WO2023047822A1 - 熱可塑性樹脂組成物、造形体を製造する方法および造形体 - Google Patents

熱可塑性樹脂組成物、造形体を製造する方法および造形体 Download PDF

Info

Publication number
WO2023047822A1
WO2023047822A1 PCT/JP2022/030327 JP2022030327W WO2023047822A1 WO 2023047822 A1 WO2023047822 A1 WO 2023047822A1 JP 2022030327 W JP2022030327 W JP 2022030327W WO 2023047822 A1 WO2023047822 A1 WO 2023047822A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
group
mass
resin composition
general formula
Prior art date
Application number
PCT/JP2022/030327
Other languages
English (en)
French (fr)
Inventor
達人 中村
涼 高根
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN202280056817.3A priority Critical patent/CN117836121A/zh
Publication of WO2023047822A1 publication Critical patent/WO2023047822A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention provides a thermoplastic resin composition for hot-melt additive manufacturing, a method for producing a modeled body by hot-melt additive manufacturing using the thermoplastic resin composition, the production of the modeled body, and a filament material for hot-melt additive manufacturing. relating to the use of resin materials for
  • Three-dimensional modeling (additional manufacturing, also called 3D printing) technology has been used in various fields in recent years due to its advantages such as the ability to manufacture resin products without using molds and the high degree of freedom in the shape of the manufactured product. has been applied.
  • FDM Field Deposition Modeling
  • the FDM method is a method in which a three-dimensional object is modeled by ejecting thermally melted thermoplastic resin from a nozzle and stacking them.
  • Patent Document 1 proposes a method using a polyetherimide resin, which is a flame-retardant resin.
  • the nozzle temperature must be 350 to 400° C. to model polyetherimide by the FDM method, and the modeling devices that can be used in this temperature range are limited to some high-end devices.
  • polyetherimide resin is more expensive than mainstream materials such as ABS resin and polylactic acid, which is disadvantageous in terms of manufacturing cost.
  • Patent Literature 2 proposes a glass fiber composite material for 3D printing, and describes using waste plastic and triphenyl phosphate as its constituent elements.
  • Patent Document 3 proposes a resin filament for creating a three-dimensional model made of a resin composition containing an aromatic vinyl resin and a phosphate compound with a specific structure. It is stated that the occurrence of
  • Patent Document 2 does not describe the creation of a modeled object by three-dimensional modeling or its flame retardant performance.
  • a thermoplastic resin material containing a low-molecular-weight compound such as triphenyl phosphate
  • triphenyl phosphate volatilizes with smoke due to heat during modeling.
  • Patent Document 3 does not describe the flame retardancy of the composition, nor does it describe or suggest the influence of the melting point of the phosphate ester on interlayer adhesion during three-dimensional fabrication.
  • thermoplastic resin composition for FDM that has excellent flame retardancy, molding stability, and interlayer adhesion.
  • thermoplastic resin composition in which a condensed phosphate ester compound having a specific structure and a specific melting point range is blended as a flame retardant with respect to a thermoplastic resin is used in the FDM method. found that the three-dimensional structure manufactured in 1 satisfies high flame retardancy, excellent shaping stability, and high interlayer adhesion of the structure, and completed the present invention.
  • thermoplastic resin (B) a condensed phosphate ester compound;
  • a thermoplastic resin composition containing The (B) condensed phosphate ester compound is Represented by the following general formula (1), and having a melting point of 150° C. or less, or being liquid at room temperature,
  • the amount of the condensed phosphate ester compound is 1 to 35 parts by mass with respect to a total of 100 parts by mass of the thermoplastic resin (A) and the condensed phosphate ester compound (B).
  • thermoplastic resin composition for hot-melt additive manufacturing (provided that the resin composition is represented by the general formula (1) and R 11 , R 12 , R 13 , R 14 and R 15 are the same and r is different
  • the above-mentioned melting point of 150°C or less or liquid at room temperature means that the mixture of the plurality of compounds has a melting point of 150°C or less or is liquid at room temperature. included.) are provided.
  • R 11 , R 12 , R 13 and R 14 may be the same or different, and are alkyl groups having 1 to 10 carbon atoms or aromatic groups represented by general formula (2) below.
  • R 15 represents a divalent aromatic hydrocarbon group represented by the following general formula (3) or (4), and r is a number from 1 to 30.
  • R 21 and R 22 each independently represent a hydrogen atom, a hydroxy group or an alkyl group having 1 to 10 carbon atoms, and * represents a bond.
  • R 31 , R 32 , R 41 , R 42 , R 43 and R 44 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or 1 -4 alkoxy group, 3-8 carbon atom cycloalkyl group, 6-10 carbon atom aryl group, nitro group, halogen atom or cyano group,
  • X is a direct bond, divalent sulfur atom, sulfonyl group, an alkylidene group having 1 to 5 carbon atoms or an alkylene group having 1 to 5 carbon atoms, and * represents a bond.
  • thermoplastic resin composition of the present invention preferably further contains 0.03 to 5 parts by mass of (C) one or more fluorine-containing polymers per 100 parts by mass of the (A) thermoplastic resin.
  • thermoplastic resin composition of the present invention preferably has a filamentous shape.
  • thermoplastic resin composition of the present invention preferably has a filamentous shape with an average diameter of 1.55 to 1.95 mm.
  • thermoplastic resin composition of the present invention (A) the thermoplastic resin preferably contains one or more condensation polymer compounds.
  • thermoplastic resin composition of the present invention (A) the thermoplastic resin preferably contains a polycarbonate resin.
  • thermoplastic resin composition with a three-dimensional modeling apparatus.
  • the nozzle temperature of the three-dimensional modeling apparatus is 300°C or less.
  • a resin material for manufacturing a filament material for fused additive manufacturing comprising:
  • the resin material is (A) a thermoplastic resin;
  • (B) the condensed phosphate ester compound is represented by the following general formula (1) and has a melting point of 150° C.
  • Condensed phosphate ester compound is used in an amount of 1 to 35 parts by mass with respect to a total of 100 parts by mass of (A) thermoplastic resin and (B) condensed phosphate ester compound (provided that the resin
  • the composition is represented by general formula (1) and contains a plurality of compounds having the same R 11 , R 12 , R 13 , R 14 and R 15 and different r, is the melting point 150° C. or lower? , or being liquid at room temperature includes that the mixture of the plurality of compounds has a melting point of 150° C. or less, or is liquid at room temperature.).
  • thermoplastic resin composition for hot-melt additive manufacturing that is excellent in flame retardancy, molding stability, and interlayer adhesion, and a modeled body is produced by hot-melt additive manufacturing using the thermoplastic resin composition. It is possible to provide a method for forming and a shaped body obtained by the method.
  • fused deposition modeling means three-dimensional fabrication by the fused deposition modeling method.
  • the FDM method is one of the modeling methods in three-dimensional modeling. After heating and melting a thermoplastic resin having a shape such as pellets or filaments inside a modeling device, it is discharged from a nozzle and laminated one layer at a time. It is a method to form a three-dimensional object by cooling and solidifying.
