WO2017000741A1 - 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法 - Google Patents

一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2017000741A1
WO2017000741A1 PCT/CN2016/084413 CN2016084413W WO2017000741A1 WO 2017000741 A1 WO2017000741 A1 WO 2017000741A1 CN 2016084413 W CN2016084413 W CN 2016084413W WO 2017000741 A1 WO2017000741 A1 WO 2017000741A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
manganese
nickel cobalt
cobalt
cathode material
Prior art date
Application number
PCT/CN2016/084413
Other languages
English (en)
French (fr)
Inventor
乔文灿
宋春华
王瑛
王文阁
赵成龙
冯涛
张智辉
赵艳丽
Original Assignee
山东玉皇新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东玉皇新能源科技有限公司 filed Critical 山东玉皇新能源科技有限公司
Publication of WO2017000741A1 publication Critical patent/WO2017000741A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrochemical technology, in particular to a lithium ion battery cathode material, and further relates to a lithium manganese phosphate coated nickel cobalt manganese oxide cathode material and a preparation method thereof.
  • Lithium-ion batteries are widely used in portable mobile devices such as mobile phones, notebook computers, and cameras; currently, the most popular new energy electric vehicles are also lithium-ion batteries.
  • lithium cobaltate mainly include lithium cobaltate, lithium manganate, lithium iron phosphate and lithium nickel cobalt manganese oxide.
  • the cost of lithium cobaltate is high, and there is a safety hazard during overcharging; the structural stability of layered lithium manganate is poor, the specific capacity of spinel-type lithium manganate is low, and the structural stability at high temperature needs to be improved.
  • Lithium iron phosphate has poor processing properties, low tap density and low energy density.
  • the lithium nickel cobalt manganese oxide material has the advantages of low cost, high temperature performance, high energy density and excellent processing performance, and the comprehensive performance of lithium nickel cobalt manganese oxide is higher than that of the above positive electrode material.
  • the high rate performance and cycle stability of lithium nickel cobalt manganate are inferior to lithium cobaltate with a high market share.
  • Surface modification of lithium nickel cobalt manganate ternary material is an effective way to improve its electrochemical performance.
  • Application No. 201410250912.4 uses carbon-coated nickel-cobalt-manganate, which improves the rate performance and cycle stability of the positive electrode material after coating.
  • Application No. 201310312317.4 The coating of lithium nickel cobalt manganese oxide with calcium fluorophosphate improves the cycle stability of the material.
  • the modified nickel-cobalt-manganese hydride material with low development cost and easy to be promoted is of great significance in the field of electrochemistry in order to improve the cycle stability and rate performance of lithium nickel cobalt manganate.
  • the object of the present invention is to provide a lithium manganese phosphate coated nickel cobalt manganese manganate cathode material and a preparation method thereof for improving the cycle stability and rate performance of lithium nickel cobalt manganese oxide.
  • Another object of the present invention is to provide a lithium manganese phosphate coated nickel cobalt manganese manganate cathode material for use in a lithium ion secondary battery.
  • the lithium manganese phosphate coated lithium nickel cobalt manganate cathode material prepared by the invention has the advantages of excellent cycle stability and rate performance, low preparation method, and easy industrial production.
  • the lithium manganese phosphate has a mass fraction of 0.5% to 1.5%.
  • Lithium manganese phosphate has poor conductivity and coating amount
  • the conductivity of lithium nickel cobalt manganese oxide material is sharply attenuated, and the coating amount is too small to achieve uniform coating of lithium manganese phosphate, which cannot effectively prevent the hydrofluoric acid in the electrolyte from corroding the surface of the active material, thereby causing nickel.
  • the lithium cobalt manganate material has a cyclic stability that can be attenuated. Within this range and avoiding the attenuation of the electrical conductivity of the material, the cycle stability of the lithium nickel cobalt manganate material can be effectively prevented from being attenuated.
  • the lithium manganese phosphate is in an amorphous state.
  • the amorphous state of the amorphous state facilitates a reversible electrochemical reaction.
  • the lithium manganese phosphate coated nickel cobalt manganese manganate cathode material is used in preparing a lithium ion battery.
