WO2018064862A1 - 一种添加还原性有机物制备磷酸铁材料的方法 - Google Patents

一种添加还原性有机物制备磷酸铁材料的方法 Download PDF

Info

Publication number
WO2018064862A1
WO2018064862A1 PCT/CN2016/108779 CN2016108779W WO2018064862A1 WO 2018064862 A1 WO2018064862 A1 WO 2018064862A1 CN 2016108779 W CN2016108779 W CN 2016108779W WO 2018064862 A1 WO2018064862 A1 WO 2018064862A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iron phosphate
organic substance
reducing organic
solution
Prior art date
Application number
PCT/CN2016/108779
Other languages
English (en)
French (fr)
Inventor
廖世军
杨帆
郑龙
黄斌
张梦诗
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018064862A1 publication Critical patent/WO2018064862A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention relates to the preparation of the raw material iron phosphate of the positive electrode material of the lithium ion battery, in particular to a method for preparing the iron phosphate material by adding the reducing organic substance.
  • Lithium-ion batteries have many advantages such as high operating voltage, high energy density, good cycle performance, small self-discharge, no memory effect, wide operating temperature range, etc., and are widely used in mobile phones, notebook computers, UPS, cameras, and various portable power tools. Electronic instruments, etc., also have good application prospects in electric vehicles, and are considered to be high-tech products that have an important impact on the national economy and people's lives in the 21st century.
  • LiFePO4 Compared with the traditional lithium cobalt oxide cathode material, LiFePO4 has abundant raw materials, low cost, environmental friendliness, no moisture absorption, good safety performance, high specific capacity (theoretical capacity is 170mAh/g), moderate voltage platform, and thermal stability. The advantages of good performance and cycle performance are considered to be the most suitable cathode materials for high-power lithium-ion power batteries.
  • the widely used method for preparing iron phosphate in the industry is mainly a precipitation method, which usually includes a series of processes such as precipitation, aging, filtration, washing, drying, crushing/ball milling, and has complicated process engineering, difficulty in washing and drying iron phosphate,
  • the production process produces a lot of problems such as wastewater;
  • Chinese invention patent application CN102849702A discloses a method for preparing iron phosphate, which introduces a solution of an iron source compound and a phosphorus source compound into a reaction kettle separately, and after heating to a certain reaction temperature, the material is kept in an internal circulation state by stirring; A precipitant is added to the reaction vessel to adjust the pH of the system, and the obtained reactant is mixed with the slurry; after standing, aging, and separating, the product is washed with deionized water, and the obtained product is dried and surface-treated to obtain a nanometer.
  • Spherical iron phosphate The invention has the advantages of mild preparation process conditions, regular shape of the spherical ferric phosphate, uniform particle size and controllability.
  • Chinese invention patent application CN102897739A discloses a technical route for preparing iron phosphate, mixing zero-valent iron source and corrosive acid molar ratio and adding a certain amount of primary water and ammonia water, stirring for a period of time, slowly adding hydrogen peroxide until the iron source disappears. It is orange-yellow; then a surfactant is added to the solution, and then a phosphate-containing reagent is added to the solution at a certain Fe:P molar ratio under stirring to obtain an iron phosphate precipitate. Then, the product was washed and vacuum dried to obtain FePO4•2H2O.
  • the iron phosphate material synthesized by the invention has low process cost, good crystal structure of the product, less impurities and uniform particle size, and meets the requirements of industrial production.
  • Chinese invention patent application CN104538629A discloses a technical route for preparing iron phosphate.
  • an anhydrous ferric phosphate material is produced in one step by a high temperature flame spray drying process.
  • the method has certain novelty, and the prepared iron phosphate material has high tap density and good morphology, and meets the requirements of industrial production.
  • the high-temperature flame spray drying method has problems such as high energy consumption and high equipment investment.
  • iron phosphate lithium material prepared from iron as raw material has important advantages such as low cost, high capacity, good cycle stability and excellent rate performance, and the main indexes are obviously superior to the lithium iron phosphate material prepared by the ordinary precipitation method, and no organic matter is added.
  • the lithium iron phosphate material prepared by the spray drying method is prepared by using iron phosphate as a raw material.
  • the technical problem to be solved by the present invention is to realize a high-performance iron phosphate material with controllable morphology and structure through a new preparation technique.
  • divalent iron ions or divalent iron ions and ferric iron ions
  • a solution of divalent iron ions is obtained by reducing all or part of the ferric ions by adding a reducing organic substance to the ferric ion solution.