  • thermoplastic resin composition of the present invention is a thermoplastic resin composition for hot-melt lamination molding containing (A) a thermoplastic resin and (B) a condensed phosphate ester compound.
  • thermoplastic resin used in the present invention will be described.
  • (A) thermoplastic resin may be described as "(A) component".
  • Specific examples of the (A) thermoplastic resin used in the present invention include, for example, polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, crosslinked polyethylene, ultra-high molecular weight polyethylene, polybutene-1, poly-3- ⁇ -olefin polymers such as methylpentene and poly-4-methylpentene, or polyolefin resins such as ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene copolymers, and copolymers thereof polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-
  • thermoplastic resins include isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, polyolefin thermoplastic elastomer, styrene thermoplastic elastomer, polyester Elastomers such as thermoplastic elastomers, nitrile-based thermoplastic elastomers, nylon-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers may be used.
  • thermoplastic resins used in the present invention may be used alone or in combination of two or more. Moreover, it may be alloyed. Further, these (A) thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and blending ratio of raw material monomers, Any type of polymerization catalyst (eg, Ziegler catalyst, metallocene catalyst, etc.) can be used.
  • Any type of polymerization catalyst eg, Ziegler catalyst, metallocene catalyst, etc.
  • thermoplastic resins from the viewpoint that the effects of the present invention are exhibited remarkably, it is preferable that one or more selected from condensation thermoplastic resins (condensation polymer compounds) is included, and a polycarbonate resin and more preferably a polyphenylene ether resin.
  • the condensed thermoplastic resin is a thermoplastic resin obtained by condensation polymerization. Condensed thermoplastic resins have properties of high strength and resistance to shrinkage, and are suitable as thermoplastic resins for use in FDM.
  • condensation thermoplastic resins examples include polyester resins, polyamide resins, and polycarbonate resins. Further, the condensation thermoplastic resin may be an elastomer such as a polyester thermoplastic elastomer, a polyamide thermoplastic elastomer, or a polyurethane thermoplastic elastomer. In the present invention, these condensed thermoplastic resins may be used alone or in combination of two or more. Also, the condensed thermoplastic resin may be alloyed.
  • polyester resin examples include the above-mentioned various aromatic polyester resins, linear polyester resins, and degradable aliphatic polyesters.
  • Polyalkylene terephthalates such as terephthalate;
  • Polyalkylene naphthalates such as polyethylene naphthalate and polybutylene naphthalate; Polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate, polylactic acid, polymalic acid, polyglycolic acid, poly
  • Degradable aliphatic polyesters such as dioxane and poly(2-oxetanone) are preferred.
  • polyamide resin examples include aliphatic polyamides such as polyamide 410, polyamide 6, polyamide 66, polyamide 666, polyamide 610, polyamide 612, polyamide 11 and polyamide 12; polyamide 4T, polyamide 6T, polyamide 9T and polyamide 10T. Mention may be made of semi-aromatic polyamides.
  • the polycarbonate resin is a resin having a carbonate bond, and is obtained, for example, by a polymerization reaction between a divalent hydroxy aromatic compound and a carbonate precursor.
  • divalent hydroxyaromatic compounds include dihydroxybenzenes such as resorcinol and hydroquinone; bishydroxyaryls such as 4,4'-dihydroxydiphenyl; bis(4-hydroxyphenyl)methane, 1,1-bis(4- bis(hydroxyphenyl)alkanes such as hydroxyphenyl)ethane, 1,2-bis(4-hydroxyphenoxy)ethane, 2,2-bis(4-hydroxyphenyl)propane; bis(4-hydroxyphenyl)ketone, bis Dihydroxyaryl ketones such as (4-hydroxy-3-methylphenyl) ketone; 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethylphenyl ether, 4,4'-dihydroxy-2 ,5-dihydroxydip
  • the carbonate precursor include phosgene, diester carbonate, diphenyl carbonate, dihaloformate of dihydric phenol, and mixtures thereof.
  • the above polyphenylene ether resin may be used alone or may be alloyed.
  • resins to be alloyed with polyphenylene ether include styrene resins, polyamides, polypropylene, polyacetals, polyphenylene sulfides, and the like. Among them, it is preferable to be alloyed with a styrene-based resin because of its excellent compatibility with the condensed phosphate ester compound.
  • the styrene-based resin specifically includes, for example, polystyrene (PS), styrene-butadiene-styrene copolymer (SBS resin), hydrogenated styrene-butadiene-styrene copolymer (hydrogenated SBS), hydrogenated Styrene-isoprene-styrene copolymer (SEPS), high-impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene-styrene Copolymer (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS resin), methyl methacrylate-acrylonitrile-styrene copolymer (MAS resin), acrylonitrile-acryl
  • thermoplastic resin a non-condensed polymer compound (non-condensed thermoplastic resin) may be used.
  • non-condensed thermoplastic resin examples include resins that basically do not have amide bonds, ester bonds, urethane bonds, carbonate bonds, etc. in the main skeleton.
  • high-density polyethylene low-density polyethylene, linear low-density polyethylene, cross-linked polyethylene, ultra-high molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene and other ⁇ -olefin polymers or ethylene- Polyolefin resins such as vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene copolymers, and copolymers thereof; polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyfluoride Vinylidene, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid Halogen-containing resins such as esteri
  • thermoplastic elastomers such as thermoplastic elastomers, vinyl chloride thermoplastic elastomers, etc., and from the viewpoint of molding stability in FDM molding, especially low shrinkage and low warpage, among others, polystyrene, HIPS, AS resin, ABS resin, MBS resin, MABS resin, heat-resistant ABS resin, and styrenic thermoplastic elastomer are preferred.
  • the amount of the thermoplastic resin is preferably 60% by mass or more, more preferably 65% by mass or more, in the thermoplastic resin composition.
  • the amount of the thermoplastic resin is preferably 95% by mass or less in the thermoplastic resin composition from the viewpoint of increasing the amount of the condensed phosphate ester compound represented by the general formula (1) to increase the flame retardancy. It is preferably 93% by mass or less, and more preferably 93% by mass or less.
  • the amount of the thermoplastic resin is, for example, 60% by mass or more and 95% by mass or less from the viewpoint of the balance of flame retardancy, molding stability and interlayer adhesion, preferably 65% by mass or more and 93% by mass. The following are more preferable.
  • the amount of a condensation thermoplastic resin such as a polycarbonate resin
  • the amount of the condensation thermoplastic resin is 50 mass in the thermoplastic resin composition because it is easy to obtain the above effects by using the condensation thermoplastic resin. % or more, more preferably 60 mass % or more, and even more preferably 65 mass % or more.
  • the amount of the condensed thermoplastic resin in the thermoplastic resin composition is 95% by mass or less from the viewpoint of increasing the amount of the condensed phosphate ester compound represented by the general formula (1) to increase the flame retardancy. is preferred, and 93% by mass or less is more preferred.