  • step 2) a certain amount of solid powder nickel cobalt manganese manganate LiNi x Co y Mn z O 2 is added to the solution prepared in step 1), the solid content is controlled to 25%-30%;
  • step 2) The solution obtained in the step 2) is stirred at 80-90 ° C to evaporate the solution to a viscous state, and allowed to stand at room temperature for 2-4 hours, and the product is placed in an oven at 90 ° C for 3-6 hours; the sample is pulverized 400 times.
  • the solid powder obtained in the step 3) is placed in a tube furnace and heated at a heating rate of 1-5 ° C / min, heated to 350-550 ° C in an air atmosphere, calcined for 3-4 hours, and naturally cooled to room temperature to obtain phosphoric acid.
  • Lithium manganese coated nickel cobalt cobalt manganate cathode material is placed in a tube furnace and heated at a heating rate of 1-5 ° C / min, heated to 350-550 ° C in an air atmosphere, calcined for 3-4 hours, and naturally cooled to room temperature to obtain phosphoric acid.
  • the mass fraction of lithium manganese phosphate is controlled to be 0.5% to 1.5%.
  • the complexing agent compound is at least one of citric acid, ascorbic acid and tartaric acid.
  • the complexing agent controls the chemical reaction rate during the reaction to form lithium manganese phosphate, thereby promoting uniform coating of lithium nickel cobalt manganate, and the use of the complexing agent greatly increases the modification effect of the present invention.
  • Citric acid, ascorbic acid and tartaric acid are complexing agents, and the cost is low and the chemical reaction rate for producing lithium manganese phosphate is just right.
  • the lithium source compound is at least one of lithium hydroxide, lithium acetate, and lithium nitrate; the manganese source compound is at least one of manganese acetate and manganese citrate; and the phosphorus source compound is phosphoric acid. At least one of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid.
  • LiMnPO 4 As a transition metal lithium phosphate, LiMnPO 4 has stable structure, low cost and environmental protection, and has a high voltage (4.1 V). It can be used as a coating material to promote the conduction of lithium ions on the surface of lithium nickel cobalt manganate, which is beneficial to improve the rate performance.
  • PO 4 3- in LiMnPO 4 can effectively inhibit the dissolution of the electrode material in the electrolyte, prevent the hydrofluoric acid in the electrolyte from corroding the surface of the active material, and improve safety performance and cycle stability. Therefore, lithium nickel cobalt manganese oxide coated with lithium manganese phosphate can improve the cycle stability and rate performance of lithium nickel cobalt manganese oxide. And the method is easy to operate and easy to promote.
  • the lithium manganese manganese phosphate coated on the surface of the lithium nickel cobalt manganate cathode material prepared by the invention has an amorphous state, and is favorable to the electrochemical performance of the material, and the lithium manganese phosphate can prevent hydrofluoric acid in the electrolyte from lithium nickel cobalt manganese oxide. Surface corrosion significantly improves the cycle stability of lithium nickel cobalt manganate, especially at high voltage (4.4V);
  • Lithium manganese phosphate itself has a higher voltage (4.1V) as a positive electrode material, which promotes lithium ion conduction on the surface of lithium nickel cobalt manganate material and improves its rate performance.
  • the invention has practical application prospects in the field of power batteries and high energy density batteries.
  • the invention improves the cycle stability and rate performance of lithium nickel cobalt manganate, has simple preparation process, short time consumption, low energy consumption, low cost, environmental friendliness and easy industrial production.
  • 1 is a scanning electron micrograph of a lithium manganese cobalt phosphate coated nickel cobalt cobalt manganate material prepared by the present invention, and the magnification is 2000 times.
  • FIG. 2 is a scanning electron micrograph of a lithium manganese phosphate coated nickel cobalt cobalt manganate material prepared by the present invention, and the magnification is 5000 times.
  • FIG. 4 is a graph showing the discharge specific capacity stability performance of a discharge specific capacity of 3.0V-4.4V at 1C rate before and after the lithium manganese phosphate coated lithium manganese cobalt manganate prepared by the present invention.
  • FIG. 5 is a graph showing the discharge rate performance of 3.0V-4.3V at a rate of 0.2 C-8 C before and after the lithium manganese phosphate coated lithium nickel cobalt manganate prepared by the present invention.
  • a scanning electron microscope image of a lithium manganese phosphate coated lithium cobalt cobalt manganate material prepared in Example 1 of the present invention has a magnification of 2000 times.
