WO2023054263A1 - 炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法 - Google Patents

炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法 Download PDF

Info

Publication number
WO2023054263A1
WO2023054263A1 PCT/JP2022/035722 JP2022035722W WO2023054263A1 WO 2023054263 A1 WO2023054263 A1 WO 2023054263A1 JP 2022035722 W JP2022035722 W JP 2022035722W WO 2023054263 A1 WO2023054263 A1 WO 2023054263A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
single crystal
carbide single
wafer
crystal
Prior art date
Application number
PCT/JP2022/035722
Other languages
English (en)
French (fr)
Inventor
智典 梅崎
和人 熊谷
学 高野
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2023054263A1 publication Critical patent/WO2023054263A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a silicon carbide single crystal wafer, a silicon carbide single crystal ingot, and a method for producing a silicon carbide single crystal.
  • Patent Document 1 discloses a silicon carbide single crystal obtained by a solution growth method. Patent Document 1 discloses the basal plane dislocation density and the like of a silicon carbide single crystal.
  • Patent Document 2 discloses a silicon carbide single crystal obtained by a sublimation recrystallization method. Patent document 2 discloses the basal plane dislocation density, carrier concentration, etc. of a silicon carbide single crystal.
  • Patent Document 3 discloses a silicon carbide single crystal obtained by a solution growth method. Patent document 3 discloses the boron concentration, nitrogen concentration, etc. of a silicon carbide single crystal.
  • Patent Document 4 discloses a silicon carbide single crystal obtained by a sublimation recrystallization method. Patent Document 4 discloses boron concentration, nitrogen concentration, aluminum concentration, resistivity, etc. of a silicon carbide single crystal.
  • Patent Document 5 discloses a silicon carbide single crystal obtained by a sublimation recrystallization method. Patent Document 5 discloses boron concentration, nitrogen concentration, aluminum concentration, resistivity, etc. of a silicon carbide single crystal.
  • Patent Document 6 discloses a silicon carbide single crystal obtained by a sublimation recrystallization method. Patent Document 6 discloses the nitrogen concentration, aluminum concentration, resistivity, stacking fault density, etc. of a silicon carbide single crystal.
  • Patent Document 7 discloses a silicon carbide single crystal obtained by a solution growth method.
  • An object of the present invention is to realize a high-quality silicon carbide single crystal not disclosed in Patent Documents 1 to 7.
  • a silicon carbide single crystal wafer contains boron at a concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less, A region having a basal plane dislocation density of 100/cm 2 or less exists on the surface of the silicon carbide single crystal wafer, the region includes the center of the surface; A silicon carbide single crystal wafer is provided in which the area of the region is at least a quarter of the area of the surface.
  • a substantially cylindrical or polygonal silicon carbide single crystal ingot contains boron at a concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less, A region having a basal plane dislocation density of 100/cm 2 or less exists on the surface of the wafer, the region includes the center of the surface; A silicon carbide single crystal ingot is provided in which the area of the region is equal to or greater than a quarter of the area of the surface.
  • the silicon carbide seed crystal is brought into contact with a raw material solution containing silicon and carbon from above to grow the crystal, Before the step of growing the crystal, a heating step of heating the member used in the step, In the step of growing the crystal, the temperature T1 at the crystal growth interface P1 and the temperature T2 of the solution at the point P2 at a distance of 5 mm from the growth interface satisfy T2>T1, and the temperature between P1 and P2
  • T1 at the crystal growth interface P1 and the temperature T2 of the solution at the point P2 at a distance of 5 mm from the growth interface satisfy T2>T1, and the temperature between P1 and P2
  • a method for producing a silicon carbide single crystal having a slope of greater than 0 K/cm and less than or equal to 40 K/cm is provided.
  • FIG. 2 is a diagram showing a state of crystal growth using the crystal growth apparatus 1;
  • FIG. 4 is a schematic diagram of a cross section of a seed crystal 9 having an off angle;
  • FIG. 4 is a diagram for explaining a meniscus angle ⁇ ;
  • FIG. 1 shows an example of a silicon carbide single crystal wafer 31 of this embodiment.
  • the drawing shows a silicon carbide single crystal wafer 31 having a circular surface shape.
  • the silicon carbide single crystal wafer 31 may have a polygonal shape (such as a hexagonal shape) instead of a circular shape.
  • Silicon carbide single crystal wafer 31 preferably has a diameter of 100 mm or more and a thickness of 50 ⁇ m or more and 500 ⁇ m or less.
  • the silicon carbide single crystal wafer 31 is preferably cut from an ingot so that the surface is within ⁇ 5 degrees from the (0001) plane of 4H—SiC or 6H—SiC.
  • the surface may have an off angle of 0.5 degrees or more and 5 degrees or less from the (0001) plane of the silicon carbide single crystal.
  • the silicon carbide single crystal wafer 31 may have a plane portion called an orientation flat and a groove called a notch.
  • the silicon carbide single crystal wafer 31 has features 1 and 2 below. Moreover, the silicon carbide single crystal wafer 31 preferably has features 3 and 4 below.
  • Silicon carbide single crystal wafer 31 contains boron at a concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less. Boron is included as an unavoidable impurity.
  • Characteristic 1 is that the concentration of boron, which is an unavoidable impurity, is sufficiently reduced to 1.0 ⁇ 10 16 atoms/cm 3 or less.
  • the characteristic 1 is that the concentration range of boron, which is an inevitable impurity (the range of concentrations that can be mixed into the silicon carbide single crystal wafer 31), is sufficiently narrow to be greater than 0 and 1.0 ⁇ 10 16 atoms/cm 3 or less. It is what was done. Preferably, it may be greater than 0 and 1.0 ⁇ 10 15 atoms/cm 3 or less.
  • the characteristics (eg, crystallinity and electrical characteristics) of the silicon carbide single crystal wafer 31 may deviate greatly from the intended ones.
  • the impurity concentration cannot be predicted, or if the concentration range that can be predicted is wide, product design becomes difficult.
  • Silicon carbide single crystal wafer 31 having feature 1 has a narrow concentration range of 1.0 ⁇ 10 16 atoms/cm 3 or less for boron, which is an unavoidable impurity that enters unintentionally. Therefore, it becomes relatively easy to design products in consideration of the concentration of boron.
  • the boron concentration was measured at a plurality of points in the plane as described later, the boron concentration was 1.0 ⁇ 10 16 atoms/cm 3 or less at any of the measurement points, and there was no variation in the boron concentration in the plane. Since it is small, it is considered that the uniformity of in-plane crystallinity and electrical characteristics of the obtained silicon carbide single crystal wafer 31 is good.
  • the concentration of boron is a value obtained by measuring one center point of the silicon carbide single crystal wafer 31 by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • values measured in dynamic SIMS mode using a secondary ion mass spectrometer (IMS 6f, CAMECA) were used.
  • the measurement results were obtained at one point at the center of the silicon carbide single crystal wafer 31 (hereinafter referred to as "central point") and four peripheral points 50 mm away from the center (hereinafter referred to as "peripheral points”). was evaluated based on The boron concentrations at these five points were measured in the same manner as the measurement method for the central one point described above.
  • the evaluation value is calculated by the formula "(boron concentration at the peripheral point ⁇ boron concentration at the central point)/boron concentration at the central point” for four pairs of the central point and each of the four peripheral points. and when the average value of the evaluation values of the four pairs is -0.3 or more and 3.0 or less, more preferably all the evaluation values of the four pairs are -0.3 or more and 3.0 or less It was assumed that the variation was small at that time.
  • the surface of the silicon carbide single crystal wafer 31 has a region with a basal plane dislocation density of 100/cm 2 or less.
  • this area will be referred to as "central area 33".
  • the central region 33 refers to an undivided region that includes the center of the surface of the silicon carbide single crystal wafer 31 . It is preferable that the center of the central region 33 and the center of the surface of the silicon carbide single crystal wafer 31 overlap, and it is more preferable that the shape of the central region 33 and the shape of the surface of the silicon carbide single crystal wafer 31 are the same or similar.
  • the area of central region 33 is at least one fourth of the area of the surface of silicon carbide single crystal wafer 31 . Also, the central region 33 may preferably be one-third or more of the area of the surface.
  • Feature 2 comprises a central region 33 with a sufficiently reduced basal plane dislocation density of 100/cm 2 or less, which is as wide as one-fourth or more of the area of the surface and includes the center of the surface. That is.
  • the basal plane dislocation density is 80/cm 2 or less, more preferably 50/cm 2 or less.
  • the basal plane dislocations in this specification refer to dislocations observable by the etch pit method using KOH, and the basal plane dislocation density is the value measured by the etch pit method using KOH.
  • a silicon carbide single crystal wafer 31 whose Si surface side was CMP-polished was immersed in a KOH melt heated to 520° C. for 30 minutes in an air atmosphere. After being taken out, the silicon carbide single crystal wafer 31 was washed with ultrapure water and subjected to measurement.
  • the electrical resistivity of the silicon carbide single crystal wafer 31 is 60 m ⁇ cm or less. Characteristic 3 is that the electrical resistivity is 60 m ⁇ cm or less, and the electrical conductivity is excellent. It is preferably 50 m ⁇ cm or less, more preferably 30 m ⁇ cm or less.
  • the electrical resistivity is measured at one point in the center of the silicon carbide single crystal wafer 31 and four points in the outer peripheral portion of the wafer (0 degrees, 90 degrees, 180 degrees, and 270 degrees, each at a distance of 80% of the wafer radius from the center). It is the average value of the measurement results at each of a total of 5 points.
  • the measurement method is non-contact measurement by the eddy current method. In this embodiment, the measurement was performed using an EC-80P manufactured by Napson.
  • the misorientation in the crystal plane of the silicon carbide single crystal wafer 31 is 50 arcsec or less.
  • Characteristic 4 is that the orientation difference in the crystal plane is sufficiently reduced to 50 arcsec or less, the strain in the crystal is suppressed, and the crystallinity is excellent. Preferably, it may be 40 arcsec or less.
  • the misorientation is between one point at the center of the silicon carbide single crystal wafer 31 and four points on the outer periphery of the wafer (0 degrees, 90 degrees, 180 degrees, and 270 degrees. Each point is 80% of the wafer radius away from the center.). It is the average value of the measurement results of the misorientation using the X-ray diffraction method at each of a total of five points. In this embodiment, the measurement was performed using an X-ray diffractometer (manufactured by RIGAKU, smartlab).
  • the silicon carbide single crystal wafer 31 having features 1 and 2 has a low concentration of boron, which is an unavoidable impurity, has a narrow concentration range, and has excellent crystallinity due to a reduction in basal plane dislocations. Moreover, as shown in the comparative examples below, when the boron concentration exceeded 1.0 ⁇ 10 16 atoms/cm 3 , the basal plane dislocation density tended to increase as the boron concentration increased. Although the detailed mechanism is unknown, it is presumed that the boron concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less makes it easier to suppress the occurrence of basal plane dislocations.
  • the silicon carbide single crystal wafer 31 having features 3 and/or 4 in addition to features 1 and 2 is a wafer that achieves both conductivity and crystallinity.
  • the conductivity described above is provided by conductive impurities contained within the silicon carbide single crystal wafer 31 .