  • the amount of the condensed thermoplastic resin in the thermoplastic resin composition is, for example, 50% by mass or more and 95% by mass or less from the viewpoint of the balance of flame retardancy, molding stability and interlayer adhesion. It is preferably 60% by mass or more and 95% by mass or less, and even more preferably 65% by mass or more and 93% by mass or less.
  • the amount of the condensation thermoplastic resin is preferably 1% by mass or more, more preferably 50% by mass or more, in the thermoplastic resin.
  • the amount of the condensed thermoplastic resin is 100% by mass or less in the thermoplastic resin, but preferably 95% by mass or less from the viewpoint of further improving the balance between flame retardancy, molding stability and interlayer adhesion.
  • the amount of the condensed thermoplastic resin is preferably 1% by mass or more and 100% by mass or less in the thermoplastic resin from the viewpoint of the balance of flame retardancy, molding stability and interlayer adhesion. It is more preferable that the content is not less than 95% by mass and not more than 95% by mass.
  • the thermoplastic resin is not particularly limited when it contains a non-condensed thermoplastic resin, but from the viewpoint of moldability and impact resistance, the amount of the non-condensed thermoplastic resin is 1 mass in the thermoplastic resin composition. % or more, and more preferably 3 mass % or more.
  • the amount of the non-condensed thermoplastic resin in the thermoplastic resin composition is preferably 50% by mass or less, more preferably 30% by mass or less, from the viewpoint of flame retardancy. From these viewpoints, the amount of the non-condensed thermoplastic resin is, for example, 1% by mass or more and 50% by mass or less in the thermoplastic resin composition. point, and more preferably 3% by mass or more and 30% by mass or less.
  • the amount of the non-condensed thermoplastic resin is preferably 1% by mass or more in the thermoplastic resin from the viewpoint of moldability and impact resistance, and 5% by mass or more. is more preferable.
  • the amount of the non-condensed thermoplastic resin is preferably 50% by mass or less, more preferably 40% by mass or less, in the thermoplastic resin from the viewpoint of flame retardancy. From these viewpoints, the amount of the non-condensed thermoplastic resin is preferably 1% by mass or more and 50% by mass or less in the thermoplastic resin from the viewpoint of the balance of flame retardancy, molding stability and interlayer adhesion. , 5% by mass or more and 40% by mass or less.
  • the thermoplastic resin composition contains an aromatic vinyl resin, PS resin, HIPS resin, MS resin, ABS resin, AS resin, AES resin, ASA resin, MBS resin, MABS resin, MAS resin, and an aromatic vinyl resin selected from the group consisting of mixtures thereof
  • the amount of the aromatic vinyl resin containing a rubber component of 5% to 15% by weight based on the weight of the aromatic vinyl resin It may be less than 85% by mass in the resin composition.
  • R 11 , R 12 , R 13 and R 14 may be the same or different, and are alkyl groups having 1 to 10 carbon atoms or aromatic groups represented by general formula (2) below.
  • R 15 represents a divalent aromatic hydrocarbon group represented by the following general formula (3) or (4), and r is a number from 1 to 30.
  • R 21 and R 22 each independently represent a hydrogen atom, a hydroxy group or an alkyl group having 1 to 10 carbon atoms, and * represents a bond.
  • alkyl groups having 1 to 10 carbon atoms that can be represented by R 11 , R 12 , R 13 and R 14 in general formula (1) include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, tert-pentyl group, hexyl group, heptyl group, octyl group, isooctyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, isononyl group, decyl group, isodecyl group, 2-propylheptyl group, and the like.
  • the alkyl group having 1 to 10 carbon atoms that can be taken by R 21 and R 22 is an alkyl group having 1 to 10 carbon atoms that can be taken by R 11 to R 14 in general formula (1) Those exemplified as the group can be mentioned.
  • R 21 and R 22 are preferably hydrogen atoms or methyl groups, more preferably hydrogen atoms.
  • alkoxy groups having 1 to 4 carbon atoms that can be represented by R 31 , R 32 , R 41 , R 42 , R 43 and R 44 are Alkoxy groups corresponding to 1 to 4 alkyl groups are included.
  • the cycloalkyl group having 3 to 8 carbon atoms that can be represented by R 31 , R 32 , R 41 , R 42 , R 43 and R 44 includes Examples of alkyl groups having 1 to 10 carbon atoms which can be taken by R 11 to R 14 of are cycloalkyl groups corresponding to those having 3 to 8 carbon atoms among the alkyl groups listed above. Examples include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and those substituted with alkyl groups.
  • examples of aryl groups having 6 to 10 carbon atoms that can be represented by R 31 , R 32 , R 41 , R 42 , R 43 and R 44 include phenyl group and tolyl group. , xylyl group, 2,4,6-trimethylphenyl group, 2-tert-butylphenyl group, 4-tert-butylphenyl group, naphthyl group, azulenyl group, indenyl group, indanyl group, tetralinyl group and the like.
  • the alkylidene group having 1 to 5 carbon atoms that can be represented by X includes, for example, ethylidene, propylidene, isopropylidene, butylidene, isobutylidene, etc.
  • the alkylene group having 1 to 5 carbon atoms is is, for example, methylene group, ethylene group, propylene group, butylene group, isobutylene group, pentylene group and the like.
  • X is a direct bond, an alkylidene group having 1 to 5 carbon atoms, or an alkylene group having 1 to 5 carbon atoms. It is preferable in terms of easiness.
  • divalent aromatic hydrocarbon group represented by general formula (3) examples include, for example, a 1,4-phenylene group and a 1,3-phenylene group.
  • divalent aromatic hydrocarbon group represented by the general formula (4) examples include, for example, 4,4'-biphenylene group, 4,4'-isopropylidenediphenylene group, 4,4'-thio diphenylene group, 4,4'-sulfonyldiphenylene group and the like.
  • the melting point of the condensed phosphate ester compound is 150° C. or lower, preferably 125° C. or lower, and more preferably 110° C. or lower.
  • the condensed phosphate compound may be liquid at room temperature.
  • the condensed phosphoric acid ester compound represented by the general formula (1) and having a melting point of 150° C. or lower or being liquid at room temperature may be referred to as "(B) component".
  • the “component (B)” includes (1) a compound represented by the general formula (1) and having a melting point of 150°C or less when measured alone, (2) a compound represented by the general formula (1), and a plurality of compounds having the same R 11 , R 12 , R 13 , R 14 and R 15 and different r, wherein the melting point of a mixture of the plurality of compounds is 150°C or lower, preferably 125°C or lower, more preferably 110 ° C. or less, (3) a compound represented by the general formula (1) that is liquid at room temperature, and (4) a compound represented by the general formula (1) and having R 11 , R 12 , Mixtures of compounds having the same R 13 , R 14 and R 15 and different r, which are liquid at room temperature are also included. (B) Since the condensed phosphate ester compound is liquid at normal temperature, the interlayer adhesion and lamination molding stability of the three-dimensional model manufactured using the thermoplastic resin composition of the present invention are improved. 25 degreeC is mentioned as normal temperature.