  • a scanning electron microscope image of a lithium manganese cobalt phosphate coated lithium cobalt cobalt manganate material prepared in Example 1 of the present invention has a magnification of 5000 times, and an amorphous manganese phosphate surface can be clearly observed on the surface of nickel cobalt manganese lithium. lithium.
  • the X-ray diffraction spectrum of the lithium manganese phosphate coated nickel cobalt cobalt manganate material prepared in Example 1 of the present invention shows that lithium manganese phosphate is in an amorphous state.
  • the lithium manganese phosphate prepared in Example 1 is coated with LiNi 0.5 Mn 0.3 Co 0.2 O 2 as a positive electrode material, lithium is a negative electrode material, and a button cell is assembled at a voltage window of 3.0-4.4 V at a 1 C rate.
  • the material capacity retention rate after coating with lithium manganese phosphate was increased from 80.1% to 92.6%, and the cycle performance was improved under high voltage (4.4V).
  • the lithium manganese phosphate prepared in Example 1 is coated with LiNi 0.5 Mn 0.3 Co 0.2 O 2 as a positive electrode material, and lithium is a negative electrode material, and a button cell is assembled at a voltage window of 3.0-4.4 V at a large magnification. (5C, 8C) discharge performance is significantly improved.

Abstract

本发明公开了一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法,属于电化学技术领域。该正极材料包括镍钴锰酸锂和包覆在所述镍钴锰酸锂表面的磷酸锰锂,所述镍钴锰酸锂的化学式为LiNixCoyMnzO2,其中x+y+z=1,0.25≤x≤0.6,0.1≤y≤0.4,0.2≤z≤0.5。该材料的制备工艺简单,成本低廉,环境友好,易于工业化生产;本发明制备的磷酸锰锂包覆的镍钴锰酸锂正极材料相对于未包覆的镍钴锰酸锂,尤其显著提高了镍钴锰酸高电压(4.4V)下循环稳定性;同时磷酸锰锂本身作为正极材料具有较高的电压(4.1V),包覆后促进了镍钴锰酸锂材料表面锂离子传导,提高了其倍率性能。

Description

一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法 技术领域
本发明涉及电化学技术领域,特别涉及锂离子电池正极材料,进一步涉及一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法。
背景技术
随着能源和环境问题的日益突出,锂离子电池作为一种清洁高效的能源储存与转换媒介,得到了越来越多人的研究与重视。锂离子电池广泛应用于手机、笔记本电脑、照相机等便携式移动设备;目前炙手可热的新能源电动汽车主要使用的也是锂离子电池。