  • the solubility product of ferrous iron (1.3 ⁇ 10 -22 ) is much smaller than the solubility product of iron phosphate (9.9 ⁇ 10 -16 ), so it is not necessary to add the pH of the alkaline substance to adjust the system during the process of preparing the slurry. value.
  • the control of the particle size and morphology of the product can be achieved by adding organic reducing substances.
  • the prepared iron phosphate material has the advantages of small particle size, controllable morphology, uniform particle size distribution and high specific surface area. advantage.
  • a method for preparing a ferric phosphate material by adding a reducing organic substance comprising the steps of:
  • the iron source compound includes iron nitrate, ferric chloride, One or more of ferric citrate, iron acetate and iron oxalate;
  • the phosphorus source compound is one or more of phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate or ammonium phosphate; and
  • the reducing organic substance is benzaldehyde And one or more of acetaldehyde, propionaldehyde, glutaraldehyde, formic acid or salicylic acid;
  • the spray drying apparatus is one of rotary centrifugal spray drying or convection gas spray drying;
  • the precursor powder is calcined in an air or oxygen atmosphere, and after cooling, an iron phosphate material is obtained; the calcination temperature is 350 ° C to 700 ° C, and the calcination time is 2 to 24 h.
  • the stirring time is 0.5 to 12 h.
  • the addition amount of the iron source compound and the phosphorus source compound is satisfied: the molar ratio of Fe:P in the precursor slurry is 1:0.99 to 1.03; and the addition amount of the reducing organic substance satisfies: Reducing organic matter accounts for 9% to 23% of the total number of precursor pastes.
  • the reaction time is 3 to 48 hours; and the reaction temperature is 50 to 110 °C.
  • the solvent used in the solution is deionized water or an alcohol-water mixture; the alcohol in the alcohol-water mixture is ethanol; and the volume ratio of alcohol to water in the alcohol-water mixture is 1: 1 ⁇ 99.
  • the spray drying conditions are: an inlet air temperature of 130 to 220 ° C, an outlet air temperature of 70 to 120 ° C, and a feed rate of 300 ml/h to 1500 ml/h.
  • the process does not need PH adjustment, no filtration, washing, drying and other processes, less water consumption, no sewage, and the production process is greatly simplified; the raw material source is cheap trivalent iron salt, which is low in cost and suitable for industrial production.
  • the ferric ion is partially or completely reduced, and then oxidized to realize the preparation process of iron phosphate.
  • the prepared iron phosphate material has the advantages of small particle size, uniform particle size distribution, special first-order and second-order morphology, and high specific surface area.
  • the lithium iron phosphate material prepared by using the iron phosphate as raw material is 0.2C.
  • the capacity can reach 160mAh/g or more, up to 148mAh/g at 1C, 200 cycles, and the capacity attenuation is less than 2%. It is much better than the commercial lithium iron phosphate materials currently used to meet the basic requirements of industrial production.
  • Example 1 is an XRD pattern of an iron phosphate material prepared in Example 1;
  • Example 2 is an SEM image of the iron phosphate material prepared in Example 1;
  • 3a is a graph showing the first charge and discharge of the lithium iron phosphate material prepared by using the iron phosphate material prepared in Example 1 at 0.2 C;
  • Fig. 3b is a graph showing the first charge and discharge of the lithium iron phosphate material prepared by using the iron phosphate material prepared in Example 1 at 1C.
  • ammonium dihydrogen phosphate solution was added thereto under stirring, and then reacted at 70 ° C for 36 h to obtain a precursor slurry; at an inlet air temperature of 190 ° C, an outlet temperature of 100 ° C, and a feed rate of Under the condition of 600 ml/h, spray drying was carried out; the obtained powder was collected, and calcined at 600 ° C for 6 h in an air atmosphere in a temperature-controlled electric furnace to obtain anhydrous iron phosphate.
  • Example 2 is an effect of magnifying 5000 times of the material prepared in Example 1. It can be seen that the material has a spherical shape and an ellipsoidal shape, and the particle size is about 100 nm. In FIG. 2, we can also see that these particles are slightly adhered. It then exhibits a three-dimensional porous structure and morphology similar to a "coral" shape.
  • 3a and 3b show the charge-discharge curves of the lithium iron phosphate material prepared by using the iron phosphate prepared in Example 1 at 0.2 C and 1 C. It can be seen that the capacity of the material is very high, which satisfies the industrial demand, indicating that the preparation is completed.
  • the iron phosphate material has good electrochemical performance.
  • Example 1 XRD particle size / nm Apparent granularity (SEM)/nm 0.2C first charge and discharge curve / mAh ⁇ g-1 Capacity retention rate after 100 cycles in 1C
  • Example 1 30 100 161.4 100%
  • Example 2 32 150 158.1 99%
  • Example 3 34 200 155.4 99%
  • Example 4 30 200 155.2 99%
  • Example 5 27 100 154.1 99%
  • Example 6 30 200 153.7 99%
  • Example 7 30 100 161.0 100%
  • Example 8 30 100 162.0 100%
  • Example 9 34 200 159.8 99%
  • Example 10 32 180 158.7 99%