  • the conductive impurities include donor-type conductive impurities (hereinafter sometimes referred to as "donor-type”) and acceptor-type conductive impurities (hereinafter sometimes referred to as "acceptor-type").
  • donor-type donor-type
  • acceptor-type conductive impurities hereinafter sometimes referred to as "acceptor-type”
  • the electrical resistivity can be lowered as the carrier concentration calculated from the difference between the carrier type and the acceptor type increases.
  • the higher the concentration of donor-type conductive impurities in particular the lower the crystallinity.
  • a preferred embodiment of the present invention is more preferably an n-type silicon carbide single crystal wafer 31 that has donor-type conductive impurities and acceptor-type conductive impurities and has more donor types than acceptor types. good too.
  • This embodiment can reduce basal plane dislocations even when the n-type carrier concentration is in the range of 1 ⁇ 10 19 atoms/cm 3 or more and 10 ⁇ 10 19 atoms/cm 3 or less.
  • the concentration of the donor-type conductive impurity may be 1 ⁇ 10 18 atoms/cm 3 or more and 1 ⁇ 10 21 atoms/cm 3 or less, more preferably 5 ⁇ 10 18 atoms/cm 3 or more, It may be 2 ⁇ 10 20 atoms/cm 3 or less.
  • Nitrogen and phosphorus are well known as the donor-type conductive impurities, and more preferably nitrogen may be used.
  • elements belonging to group 13 of the periodic table are well known as acceptor-type conductive impurities, and the present invention has found that the above-described favorable characteristics can be obtained by reducing the boron concentration. Therefore, as the acceptor-type conductive impurity in this embodiment, it is preferable to use an element belonging to Group 13 of the periodic table, excluding boron. More preferably, aluminum, gallium, and indium may be used.
  • the conductive impurity concentration can be measured by the same method as the boron concentration.
  • the silicon carbide single crystal ingot of the present embodiment may have a substantially cylindrical shape or a substantially polygonal shape.
  • the two planes may be the upper surface and the lower surface, and the surfaces in contact with the upper surface and the lower surface may be the side surfaces.
  • the upper and lower surfaces are parallel to the AA' and DD' cross-sections, which will be described later.
  • FIG. 2 shows a substantially cylindrical silicon carbide single crystal ingot 21 .
  • FIG. 2(a) is a perspective view
  • FIG. 2(b) is a sectional view taken along line AA' in FIG. 2(a).
  • 2(b) is the diameter of the silicon carbide single crystal ingot 21, and CC' of FIG. 2(b) is the center of the silicon carbide single crystal ingot 21.
  • a region 23 may be used.
  • FIG. 3 shows a silicon carbide single crystal ingot 22 having a substantially polygonal prism shape.
  • 3(a) is a perspective view
  • FIG. 3(b) is a cross-sectional view taken along line DD' in FIG. 3(a).
  • the diameter may be the maximum length passing through the center of the DD′ cross section in FIG. may be the diameter of silicon carbide single crystal ingot 22 .
  • the central region 23 of the silicon carbide single crystal ingot 22 may be the region whose diameter is FF' in FIG. 3(b).
  • the length of the silicon carbide single crystal ingot of the present embodiment in the crystal growth direction is preferably 10 mm or more, more preferably 15 mm or more. Moreover, it is preferable that the difference between the diameter of the upper surface and the diameter of the lower surface of the silicon carbide single crystal ingot is small, and the difference may be 0 mm or more and 0.5 mm or less.
  • Wafers cut perpendicular to the crystal growth direction (c-axis direction) from the silicon carbide single crystal ingots 21 and 22 of the present embodiment can be used as the silicon carbide single crystal wafers 31 described above. That is, the wafers cut out from the silicon carbide single crystal ingots 21 and 22 of the present embodiment have the excellent features described above.
  • the central region 23, which is the region within the silicon carbide single crystal ingots 21 and 22, can be cut out as a wafer to become the central region 33 of the silicon carbide single crystal wafer 31 described above.
  • the silicon carbide single crystal ingots 21 and 22 can have the aforementioned features 1 and 2, and further features 3 and/or 4 on the plane cut perpendicular to the c-axis direction. Since features 1 to 4 overlap with the above description, their description is omitted here.
  • FIG. 4 is a diagram showing an overview of the crystal growth apparatus 1 used in the manufacturing method of this embodiment.
  • the crystal growth apparatus 1 has a crucible 3, a pulling shaft 7, and heaters 4a and 4b (hereinafter collectively referred to as heater 4 in some cases).
  • the crystal growth apparatus 1 has an internal space in which the crucible 3, the pulling shaft 7 and the like can be placed (hereinafter sometimes referred to as a "furnace"), and the internal space may be sealed. .
  • the heater 4 may be arranged in the internal space, or may heat the internal space from outside.
  • the crystal growth apparatus 1 can measure a supply port (not shown) capable of supplying various gases to the internal space, an exhaust port (not shown) capable of discharging from the internal space, and the pressure within the internal space. pressure gauge or the like.
  • a silicon carbide single crystal is produced by growing a crystal while bringing a silicon carbide seed crystal 9 into contact with a raw material solution 5 containing silicon and carbon from above.
  • a heating step of heating the members used in the crystal growing step is performed prior to the crystal growing step (hereinafter referred to as “crystal growing step”). Boron in the member can be reduced by this heating step. As a result, it is possible to reduce the inconvenience of unintentional contamination of boron from this member.
  • the member may be heated in a halogen gas atmosphere. By doing so, boron in the member can be volatilized as boron halide.
  • the member to be heated is a member containing boron, and examples thereof include the crucible 3, the pulling shaft 7, and a jig for holding the seed crystal (not shown). but not limited to these.
  • halogen gas includes gases consisting of a single halogen such as Cl 2 and F 2 , interhalogen gases such as ClF 3 , IF 5 and IF 3 and halogen-containing gases such as HCl.
  • the heating conditions are preferably 1600° C. to 2000° C. for 1 to 20 hours and a halogen gas pressure of 5 to 100 kPa.
  • the temperature may be more preferably 1700° C. or higher and 2000° C. or lower, and even more preferably 1800° C. or higher and 2000° C. or lower.
  • the temperature below indicates the temperature of the object to be heated. For example, when the temperature is 1600°C, the temperature of the object to be heated is 1600°C. Also, the temperature of the object to be heated can be measured with a radiation thermometer.
  • the heating process may be performed before the crystal growth process, and the timing is not particularly limited. For example, after obtaining a member to be subjected to heat treatment, a heating step of heating the member at least once may be performed before using the member for the first time to perform the crystal growth step. Alternatively, the heating step may be performed immediately before each crystal growth step. Alternatively, the heating step may be performed at a predetermined timing such as the beginning of the day, the beginning of the week, or the beginning of the month.
  • the "pressure in the apparatus" during the heating process described above can be adjusted by supplying or exhausting gas so that the pressure in the furnace is within the range described above.
  • the "halogen gas pressure” refers to the pressure in the furnace when only halogen gas is supplied, and the partial pressure of halogen gas in the furnace when halogen gas and any diluent gas are supplied to the apparatus. shall refer to
  • the airtight state may be established after the gas is supplied, or the gas may be supplied and discharged at the same time to allow the gas to flow while maintaining a predetermined pressure.
  • the gas to be supplied include inert gas such as He gas and Ar gas, halogen gas, and the like.
  • H 2 gas may also be used under conditions of low reactivity such as low pressure.
  • Cl 2 or HCl because it is easy to suppress damage and reactivity to members in contact with the gas.
  • a separate operation may be performed in order to suppress the influence of the halogen gas on the seed crystal.
  • the heating step may be performed without placing the seed crystal 9, then the temperature may be once lowered to a workable temperature, and after placing the seed crystal 9 on the pulling shaft 7, the next step may be performed.
  • an isolating member or protective material capable of isolating the seed crystal 9 from the atmosphere in the furnace may be installed, and after the heating step is performed, the isolating member or protective material may be removed and the next step may be performed. In the case of the latter operation, if the work is possible, it is not necessary to intentionally lower the temperature.
  • a degassing step of degassing the inside of the furnace may be provided between the heating step and the crystal growth step.
  • the degassing method may be a known method and is not particularly limited, but vacuum degassing is preferable because it efficiently removes the atmosphere in the furnace.
  • a crystal growth apparatus 1 shown in FIG. 4 has a raw material solution 5 containing silicon and carbon inside a crucible 3, and a pulling shaft 7 can rotate a seed crystal 9 attached to the tip with its long axis as a rotation axis. be. Also, an upward flow 6 is formed in which the raw material solution 5 flows from bottom to top toward the seed crystal 9 .
  • the centers of the crucible 3 and the pull-up shaft 7 do not necessarily have to match, but preferably match. It is more preferable that the rotation axes of the shafts 7 all coincide.
  • a graphite crucible that can supply carbon to the raw material solution 5 is preferable.
  • Crucibles other than graphite crucibles can be used as long as they can be added.
  • the rotational speed of the crucible 3 is preferably 5-30 rpm, more preferably 5-20 rpm. By setting it within the above range, it is possible to efficiently grow the crystal without imposing an excessive burden on the apparatus.
  • the crucible 3 may be rotated in the forward direction and the reverse direction while periodically reversing the rotation direction.
  • the raw material solution 5 is heated by heaters 4a, 4b, etc. provided around the crucible 3 and kept in a molten state.
  • the heaters 4a and 4b may be of induction heating type or resistance heating type.
  • the temperature in the crucible 3 is preferably 1700-2100°C.
  • the temperature inside the crucible can be obtained by measuring the surface of the raw material solution 5 or its vicinity with a non-contact thermometer (IR-CZH7 type, manufactured by Chino).
  • silicon source for the raw material solution 5 metal silicon, silicon alloys, silicon compounds, etc. can be used.
  • carbon source of the raw material solution solid carbon sources such as graphite, glassy carbon and silicon carbide, and hydrocarbon gases such as methane, ethane, propane and acetylene can be used.
  • the raw material solution 5 is not particularly limited as long as it is a solution containing silicon and carbon used for crystal growth of silicon carbide, but it is preferable to use a solution in which carbon is dissolved in a Si solvent to which additive elements are added.
  • Silicon alloys or silicon compounds used as the silicon source of the raw material solution include silicon and Ti, Cr, Sc, Ni, Al, Co, Mn, Mg, Ge, As, P, N, O, Dy, Y, An alloy or compound with at least one additive element selected from Nb, Nd and Fe can be used.
  • An inert gas such as a rare gas is preferably circulated in the crystal growth apparatus 1 during the crystal growth step to create an inert atmosphere.
  • the pressure is not particularly limited, it may be about atmospheric pressure (about 100 kPa).
  • a hydrocarbon-based gas such as CH4 may be added to create a mixed gas atmosphere.
  • a mixed gas atmosphere may be formed by adding a gas that is a source of the conductive impurities.
  • the raw material solution 5 in FIG. 4 forms an upward flow 6 in the center of the crucible 3 and contacts the center of the seed crystal 9 .
  • Forming the upward flow 6 is preferable because it is possible to stabilize the concentration of the raw material solution 5 at the growth interface.
  • the velocity of the upward flow is preferably 0.5 cm/s or more and 5 cm/s or less at a position 1 cm away from the growth interface in the downward direction.