当前商品化的锂离子电池正极材料主要有钴酸锂、锰酸锂、磷酸铁锂及镍钴锰酸锂。其中钴酸锂成本高,且过充电时存在安全隐患;层状锰酸锂结构稳定性差,尖晶石型锰酸锂比容量低,高温下结构稳定性有待提高。磷酸铁锂加工性能差,振实密度低,能量密度低。同上述材料相比,镍钴锰酸锂材料具有成本低、高温性能好、能量密度高及加工性能优良等优点,镍钴锰酸锂综合性能高于上述正极材料。但镍钴锰酸锂的高倍率性能和循环稳定性相对于高市场占率的钴酸锂较差。对镍钴锰酸锂三元材料进行表面修饰是改善其电化学性能的一种行之有效的途径。申请号为201410250912.4采用碳包覆镍钴锰酸锂,包覆后提高了正极材料的倍率性能和循环稳定性。申请号为201310312317.4采用氟磷酸钙对镍钴锰酸锂进行包覆,材料的循环稳定性得到了改善。
开发成本低、易推广的改性镍钴锰酸锂材料,以改善镍钴锰酸锂的循环稳定性和倍率性能,在电化学领域意义重大。
发明内容
本发明的目的在于提供一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法,以改善镍钴锰酸锂的循环稳定性和倍率性能。本发明的另一目的在于提供磷酸锰锂包覆镍钴锰酸锂正极材料在锂离子二次电池中的应用。本发明制备的磷酸锰锂包覆镍钴锰酸锂正极材料,具有循环稳定性和倍率性能优良、制备方法低成本、易于工业化生产等优点。
本发明的技术方案为:
一种磷酸锰锂包覆镍钴锰酸锂正极材料,包括镍钴锰酸锂和包覆在所述镍钴锰酸锂表面的磷酸锰锂,所述镍钴锰酸锂的化学式为LiNixCoyMnzO2,其中x+y+z=1,0.25≤x≤0.6,0.1≤y≤0.4,0.2≤z≤0.5。
作为优选方案,所述磷酸锰锂的质量分数为0.5%-1.5%。磷酸锰锂导电性差,包覆量 过多会导致镍钴锰酸锂材料导电性能急剧衰减,包覆量过少无法实现磷酸锰锂的均匀包覆,不能有效阻止电解液中的氢氟酸对活性材料表面的腐蚀,进而导致镍钴锰酸锂材料循环稳定性能衰减。在该范围内及避免材料导电性能的衰减同时可有效阻止镍钴锰酸锂材料循环稳定性能衰减。
作为优选,所述磷酸锰锂为无定形态。无定形态的多孔状态有利于进行可逆的电化学反应。
所述磷酸锰锂包覆镍钴锰酸锂正极材料在制备锂离子电池中的应用。
所述磷酸锰锂包覆镍钴锰酸锂正极材料的制备方法,具体步骤为:
1)将络合剂化合物、锂源化合物、锰源化合物、磷源化合物按照摩尔比为1.1-1.5:1.05:1:1,依次溶于水中配制溶液,并用调节pH值为3.7-4.2;
2)将一定量的固体粉末镍钴锰酸锂LiNixCoyMnzO2加入到步骤1)制得的溶液中,其固含量为控制为25%-30%;
3)将步骤2)得到的溶液在80-90℃下搅拌蒸发溶液至粘稠,室温静置陈化2-4小时,将产物置于90℃烘箱中干燥3-6小时;样品粉碎过400目筛网;
4)将步骤3)得到的固体粉末放入管式炉以1-5℃/min升温速度升温,升温至350-550℃空气气氛下,焙烧3-4小时,自然降温至室温,制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
优选的,步骤2)中,磷酸锰锂的质量分数控制为0.5%-1.5%。
优选的,所述络合剂化合物为柠檬酸、抗坏血酸、酒石酸中的至少一种。络合剂在生成磷酸锰锂的反应过程中控制化学反应速率,进而促进实现对镍钴锰酸锂的均匀包覆,络合剂的使用极大增加了本发明的改性效果。而柠檬酸、抗坏血酸、酒石酸作为络合剂,成本低且对生成磷酸锰锂的化学反应速率控制恰到好处。
作为优选方案,所述锂源化合物为氢氧化锂、醋酸锂、硝酸锂中的至少一种;所述锰源化合物为醋酸锰、柠檬酸锰中的至少一种;所述磷源化合物为磷酸二氢铵、磷酸氢二铵、磷酸中的至少一种。
LiMnPO4作为过渡金属磷酸锂盐其结构稳定,廉价环保,具有较高的电压(4.1V),用作包覆材料可促进镍钴锰酸锂表面锂离子的传导,有利于提高倍率性能。LiMnPO4中的PO4 3-可有效抑制电极材料在电解液中的溶解,阻止电解液中的氢氟酸对活性材料表面的腐蚀,提高安全性能和循环稳定性。因此,采用磷酸锰锂包覆镍钴锰酸锂,可提高镍钴锰酸锂的循环稳定性和倍率性能。且该方法易于操作,易于推广。
本发明的有益效果为:
本发明制备的镍钴锰酸锂正极材料表面包覆的磷酸锰锂为无定形态,对材料的电化学性能有利,同时磷酸锰锂可阻止电解液中的氢氟酸对镍钴锰酸锂表面的腐蚀,显著提高镍钴锰酸锂的循环稳定性,尤其是高电压(4.4V)下循环稳定性;
磷酸锰锂本身作为正极材料具有较高的电压(4.1V),包覆后可促进镍钴锰酸锂材料表面锂离子传导,提高其倍率性能。
本发明在动力电池及高能量密度型电池领域具有实际应用前景。本发明改善了镍钴锰酸锂的循环稳定性和倍率性能,制备工艺简单,且耗时短,能耗低、成本低廉,环境友好,易于工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所制备的磷酸锰锂包覆镍钴锰酸锂材料的扫描电镜图,放大倍率2000倍。
图2为本发明所制备的磷酸锰锂包覆镍钴锰酸锂材料的扫描电镜图,放大倍率5000倍。
图3为本发明制备的磷酸锰锂包覆镍钴锰酸锂前后的X射线衍射谱图;
图4为本发明制备的磷酸锰锂包覆镍钴锰酸锂前后在1C倍率下,3.0V-4.4V的放电比容量循环稳定性能图。
图5为本发明制备的磷酸锰锂包覆镍钴锰酸锂前后在0.2C-8C倍率下,3.0V-4.3V的放电倍率性能图。