Abstract

一种添加还原性有机物制备磷酸铁材料的方法,该方法为:将铁源化合物溶解得到溶液,然后加入还原性有机物搅拌,再在搅拌下加入磷源化合物的溶液,继续反应,得到前驱体浆料;将前驱体浆料进行喷雾干燥,得到前驱体粉末;将前驱体粉末在空气或氧气气氛下焙烧,冷却后即制得磷酸铁材料;所述焙烧的温度为350℃~700℃,所述焙烧的时间为2~24h。以这种方法制备的磷酸铁材料为原料制备的磷酸铁锂材料表现出优异的电化学性能,在0.2C下容量可达160mAh/g以上,1C倍率下容量可达148mAh/g以上,循环200圈容量衰减低于2%,大大优于目前的商品磷酸铁锂材料,可满足工业化生产需要。

Description

一种添加还原性有机物制备磷酸铁材料的方法
技术领域
本发明涉及锂离子电池正极材料的原料磷酸铁的制备,具体涉及一种添加还原性有机物制备磷酸铁材料的方法。
背景技术
锂离子电池具有工作电压高、能量密度高、循环性能好、自放电小、无记忆效应、工作温度范围宽等众多优点,广泛应用于移动电话、笔记本电脑、UPS、摄像机、各种便携式电动工具、电子仪表等,在电动车中也具有良好的应用前景,被认为是二十一世纪对国民经济和人民生活具有重要影响的高新技术产品。
与传统的钴酸锂正极材料相比较,LiFePO4具有原料来源丰富、低成本、环境友好、不吸潮、安全性能好、比容量较高(理论容量为170mAh/g)、电压平台适中、热稳定性和循环性能好等优点,被认为是一种最有可能应用于大功率锂离子动力电池的正极材料。
以磷酸铁为原料,添加碳酸锂、葡萄糖等一起球磨,然后焙烧制备磷酸铁锂是目前制备磷酸铁锂的最为重要的技术路线;因此,高性能的磷酸铁材料对于制得高性能的磷酸铁锂正极材料具有十分重要的影响;
目前工业上广泛应用的制备磷酸铁的方法主要是沉淀法,通常包含沉淀、老化、过滤、洗涤、干燥、破碎/球磨等一系列的工艺过程,存在工艺工程复杂、磷酸铁洗涤和干燥困难、生产过程产生大量废水等问题;
中国发明专利申请CN102849702A公开了一种制备磷酸铁的方法,该方法将铁源化合物、磷源化合物的溶液分别导入反应釜中,加热到一定的反应温度后,通过搅拌使物料保持内循环状态;向反应釜内加入沉淀剂调节体系PH,得到的反应物混合浆体;经过静置、陈化、分离后,用去离子水洗涤产物,将所得产物干燥并对其进行表面处理,即得到纳米球形磷酸铁。该发明具备制备过程条件温和,制得球形磷酸铁形貌规整,粒径均匀、可控等优点。
中国发明专利申请CN102897739A公开了一种制备磷酸铁的技术路线,将零价铁源、腐蚀酸按摩尔比混合并加入一定量一次水和氨水,搅拌一段时间后缓慢加入双氧水直至铁源消失溶液变为橘黄色;随后向溶液中加入表面活性剂,然后在搅拌情况下按一定的Fe:P摩尔比向溶液中加入含磷酸根的试剂得到磷酸铁沉淀。然后,对产物进行虑洗,真空干燥得到FePO4•2H2O。该发明合成的磷酸铁材料的工艺成本较低、产品晶体结构好、杂质较少、粒度均匀,符合工业化生产的要求。
这些方法存在的问题在于:需要使用碱性物质对体系的PH值进行精确的调节,还需反复洗涤和过滤,制备工艺复杂,同时洗涤和过滤产生大量含有化学物质的废水。
为了解决这些问题,近年来人们探索了一些新的制备磷酸铁的技术:
中国发明专利申请CN104538629A公开了一种制备磷酸铁的技术路线,通过将铁源、磷源按照一定的摩尔比混合在一起,加入一定量的氧化剂和表面活性剂搅拌均匀,再缓慢加入氨水调控PH至3-8之间,然后通过高温火焰喷雾干燥过程,一步制得无水磷酸铁材料。该方法具有一定的新颖性,且制备的磷酸铁材料的振实密度较高,形貌较好,符合工业化生产的要求。然而,高温火焰喷雾干燥法存在耗能过高、设备投入高等问题。
申请人尝试采用普通的喷雾干燥技术制备磷酸铁的前驱体粉末,然后高温焙烧制备磷酸铁;该方法可将传统沉淀法制备工艺的7步缩减成为反应、干燥、焙烧等3步,可大大简化生产工艺,降低生产成本,消除废水的排放;同时,该工艺不存在传统沉淀法工艺存在的干燥磷酸铁块破碎困难的问题。进一步,我们发现在铁源溶液中加入特定的还原性有机物,可制得颗粒小(纳米级)、形貌可控、粒子分布均匀、比表面积高的磷酸铁材料;以该方法制得的磷酸铁为原料制得的磷酸铁锂材料具有成本低、容量高、循环稳定性好、倍率性能优良等重要优点,主要指标均明显优于以普通沉淀法制备的磷酸铁锂材料、以及不添加有机物的喷雾干燥法制备的磷酸铁为原料制得的磷酸铁锂材料。
发明内容
本发明所要解决的技术问题是通过新的制备技术实现形貌和结构可控的高性能磷酸铁材料。
本发明的特点及创新在于:通过在三价铁离子溶液中加入还原性有机物,使三价铁离子全部(或者部分)还原得到二价铁离子的溶液(或者二价铁离子和三价铁离子的混合溶液),然后加入含有磷酸根的磷源溶液得到二价铁的磷酸盐浆料(或者二价铁和三价铁的磷酸盐的混合浆料)由于还原性有机物的加入,同时由于磷酸亚铁的溶度积(1.3×10-22)远远小于磷酸铁的溶度积(9.9×10-16),因此无需在沉淀制取浆料的过程中再添加碱性物质调节体系的PH值。最为重要的是,通过添加有机还原性物质可以实现对于产品的颗粒度及其形貌的控制,所制得的磷酸铁材料具有颗粒小、形貌可控、颗粒度分布均匀、比表面积高等重要优点。