  • the method of forming the ascending flow 6 is not particularly limited, but a method of adjusting the output of the heater 4a on the side and the heater 4b on the bottom, a method of providing a protrusion or a plate portion capable of controlling the flow in the crucible 3, or a method of A possible method is to form an upward flow by the Lorentz force generated by the electromagnetic field generated by the magnetic field coil. For example, if the output of the heater 4b on the bottom surface is increased, an upward convection is generated from the heater 4b, and an upward flow 6 is formed.
  • the pulling shaft 7 pulls the seed crystal 9 relatively slowly upward with respect to the raw material solution 5 to grow the silicon carbide single crystal 11 .
  • the pull-up shaft 7 may be moved upward or the crucible 3 may be moved downward, but it is preferable to move the pull-up shaft 7 upward in order to relatively reduce the influence on the temperature distribution.
  • the direction of the seed crystal 9 from the liquid surface of the raw material solution 5 is formed between the seed crystal 9 and the liquid surface of the raw material solution 5 .
  • a convex meniscus may be formed. It is presumed that the formation of the meniscus lowers the temperature of the raw material solution 5 around the seed crystal 9, increases the degree of carbon supersaturation, and improves the growth rate. Further, by adjusting the shape of the meniscus, it is possible to increase the growth rate of the seed crystal 9 in the lateral direction, so that the diameter of the silicon carbide single crystal 11, which is the grown crystal, is made larger than the diameter of the seed crystal 9. It is possible to
  • the diameter of silicon carbide single crystal 11 may be about the same as the diameter of seed crystal 9, but as shown in FIG. good too.
  • the meniscus angle ⁇ when enlarging the diameter of the grown crystal is preferably 35 degrees or more. More preferably 60 degrees or more, more preferably 65 degrees or more. Also, since ⁇ is 90 degrees when no meniscus is formed, the upper limit is not particularly limited, but may be less than 90 degrees, more preferably 85 degrees or less.
  • crystal growth may be performed while maintaining the predetermined diameter.
  • the meniscus may or may not be formed, but if it is formed, the aforementioned angle ⁇ may be 10 degrees or more.
  • the upper limit may be less than 35 degrees, more preferably less than 30 degrees, for example, as long as the diameter of the grown crystal does not expand.
  • the meniscus angle .theta be the angle formed by ⁇ : contact point between the edge of the seed crystal and the liquid surface of the raw material solution (hereinafter sometimes referred to as “liquid surface”)
  • l 0 liquid surface when no meniscus is formed
  • l meniscus formed
  • FIG. 6 is a schematic diagram of the surface of the seed crystal 9.
  • the seed crystal 9 has a surface cut at an angle of more than 0 degrees and 5 degrees or less with respect to the (000-1) plane, and the angle between the surface of the seed crystal 9 and the (000-1) plane is off. called a corner. It is preferably 0.1 degrees or more and 5 degrees or less, more preferably 0.5 degrees or more and 5 degrees or less. Further, in order to obtain a desired silicon carbide single crystal, the seed crystal 9 may have a surface cut along the (000-1) plane without providing the above-described off-angle.
  • the step flow direction is the direction in which steps progress. For example, if the off angle is formed toward the [11-20] direction, the step flow direction is the [11-20] direction.
  • the off-angle reference may be made to FIG. 20 of International Publication No. 2014/034080, which is a patent document.
  • the thickness of the seed crystal 9 is not particularly limited, but may be 0.1 mm or more. In the present embodiment, the thickness of the seed crystal 9 tends to be 0.3 mm or more because the defect density of the resulting silicon carbide single crystal 11 tends to decrease as the thickness of the seed crystal 9 increases. It is preferably 1 mm or more, more preferably 3 mm or more. If the seed crystal 9 is excessively thick, the seed crystal 9 becomes too expensive, so the thickness of the seed crystal 9 is preferably 10 mm or less.
  • At least the raw material solution 5 that contacts the crystal growth surface of the seed crystal 9 must be in a supersaturated state.
  • a seed crystal 9 is immersed in a raw material solution 5 having a carbon saturated concentration, and then supercooled to make the carbon concentration supersaturated.
  • a temperature difference method or the like is possible in which a seed crystal 9 is immersed in a solution 5 and crystals are grown at a low temperature.
  • the entire raw material solution 5 becomes supersaturated, so it is possible to grow the crystal by rotating the pulling shaft 7 while the seed crystal 9 is immersed in the raw material solution 5.
  • the seed crystal 9 may remain fixed, it is preferable to rotate it in a plane parallel to the surface of the raw material solution 5 .
  • the rotation speed is preferably 20 to 300 rpm, more preferably 20 to 150 rpm.
  • the rotation of the seed crystal 9 is preferably rotation that periodically repeats forward rotation and reverse rotation, and the cycle is about 30 seconds to 5 minutes. By periodically changing the direction of rotation, it is possible to control the flow of the raw material solution 5 on the growth surface of the seed crystal during crystal growth.
  • the off-substrate seed crystal 9 shown in FIG. 6 is cut to have a predetermined off-angle with respect to the (000-1) plane, as described above.
  • the seed crystal 9 described above is preferably attached to the pulling shaft 7 so that the surface having the off-angle is brought into contact with the raw material solution 5 as a crystal growth surface.
  • the temperature T1 of the crystal growth interface P1 and the temperature T2 of the solution at the point P2 at a distance of 5 mm from the crystal growth interface P1 satisfy T2>T1, and between P1 and P2 is greater than 0 K/cm and less than or equal to 40 K/cm.
  • the temperature gradient is a value calculated by thermal fluid simulation.
  • the lower limit of the temperature gradient may be preferably 2 K/cm or more, more preferably 4 K/cm or more.
  • the upper limit of the temperature gradient may be preferably 30 K/cm or less, more preferably 20 K/cm or less.
  • the silicon carbide single crystal 11 is separated from the pulling shaft 7, and if necessary, the periphery thereof is processed by polishing or the like to obtain a silicon carbide single crystal ingot 21 as shown in FIG. 2(a) or FIG. 3(a). , 22.
  • the crystal growth direction of silicon carbide single crystal ingots 21 and 22 coincides with the long axis direction of silicon carbide single crystal ingots 21 and 22 .
  • the silicon carbide single crystal ingots 21 and 22 may be separated from the seed crystal 9 .
  • the silicon carbide single crystal wafers 31 are manufactured by cutting the silicon carbide single crystal ingots 21 and 22 thus manufactured.
  • the silicon carbide single crystal wafer 31 can be used as a bare wafer or used as a seed crystal wafer for epitaxial growth.
  • Example 1 First, as the heating step described above, the pressure of the halogen gas (HCl is used here) in the furnace is set to 10 kPa with respect to the crucible 3 and the pulling shaft 7 of the crystal growth apparatus 1 as shown in FIG. C. or lower for 20 hours in a halogen gas atmosphere.
  • the pressure of the halogen gas (HCl is used here
  • the halogen gas in the crystal growth apparatus 1 is removed, and a disk-shaped 4H—SiC seed crystal with a diameter of 150 mm and a thickness of 500 ⁇ m is fixed to the lower end of the carbon pulling shaft 7 . bottom.
  • the growth plane of the seed crystal 9 in contact with the solution was the C plane, which was offset by 1 degree from the [0001] direction to the [11-20] direction.
  • the inside of the crystal growth apparatus 1 was replaced with atmospheric gas (He+0.1 vol % N 2 ), and the pressure inside the apparatus was set to 100 kPa. Then, the Si—Cr powder (containing 0.4 mol % of the acceptor-type element) in the crucible 3 is heated by the heater 4 to form a silicon melt. A solution was prepared.
  • the seed crystal 9 was brought into contact with the Si—C solution surface to grow a silicon carbide crystal from the lower end of the seed crystal 9 .
  • the temperature of the surface of the solution was set to 1950° C., and conditions were set so that the flow of the solution formed an upward flow with respect to the growth interface during the growth.
  • the solution flow was set to a desired upward flow by applying Lorentz force to the solution side by an electromagnetic field formed by energizing the magnetic field coil and controlling the conditions.
  • the pulling speed of the pulling shaft 7 was appropriately adjusted according to the crystal growth speed, and the crystal growth was continued until the crystal length exceeded 20 mm. .
  • the rotational speed of the pull-up shaft 7 was controlled to a maximum of 100 rpm, and the temperature in the vicinity of the growth interface was controlled to 1950°C ⁇ 20°C.
  • the temperature T1 of the crystal growth interface P1 and the temperature T2 of the solution at the point P2 at a distance of 5 mm from the crystal growth interface P1 satisfy T2>T1, and the temperature gradient between P1 and P2 is 18 K/ cm.
  • the temperature of the growth interface and the temperature gradient were realized by controlling the output balance of the heater that heats the crucible. After that, the obtained silicon carbide single crystal was separated from the pulling shaft.
  • the central portion of the separated silicon carbide single crystal was sliced with a wire saw at an off angle of 4 degrees with respect to the (0001) plane to a thickness of 500 ⁇ m, and then the Si surface side was mirror-polished to obtain a silicon carbide single crystal. I got a wafer.
  • the center point (central point) of the silicon carbide single crystal wafer 31 and the peripheral four points (peripheral points) 50 mm apart from the center were measured using the above-described center point measurement method. Boron concentration was measured in a similar manner. As a result, the obtained five boron concentrations were all 1.0 ⁇ 10 16 atoms/cm 3 or less.
  • the evaluation value was calculated by the formula "(boron concentration at peripheral point ⁇ boron concentration at central point)/boron concentration at central point". As a result, all the evaluation values of the four pairs were within the range of -0.3 or more and 3.0 or less.
  • Table 1 shows the evaluation results.
  • the table shows the off angle from the (0001) plane, the donor concentration, the acceptor concentration, the n-type carrier concentration, and the temperature gradient in addition to the above characteristics.
  • Examples 1 to 4 have the features 1 to 4 described above, have a low concentration of boron, which is an unavoidable impurity, and have excellent crystallinity and conductivity by reducing basal plane dislocations and misorientation. It can be seen that the wafer is a silicon carbide single crystal wafer.
  • Comparative Examples 1 to 6 manufactured by a method different from Examples 1 to 4 do not have at least one of features 1 or 2 and do not have at least one of features 1 to 4.
  • HCl was used as the halogen gas in the furnace in the examples shown here, but the inventors have confirmed that similar results can be obtained when other halogen gases are used.
  • a silicon carbide single crystal wafer The silicon carbide single crystal wafer contains boron at a concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less, A region having a basal plane dislocation density of 100/cm 2 or less exists on the surface of the silicon carbide single crystal wafer, the region includes the center of the surface; The silicon carbide single crystal wafer, wherein the area of the region is at least one fourth of the area of the surface. 2.
  • a substantially cylindrical or polygonal silicon carbide single crystal ingot A wafer cut perpendicular to the crystal growth direction contains boron at a concentration of 1.0 ⁇ 10 16 atoms/cm 3 or less, A region having a basal plane dislocation density of 100/cm 2 or less exists on the surface of the wafer, the region includes the center of the surface; A silicon carbide single crystal ingot, wherein the area of the region is at least a quarter of the area of the surface. 7. 7. The silicon carbide single crystal ingot according to 6, wherein the length of the silicon carbide single crystal ingot in the crystal growth direction is 10 mm or more. 8.
  • the silicon carbide seed crystal is brought into contact with a raw material solution containing silicon and carbon from above to grow the crystal, Before the step of growing the crystal, a heating step of heating the member used in the step, In the step of growing the crystal, the temperature T1 at the crystal growth interface P1 and the temperature T2 of the solution at the point P2 at a distance of 5 mm from the growth interface satisfy T2>T1, and the temperature between P1 and P2
  • a method for producing a silicon carbide single crystal having a gradient of more than 0 K/cm and less than or equal to 40 K/cm. 9.