具体实施方式
实施例1
将0.1844g C6H8O7·H2O、0.0351g LiOH·H2O、0.1955g Mn(CH3COO)2??4H2O和0.0917g NH4H2PO4(络合剂:Li:Mn:P=1.1:1.05:1:1)依次溶解于60ml去离子水中,采用浓硝酸或者浓氨水调节溶液pH为4.2,将25g LiNi0.5Mn0.3Co0.2O2粉末浸渍于上述溶液中,磷酸锰锂的质量分数控制为0.5%;该溶液在90℃下磁力搅拌蒸发溶液至粘稠,室温静置陈化2小时,然后置于90℃烘箱中干燥3小时,粉碎过400目筛网;所得样品在空气气氛下450℃焙烧4小 时,自然冷却至室温,最后制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
实施例2:
将0.7538g C6H8O7·H2O、0.2563g Li(CH3COO)2??2H2O、0.5864g Mn(CH3COO)2??4H2O和0.3160g(NH4)2HPO4(络合剂:Li:Mn:P=1.5:1.05:1:1)依次溶解于60ml去离子水中,采用浓硝酸或者浓氨水调节溶液pH为3.7,将25g LiNi0.5Mn0.3Co0.2O2粉末浸渍于上述溶液中,磷酸锰锂的质量分数控制为1.5%;该溶液在90℃下磁力搅拌蒸发溶液至粘稠,室温静置陈化2小时,然后置于90℃烘箱中干燥6小时,粉碎过400目筛网;所得样品在空气气氛下550℃焙烧4小时,自然冷却至室温,最后制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
实施例3:
将0.4355g C6H8O7·H2O、0.0703gLiOH·H2O、0.3910gMn(CH3COO)2??4H2O和0.1834g NH4H2PO4(络合剂:Li:Mn:P=1.3:1.05:1:1)依次溶解于75ml去离子水中,采用浓硝酸或者浓氨水调节溶液pH为4.2,将25g LiNi0.5Mn0.3Co0.2O2粉末浸渍于上述溶液中,磷酸锰锂的质量分数控制为1.0%;该溶液在85℃下磁力搅拌蒸发溶液至粘稠,室温静置陈化4小时,然后置于90℃烘箱中干燥6小时,粉碎过400目筛网;所得样品在空气气氛下450℃焙烧4小时,自然冷却至室温,最后制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
实施例4:
将0.1844g C6H8O7·H2O、0.0351gLiOH·H2O、0.1955gMn(CH3COO)2??4H2O和0.0917g NH4H2PO4(络合剂:Li:Mn:P=1.1:1.05:1:1)依次溶解于75ml去离子水中,采用浓硝酸或者浓氨水调节溶液pH为4.0,将25g LiNi0.3Mn0.4Co0.3O2粉末浸渍于上述溶液中,磷酸锰锂的质量分数控制为0.5wt%;该溶液在85℃下磁力搅拌蒸发溶液至粘稠,室温静置陈化4小时,然后置于90℃烘箱中干燥6小时,粉碎过400目筛网;所得样品在空气气氛下350℃焙烧4小时,自然冷却至室温,最后制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
如图1所示,本发明实施例1所制备的磷酸锰锂包覆镍钴锰酸锂材料的扫描电镜图片,放大倍率2000倍。
如图2所示,本发明实施例1所制备的磷酸锰锂包覆镍钴锰酸锂材料的扫描电镜图片,放大倍率5000倍,镍钴锰锂表面可明显观察到无定形态的磷酸锰锂。
如图3所示,本发明实施例1所制备的磷酸锰锂包覆镍钴锰酸锂材料的X射线衍射谱图显示磷酸锰锂为无定形态。
如图4所示,实施例1所制备的磷酸锰锂包覆LiNi0.5Mn0.3Co0.2O2作为正极材料,锂为负极材料,组装扣式电池,在电压窗口3.0-4.4V,1C倍率下循环充放100周后包覆磷酸 锰锂后的材料容量保持率由80.1%提高到92.6%,高电压(4.4V)下循环性能明显改善。
如图5所示,实施例1所制备的磷酸锰锂包覆LiNi0.5Mn0.3Co0.2O2作为正极材料,锂为负极材料,组装扣式电池,在电压窗口3.0-4.4V,大倍率下(5C,8C)放电性能明显提升。

Claims (8)

  1. 一种磷酸锰锂包覆镍钴锰酸锂正极材料,包括镍钴锰酸锂和包覆在所述镍钴锰酸锂表面的磷酸锰锂,所述镍钴锰酸锂的化学式为LiNixCoyMnzO2,其中x+y+z=1,0.25≤x≤0.6,0.1≤y≤0.4,0.2≤z≤0.5。
  2. 如权利要求1所述磷酸锰锂包覆镍钴锰酸锂正极材料,其特征在于:所述磷酸锰锂的质量分数为0.5%-1.5%。
  3. 如权利要求1或2所述磷酸锰锂包覆镍钴锰酸锂正极材料,其特征在于:所述磷酸锰锂为无定形态。
  4. 一种权利要求1-3任一项所述磷酸锰锂包覆镍钴锰酸锂正极材料在制备锂离子电池中的应用。
  5. 一种权利要求1所述磷酸锰锂包覆镍钴锰酸锂正极材料的制备方法,其特征在于,具体步骤为:
    1)将络合剂化合物、锂源化合物、锰源化合物、磷源化合物按照摩尔比为1.1-1.5:1.05:1:1,依次溶于水中配制溶液,并用调节pH值为3.7-4.2;
    2)将一定量的固体粉末镍钴锰酸锂LiNixCoyMnzO2加入到步骤1)制得的溶液中,其固含量为控制为25%-30%;
    3)将步骤2)得到的溶液在80-90℃下搅拌蒸发溶液至粘稠,室温静置陈化2-4小时,将产物置于90℃烘箱中干燥3-6小时;样品粉碎过400目筛网;
    4)将步骤3)得到的固体粉末放入管式炉以1-5℃/min升温速度升温,升温至350-550℃空气气氛下,焙烧3-4小时,自然降温至室温,制得磷酸锰锂包覆的镍钴锰酸锂正极材料。
  6. 如权利要求5所述磷酸锰锂包覆镍钴锰酸锂正极材料的制备方法,其特征在于:步骤2)中,磷酸锰锂的质量分数控制为0.5%-1.5%。
  7. 如权利要求5所述磷酸锰锂包覆镍钴锰酸锂正极材料的制备方法,其特征在于:所述络合剂化合物为柠檬酸、抗坏血酸、酒石酸中的至少一种。
  8. 如权利要求5或7所述磷酸锰锂包覆镍钴锰酸锂正极材料的制备方法,其特征在于:所述锂源化合物为氢氧化锂、醋酸锂、硝酸锂中的至少一种;所述锰源化合物为醋酸锰、柠檬酸锰中的至少一种;所述磷源化合物为磷酸二氢铵、磷酸氢二铵、磷酸中的至少一种。
PCT/CN2016/084413 2015-06-29 2016-06-01 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法 WO2017000741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510365733.XA CN105161705B (zh) 2015-06-29 2015-06-29 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
CN201510365733.X 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017000741A1 true WO2017000741A1 (zh) 2017-01-05

Family

ID=54802512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084413 WO2017000741A1 (zh) 2015-06-29 2016-06-01 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105161705B (zh)
WO (1) WO2017000741A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916693A (zh) * 2020-06-28 2020-11-10 南昌大学 一种制备有机物包覆高镍正极材料的方法
CN112142121A (zh) * 2019-06-26 2020-12-29 湖北虹润高科新材料有限公司 二氧化锰包覆三元前驱体的制备方法
CN112174221A (zh) * 2020-08-27 2021-01-05 浙江美都海创锂电科技有限公司 一种高镍三元正极材料湿法包覆用试剂及其制备方法、应用
CN113023792A (zh) * 2021-03-02 2021-06-25 昆山宝创新能源科技有限公司 包覆型镍钴锰酸锂正极材料及其制备方法和锂离子电池
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114524469A (zh) * 2022-02-15 2022-05-24 泾河新城陕煤技术研究院新能源材料有限公司 一种纳米磷酸锂包覆的高镍三元正极材料及其制备方法
CN114551860A (zh) * 2022-01-20 2022-05-27 上海兰钧新能源科技有限公司 一种镍钴锰酸锂正极材料的包覆方法
CN115020687A (zh) * 2022-08-08 2022-09-06 深圳市华宝新能源股份有限公司 一种正极材料及其制备方法和用途

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161705B (zh) * 2015-06-29 2018-06-05 山东玉皇新能源科技有限公司 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
CN105552360B (zh) * 2016-03-03 2018-05-15 四川浩普瑞新能源材料股份有限公司 一种改性的镍钴锰酸锂正极材料及其制备方法
CN106058221B (zh) * 2016-08-12 2019-03-29 合肥国轩高科动力能源有限公司 一种磷酸根聚阴离子复合锰盐包覆富锂锰基正极材料的制备方法