本发明目的通过如下技术方案实现:
一种添加还原性有机物制备磷酸铁材料的方法,包括以下步骤:
(1) 将铁源化合物溶解得到溶液,然后加入还原性有机物搅拌,再在搅拌下加入磷源化合物的溶液,继续反应,得到前驱体浆料;所述的铁源化合物包括硝酸铁、三氯化铁、柠檬酸铁、乙酸铁和草酸铁中的一种以上;所述磷源化合物为磷酸,磷酸二氢铵,磷酸氢二铵或磷酸铵中的一种以上;所述的还原性有机物为苯甲醛、乙醛,丙醛,戊二醛,甲酸或水杨酸中的一种以上;
(2)将步骤(1)制得的前驱体浆料进行喷雾干燥,得到前驱体粉末;所述的喷雾干燥仪器为旋转离心式喷雾干燥或者对流式气体喷雾干燥中的一种;
(3)将前驱体粉末在空气或氧气气氛下焙烧,冷却后即制得磷酸铁材料;所述焙烧温度为350℃~700℃,所述焙烧时间为2~24h。
进一步地,步骤(1)中,所述搅拌时间为0.5~12h。
进一步地,步骤(1)中,所述铁源化合物与磷源化合物的添加量满足:前驱体浆料中Fe:P摩尔比为1:0.99~1.03;所述还原性有机物的添加量满足:还原性有机物占前驱体浆料总体积分数的9%~23%。
进一步地,步骤(1)中,所述的反应时间为3~48h;所述的反应温度为50~110℃。
进一步地,步骤(1)中,所用到的溶液中溶剂为去离子水或者醇水混合物;所述醇水混合物中的醇为乙醇;所述醇水混合物中醇与水的体积比为1:1~99。
进一步地,步骤(2)中,所述喷雾干燥条件为:进风温度为130~220℃,出风温度为70~120℃,进料速率为300ml/h~1500ml/h。
与现有技术相比,本发明的优势在于:
1、过程无需PH调节,无需过滤、洗涤、烘干等过程,耗水量少,无污水产生,生产工艺大大简化;原料来源为廉价的三价铁盐,成本较低,适合工业化生产。
2、首次实现了通过引入还原性有机物,先部分或全部还原三价铁离子,再将其氧化来实现磷酸铁的制备过程。
3、所制备的磷酸铁材料具有颗粒度小、粒度分布均匀、具有特殊的一级及二级形貌、比表面积高等优点和特点,以该磷酸铁为原料制备的磷酸铁锂材料在0.2C下的容量可达160mAh/g以上,1C下可达148mAh/g以上,循环200圈,容量衰减小于2%, 大大优于目前所使用的商业磷酸铁锂材料,满足工业化生产的基本要求。
附图说明
图1为实施例1所制得的磷酸铁材料的XRD图;
图2为实施例1所制得的磷酸铁材料的SEM图;
图3a为以实施例1所制得的磷酸铁材料为原料制备的磷酸铁锂材料在0.2C下的首圈充放电曲线图;
图3b为实施例1所制得的磷酸铁材料为原料制备的磷酸铁锂材料在1C下的首圈充放电曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
实施例1
分别将0.04mol的硝酸铁和磷酸二氢铵溶于100ml去离子水中形成均匀溶液,向硝酸铁的溶液中缓慢加入40ml甲酸 (质量分数:88%) ,搅拌30min后,再在搅拌下向其中加入磷酸二氢铵溶液,然后在70℃下反应36h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率为600ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧6h,即可得到无水磷酸铁。
从图1的XRD谱图可以看出该材料为结晶态的磷酸铁,无杂质峰,晶型完整。
图2为实施例1所制备的材料放大5000倍的效果,可以看到材料具备类似球形及椭球形形貌,颗粒度在100nm左右,在图2中,我们还可以看到这些粒子轻度粘连后呈现出一种类似于“珊瑚”状的三维多孔结构和形貌。
图3a和图3b为以实施例1所制备的磷酸铁为原料制备的磷酸铁锂材料的0.2C和1C下的充放电曲线,可以看到材料的容量非常高,满足工业化需求,表明所制备的磷酸铁材料电化学性能良好。
实施例2
分别将0.02mol的三氯化铁和0.0206mol的磷酸氢二铵溶于100ml去离子水后形成均匀溶液,在三氯化铁溶液中缓慢加入20ml水杨酸(质量分数:99.5%),搅拌30min后,再在搅拌下缓慢加入磷酸氢二铵溶液,然后在90℃下反应48h得到前驱体浆料;在进风温度为170℃,出风温度为80℃,进料速率1500ml/h的条件下,进行喷雾干燥,将所得粉体收集,于空气气氛下在可控温电炉中700℃焙烧2h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例3
将0.04mol的三氯化铁溶于100ml的乙醇体积分数占50%的醇水混合液中,将0.0396mol磷酸二氢铵溶于100ml去离子水中形成均匀溶液,向三氯化铁的溶液中缓慢加入20ml甲酸(质量分数:88%),搅拌30min后,再在搅拌下向其中加入磷酸二氢铵溶液,然后在70℃下反应36h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率300ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在氧气气氛下350℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例4