Abstract

本発明の炭化ケイ素単結晶ウエハ(31)は、1.0×1016atoms/cm以下の濃度でホウ素を含み、表面には、基底面転位密度が100個/cm以下の中央領域(33)が存在する。中央領域(33)は、炭化ケイ素単結晶ウエハ(31)の表面の中心を含む。中央領域(33)の面積は、炭化ケイ素単結晶ウエハ(31)の表面の面積の4分の1以上である。

Description

炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法
 本発明は、炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法に関する。
 関連する技術が、特許文献1乃至7に開示されている。
 特許文献1は、溶液成長法で得られた炭化ケイ素単結晶を開示している。そして、特許文献1は、炭化ケイ素単結晶の基底面転位密度等を開示している。
 特許文献2は、昇華再結晶法で得られた炭化ケイ素単結晶を開示している。そして、特許文献2は、炭化ケイ素単結晶の基底面転位密度やキャリア濃度等を開示している。
 特許文献3は、溶液成長法で得られた炭化ケイ素単結晶を開示している。そして、特許文献3は、炭化ケイ素単結晶のホウ素濃度や窒素濃度等を開示している。
 特許文献4は、昇華再結晶法で得られた炭化ケイ素単結晶を開示している。そして、特許文献4は、炭化ケイ素単結晶のホウ素濃度や、窒素濃度や、アルミニウム濃度や、抵抗率等を開示している。
 特許文献5は、昇華再結晶法で得られた炭化ケイ素単結晶を開示している。そして、特許文献5は、炭化ケイ素単結晶のホウ素濃度や、窒素濃度や、アルミニウム濃度や、抵抗率等を開示している。
 特許文献6は、昇華再結晶法で得られた炭化ケイ素単結晶を開示している。そして、特許文献6は、炭化ケイ素単結晶の窒素濃度や、アルミニウム濃度や、比抵抗や、積層欠陥密度等を開示している。
 特許文献7は、溶液成長法で得られた炭化ケイ素単結晶を開示している。
国際公開第2017/047536 特開2016-164120号公報 特開2016-88794号公報 特表2011-506253号公報 特開2009-167047号公報 特開2015-30640号公報 特開2018-111639号公報
 本発明は、特許文献1乃至7に開示されていない高品質な炭化ケイ素単結晶を実現することを課題とする。
 本発明によれば、
 炭化ケイ素単結晶ウエハであって、
 前記炭化ケイ素単結晶ウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
 前記炭化ケイ素単結晶ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
 前記領域は、前記表面の中心を含み、
 前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶ウエハが提供される。
 また、本発明によれば、
 略円柱状又は略多角柱状の炭化ケイ素単結晶インゴットであって、
 結晶成長方向に対して垂直に切り出したウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
 前記ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
 前記領域は、前記表面の中心を含み、
 前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶インゴットが提供される。
 また、本発明によれば、
 炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に上方より接触させながら結晶を成長させる炭化ケイ素単結晶の製造方法において、
 結晶を成長させる工程の前に、前記工程で用いる部材を加熱する加熱工程を有し、
 前記結晶を成長させる工程において、結晶成長界面P1の温度T1と、成長界面からの距離が5mmの地点P2の溶液の温度T2とが、T2>T1を満たし、かつ、P1とP2の間の温度勾配が0K/cmより大、40K/cm以下である炭化ケイ素単結晶の製造方法が提供される。
 本発明によれば、新たな高品質な炭化ケイ素単結晶が実現される。
本実施形態にかかる炭化ケイ素単結晶ウエハ31の図。 (a)本実施形態にかかる炭化ケイ素単結晶インゴット21の図、(b)A-A´断面図。 (a)本実施形態にかかる炭化ケイ素単結晶インゴット22の図、(b)D-D´断面図。 本実施形態にかかる結晶成長装置1の概要を示す図。 結晶成長装置1を利用した結晶成長の様子を示す図。 オフ角を有する種結晶9の断面の模式図。 メニスカスの角度θを説明するための図。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 また、本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 また、本明細書において、(000-1)面などの表記における「-1」は、本来、数字の上に横線を付して表記するところを、「-1」と表記したものである。4H-SiC又は6H-SiCとは、4H又は6Hの結晶多形を持つ炭化ケイ素結晶を表す。Hは六方晶、数字は積層方向の一周期中に含まれる、正四面体構造層の数を表す。
<炭化ケイ素単結晶ウエハ>
 次に、本実施形態の炭化ケイ素単結晶ウエハについて説明する。図1に、本実施形態の炭化ケイ素単結晶ウエハ31の一例を示す。図には、面形状が円状の炭化ケイ素単結晶ウエハ31が示されている。なお、円状に代えて、多角形状(六角形状等)の炭化ケイ素単結晶ウエハ31としてもよい。炭化ケイ素単結晶ウエハ31の直径は100mm以上、厚さは50μm以上500μm以下であるのが好ましい。
 炭化ケイ素単結晶ウエハ31は、表面が4H-SiC又は6H-SiCの(0001)面から±5度以下にあるようにインゴットから切り出されたものであることが好ましく、炭化ケイ素単結晶ウエハ31の表面が、炭化ケイ素単結晶の(0001)面から0.5度以上5度以下傾いたオフ角を有してもよい。なお、炭化ケイ素単結晶ウエハ31は、オリエンテーションフラットと呼ばれる平面部分や、ノッチと呼ばれる溝を有していてもよい。
 炭化ケイ素単結晶ウエハ31は、以下の特徴1及び2を備える。また、炭化ケイ素単結晶ウエハ31は、以下の特徴3及び4を備えることが好ましい。
(特徴1)炭化ケイ素単結晶ウエハ31内には、1.0×1016atoms/cm以下の濃度でホウ素が含まれる。ホウ素は、不可避の不純物として含まれる。
 特徴1は、不可避の不純物であるホウ素の濃度が1.0×1016atoms/cm以下と十分に低減されたことである。また、特徴1は、不可避の不純物であるホウ素の濃度範囲(炭化ケイ素単結晶ウエハ31内に混入し得る濃度の範囲)が0より大1.0×1016atoms/cm以下と十分に狭められたことである。好ましくは、0より大1.0×1015atoms/cm以下としてもよい。
 意図せず入る不可避の不純物であるホウ素の濃度が高くなるほど、炭化ケイ素単結晶ウエハ31の特性(例えば結晶性や電気的特性)が意図したものから大きく外れる可能性がある。また、不可避の不純物が混入してしまう場合、その混入を考慮して製品の各種特性を設計しなければならない場合がある。そして、この不純物の濃度が予測できない場合、また予測できても取り得る濃度範囲が広い場合、製品の設計が難しくなる。特徴1を備える炭化ケイ素単結晶ウエハ31は、意図せず入る不可避の不純物であるホウ素の濃度範囲が1.0×1016atoms/cm以下と狭い。このため、ホウ素の濃度を考慮した商品設計が比較的容易になる。
 また、後述するように面内の複数点のホウ素濃度を測定した時、いずれの測定点でもホウ素濃度は1.0×1016atoms/cm以下であり、かつ面内のホウ素濃度のバラつきも小さいことから、得られる炭化ケイ素単結晶ウエハ31の面内の結晶性や電気的特性の均一性が良好であると考えられる。
 ホウ素の濃度は、炭化ケイ素単結晶ウエハ31の中心1点を、二次イオン質量分析法(SIMS)で測定した値である。本実施形態におけるホウ素濃度は、二次イオン質量分析装置(IMS 6f、CAMECA社)を用いて、ダイナミックSIMSモードで測定した値を用いた。
 また、ホウ素濃度のバラつきについては、炭化ケイ素単結晶ウエハ31の中心1点(以下、「中心点」)と、中心から50mm離れた周辺の4点(以下、「周辺点」)との測定結果に基づき評価した。これら5点のホウ素濃度は、上記の中心1点の測定方法と同様の方法で測定した。そして、本明細書では、中心点と4つの周辺点各々との4つのペアにおいて、「(周辺点のホウ素濃度-中心点のホウ素濃度)/中心点のホウ素濃度」の式で評価値を算出し、4つのペアの評価値の平均値が-0.3以上、3.0以下であるとき、より好ましくは4つのペアの評価値の全てが-0.3以上、3.0以下であるとき、バラつきが小さいとした。
(特徴2)炭化ケイ素単結晶ウエハ31の表面には、基底面転位密度が100個/cm以下の領域が存在する。以下、当該領域を「中央領域33」と呼ぶ。図1に示すように、中央領域33は、炭化ケイ素単結晶ウエハ31の表面の中心を含み、分割されていない領域を指すものとする。中央領域33の中心と、炭化ケイ素単結晶ウエハ31の表面の中心とは重なるのが好ましく、中央領域33の形状と炭化ケイ素単結晶ウエハ31の表面の形状が同じか相似であることがさらに好ましい。そして、中央領域33の面積は、炭化ケイ素単結晶ウエハ31の表面の面積の4分の1以上である。また、中央領域33は、好ましくは表面の面積の3分の1以上としてもよい。
 特徴2は、基底面転位密度が100個/cm以下と十分に低減された中央領域33を備え、この中央領域33は表面の面積の4分の1以上と広く、かつ表面の中心を含むことである。好ましくは、基底面転位密度が80個/cm以下、より好ましくは基底面転位密度が50個/cm以下、としてもよい。
 本明細書における基底面転位は、KOHを用いたエッチピット法で観測可能な転位を指すものとし、その基底面転位密度はKOHを用いたエッチピット法で測定した値を用いるものとする。具体的には、520℃に加熱したKOH融液内に、Si面側をCMP研磨した炭化ケイ素単結晶単結晶ウエハ31を大気雰囲気下で30分間浸漬した。取出し後、炭化ケイ素単結晶ウエハ31を超純水で洗浄し、測定に供した。
(特徴3)炭化ケイ素単結晶ウエハ31の電気抵抗率が60mΩcm以下である。特徴3は、電気抵抗率が60mΩcm以下と、導電性に優れていることである。好ましくは50mΩcm以下、さらに好ましくは30mΩcm以下としてもよい。