JP6920639B2 (ja) * 2016-09-30 2021-08-18 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
CN107221645A (zh) * 2017-07-06 2017-09-29 广州朝锂新能源科技有限公司 表面修饰锂离子电池高镍层状正极材料及其制备方法
CN108933242B (zh) * 2018-07-10 2019-12-10 江西迪比科股份有限公司 一种锂离子电池混合正极的制备方法
CN109301196B (zh) * 2018-09-17 2021-09-14 常州锂霸电池有限公司 一种磷酸锰锂包覆镍钴锰酸锂正极材料的方法
CN109216680A (zh) * 2018-09-18 2019-01-15 贵州永合益环保科技有限公司 一种磷酸锰锂、氧化铝包覆镍钴锰酸锂正极材料的方法
CN112635722B (zh) * 2019-10-09 2022-04-15 北京卫蓝新能源科技有限公司 一种锂离子电池复合正极材料及制备方法
CN112117452B (zh) * 2020-10-09 2023-07-28 中伟新材料股份有限公司 正极材料包覆剂及其制备方法、锂离子电池正极材料、锂离子电池和用电设备
CN113707857A (zh) * 2021-08-23 2021-11-26 上海颂柏智能技术开发中心 一种核壳结构的锂离子电池复合正极材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427123A (zh) * 2011-11-14 2012-04-25 东莞新能源科技有限公司 锂离子二次电池及其正极片
CN103035906A (zh) * 2013-01-08 2013-04-10 南开大学 磷酸锰锂包覆的富锂层状氧化物正极材料及其制备和应用
CN103474625A (zh) * 2013-08-05 2013-12-25 合肥国轩高科动力能源股份公司 一种核壳结构的新型锂离子电池正极材料包覆方法
CN104733708A (zh) * 2014-10-22 2015-06-24 长沙理工大学 一种表面包覆磷酸铁锂的镍钴锰酸锂复合材料的制备方法
CN104733730A (zh) * 2015-03-24 2015-06-24 中国科学院宁波材料技术与工程研究所 一种锂离子电池正极材料及其制备方法和锂离子电池
CN105161705A (zh) * 2015-06-29 2015-12-16 山东玉皇新能源科技有限公司 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005563B (zh) * 2010-10-19 2013-05-01 合肥国轩高科动力能源有限公司 一种锂离子电池高电压正极材料制备及表面包覆方法
CN104078658B (zh) * 2013-03-25 2017-02-08 日电(中国)有限公司 改性锰基层状材料及其制备方法、含该材料的锂离子电池
CN104577093A (zh) * 2015-01-13 2015-04-29 海宁美达瑞新材料科技有限公司 一种表面包覆改性的锂离子电池正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427123A (zh) * 2011-11-14 2012-04-25 东莞新能源科技有限公司 锂离子二次电池及其正极片
CN103035906A (zh) * 2013-01-08 2013-04-10 南开大学 磷酸锰锂包覆的富锂层状氧化物正极材料及其制备和应用
CN103474625A (zh) * 2013-08-05 2013-12-25 合肥国轩高科动力能源股份公司 一种核壳结构的新型锂离子电池正极材料包覆方法
CN104733708A (zh) * 2014-10-22 2015-06-24 长沙理工大学 一种表面包覆磷酸铁锂的镍钴锰酸锂复合材料的制备方法
CN104733730A (zh) * 2015-03-24 2015-06-24 中国科学院宁波材料技术与工程研究所 一种锂离子电池正极材料及其制备方法和锂离子电池
CN105161705A (zh) * 2015-06-29 2015-12-16 山东玉皇新能源科技有限公司 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142121A (zh) * 2019-06-26 2020-12-29 湖北虹润高科新材料有限公司 二氧化锰包覆三元前驱体的制备方法
CN112142121B (zh) * 2019-06-26 2022-11-18 湖北虹润高科新材料有限公司 二氧化锰包覆三元前驱体的制备方法
CN111916693A (zh) * 2020-06-28 2020-11-10 南昌大学 一种制备有机物包覆高镍正极材料的方法