分别将0.04mol的硝酸铁和磷酸氢二铵溶于100ml去离子水中形成均匀溶液,向硝酸铁的溶液中缓慢加入60ml甲酸 (质量分数:88%) ,搅拌30min后,再在搅拌下向其中加入磷酸氢二铵溶液,然后在70℃下反应36h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率400ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下700℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例5
将0.04mol的柠檬酸铁溶于200ml的乙醇体积分数占1%的醇水混合液中形成均匀溶液,向柠檬酸铁的溶液中缓慢加入40ml苯甲醛 (质量分数:98.5%) ,搅拌30min后,再在搅拌下向其中加入0.04mol的磷酸溶液,然后在70℃下反应3h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率800ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧2h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例6
分别将0.04mol的硝酸铁和磷酸氢二铵溶于100ml去离子水中形成均匀溶液,向硝酸铁的溶液中缓慢加入40ml甲酸 (质量分数:88%) ,搅拌30min后,再在搅拌下向其中加入磷酸氢二铵溶液,然后在70℃下反应48h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率1000ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧24h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例7
分别将0.04mol的乙酸铁和磷酸铵溶于100ml去离子水中形成均匀溶液,向乙酸铁的溶液中缓慢加入40ml乙醛 (质量分数:40%) ,搅拌30min后,再在搅拌下向其中加入磷酸铵溶液,然后在50℃下反应36h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率1500ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例8
分别将0.04mol的草酸铁和磷酸二氢铵溶于100ml去离子水中形成均匀溶液,向草酸铁的溶液中缓慢加入40ml戊二醛 (质量分数:50%) ,搅拌30min后,再在搅拌下向其中加入磷酸二氢铵溶液,然后在110℃下反应36h得到前驱体浆料;在进风温度为190℃,出风温度为100℃,进料速率700ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例9
分别将0.04mol的硝酸铁和磷酸二氢铵溶于100ml去离子水中形成均匀溶液,向硝酸铁的溶液中缓慢加入40ml水杨酸 (质量分数:99.5%) ,搅拌12h后,再在搅拌下向其中加入磷酸二氢铵溶液,然后在70℃下反应36h得到前驱体浆料;在进风温度为130℃,出风温度为70℃,进料速率600ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
实施例10
分别将0.04mol的硝酸铁和磷酸二氢铵溶于100ml去离子水中形成均匀溶液,向硝酸铁的溶液中缓慢加入40ml丙醛 (质量分数:99.5%) ,搅拌30min后,再在搅拌下向其中加入磷酸二氢铵溶液,然后在70℃下反应36h得到前驱体浆料;在进风温度为220℃,出风温度为120℃,进料速率600ml/h的条件下,进行喷雾干燥;将所得粉体收集,于可控温电炉中,在空气气氛下600℃焙烧6h;即可得到无水磷酸铁。本实施例所得产品效果及参数见表1。
表1
XRD 颗粒度 /nm 表观颗粒度
(SEM)/nm
0.2C 首次充放电曲线 /mAh·g-1 1C 下 100 次循环后容量保持率
实施例 1 30 100 161.4 100%
实施例 2 32 150 158.1 99%
实施例 3 34 200 155.4 99%
实施例 4 30 200 155.2 99%
实施例 5 27 100 154.1 99%
实施例 6 30 200 153.7 99%
实施例 7 30 100 161.0 100%
实施例 8 30 100 162.0 100%
实施例 9 34 200 159.8 99%
实施例 10 32 180 158.7 99%
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