 電気抵抗率は、炭化ケイ素単結晶ウエハ31の中心1点と、ウエハ外周部4点(0度、90度、180度、270度。各々、中心からウエハ半径の80%離れた地点)との計5点各々における測定結果の平均値である。測定法は渦電流法による非接触測定である。本実施形態においては、ナプソン社のEC-80Pを用いて測定を行った。
(特徴4)炭化ケイ素単結晶ウエハ31の結晶面内の方位差が50arcsec以下である。特徴4は、結晶面内の方位差が50arcsec以下と十分に低減され、結晶内の歪が抑制されて結晶性に優れていることである。好ましくは40arcsec以下としてもよい。
 方位差は、炭化ケイ素単結晶ウエハ31の中心1点と、ウエハ外周部4点(0度、90度、180度、270度。各々、中心からウエハ半径の80%離れた地点。)との計5点各々におけるX線回折法を用いた方位差の測定結果の平均値である。本実施形態においては、X線回折装置(RIGAKU製、smartlab)を用いて測定を行った。
 特徴1及び2を備える炭化ケイ素単結晶ウエハ31は、不可避の不純物であるホウ素の濃度が低く、その濃度範囲が狭く、基底面転位の低減により結晶性に優れたウエハである。また、以下の比較例で示すように、ホウ素濃度が1.0×1016atoms/cmを超えると、ホウ素濃度が高くなるにつれて基底面転位密度が高くなる傾向が見られた。詳細なメカニズムは不明だが、ホウ素濃度を1.0×1016atoms/cm以下とすることで、基底面転位の発生を抑制しやすくなると推察される。
 また、特徴1及び2に加えて、特徴3及び/又は4を備える炭化ケイ素単結晶ウエハ31は、導電性と結晶性を両立させたウエハである。上記の導電性は、炭化ケイ素単結晶ウエハ31内に含まれる導電性不純物によってもたらされる。上記導電性不純物にはドナー型導電性不純物(以下、「ドナー型」と記載することもある)とアクセプター型導電性不純物(以下、「アクセプター型」と記載することもある)があり、ドナー型とアクセプター型との差から算出できるキャリア濃度が高くなるほど、電気抵抗率を低くすることが可能である。しかし、特にドナー型の導電性不純物の濃度が高くなるほど、結晶性が低下する傾向にあることが知られている。
 本発明の好適な実施形態は、より好ましくは、ドナー型導電性不純物とアクセプター型導電性不純物とを有し、かつドナー型がアクセプター型よりも多いn型の炭化ケイ素単結晶ウエハ31であるとしてもよい。当該実施形態は、n型キャリア濃度が1×1019atoms/cm以上、10×1019atoms/cm以下の範囲でも、基底面転位を低減することが可能である。また、好ましくは、ドナー型導電性不純物の濃度が、1×1018atoms/cm以上、1×1021atoms/cm以下としてもよく、より好ましくは5×1018atoms/cm以上、2×1020atoms/cm以下としてもよい。
 上記のドナー型の導電性不純物としては、例えば窒素やリンがよく知れており、より好ましくは窒素としてもよい。また、アクセプター型の導電性不純物としては、周期表の13族に属する元素がよく知られており、本発明はホウ素濃度を低減することにより前述したような好適な特性が得られることを見出したことから、当該実施形態のアクセプター型の導電性不純物としては、ホウ素を除く周期表の13族に属する元素とするのが好ましい。より好ましくは、アルミニウム、ガリウム、インジウムとしてもよい。なお、導電性不純物の濃度は、ホウ素濃度と同様の方法で測定することが可能である。
<炭化ケイ素単結晶インゴット>
 次に、本実施形態の炭化ケイ素単結晶インゴットについて説明する。本実施形態の炭化ケイ素単結晶インゴットは、略円柱状又は略多角柱状としてもよい。また、2つの平面を上面、下面とし、上面及び下面と接する面を側面としてもよい。なお、上面と下面は、後述するA-A´切断面やD-D´切断面と平行な面とする。
 図2に、略円柱状の炭化ケイ素単結晶インゴット21を示す。図2(a)は斜視図、図2(b)は、図2(a)でのA-A´切断面での断面図である。また、図2(b)のB-B´の長さを炭化ケイ素単結晶インゴット21の直径、及び図2(b)のC-C´を直径とする領域を炭化ケイ素単結晶インゴット21の中央領域23としてもよい。図3に、略多角柱状の炭化ケイ素単結晶インゴット22を示す。図3(a)は斜視図、図3(b)は、図3(a)でのD-D´切断面での断面図である。また、図3は略多角柱状だが、図3(a)でのD-D´切断面の中心を通る最大長さを直径としてもよく、例えば、図3(b)のE-E´の長さを炭化ケイ素単結晶インゴット22の直径としてもよい。また、図3(b)のF-F´を直径とする領域を炭化ケイ素単結晶インゴット22の中央領域23としてもよい。
 本実施形態の炭化ケイ素単結晶インゴットの結晶成長方向の長さは好ましくは10mm以上、より好ましくは15mm以上である。また、炭化ケイ素単結晶インゴットの上面の直径と、下面の直径との差分が小さい方が好ましく、差分は0mm以上0.5mm以下としてもよい。
 本実施形態の炭化ケイ素単結晶インゴット21、22から、結晶成長方向(c軸方向)に対して垂直に切り出したウエハを、上述した炭化ケイ素単結晶ウエハ31とすることが可能である。すなわち、本実施形態の炭化ケイ素単結晶インゴット21、22から切り出したウエハは、上述した優れた各特徴を備える。
 また、炭化ケイ素単結晶インゴット21、22内の領域である中央領域23は、ウエハとして切り出されることで、前述した炭化ケイ素単結晶ウエハ31の中央領域33となることができる。さらに、好ましくは、炭化ケイ素単結晶インゴット21、22は、c軸方向に垂直に切り出した面において、前述した特徴1及び2、さらに特徴3及び/又は4を備えることができる。なお、特徴1~4については、前述した記載と重複するため、その説明はここでは省略するものとする。
<製造方法>
 次に、上述した炭化ケイ素単結晶ウエハ31及び炭化ケイ素単結晶インゴット21、22の製造方法の一例(以下、「本実施形態の製造方法」という場合がある)を説明する。なお、本実施形態の炭化ケイ素単結晶ウエハ31及び炭化ケイ素単結晶インゴット21、22は、ここで示した製造方法で製造されたものに限定されない。
 図4は、本実施形態の製造方法で利用する結晶成長装置1の概要を示す図である。結晶成長装置1は、るつぼ3と、引き上げ軸7と、ヒーター4a、4b(以後、合わせてヒーター4とも記載する場合がある)とを有する。結晶成長装置1は、るつぼ3、引き上げ軸7等を配置可能な内部空間(以下、「炉」と記載することもある)を有し、当該内部空間は密閉状態とすることが可能としてもよい。また、ヒーター4は当該内部空間に配置されるものでも、当該内部空間の外から加熱するものでもよい。さらに、結晶成長装置1は当該内部空間へ各種気体を供給可能な供給口(図示しない)や、当該内部空間内から排出可能な排気口(図示しない)や、当該内部空間内の圧力を計測可能な圧力計等を有していてもよい。
 本実施形態の製造方法では、炭化ケイ素の種結晶9を、ケイ素及び炭素を含む原料溶液5に上方より接触させながら結晶を成長させることで、炭化ケイ素単結晶を製造する。
 本実施形態の製造方法では、結晶を成長させる工程(以下、「結晶成長工程」という)の前に、結晶成長工程で用いる部材を加熱する加熱工程を実行する。この加熱工程により、部材中のホウ素を低減することができる。結果、この部材から意図せずホウ素が混入する不都合を低減することができる。また、ハロゲンガス雰囲気中で部材を加熱してもよい。このようにすることで、部材中のホウ素をハロゲン化ホウ素として揮発させることができる。加熱する部材は、ホウ素を含有する部材であり、例えばるつぼ3、引き上げ軸7、種結晶保持用の治具(図示しない)等が挙げられるが、他に使用する治具があれば加熱をしてもよく、これらに限定されない。本明細書において、ハロゲンガスは、Cl、F等の単一のハロゲンからなるガス、ClF、IF、IF等のインターハロゲンガス、及びHCl等のハロゲンを含有するガスを含む。
 加熱条件は、ハロゲンガス雰囲気中で加熱する場合は、1600℃以上、2000℃以下で、1~20時間、ハロゲンガスの圧力を5~100kPaとすることが好ましい。温度は、より好ましくは1700℃以上、2000℃以下、さらに好ましくは1800℃以上、2000℃以下としてもよい。また、ハロゲンガスが雰囲気中に存在しない場合は、2300℃以上、2350℃以下で、10~50時間、装置内の圧力を1~100kPaとするのが好ましい。なお、以下の温度は、被加熱物の温度を指すものとし、例えば温度が1600℃の場合は被加熱物の温度が1600℃になるように加熱するものとする。また、被加熱物の温度は放射温度計で測定可能である。
 加熱工程は、結晶成長工程の前に行えばよく、そのタイミングは特に限定されるものではない。例えば、加熱処理の対象となる部材を入手した後、その部材を初めて使用して結晶成長工程を実行する前に、少なくとも1回その部材を加熱する加熱工程を行ってもよい。その他、結晶成長工程を実行する毎に、その直前に加熱工程を毎回行ってもよい。その他、1日の始まり、1週間の始まり、又は1か月の始まり等の所定のタイミングで、加熱工程を行ってもよい。
 前述した加熱工程時の「装置内の圧力」は、炉内の圧力が前述した範囲内となるように、気体を供給や排気することによって調整可能である。また、「ハロゲンガスの圧力」は、ハロゲンガスのみを供給する場合は炉内の圧力を指し、ハロゲンガスと任意の希釈ガスとを装置内に供給する場合は、炉内のハロゲンガスの分圧を指すものとする。前述の圧力を調整する目的で、気体を供給した後密閉状態としてもよく、気体の供給と排出を同時に行って所定の圧力を保ちながら流通させてもよい。供給する気体は、HeガスやArガス等の不活性ガス、ハロゲンガス等が挙げられる。また、圧力が低い等の反応性が低い条件であればHガスを使用してもよい。ハロゲンガスを用いる場合は、ガスとの接触部材へのダメージや反応性を抑えやすいことから、ClやHClを用いるのが好ましい。
 ハロゲンガス雰囲気中で加熱する場合、ハロゲンガスによる種結晶への影響を抑えるために、別途操作を行ってもよい。例えば、種結晶9を設置しない状態で加熱工程を行い、次に作業可能な温度まで一旦降温し、引き上げ軸7に種結晶9を設置した後に次の工程へ進むのでもよい。あるいは、種結晶9を炉内の雰囲気から隔離可能な隔離部材や保護材を設置し、加熱工程を行った後に、前記の隔離部材や保護材を除去して次の工程へ進むのでもよい。後者の操作の場合、作業が可能であれば意図的に降温させなくともよい。
 加熱工程と結晶成長工程との間に、炉内を脱気する脱気工程を有していてもよい。脱気方法は公知の方法でよく、特に限定されるものではないが、効率良く炉内の雰囲気を除去であることから真空脱気が好ましい。