CN111916693B (zh) * 2020-06-28 2022-05-20 南昌大学 一种制备有机物包覆高镍正极材料的方法
CN112174221A (zh) * 2020-08-27 2021-01-05 浙江美都海创锂电科技有限公司 一种高镍三元正极材料湿法包覆用试剂及其制备方法、应用
CN113023792A (zh) * 2021-03-02 2021-06-25 昆山宝创新能源科技有限公司 包覆型镍钴锰酸锂正极材料及其制备方法和锂离子电池
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114229921B (zh) * 2021-12-22 2023-09-15 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114551860A (zh) * 2022-01-20 2022-05-27 上海兰钧新能源科技有限公司 一种镍钴锰酸锂正极材料的包覆方法
CN114524469A (zh) * 2022-02-15 2022-05-24 泾河新城陕煤技术研究院新能源材料有限公司 一种纳米磷酸锂包覆的高镍三元正极材料及其制备方法
CN115020687A (zh) * 2022-08-08 2022-09-06 深圳市华宝新能源股份有限公司 一种正极材料及其制备方法和用途

Also Published As

Publication number Publication date
CN105161705A (zh) 2015-12-16
CN105161705B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2017000741A1 (zh) 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
US20200328406A1 (en) Layered lithium-rich manganese-based cathode material with olivine structured limpo4 surface modification and preparation method thereof
WO2016058402A1 (zh) 一种层状氧化物材料、制备方法、极片、二次电池和用途
CN107403913B (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
CN104241626B (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
CN103545519B (zh) 一种碳包覆富锂正极材料及其制备方法
CN106299282B (zh) 一种氮掺杂碳纳米管硫复合材料及制备方法
CN103035906B (zh) 磷酸锰锂包覆的富锂层状氧化物正极材料及其制备和应用
CN106784726B (zh) 磷酸氧钒锂改性富锂锰基层状锂离子电池正极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN102623708A (zh) 锂离子电池正极用磷酸钒锂/石墨烯复合材料的制备方法
CN102738458A (zh) 一种富锂正极材料的表面改性方法
CN101699639A (zh) 碳包覆纳米磷酸铁锂复合正极材料的制备方法
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN108899531A (zh) 一种磷酸盐包覆镍钴铝三元正极材料的制备方法
CN111293288B (zh) 一种NaF/金属复合补钠正极活性材料、正极材料、正极及其制备和在钠电中的应用
CN111082059A (zh) 一种v掺杂p2型钠离子电池正极材料及其制备方法
CN110911680A (zh) Ti、V元素复合掺杂的磷酸铁锂制备方法
CN105742629A (zh) 一种锂离子电池正极材料磷酸铁锂/石墨烯复合物的原位制备方法
CN103956456A (zh) 卤素阴离子掺杂的富锂正极材料及其制备方法和应用
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
CN103413918A (zh) 一种锂离子电池用正极材料磷酸钴锂的合成方法
CN104733709A (zh) 一种晶型可控的磷酸锰铁锂或其复合材料的制备方法
CN113044890A (zh) 一种正极材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817105

Country of ref document: EP

Kind code of ref document: A1