  • the melting point in the present invention is measured by the following melting point measuring method.
  • the melting point of those compounds is the value measured for each compound.
  • the melting points of the plurality of compounds are the same structure except that r is different.
  • condensed phosphate compound examples include, for example, the following compound Nos. 1 to 5 are included.
  • the following compound No. r in 1 to 5 represents a number from 1 to 30, respectively.
  • being liquid at room temperature means being liquid at 25°C.
  • Being liquid refers to having a viscosity measurable with a Brookfield viscometer. From the point of handleability, the viscosity measured with a Brookfield viscometer (25 ° C.) is preferably 150,000 mPa s or less, more preferably 100,000 mPa s or less, and 80,000 mPa s or less. more preferably, and particularly preferably 60,000 mPa ⁇ s or less. Moreover, it is preferable that there is no turbidity, crystals, or precipitation of solids.
  • Condensed phosphate ester compound is the above compound No. 1 from the viewpoint of interlayer adhesion and lamination molding stability. 1, No. 2, No. 3 and no. 5, and from the viewpoint of flame retardancy, compound No. 5 is preferable. 1 and no. It is more preferable that it is 1 or more out of 2.
  • the lower limit of the amount of component (B) in the thermoplastic resin composition of the present invention is 1 part by mass or more with respect to a total of 100 parts by mass of components (A) and (B). Therefore, it is preferably 7 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 12 parts by mass or more.
  • the upper limit of the amount of component (B) is 35 parts by mass or less with respect to the total of 100 parts by mass of components (A) and (B). 30 parts by mass or less is preferable, 25 parts by mass or less is more preferable, and 20 parts by mass or less is even more preferable.
  • the method for producing the (B) condensed phosphate compound of the present invention is not particularly limited, for example, the above compound No. In the case of 1, it can be produced by reacting 4,4'-dihydroxybiphenyl, phenol and phosphorus oxychloride in the presence of a catalyst such as magnesium chloride to remove hydrochloric acid.
  • thermoplastic resin composition of the present invention may contain components other than (A) the thermoplastic resin and (B) the condensed phosphate ester compound within a range that does not impair the effects of the present invention.
  • the other component any additive described later as a component that can be blended in the thermoplastic resin composition of the present invention can be used.
  • the thermoplastic resin composition of the present invention preferably contains (C) one or more fluorine-containing polymers in order to suppress dripping during combustion.
  • (C) Fluorine-containing polymers include, for example, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene/hexafluoropropylene copolymer, tetrafluoroethylene/ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, and the like. . Among them, polytetrafluoroethylene is preferable from the viewpoint of anti-drip performance.
  • the content of the fluorine-containing polymer (C) is preferably 0.03 to 5 parts by mass, more preferably 0.05 parts by mass, based on 100 parts by mass of the thermoplastic resin (A). to 3 parts by mass, and more preferably 0.1 to 1 part by mass.
  • the amount is 0.03 parts by mass or more, a sufficient anti-drip effect can be obtained, and when the amount is 5 parts by mass or less, deterioration of the resin properties can be easily prevented.
  • phenolic antioxidant examples include 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-tert-butyl -4-hydroxybenzyl)phosphonate, 1,6-hexamethylenebis[(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], 4,4'-thiobis(6-tert-butyl- m-cresol), 2,2′-methylenebis(4-methyl-6-tert-butylphenol), 2,2′-methylenebis(4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis(6- tert-butyl-m-cresol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4-sec-butyl-6-tert-butyl
  • Examples of the phosphorus antioxidant include tris(nonylphenyl) phosphite, tris[2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenylthio)-5-methyl phenyl]phosphite, tridecylphosphite, octyldiphenylphosphite, didecylmonophenylphosphite, bis(tridecyl)pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di -tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl) Pent
  • thioether antioxidant examples include dialkyl thiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetrakis ( ⁇ -alkylmercaptopropionate).
  • dialkyl thiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetrakis ( ⁇ -alkylmercaptopropionate).
  • the amount of these thioether-based antioxidants used is preferably 0.001 to 10 parts by mass, and 0.05 to 5 parts by mass based on 100 parts by mass of the thermoplastic resin (A). It is more preferable to have
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5′-methylenebis(2-hydroxy-4-methoxybenzophenone ) and other 2-hydroxybenzophenones; 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5- Chlorobenzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert -octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-dicumylphenyl)benzotriazole, 2,2'-methylenebis(4-tert-octyl-6-(benzotriazolyl) ) phenol), 2-(2
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidyl benzoate, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate , tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane tetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl) bis(tridecyl)-1,2,3,4-butane tetracarboxylate, Bis(1,2,2,6,6-p
  • the thermoplastic resin composition of the present invention may contain a filler as an optional component within a range that does not significantly impair the effects of the present invention.
  • a filler include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, carbon fiber. , clay, dolomite, silica, alumina, potassium titanate whiskers, wollastonite, fibrous magnesium oxysulfate and hydrotalcite, etc., and the particle size (fiber diameter, fiber length and aspect ratio in the case of fibers) can be It can be selected and used as appropriate.
  • filler may be surface-treated as necessary.
  • the amount of these fillers to be blended is, from the viewpoint of ejection stability from the FDM printer nozzle of the resin composition and maintenance of interlayer adhesion strength of the molded object, (A) per 100 parts by mass of the thermoplastic resin. , preferably 1 to 50 parts by mass, more preferably 3 to 45 parts by mass, even more preferably 5 to 43 parts by mass.
  • thermoplastic resin composition of the present invention may further contain additives commonly used in synthetic resins, such as cross-linking agents, antistatic agents, antifogging agents, plate-out inhibitors, surface treatment agents, plasticizers.
  • additives commonly used in synthetic resins such as cross-linking agents, antistatic agents, antifogging agents, plate-out inhibitors, surface treatment agents, plasticizers.
  • thermoplastic resin composition of the present invention can be obtained by mixing components (A) and (B).
  • any of the above additives may be mixed.
  • Optional additives may be pre-mixed with the (A) component or (B) component, may be mixed when mixing the (A) component and (B) component, (A) component and ( B) may be mixed into the mixture of components.
  • thermoplastic resin composition of the present invention is not particularly limited, and may be filamentous, pellet-shaped, powdery, granular, or flake-shaped. is preferred.
  • the shape of the thermoplastic resin composition of the present invention is preferably filamentous. Being filamentous, it can be suitably used as a filament material for a three-dimensional modeling apparatus based on the FDM method, which is generally sold.
  • the length is preferably 10 cm or longer, more preferably 200 cm or longer.
  • the thermoplastic resin composition of the present invention has a filamentous shape
  • its average diameter is preferably 1.55 to 1.95 mm, more preferably 1.65 to 1.85 mm. Since the average diameter is within the above range, it can be suitably used as a filament material for a three-dimensional modeling apparatus based on the FDM method, which is generally sold. Methods for measuring the average diameter include, for example, physical measurement methods using digital calipers.