 次に、結晶成長装置1の詳細及び結晶成長工程の一例を説明する。図4に示す結晶成長装置1は、るつぼ3の内部にケイ素と炭素を含む原料溶液5を有し、引き上げ軸7は、長軸を回転軸として先端に取り付けられた種結晶9を回転可能である。また、種結晶9に向けて下から上へ原料溶液5が流れるような上昇流6が形成されている。るつぼ3と引き上げ軸7の中心は、必ずしも一致していなくてもよいが一致しているのが好ましく、るつぼ3の中心、るつぼ3の回転軸(後述する)、引き上げ軸7の中心、及び引き上げ軸7の回転軸が全て一致していることがより好ましい。
 るつぼ3としては、原料溶液5に炭素を供給可能なグラファイト製の黒鉛るつぼが好ましいが、るつぼ以外から炭素源(例えば、炭化水素ガスや炭素を含有する粉体や液体等)を原料溶液5に添加可能であれば、黒鉛るつぼ以外の坩堝を使用可能である。原料溶液5の組成を均一にするために、るつぼ3を回転させることが好ましく、るつぼ3の中心を回転軸とするのがより好ましい。るつぼ3の回転速度は5~30rpmが好ましく、5~20rpmがより好ましい。上記の範囲内とすることで、装置に過度な負担をかけることなく、効率的に結晶成長させることが可能になる。また、るつぼ3を正方向と逆方向に周期的に回転方向を反転させながら回転させてもよい。
 原料溶液5は、るつぼ3の周囲に設けられたヒーター4a、4bなどにより加熱され、溶融状態が保たれる。ヒーター4a、4bは、誘導加熱式でも抵抗加熱式でもよい。るつぼ3内の温度が1700~2100℃であることが好ましい。なお、るつぼ内の温度は非接触式温度計(チノー製、IR-CZH7型)で原料溶液5表面あるいはその近傍を測定することで得られる。
 原料溶液5のシリコン源としては、金属シリコン、シリコン合金、シリコン化合物などを用いることができる。また、原料溶液の炭素源としては、黒鉛、グラッシーカーボン、炭化ケイ素などの固体の炭素源や、メタン、エタン、プロパン、アセチレンなどの炭化水素ガス、などを用いることができる。
 原料溶液5は、炭化ケイ素の結晶成長に用いられるケイ素と炭素を含む溶液であれば特に限定されないが、添加元素を加えたSi溶媒に、炭素が溶解している溶液を用いることが好ましい。原料溶液のシリコン源として使用されるシリコン合金又はシリコン化合物としては、シリコンと、Ti、Cr、Sc、Ni、Al、Co、Mn、Mg、Ge、As、P、N、O、Dy、Y、Nb、Nd、Feから選ばれる少なくとも一種の添加元素との合金又は化合物を使用できる。特に、炭素溶解度が大きく、蒸気圧が小さく、化学的に安定している点で、Crを20~60モル%含むSi-Cr合金系を溶媒として用いることが好ましい。また、前述した導電性不純物を炭化ケイ素単結晶内に添加する場合、原料溶液5内に所望の元素を含む材料を供給するのが好ましい。
 結晶成長工程時の結晶成長装置1内は、希ガス等の不活性ガスを流通させ、不活性雰囲気とするのが好ましい。圧力は特に限定されるものではないが、大気圧(約100kPa)程度としてもよい。また、炭素源となるガスを供給する場合、CH等の炭化水素系のガスを加えて混合ガス雰囲気としてもよい。また、成長した炭化ケイ素単結晶内に導電性不純物を供給する場合、導電性不純物の供給源となるガスを加えて混合ガス雰囲気としてもよい。
 図4の原料溶液5は、るつぼ3の中央部、るつぼ3内を下から上へ向かう上昇流6が形成され、種結晶9の中心部に接触している。上昇流6を形成すると成長界面における原料溶液5の濃度を安定化させることが可能であるため好ましい。また、上昇流の速度は成長界面から下方向へ1cm離れた位置で0.5cm/s以上、5cm/s以下であることが好ましい。上昇流6の形成方法は特に限定されないが、側面のヒーター4aと底面のヒーター4bの出力を調整する方法や、るつぼ3内に流れを制御可能な突起部や板部を設ける方法、又は、外部からの磁場コイルによる電磁場により生じたローレンツ力により上昇流を形成する方法が考えられる。例えば、底面のヒーター4bの出力を高くすれば、ヒーター4bから上に向かうような対流が生じ、上昇流6が形成される。
 引き上げ軸7は、原料溶液5と種結晶9とが接触した後、原料溶液5に対して種結晶9を相対的にゆっくりと上方に引き上げ、炭化ケイ素単結晶11を成長させる。この時、引き上げ軸7を上方へ動かすものでも、るつぼ3を下方へ動かすのでもよいが、温度分布への影響を比較的小さくするために、引き上げ軸7を上方へ動かすのが好ましい。
 原料溶液5の液面に対し、相対的に種結晶9をゆっくりと上方へ引き上げることで、種結晶9と原料溶液5の液面との間に、原料溶液5の液面から種結晶9方向へ凸形状のメニスカスを形成してもよい。メニスカスを形成することによって、種結晶9周囲の原料溶液5の温度が低下して炭素過飽和度が増大し、成長速度が向上すると推測される。また、メニスカスの形状を調整することで、種結晶9の側面方向への成長速度を増加させることが可能であるため、成長結晶である炭化ケイ素単結晶11の直径を種結晶9の直径より拡大することが可能である。
 炭化ケイ素単結晶11の直径は、種結晶9の直径と同程度でもよいが、図5に示すように、炭化ケイ素単結晶11は、種結晶9よりも直径が大きくなるように結晶成長させてもよい。成長結晶の直径を種結晶9の直径よりも拡大する方法としては、前述したようにメニスカスを形成する方法が挙げられる。
 成長結晶の直径を拡大させる際のメニスカスの角度θは、35度以上とするのが好ましい。より好ましくは60度以上、さらに好ましくは65度以上としてもよい。また、メニスカスを形成していない時のθは90度であるため、上限は特に限定されるものではないが、90度未満としてもよく、より好ましくは85度以下としてもよい。
 また、所望の直径まで拡大させた後は、所定の直径を維持したまま結晶成長を行ってもよい。この時メニスカスを形成してもしなくとも良いが、形成する場合は、前述の角度θは10度以上としてもよい。また、上限は成長結晶の径が拡大しなければ良いが、例えば35度未満、より好ましくは30度以下としてもよい。
 本明細書では、図7(A)に示すように、前述のメニスカスの角度θを、種結晶を側面から見た時の、点αを通る液面lの垂直線と、液面lとのなす角とする。
 α:種結晶の端部と原料溶液の液面(以下、「液面」と記載することもある)との接点
 l:メニスカスが形成されていない場合の液面
 l:メニスカスが形成された場合の液面
 なお、メニスカスが形成されていない場合、図7(B)に示すように、前述の垂直線と液面lとのなす角度をθ(=90度)とする。また、種結晶表面に成長結晶が形成された後は、点αを成長結晶の端部と液面との接点とする。
 種結晶9は、4H-SiCおよび6H-SiCに代表される結晶多形を用いることができる。図6は種結晶9の表面の模式図である。種結晶9は(000-1)面に対して0度超、5度以下傾斜して切断された表面を有しており、種結晶9の表面と(000-1)面との角度をオフ角と呼ぶ。好ましくは0.1度以上、5度以下、さらに好ましくは0.5度以上、5度以下としてもよい。また、所望の炭化ケイ素単結晶とするために、上記のオフ角を設けず、(000-1)面で切断された表面を有する種結晶9としてもよい。また、ステップフロー方向とは、ステップが進展する方向である。例えば、[11-20]方向に向けてオフ角が形成されていれば、ステップフロー方向は[11-20]方向である。オフ角については、特許文献である国際公開第2014/034080号の図20を参考としてもよい。
 種結晶9の厚さは、特に限定はされないが、0.1mm以上としてもよい。本実施形態においては、種結晶9の厚さが厚い方が、得られる炭化ケイ素単結晶11の欠陥密度が減少する傾向があるため、種結晶9の厚さは0.3mm以上であることが好ましく、1mm以上であることがより好ましく、3mm以上であることがさらに好ましい。なお、種結晶9が過度に厚い場合、種結晶9が高価になりすぎるため、種結晶9の厚さは10mm以下とするのが好ましい。
 少なくとも種結晶9の結晶成長面に接触する原料溶液5は、過飽和状態になっている必要がある。溶質である炭素の過飽和状態を得る方法としては、炭素が飽和濃度となっている原料溶液5に種結晶9を浸漬後、過冷却によって炭素濃度を過飽和状態とする冷却法、温度勾配を有する原料溶液5中に種結晶9を浸漬し、低温部で結晶成長させる温度差法などが可能である。
 温度差法を用いる場合は、ヒーター4の加熱を制御するか、種結晶9により冷却する等により、種結晶9の近辺のみを過飽和状態とし、種結晶9と原料溶液5の液面とが接触した状態を維持できるような位置で回転しながら引き上げることで、種結晶9の結晶成長面に炭化ケイ素の結晶を析出させることが可能である。また、前述したように、この時メニスカスを形成することで成長結晶の直径を拡大することが可能である。
 冷却法を用いる場合は、原料溶液5の全体が過飽和となるため、種結晶9を原料溶液5の内部に浸漬した状態で、引き上げ軸7を回転させることでも結晶成長させることが可能である。
 種結晶9は、固定したままでもよいが、原料溶液5の表面に平行な面内で回転させることが好ましい。種結晶9を回転させる場合、回転速度は20~300rpmが好ましく、20~150rpmがより好ましい。回転速度を上記範囲内とすることで、装置に過度な負担をかけることなく、効率良く結晶成長することが可能となる。
 また、種結晶9の回転は、周期的に正回転と逆回転を繰り返す回転であることが好ましく、その周期は30秒~5分程度である。周期的に回転方向を入れ替えることで、結晶成長を行う際の種結晶の成長表面における原料溶液5の流れを制御することができる。
 図6に示したオフ基板である種結晶9は、前述したように、(000-1)面に対して、所定のオフ角を有するように切り出されている。前述した種結晶9は、オフ角を有する面を結晶成長面として原料溶液5に接触させるように、引き上げ軸7に取り付けられるのが好ましい。
 また、結晶成長工程においては、結晶成長界面P1の温度T1と、結晶成長界面P1からの距離が5mmの地点P2の溶液の温度T2とが、T2>T1を満たし、かつ、P1とP2の間の温度勾配が0K/cmより大、40K/cm以下である。このような条件でゆっくり結晶成長させることで、熱によってもたらされる結晶歪みを低減することができる。なお、当該温度勾配は、熱流体シミュレーションにより算出した値である。温度勾配の下限値は、好ましくは2K/cm以上、より好ましくは4K/cm以上としてもよい。また、温度勾配の上限値は、好ましくは30K/cm以下、より好ましくは20K/cm以下としてもよい。
 炭化ケイ素単結晶11は、引き上げ軸7から切り離され、必要に応じてその周囲を研磨等で加工することにより、図2(a)や図3(a)に示すような炭化ケイ素単結晶インゴット21、22となる。炭化ケイ素単結晶インゴット21、22の結晶成長方向は、炭化ケイ素単結晶インゴット21、22の長軸方向と一致する。また、炭化ケイ素単結晶インゴット21、22は種結晶9と切り離されていてもよい。