  1. 一种添加还原性有机物制备磷酸铁材料的方法,其特征在于,包括以下步骤:
    (1) 将铁源化合物溶解得到溶液,然后加入还原性有机物搅拌,再在搅拌下加入磷源化合物的溶液,继续反应,得到前驱体浆料;所述的铁源化合物包括硝酸铁、三氯化铁、柠檬酸铁、乙酸铁和草酸铁中的一种以上;所述磷源化合物为磷酸,磷酸二氢铵,磷酸氢二铵或磷酸铵中的一种以上;所述的还原性有机物为苯甲醛、乙醛,丙醛,戊二醛,甲酸或水杨酸中的一种以上;
    (2)将步骤(1)制得的前驱体浆料进行喷雾干燥,得到前驱体粉末;所述的喷雾干燥仪器为旋转离心式喷雾干燥或者对流式气体喷雾干燥中的一种;
    (3)将前驱体粉末在空气或氧气气氛下焙烧,冷却后即制得磷酸铁材料;所述焙烧的温度为350℃~700℃,所述焙烧的时间为2~24h。
  2. 根据权利要求1所述添加还原性有机物制备磷酸铁材料的方法,其特征在于,步骤(1)中,所述铁源化合物与磷源化合物的添加量满足:前驱体浆料中Fe:P摩尔比为1:0.99~1.03;所述还原性有机物的添加量满足:还原性有机物占前驱体浆料总体积分数的9%~23%;步骤(1)中,所述搅拌时间为0.5~12h。
  3. 根据权利要求1所述添加还原性有机物制备磷酸铁材料的方法,其特征在于,步骤(1)中,所述的反应时间为3~48h;所述的反应温度为50~110℃。
  4. 根据权利要求1所述添加还原性有机物制备磷酸铁材料的方法,其特征在于,步骤(1)中,所用到的溶液中溶剂为去离子水或者醇水混合物;所述醇水混合物中的醇为乙醇;所述醇水混合物中醇与水的体积比为1:1~99。
  5. 根据权利要求1所述添加还原性有机物制备磷酸铁材料的方法,其特征在于,步骤(2)中,所述喷雾干燥条件为:进风温度为130~220℃,出风温度为70~120℃,进料速率为300ml/h~1500ml/h。
PCT/CN2016/108779 2016-10-09 2016-12-07 一种添加还原性有机物制备磷酸铁材料的方法 WO2018064862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610883730.XA CN106564867B (zh) 2016-10-09 2016-10-09 一种添加还原性有机物制备磷酸铁材料的方法
CN201610883730.X 2016-10-09