  • the average diameter when measuring the average diameter with a digital caliper, measure the diameter at 20 or more different locations in the longitudinal direction of the filament material and obtain the average value.
  • the measurement locations are preferably locations spaced apart from each other by 100 mm or more in the longitudinal direction of the filamentous resin composition.
  • the cross-sectional shape of the filament may be a circle, an ellipse, or the like, and if the cross-sectional shape is not circular, the diameter means the length of the maximum line segment crossing the cross section.
  • the method for producing the filamentous thermoplastic resin composition is not particularly limited, and known methods can be applied.
  • a method of extruding the thermoplastic resin composition of the present invention with an extruder, cooling it with water or air, and then winding it with a winder can be used.
  • the filamentous resin composition of the present invention may or may not be stretched.
  • the feed speed of the resin material to the extruder, the screw rotation speed of the extruder, the diameter of the extruder die hole, the winding speed of the winder, etc. are appropriately adjusted. to be selected.
  • a filamentous thermoplastic resin composition can be obtained by molding a resin material obtained by mixing components (A) and (B) into filaments by a known method. Any of the additives described above may be mixed with the resin material, if necessary.
  • the optional additive may be premixed with (A) the thermoplastic resin, may be mixed when mixing the components (A) and (B), and may be mixed when mixing the components (A) and (B). ) may be mixed in the mixture of ingredients.
  • the composition of the resin material is the same as the composition of the thermoplastic resin composition described above. All can be applied to materials.
  • the modeled body of the present invention can be produced by a three-dimensional modeling apparatus using the thermoplastic resin composition of the present invention as a filament material.
  • a three-dimensional modeling apparatus using the thermoplastic resin composition of the present invention as a filament material.
  • an FDM three-dimensional modeling apparatus 3D printer
  • a commercially available one can be used.
  • the nozzle temperature of the modeling apparatus is 300° C. or less when manufacturing the modeled article of the present invention by the FDM method.
  • FDM three-dimensional modeling is possible in a wide range of thermoplastic resins (such as general general-purpose plastics and engineering plastics) even in the relatively low temperature range. is.
  • the present invention which enables three-dimensional modeling even in such a relatively low temperature range and can manufacture a modeled body having excellent flame resistance, has excellent industrial applicability.
  • the shaped body of the present invention is excellent in flame retardancy, interlayer adhesion, and lamination molding stability, and thus can be suitably used for various purposes.
  • the shaped bodies of the present invention are used for electrical/electronic/communication, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medical care, coal, petroleum, rubber, leather, automobiles, railroads, aviation, precision equipment, wood, building materials, and civil engineering. , furniture, printing, musical instruments, etc. More specifically, printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), calculators, electronic notebooks, cards, holders, stationery, etc.
  • Office OA equipment washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, home appliances such as kotatsu, TVs, VTRs, video cameras, radio cassette players, tape recorders, mini discs, CD players, speakers, AV equipment such as liquid crystal displays, connectors, relays, capacitors, switches, printed circuit boards, coil bobbins, semiconductor encapsulation materials, LED encapsulation materials, electric wires, cables, transformers, deflection yokes, distribution boards, electrical and electronic parts such as clocks and for applications such as communication equipment.
  • the shaped body of the present invention can be used for seats (filling, outer material, etc.), belts, ceiling coverings, compatible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers, mattress covers, airbags, insulation.
  • thermoplastic resin composition [Examples 1 to 12, Comparative Examples 1 to 9] ⁇ Method for producing thermoplastic resin composition> After blending the thermoplastic resin compositions shown in Table 1, a single screw extruder (equipment name: D3038, manufactured by Toyo Seiki Seisakusho) was used at an extrusion temperature of 250°C and a screw rotation speed of 25 rpm. Then, a filamentous thermoplastic resin composition (hereinafter also referred to as filament) was produced. While cooling the filament discharged from the extruder with water, a filament winder (device name: Kase winder, manufactured by Nippon Placon Co., Ltd.) equipped with a length measuring machine (device name: Filamesure, manufactured by Filabot).
  • a filament winder device name: Kase winder, manufactured by Nippon Placon Co., Ltd.
  • a length measuring machine device name: Filamesure, manufactured by Filabot.
  • a filament for hot-melt additive manufacturing was obtained by winding the filament to an average diameter of 1.65 to 1.85 mm.
  • the average diameter of the filamentous thermoplastic resin composition was measured using a digital caliper by the method described above.
  • the filament was wound around a filament reel and dried at 80° C. under reduced pressure. All of the compounding amounts shown in Tables 1 and 2 are based on parts by mass.
  • interlayer adhesion was evaluated by the degree of adhesion between the resin extruded from the nozzle during lamination molding and the previous lamination surface. Evaluation results are expressed in the following two stages. A: The adhesion between the resin extruded from the nozzle and the pre-laminated surface is good, and the desired shape can be formed without any problem. B: The adhesion between the resin extruded from the nozzle and the pre-laminated surface is weak, and the resin peels off during modeling, making it impossible to form the desired shape.
  • Laminate manufacturing stability was evaluated by the stability of extrusion behavior of the resin from the nozzle at the time of modeling. Evaluation results are expressed in the following three stages.
  • ⁇ Melting point measurement method> The melting point was measured using a differential thermal-thermogravimetric analyzer (TG-DTA8122 manufactured by Rigaku). 10 ⁇ 0.5 mg of a sample was weighed out in an aluminum pan, and the temperature was raised from 25° C. to 450° C. at a rate of 10° C./min in an air atmosphere, and the peak top of the melting peak was taken as the melting point.
  • TG-DTA8122 differential thermal-thermogravimetric analyzer
  • Component A-1 Polycarbonate resin (Iupilon S-3000F manufactured by Mitsubishi Engineering Plastics)
  • Component A-2 ABS resin (acrylonitrile-butadiene-styrene copolymer, AT-05 manufactured by A&L Japan)
  • Component B-1 Compound represented by the following formula (mixture of compounds in which r1 is 1 to 7, liquid at room temperature (viscosity at 25°C: 28,000 mPa s))
  • Component B-2 Compound represented by the following formula (mixture of compounds with r2 of 1 to 7, liquid at room temperature (viscosity of 19,000 mPa ⁇ s at 25°C))
  • Comparative component for (B) BX-1 compound represented by the following formula (solid at room temperature, melting point 185°C)
  • Component C-1 Polytetrafluoroethylene (manufactured by Daikin Industries Polyflon MPAFA-500H)
  • compositions of the present invention are excellent in interlayer adhesion, lamination molding stability, and flame retardancy.
  • the compositions (Comparative Examples 1, 2, and 7) in which the amount of the component (B) was outside the range of the present invention were inferior in any of the interlayer adhesion, lamination molding stability, and flame retardancy.