 そして、このようにして製造された炭化ケイ素単結晶インゴット21、22を切断することで、炭化ケイ素単結晶ウエハ31が製造される。当該炭化ケイ素単結晶ウエハ31は、ベアウエハとして用いたり、エピタキシャル成長用の種結晶用ウエハとして供することが可能である。
<サンプルの製造方法>
[実施例1]
 まず、上述した加熱工程として、図4に示すような結晶成長装置1のるつぼ3及び引き上げ軸7に対し、炉内のハロゲンガス(ここではHClを使用)は圧力を10kPaとし、1800℃以上2000℃以下で20時間、ハロゲンガス雰囲気中での加熱処理を行った。
 その後、一旦室温程度まで降温させた後、結晶成長装置1内のハロゲンガスを除去し、直径150mm、厚さ500μmの円板状の4H-SiC種結晶を炭素製の引き上げ軸7の下端に固定した。種結晶9の溶液に接する成長面はC面であり、[0001]方向から[11-20]方向に1度オフセットしていた。
 次に、結晶成長装置1内を雰囲気ガス(He+0.1vol%N)で置換し、装置内の圧力を100kPaとした。そして、ヒーター4を加熱してるつぼ3内のSi-Cr粉末(アクセプター型の元素を0.4mol%含有)をシリコン融液とし、さらにシリコン融液を保持することで炭素が溶解したSi-C溶液を準備した。
 次に、種結晶9をSi-C溶液表面に接触させて、種結晶9下端から炭化ケイ素結晶を成長させた。この時、溶液表面の温度を1950℃とし、成長中は溶液の流れが成長界面に対して上昇流が形成されるような条件とした。溶液流れは、磁場コイルへの通電により形成される電磁場により溶液側へローレンツ力を作用させ、その条件制御により所望の上昇流とした。
 その後、引き上げ軸7を回転させて種結晶9を最大30rpmで回転させながら、結晶成長速度に合わせて引き上げ軸7の引上げ速度を適宜調整し、結晶長さが20mmを超えるまで育成を継続させた。この結晶育成の継続時には、引き上げ軸7の回転速度を最大100rpm、成長界面付近の温度を1950℃±20℃に制御した。また、結晶成長界面P1の温度T1と、結晶成長界面P1からの距離が5mmの地点P2の溶液の温度T2とが、T2>T1を満たし、かつ、P1とP2の間の温度勾配が18K/cmとなるように制御した。前記の成長界面の温度や温度勾配は、るつぼを加熱するヒータの出力バランスを制御することで実現した。その後、得られた炭化ケイ素単結晶を引き上げ軸から切り離した。
 切り離した炭化ケイ素単結晶の中央部を、ワイヤソーを用いて(0001)面に対して4度のオフ角で厚さ500μmにスライスし、その後Si面側を鏡面研磨することで、炭化ケイ素単結晶ウエハを得た。
 実施例1のサンプルの製造方法の一部を変更して、実施例2乃至4、及び比較例1乃至6のサンプルを作成した。以下、実施例1から変更した点のみを示す。
[実施例2]
-加熱工程-
時間:10時間
-結晶を成長させる工程-
温度勾配:12K/cm
アクセプター元素:0.5mol%、N:0.1vol%
[実施例3]
-加熱工程-
時間:3時間
-結晶を成長させる工程-温度勾配:7K/cm
アクセプター元素:0.5mol%、N:0.15vol%
[実施例4]
-加熱工程-
温度:2300℃以上2350℃以下
時間:10時間
ハロゲンガスの圧力:0kPa(Arガスの分圧10kPa)
-結晶を成長させる工程-
温度勾配:10K/cm
アクセプター元素:0.4mol%、N:0.15vol%
[比較例1]
-加熱工程-
なし
-結晶を成長させる工程-
温度勾配:10K/cm
アクセプター元素:0.5mol%、N:0.15vol%
[比較例2]
-加熱工程-
なし
-結晶を成長させる工程-
温度勾配:15K/cm
アクセプター元素:0.8mol%、N:0.15vol%
[比較例3]
-加熱工程-
なし
-結晶を成長させる工程-
温度勾配:13K/cm
アクセプター元素:0.7mol%、N:0.15vol%
[比較例4]
-加熱工程-
なし
-結晶を成長させる工程-
温度勾配:7K/cm
アクセプター元素:0.7mol%、N:0.15vol%
[比較例5]
-加熱工程-
時間:10時間
-結晶を成長させる工程-
温度勾配:50K/cm
アクセプター元素:0.7mol%、N:0.15vol%
[比較例6]
-加熱工程-
温度:1900℃以上2100℃以下
時間:10時間
-結晶を成長させる工程-
温度勾配:70K/cm
アクセプター元素:0.7mol%、N:0.15vol%
<サンプルの評価>
 得られたサンプルの各種特性を評価した。
[ホウ素濃度、導電性不純物濃度]
 炭化ケイ素単結晶ウエハの中心1点を、二次イオン質量分析法(SIMS)で測定した。また、得られたドナー型導電性不純物の濃度(以下、「ドナー濃度」と記載することもある)とアクセプター型の導電性不純物の濃度(以下、「アクセプター濃度」)との差から、n型キャリア濃度を算出した。
 また、実施例1~4については、炭化ケイ素単結晶ウエハ31の中心1点(中心点)と、中心から50mm離れた周辺の4点(周辺点)について、上記の中心1点の測定方法と同様の方法でホウ素濃度を測定した。その結果、得られた5点のホウ素濃度はいずれも1.0×1016atoms/cm以下であった。また、中心点と4つの周辺点各々との4つのペアにおいて、「(周辺点のホウ素濃度-中心点のホウ素濃度)/中心点のホウ素濃度」の式で評価値を算出した。結果、4つのペアの評価値の全てが-0.3以上、3.0以下の範囲内となった。
[基底面転位密度]
 上述したKOHを用いたエッチピット法で測定した。具体的には、520℃に加熱したKOH融液内に、Si面側をCMP研磨した炭化ケイ素単結晶単結晶ウエハを大気雰囲気下で30分間浸漬した。取出し後、炭化ケイ素単結晶ウエハを超純水で洗浄し、測定に供した。炭化ケイ素単結晶ウエハの中心から10cm以内の領域を観察対象とした。観察は光学顕微鏡(オリンパス製、BX53)を用いて、観察時の視野を1cm四方の領域とし、カメラを走査して観察領域全てを評価した。
[結晶面内の方位差]
 上述した方法で、炭化ケイ素単結晶ウエハの中心1点と、ウエハ外周部4点(0度、90度、180度、270度。各々、中心からウエハ半径の80%離れた地点。)との計5点各々における方位差を測定した。そして、5点の方位差の平均値を算出した。
[電気抵抗率]
 上述した方法で、炭化ケイ素単結晶ウエハの中心1点と、ウエハ外周部4点(0度、90度、180度、270度。各々、中心からウエハ半径の80%離れた地点。)との計5点各々における電気抵抗率を測定した。そして、5点の電気抵抗率の平均値を算出した。
 表1に、評価結果を示す。表では、上記特性に加えて、(0001)面からのオフ角、ドナー濃度、アクセプター濃度、n型キャリア濃度、温度勾配を示す。
Figure JPOXMLDOC01-appb-T000001
 以上、実施例1乃至4は、上述した特徴1乃至4を備え、不可避の不純物であるホウ素の濃度が低く、基底面転位の低減及び方位差の低減により結晶性に優れ、かつ導電性に優れた炭化ケイ素単結晶ウエハであることがわかる。一方、実施例1乃至4と異なる方法で製造された比較例1乃至6は、上述した特徴1又は2の少なくとも1つを備えず、かつ特徴1乃至4の少なくとも1つを備えない。なお、上述の通り、ここで示した実施例では炉内のハロゲンガスとしてHClを使用したが、発明者は、その他のハロゲンガスを使用した場合にも同様の結果が得られることを確認した。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
1. 炭化ケイ素単結晶ウエハであって、
 前記炭化ケイ素単結晶ウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
 前記炭化ケイ素単結晶ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
 前記領域は、前記表面の中心を含み、
 前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶ウエハ。
2. 前記炭化ケイ素単結晶ウエハの電気抵抗率が60mΩcm以下である1に記載の炭化ケイ素単結晶ウエハ。
3. 前記炭化ケイ素単結晶ウエハの直径が100mm以上である1又は2に記載の炭化ケイ素単結晶ウエハ。
4. 前記炭化ケイ素単結晶ウエハの結晶面内の方位差が50arcsec以下である1から3のいずれかに記載の炭化ケイ素単結晶ウエハ。
5. 前記領域は円形であり、前記領域の中心は、前記表面の中心と重なる1から4のいずれかに記載の炭化ケイ素単結晶ウエハ。
6. 略円柱状又は略多角柱状の炭化ケイ素単結晶インゴットであって、
 結晶成長方向に対して垂直に切り出したウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
 前記ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
 前記領域は、前記表面の中心を含み、
 前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶インゴット。
7. 前記炭化ケイ素単結晶インゴットの結晶成長方向の長さは10mm以上である6に記載の炭化ケイ素単結晶インゴット。
8. 炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に上方より接触させながら結晶を成長させる炭化ケイ素単結晶の製造方法において、
 結晶を成長させる工程の前に、前記工程で用いる部材を加熱する加熱工程を有し、
 前記結晶を成長させる工程において、結晶成長界面P1の温度T1と、成長界面からの距離が5mmの地点P2の溶液の温度T2とが、T2>T1を満たし、かつ、P1とP2の間の温度勾配が0K/cmより大、40K/cm以下である炭化ケイ素単結晶の製造方法。
9. 前記加熱工程では、ハロゲンガス雰囲気中で前記部材を加熱する8に記載の炭化ケイ素単結晶の製造方法。
 この出願は、2021年9月30日に出願された日本出願特願2021-160607号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  結晶成長装置
 3  るつぼ
 4  ヒーター
 5  原料溶液
 6  上昇流
 7  引き上げ軸
 9  種結晶
 11  炭化ケイ素単結晶
 13  ステップフロー方向
 21  炭化ケイ素単結晶インゴット
 22  炭化ケイ素単結晶インゴット
 23  中央領域
 31  炭化ケイ素単結晶ウエハ
 33  中央領域