Publications (1)

Publication Number Publication Date
WO2018064862A1 true WO2018064862A1 (zh) 2018-04-12

Family

ID=58532679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108779 WO2018064862A1 (zh) 2016-10-09 2016-12-07 一种添加还原性有机物制备磷酸铁材料的方法

Country Status (2)

Country Link
CN (1) CN106564867B (zh)
WO (1) WO2018064862A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336212A (zh) * 2021-07-08 2021-09-03 河南佰利新能源材料有限公司 一种母液回用制备磷酸铁的方法
CN113942988A (zh) * 2021-11-22 2022-01-18 青岛九环新越新能源科技股份有限公司 磷酸铁及其制备方法
CN114014293A (zh) * 2021-11-05 2022-02-08 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法
CN114933290A (zh) * 2022-06-17 2022-08-23 德阳川发龙蟒新材料有限公司 无水磷酸铁和氧化铁混合物及其合成方法、磷酸铁锂及其制备方法和应用
CN116534820A (zh) * 2023-03-30 2023-08-04 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298513A (zh) * 2017-12-29 2018-07-20 贵州唯特高新能源科技有限公司 一种高纯度球形电池级磷酸铁的制备方法
CN108128763A (zh) * 2018-01-07 2018-06-08 合肥国轩电池材料有限公司 一种磷酸铁锂正极材料制备过程中被氧化中间体的处理方法
CN110451472B (zh) * 2019-09-11 2020-12-08 李旭意 一种有机体系中无水磷酸铁的制备方法
CN116946998B (zh) * 2023-08-11 2024-01-26 湖北洋丰美新能源科技有限公司 一种磷酸铁的合成工艺及其合成的磷酸铁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235437A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
CN101262059A (zh) * 2008-04-15 2008-09-10 中南大学 一种锂离子电池正极材料磷酸亚铁锂的制备方法
EP2111907A1 (en) * 2008-04-14 2009-10-28 Vattenfall Ab A process for the treatment of gas phase alkaline chlorides in a combustion plant, combustion plant for carrying out the process, and the use of a phosphorous substance for the treatment of gas phase alkaline chlorides in a combustion plant
CN102897738A (zh) * 2012-09-26 2013-01-30 江苏国泰锂宝新材料有限公司 一种电池级磷酸铁复合材料的制备方法
CN103274383A (zh) * 2013-05-20 2013-09-04 南京大学 一种形貌可控的电池级磷酸铁及其制备方法
CN105118995A (zh) * 2015-10-14 2015-12-02 湖南省正源储能材料与器件研究所 一种电池级磷酸铁的生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063934B1 (ko) * 2008-09-30 2011-09-14 한국전기연구원 활물질의 제조방법
CN101913586B (zh) * 2010-08-09 2012-06-06 中钢集团安徽天源科技股份有限公司 一种磷酸铁的制备方法及其产品
CN101969119B (zh) * 2010-10-21 2013-07-10 秦皇岛科维克科技有限公司 一种复合结构磷酸铁材料的制备方法
CN102303857A (zh) * 2011-07-19 2012-01-04 彩虹集团公司 一种磷酸铁锂用球聚体结构纳米级磷酸铁的制备方法
CN102403501A (zh) * 2011-11-24 2012-04-04 上海电力学院 一种锂离子电池正极材料球形FePO4的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235437A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
EP2111907A1 (en) * 2008-04-14 2009-10-28 Vattenfall Ab A process for the treatment of gas phase alkaline chlorides in a combustion plant, combustion plant for carrying out the process, and the use of a phosphorous substance for the treatment of gas phase alkaline chlorides in a combustion plant
CN101262059A (zh) * 2008-04-15 2008-09-10 中南大学 一种锂离子电池正极材料磷酸亚铁锂的制备方法
CN102897738A (zh) * 2012-09-26 2013-01-30 江苏国泰锂宝新材料有限公司 一种电池级磷酸铁复合材料的制备方法
CN103274383A (zh) * 2013-05-20 2013-09-04 南京大学 一种形貌可控的电池级磷酸铁及其制备方法
CN105118995A (zh) * 2015-10-14 2015-12-02 湖南省正源储能材料与器件研究所 一种电池级磷酸铁的生产方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336212A (zh) * 2021-07-08 2021-09-03 河南佰利新能源材料有限公司 一种母液回用制备磷酸铁的方法
CN114014293A (zh) * 2021-11-05 2022-02-08 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法
CN114014293B (zh) * 2021-11-05 2023-09-19 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法
CN113942988A (zh) * 2021-11-22 2022-01-18 青岛九环新越新能源科技股份有限公司 磷酸铁及其制备方法
CN113942988B (zh) * 2021-11-22 2023-09-12 青岛九环新越新能源科技股份有限公司 磷酸铁及其制备方法
CN114933290A (zh) * 2022-06-17 2022-08-23 德阳川发龙蟒新材料有限公司 无水磷酸铁和氧化铁混合物及其合成方法、磷酸铁锂及其制备方法和应用
CN116534820A (zh) * 2023-03-30 2023-08-04 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法
CN116534820B (zh) * 2023-03-30 2023-11-24 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法

