及其制备方法和用途
CN110098406B (zh) 一种具有高压实密度高容量磷酸铁锂的制备方法
JPH10182150A (ja) Itoの原料粉と焼結体およびそれらの製造方法
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN112851344B (zh) 一种中介电常数微波介质陶瓷及其制备方法
CN113072372B (zh) 一种双组分微波铁氧体材料及其制备方法和应用
WO2018064862A1 (zh) 一种添加还原性有机物制备磷酸铁材料的方法
WO2023284190A1 (zh) 一种高饱和低损耗双组分微波铁氧体材料及其制备方法与应用
CN113744991B (zh) 一种Co2Z型铁氧体材料及其制备方法和用途
CN112624750A (zh) 一种z型六角铁氧体材料的制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
JP3289335B2 (ja) 酸化インジウム粉末及びito焼結体の製造方法
CN114907108B (zh) 一种适用于5g射频器的微波铁氧体材料及其制备方法
CN102815936B (zh) 一种高电位梯度钛酸铜钙复相陶瓷的制备方法
CN114772571A (zh) 无水磷酸铁的制备方法与磷酸铁锂碳复合材料的制备方法
JPH10279315A (ja) リチウムコバルト複合酸化物の製造方法
CN115385377B (zh) 一种用于镭雕化镀助剂的亚铬酸铜的制备方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN114031404B (zh) 一种介质陶瓷材料的制备方法
US20080260620A1 (en) Powder Material that Generates Heat in an Alternating Current Magnetic Field and the Manufacturing Method Thereof
CN108623315A (zh) 一种钛合金冶炼用氧化钇粉的制备工艺
WO2024001355A1 (zh) Co2Z型铁氧体磁粉及其制备方法和磁塑复合材料
CN111943255B (zh) 一种高烧结活性纳米氧化铟粉及其制备方法
CN111573717B (zh) 以工业偏钛酸制备高纯纳米钛酸锂的方法
CN112851323B (zh) 一种具有高磁导率的微波介电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022877800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022877800

Country of ref document: EP

Effective date: 20240215