  • the compositions using the condensed phosphate compounds that are solid at room temperature and have a melting point outside the scope of the present invention (Comparative Examples 3, 4, and 8)
  • the interlayer adhesion is poor, and the lamination molding stability is also improved.
  • the results were inferior to the corresponding Examples 1, 3, 11 and 12, respectively.
  • the compositions (Comparative Examples 5, 6, and 9) using phosphoric acid ester compounds having a structure different from that of the component (B) of the present invention were inferior in terms of interlayer adhesion and lamination molding stability.

Abstract

(A)熱可塑性樹脂と、(B)縮合リン酸エステル化合物と、を含有する熱可塑性樹脂組成物であって、(B)縮合リン酸エステル化合物が、下記式(1)で表され、かつ、融点150℃以下であるか、又は常温で液体であり、 (B)縮合リン酸エステル化合物の配合量が(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物の合計100質量部に対して、1~35質量部である、熱溶解積層造形用の熱可塑性樹脂組成物(但し、前記樹脂組成物が一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物を含む場合、前記の融点150℃以下であるか、又は常温で液体であることには、当該複数の化合物の混合物が融点150℃以下であるか、又は常温で液体であることが含まれる。)。 (1)式中の定義は明細書を参照。 (2)式中の定義は明細書を参照。 (3)(4)式中の定義は明細書を参照。

Description

熱可塑性樹脂組成物、造形体を製造する方法および造形体
 本発明は、熱溶解積層造形用の熱可塑性樹脂組成物、当該熱可塑性樹脂組成物を用いて熱溶解積層造形により造形体を製造する方法、当該造形体および熱溶解積層造形用フィラメント材料の製造への樹脂材料の使用に関する。
 三次元造形(付加製造、3Dプリンティングとも称する)技術は、金型を使わずに樹脂製品等を製造できることや、製造品の形状の自由度が高いことなどの利点から、近年、様々な分野で適用されてきている。特に熱溶解積層造形(FDM;Fused Deposition Modeling)方式の付加製造装置は他の方式のものと比べて比較的安価であることから、工業用のみならず家庭用としても普及してきている。FDM方式は、熱溶解させた熱可塑性樹脂をノズルから吐出し積層させることで立体物を造形する方式である。
 FDM方式の材料として用いられる熱可塑性樹脂としては、従来、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)やポリ乳酸が主流だったが、一方でこれら熱可塑性樹脂は可燃性物質であるので、航空機部材や自動車部材、家電部材といった高い安全性が求められる用途には適さない。この課題に対して、例えば、特許文献1では、難燃性樹脂であるポリエーテルイミド樹脂を用いる方法が提案されている。しかしポリエーテルイミドをFDM方式で造形するにあたってはノズル温度が350~400℃である必要があり、本温度領域での使用が可能な造形装置は、一部のハイエンド装置に限られている。またポリエーテルイミド樹脂は、ABS樹脂やポリ乳酸といった主流の材料に比べて高価であり、製造コストの点で不利である。
 このような課題を解決する方法として、安価な熱可塑性樹脂材料に、難燃剤を配合して難燃化する方法が知られている。例えば、特許文献2には、3Dプリント用ガラス繊維複合材が提案されており、その構成要素として廃棄プラスチックやリン酸トリフェニルを用いることが記載されている。特許文献3には、芳香族ビニル系樹脂および特定構造のホスフェート化合物を含む樹脂組成物からなる三次元造形物作成用樹脂フィラメントが提案されており、当該フィラメントを用いて作成した造形物では層間剥離が発生しにくいことが記載されている。
米国特許第10434705号 中国特許出願公開第106433177号 特開2017-149038号
 しかしながら、特許文献2には、三次元造形による造形物の作成や、その難燃性能については記載されていない。本発明者が検討した結果、リン酸トリフェニルのような低分子化合物を含む熱可塑性樹脂材料のFDM式三次元造形では、造形時の熱によってリン酸トリフェニルが発煙を伴いながら揮散してしまい、その結果、三次元造形物が難燃性を示さないことが判明した。特許文献3には、組成物の難燃性に関する記載がなく、リン酸エステルの融点が三次元造形時の層間密着性に与える影響について記載も示唆もない。
 このような状況下、難燃性、造形安定性および層間密着性に優れるFDM用の熱可塑性樹脂組成物が必要とされていた。
 本発明者はさらに検討した結果、熱可塑性樹脂に対して、特定の構造および特定の融点範囲を有する縮合リン酸エステル化合物を難燃剤として配合した難燃性熱可塑性樹脂組成物を用いてFDM方式で製造した三次元造形物が、高い難燃性と優れた造形安定性、さらに造形物の高い層間密着性を満たすことを見出し、本発明を完成するに至った。
 本発明によれば、(A)熱可塑性樹脂と、
 (B)縮合リン酸エステル化合物と、
 を含有する熱可塑性樹脂組成物であって、
 前記(B)縮合リン酸エステル化合物は、
 下記一般式(1)で表され、かつ、融点が150℃以下であるか、又は常温で液体であり、
 (B)縮合リン酸エステル化合物の配合量が(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物の合計100質量部に対して、1~35質量部である、
 熱溶解積層造形用の熱可塑性樹脂組成物(但し、前記樹脂組成物が一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物を含む場合、前記の融点150℃以下であるか、又は常温で液体であることには、当該複数の化合物の混合物が融点150℃以下であるか、又は常温で液体であることが含まれる。)が提供される。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R11、R12、R13およびR14は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、または下記一般式(2)で表される芳香族炭化水素基を表し、R15は下記一般式(3)または(4)で表される2価の芳香族炭化水素基を表し、rは1~30の数である。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、R21およびR22はそれぞれ独立に、水素原子、ヒドロキシ基または炭素原子数1~10のアルキル基を表し、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000009
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44はそれぞれ独立に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数6~10のアリール基、ニトロ基、ハロゲン原子またはシアノ基を表し、Xは直接結合、2価の硫黄原子、スルホニル基、炭素原子数1~5のアルキリデン基または炭素原子数1~5のアルキレン基を表し、*は結合手を表す。
 本発明の熱可塑性樹脂組成物においては、さらに(C)フッ素含有ポリマーの1種以上を(A)熱可塑性樹脂100質量部に対し、0.03~5質量部含有することが好ましい。
 本発明の熱可塑性樹脂組成物においては、その形状が糸状であることが好ましい。
 本発明の熱可塑性樹脂組成物においては、その形状が平均直径1.55~1.95mmの糸状であることが好ましい。
 本発明の熱可塑性樹脂組成物においては、(A)熱可塑性樹脂が縮合系高分子化合物を1種以上含むことが好ましい。
 本発明の熱可塑性樹脂組成物においては、(A)熱可塑性樹脂がポリカーボネート樹脂を含むことが好ましい。