Also Published As

Publication number Publication date
CN106564867A (zh) 2017-04-19
CN106564867B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2018064862A1 (zh) 一种添加还原性有机物制备磷酸铁材料的方法
KR102283734B1 (ko) 복합물, 그 제조방법 및 리튬이온이차전지에서의 용도
WO2016060451A1 (ko) 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
WO2017000741A1 (zh) 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
EP2357691A1 (en) Nonstoichiometric titanium compound, carbon composite of the same, method for producing the compound, negative electrode active material for lithium ion secondary battery containing the compound, and lithium ion secondary battery using the negative electrode active material
WO2020019311A1 (zh) 一种聚阴离子型钠离子电池正极材料及其制备方法
KR20140129997A (ko) 리튬 이차 전지용 양극활물질
CN102275887A (zh) 一种高容量高压实密度磷酸铁锂材料的制备方法及其产品
CN101159328A (zh) 一种LiFePO4/C纳米复合正极材料及其制备方法
WO2024000844A1 (zh) 磷酸锰铁锂的制备方法及其应用
CN107845801B (zh) 一种协同改性的氟磷酸钴锂正极材料及其制备方法
CN109103433B (zh) 一种氮参杂碳包覆磷酸铁锂复合材料及其制备方法
WO2023000848A1 (zh) 一种高倍率磷酸铁锂的制备方法
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
Purwanto et al. Synthesis of LiNi0. 8Co0. 15Al0. 05O2 cathode material via flame-assisted spray pyrolysis method
CN104934601A (zh) 一种磷酸锰铁锂正极材料的制备方法
WO2022237393A1 (zh) 磷酸铁锂的制备方法
CN113054171A (zh) 一种磷酸铁锂材料以及以混合铁源与混合磷源制备磷酸铁锂材料的方法
CN105742629A (zh) 一种锂离子电池正极材料磷酸铁锂/石墨烯复合物的原位制备方法
CN107887583A (zh) 一种掺杂磷酸铁锂正极材料及其制备方法
JP2024510061A (ja) チタンとジルコニウムを共ドープした炭素被覆リン酸鉄リチウム材料及びその製造方法と応用
CN114520319A (zh) 一种锂二次电池镍基正极材料及其制备方法
CN115000388B (zh) 一种钠离子正极材料及其制备方法和用途
Liu et al. Low-temperature solution combustion synthesis of high performance LiNi0. 5Mn1. 5O4
WO2016165262A1 (zh) 一种掺杂钛酸锂负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 31.07.19

122 Ep: pct application non-entry in european phase

Ref document number: 16918195

Country of ref document: EP

Kind code of ref document: A1