Claims (9)

  1.  炭化ケイ素単結晶ウエハであって、
     前記炭化ケイ素単結晶ウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
     前記炭化ケイ素単結晶ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
     前記領域は、前記表面の中心を含み、
     前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶ウエハ。
  2.  前記炭化ケイ素単結晶ウエハの電気抵抗率が60mΩcm以下である請求項1に記載の炭化ケイ素単結晶ウエハ。
  3.  前記炭化ケイ素単結晶ウエハの直径が100mm以上である請求項1又は2に記載の炭化ケイ素単結晶ウエハ。
  4.  前記炭化ケイ素単結晶ウエハの結晶面内の方位差が50arcsec以下である請求項1から3のいずれか1項に記載の炭化ケイ素単結晶ウエハ。
  5.  前記領域は円形であり、前記領域の中心は、前記表面の中心と重なる請求項1から4のいずれか1項に記載の炭化ケイ素単結晶ウエハ。
  6.  略円柱状又は略多角柱状の炭化ケイ素単結晶インゴットであって、
     結晶成長方向に対して垂直に切り出したウエハ内に、1.0×1016atoms/cm以下の濃度でホウ素が含まれ、
     前記ウエハの表面には、基底面転位密度が100個/cm以下の領域が存在し、
     前記領域は、前記表面の中心を含み、
     前記領域の面積は、前記表面の面積の4分の1以上である炭化ケイ素単結晶インゴット。
  7.  前記炭化ケイ素単結晶インゴットの結晶成長方向の長さは10mm以上である請求項6に記載の炭化ケイ素単結晶インゴット。
  8.  炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に上方より接触させながら結晶を成長させる炭化ケイ素単結晶の製造方法において、
     結晶を成長させる工程の前に、前記工程で用いる部材を加熱する加熱工程を有し、
     前記結晶を成長させる工程において、結晶成長界面P1の温度T1と、成長界面からの距離が5mmの地点P2の溶液の温度T2とが、T2>T1を満たし、かつ、P1とP2の間の温度勾配が0K/cmより大、40K/cm以下である炭化ケイ素単結晶の製造方法。
  9.  前記加熱工程では、ハロゲンガス雰囲気中で前記部材を加熱する請求項8に記載の炭化ケイ素単結晶の製造方法。
PCT/JP2022/035722 2021-09-30 2022-09-26 炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法 WO2023054263A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160607 2021-09-30
JP2021160607 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054263A1 true WO2023054263A1 (ja) 2023-04-06

Family

ID=85782662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035722 WO2023054263A1 (ja) 2021-09-30 2022-09-26 炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法

Country Status (2)

Country Link
TW (1) TW202336298A (ja)
WO (1) WO2023054263A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107488A (ja) * 1997-03-19 1998-01-13 Toyo Tanso Kk 単結晶引上装置、高純度黒鉛材料及びその製造方法
JP2009091222A (ja) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2009167047A (ja) 2008-01-15 2009-07-30 Nippon Steel Corp 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
JP2013075771A (ja) * 2011-09-29 2013-04-25 Toyota Motor Corp SiC単結晶の製造方法及び製造装置
WO2014034080A1 (ja) 2012-08-26 2014-03-06 国立大学法人名古屋大学 3C-SiC単結晶およびその製造方法
WO2014189008A1 (ja) * 2013-05-20 2014-11-27 日立化成株式会社 炭化珪素単結晶及びその製造方法
JP2015030640A (ja) 2013-08-02 2015-02-16 株式会社デンソー 炭化珪素単結晶
JP2016088794A (ja) 2014-10-31 2016-05-23 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2016164120A (ja) 2016-03-15 2016-09-08 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ
WO2017047536A1 (ja) 2015-09-14 2017-03-23 新日鐵住金株式会社 SiC単結晶の製造装置、SiC単結晶の製造方法及びSiC単結晶材
JP2018111639A (ja) 2017-01-13 2018-07-19 セントラル硝子株式会社 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP2021160607A (ja) 2020-03-31 2021-10-11 株式会社エクォス・リサーチ 移動装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107488A (ja) * 1997-03-19 1998-01-13 Toyo Tanso Kk 単結晶引上装置、高純度黒鉛材料及びその製造方法
JP2009091222A (ja) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2009167047A (ja) 2008-01-15 2009-07-30 Nippon Steel Corp 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
JP2013075771A (ja) * 2011-09-29 2013-04-25 Toyota Motor Corp SiC単結晶の製造方法及び製造装置
WO2014034080A1 (ja) 2012-08-26 2014-03-06 国立大学法人名古屋大学 3C-SiC単結晶およびその製造方法
WO2014189008A1 (ja) * 2013-05-20 2014-11-27 日立化成株式会社 炭化珪素単結晶及びその製造方法
JP2015030640A (ja) 2013-08-02 2015-02-16 株式会社デンソー 炭化珪素単結晶
JP2016088794A (ja) 2014-10-31 2016-05-23 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2017047536A1 (ja) 2015-09-14 2017-03-23 新日鐵住金株式会社 SiC単結晶の製造装置、SiC単結晶の製造方法及びSiC単結晶材
JP2016164120A (ja) 2016-03-15 2016-09-08 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ
JP2018111639A (ja) 2017-01-13 2018-07-19 セントラル硝子株式会社 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP2021160607A (ja) 2020-03-31 2021-10-11 株式会社エクォス・リサーチ 移動装置

Also Published As

Publication number Publication date
TW202336298A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
US9234297B2 (en) Silicon carbide single crystal wafer and manufacturing method for same
JP4853449B2 (ja) SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP5706823B2 (ja) SiC単結晶ウエハーとその製造方法
CN106435733B (zh) 碳化硅单晶和碳化硅单晶晶片
JP5304712B2 (ja) 炭化珪素単結晶ウェハ
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP2004002173A (ja) 炭化珪素単結晶とその製造方法
WO2011040240A1 (ja) SiC単結晶およびその製造方法
US20190024257A1 (en) Silicon carbide single crystal substrate and process for producing same
WO2015137439A1 (ja) SiC単結晶の製造方法
WO2015001847A1 (ja) 炭化珪素単結晶基板およびその製造方法
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP6784220B2 (ja) SiC単結晶の製造方法
JP3590485B2 (ja) 単結晶炭化珪素インゴット及びその製造方法
JP2018111639A (ja) 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP3662694B2 (ja) 単結晶炭化珪素インゴットの製造方法
WO2023054263A1 (ja) 炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法
JP4157326B2 (ja) 4h型炭化珪素単結晶インゴット及びウエハ
WO2023054264A1 (ja) 炭化ケイ素単結晶ウエハ及び炭化ケイ素単結晶インゴット
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP5428706B2 (ja) SiC単結晶の製造方法
JP6748613B2 (ja) 炭化珪素単結晶基板
WO2017043215A1 (ja) SiC単結晶の製造方法
JP2019089664A (ja) p型SiC単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551471

Country of ref document: JP