 また、本発明によれば、上記熱可塑性樹脂組成物を用いて、三次元造形装置により造形体を製造する方法が提供される。
 本発明の方法においては、三次元造形装置のノズル温度が300℃以下であることが好ましい。
 また、本発明によれば、上記方法により得られる造形体が提供される。
 また、本発明によれば、熱溶解積層造形用フィラメント材料の製造への樹脂材料の使用であって、
 前記樹脂材料が、
 (A)熱可塑性樹脂と、
 (B)縮合リン酸エステル化合物と、
 を含有し、
 前記(B)縮合リン酸エステル化合物が、下記一般式(1)で表され、かつ、融点150℃以下であるか、又は常温で液体であり、
 (B)縮合リン酸エステル化合物の配合量が(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物の合計100質量部に対して、1~35質量部である、使用(但し、前記樹脂組成物が一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物を含む場合、前記の融点150℃以下であるか、又は常温で液体であることには、当該複数の化合物の混合物が融点150℃以下であるか、又は常温で液体であることが含まれる。)が提供される。
 本発明によれば、難燃性、造形安定性および層間密着性に優れる熱溶解積層造形用の熱可塑性樹脂組成物、ならびに当該熱可塑性樹脂組成物を用いて熱溶解積層造形により造形体を製造する方法及び当該方法により得られる造形体を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 本明細書において、熱溶解積層造形(以下、FDMともいう)とは、熱溶解積層方式による三次元造形を意味する。FDM方式とは、三次元造形における造形方式の一つであり、ペレット状、糸状などの形状を有する熱可塑性樹脂を造形装置内部で加熱溶解させたのち、ノズルから吐出し、1層ずつ積層しながら冷却固化させていき、立体物を造形する方式である。
 本発明の熱可塑性樹脂組成物は、(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物とを含有する熱溶解積層造形用の熱可塑性樹脂組成物である。
 本発明で用いる(A)熱可塑性樹脂について説明する。以下、(A)熱可塑性樹脂を「(A)成分」と記載することがある。
 本発明で用いる(A)熱可塑性樹脂の具体例としては、例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン(PS)、耐衝撃性ポリスチレン(HIPS)、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル・塩化ポリエチレン-スチレン共重合体(ACS樹脂)、スチレン-ブタジエン-スチレン共重合体(SBS樹脂)、耐熱ABS樹脂、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステル樹脂およびポリテトラメチレンテレフタレート等の直鎖ポリエステル樹脂;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル樹脂等のポリエステル樹脂;ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド樹脂;セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系樹脂;直鎖ポリカーボネートや分岐ポリカーボネート等のポリカーボネート樹脂、ポリカーボネート/ABS樹脂(ポリカーボネートとABS樹脂のポリマーアロイ)、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリウレタン樹脂、繊維素系樹脂、ポリイミド樹脂、ポリエーテルサルフォン(PES)樹脂、ポリサルフォン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。
 また、(A)熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、ポリオレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ニトリル系熱可塑性エラストマー、ナイロン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等のエラストマーであってもよい。
 これら本発明で使用される(A)熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、アロイ化されていてもよい。
 またこれらの(A)熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。
 これらの(A)熱可塑性樹脂の中でも、本発明の効果が顕著に奏される観点から、縮合系熱可塑性樹脂(縮合系高分子化合物)から選ばれる1種以上を含むことが好ましく、ポリカーボネート樹脂を含むことがより好ましく、ポリフェニレンエーテル樹脂を含むこともまた好ましい。
 上記縮合系熱可塑性樹脂とは、縮合重合により得られる熱可塑性樹脂を表す。縮合系熱可塑性樹脂は、強度が高くかつ収縮が起こりにくい性質を有しており、FDMに用いる熱可塑性樹脂として適している。
 上記縮合系熱可塑性樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂が挙げられる。また、上記縮合系熱可塑性樹脂は、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等のエラストマーであってもよい。本発明において、これらの縮合系熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、縮合系熱可塑性樹脂はアロイ化されていてもよい。
 上記ポリエステル樹脂としては、上記で挙げた各種の芳香族ポリエステル樹脂、直鎖ポリエステル樹脂、分解性脂肪族ポリエステルが挙げられるが、中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート;ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステルなどが好適に挙げられる。
 上記ポリアミド樹脂としては、例えば、ポリアミド410、ポリアミド6、ポリアミド66、ポリアミド666、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミド;ポリアミド4T、ポリアミド6T、ポリアミド9T、ポリアミド10Tなどの半芳香族ポリアミドが挙げられる。
 上記ポリカーボネート樹脂は、カーボネート結合を有する樹脂のことであり、例えば、二価ヒドロキシ芳香族化合物とカーボネート前駆体との重合反応により得られる。
 上記二価ヒドロキシ芳香族化合物としては、レゾルシン、ハイドロキノン等のジヒドロキシベンゼン類;4,4'-ジヒドロキシジフェニル等のビスヒドロキシアリール類;ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類;ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン等のジヒドロキシアリールケトン類;4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシ-3,3'-ジメチルフェニルエーテル、4,4'-ジヒドロキシ-2,5―ジヒドロキシジフェニルエーテル等のジヒドロキシアリールエーテル類;4,4'-チオジフェノール、ビス(4-ヒドロキシフェニル)スルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド、2,2-ビス(4-ヒドロキシフェニル)スルホン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシアリール硫黄化合物類やフェノールフタレインが挙げられる。これらは一種類または二種類以上混合して用いてもよく、更に、三つ以上のヒドロキシ基を有する多価ヒドロキシ芳香族化合物と混合して用いてもよい。
 上記カーボネート前駆体の好適な具体例としては、ホスゲン、炭酸ジエステル、ジフェニルカーボネート、二価フェノールのジハロホルメートおよびこれらの混合物等が挙げられる。
 上記ポリフェニレンエーテル樹脂は、単独で使用してもよく、アロイ化されていてもよい。ポリフェニレンエーテルとアロイ化される樹脂としては、スチレン系樹脂、ポリアミド、ポリプロピレン、ポリアセタール、ポリフェニレンサルファイド等が挙げられる。中でも、縮合リン酸エステル化合物との相溶性に優れることから、スチレン系樹脂とアロイ化されていることが好ましい。
 ここでスチレン系樹脂とは、例えば具体的には、ポリスチレン(PS)、スチレン-ブタジエン・スチレン共重合体(SBS樹脂)、水添スチレン-ブタジエン-スチレン共重合体(水添SBS)、水添スチレン・イソプレン-スチレン共重合体(SEPS)、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)、メチルメタクリレート-アクリロニトリル-スチレン共重合体(MAS樹脂)、アクリロニトリル-アクリルゴム・スチレン共重合体(AAS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)、スチレン-IPN型ゴム共重合体等の樹脂、または、これらの混合物が挙げられる。更にシンジオタクティクポリスチレン等のように立体規則性を有するものであってもよい。これらスチレン系樹脂の中でも、ポリスチレン、耐衝撃性ポリスチレンが好ましい。
 一方、熱可塑性樹脂として、非縮合系高分子化合物(非縮合系熱可塑性樹脂)を用いてもよい。そのような高分子化合物としては、主骨格中、基本的にアミド結合、エステル結合、ウレタン結合、カーボネート結合等を有さない樹脂であり、上記の中で、該当するものがあげられるが、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、耐衝撃性ポリスチレン(HIPS)、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、MABS樹脂、耐熱ABS樹脂等);イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、ポリオレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー等のエラストマーが挙げられ、FDM式造形における造形安定性、特に低収縮性・低反り性の点から、中でも、ポリスチレン、HIPS、AS樹脂、ABS樹脂、MBS樹脂、MABS樹脂、耐熱ABS樹脂、スチレン系熱可塑性エラストマーが好ましい。
 熱可塑性樹脂の量は、力学特性の点から、熱可塑性樹脂組成物中、60質量%以上であることが好ましく、65質量%以上であることがより好ましい。熱可塑性樹脂の量は、一般式(1)で表される縮合リン酸エステル化合物の添加量を高めて難燃性を高める点から、熱可塑性樹脂組成物中、95質量%以下であることが好ましく、93質量%以下であることがより好ましい。これらの観点から、熱可塑性樹脂の量は、例えば60質量%以上95質量%以下であることが難燃性、造形安定性および層間密着性のバランスの点から好ましく、65質量%以上93質量%以下であることがより好ましい。
 またポリカーボネート樹脂等の縮合系熱可塑性樹脂の量を含む場合、縮合系熱可塑性樹脂を用いる事による上記効果を得やすい点から、縮合系熱可塑性樹脂の量は、熱可塑性樹脂組成物中50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上が更に一層好ましい。縮合系熱可塑性樹脂の量は熱可塑性樹脂組成物中、一般式(1)で表される縮合リン酸エステル化合物の添加量を高めて難燃性を高める点から、95質量%以下であることが好ましく、93質量%以下であることがより好ましい。これらの観点から、縮合系熱可塑性樹脂の量は、熱可塑性樹脂組成物中、例えば50質量%以上95質量%以下であることが難燃性、造形安定性および層間密着性のバランスの点から好ましく、60質量%以上95質量%以下であることがより好ましく、65質量%以上93質量%以下であることが更に一層好ましい。
 またポリカーボネート樹脂等の縮合系熱可塑性樹脂の量を含む場合、縮合系熱可塑性樹脂の量は、熱可塑性樹脂中では、1質量%以上であることが好ましく、50質量%以上であることがより好ましい。縮合系熱可塑性樹脂の量は熱可塑性樹脂中、100質量%以下であるが、難燃性、造形安定性および層間密着性のバランスを一層高める点から、95質量%以下であることが好ましい。この観点から、縮合系熱可塑性樹脂の量は、熱可塑性樹脂中、例えば1質量%以上100質量%以下であることが難燃性、造形安定性および層間密着性のバランスの点から好ましく、50質量%以上95質量%以下であることがより好ましい。
 熱可塑性樹脂は、非縮合系熱可塑性樹脂を含む場合、特に限定はされないが、成形加工性および耐衝撃性の点から、非縮合系熱可塑性樹脂の量は、熱可塑性樹脂組成物中1質量%以上であることが好ましく、3質量%以上であることがより好ましい。非縮合系熱可塑性樹脂の量は熱可塑性樹脂組成物中、難燃性の点から、50質量%以下であることが好ましく、30質量%以下であることがより好ましい。これらの観点から、非縮合系熱可塑性樹脂の量は、例えば、熱可塑性樹脂組成物中、1質量%以上50質量%以下であることが難燃性、造形安定性および層間密着性のバランスの点から好ましく、3質量%以上30質量%以下であることがより好ましい。 
 また非縮合系熱可塑性樹脂を含む場合、成形加工性および耐衝撃性の点から、非縮合系熱可塑性樹脂の量は、熱可塑性樹脂中1質量%以上であることが好ましく、5質量%以上であることがより好ましい。非縮合系熱可塑性樹脂の量は熱可塑性樹脂中、難燃性の点から、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。これらの観点から、非縮合系熱可塑性樹脂の量は、熱可塑性樹脂中、例えば1質量%以上50質量%以下であることが難燃性、造形安定性および層間密着性のバランスの点から好ましく、5質量%以上40質量%以下であることがより好ましい。
 なお本発明において熱可塑性樹脂組成物が芳香族ビニル系樹脂を含む場合、PS樹脂、HIPS樹脂、MS樹脂、ABS樹脂、AS樹脂、AES樹脂、ASA樹脂、MBS樹脂、MABS樹脂、MAS樹脂、およびこれらの混合物から成る群から選択される芳香族ビニル系樹脂であって、該芳香族ビニル系樹脂の重量に基づいて5重量%~15重量%でゴム成分を含む芳香族ビニル系樹脂の量が樹脂組成物中85質量%未満であってもよい。
 本発明で用いる(B)縮合リン酸エステル化合物について説明する。
 本発明で用いる(B)縮合リン酸エステル化合物は、下記一般式(1)で表される縮合リン酸エステル化合物である。
Figure JPOXMLDOC01-appb-C000010
 一般式(1)中、R11、R12、R13およびR14は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、または下記一般式(2)で表される芳香族炭化水素基を表し、R15は下記一般式(3)または(4)で表される2価の芳香族炭化水素基を表し、rは1~30の数である。
Figure JPOXMLDOC01-appb-C000011
 一般式(2)中、R21およびR22はそれぞれ独立に、水素原子、ヒドロキシ基または炭素原子数1~10のアルキル基を表し、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000012
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44は、それぞれ独立に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数6~10のアリール基、ニトロ基、ハロゲン原子またはシアノ基を表し、Xは直接結合、2価の硫黄原子、スルホニル基、炭素原子数1~5のアルキリデン基または炭素原子数1~5のアルキレン基を表し、*は結合手を表す。
 一般式(1)中、R11、R12、R13およびR14がとり得る炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、tert-オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基、イソデシル基、2-プロピルヘプチル基等が挙げられる。
 一般式(1)中、R11、R12、R13およびR14は、それぞれ、一般式(2)で表される芳香族炭化水素基であることが、難燃性の点から好ましい。
 一般式(1)中、rは1~30の数である。rの下限が1以上であることにより、本発明の熱可塑性樹脂組成物を用いて製造した三次元造形物の層間密着性および積層造形安定性が良好になる傾向がある。rの上限は10以下であることが好ましく、7以下であることがより好ましい。これにより、(B)縮合リン酸エステル化合物のハンドリング性が向上する。
 (B)縮合リン酸エステル化合物は、一般式(1)で表される化合物のうち、rが異なるがそれ以外の構造(R11、R12、R13、R14及びR15)が同じである複数の化合物の混合物であってもよい。
 一般式(2)中、R21およびR22がとり得る炭素原子数1~10のアルキル基としては、一般式(1)中のR11~R14がとり得る炭素原子数1~10のアルキル基として例示したものが挙げられる。
 一般式(2)中、R21およびR22は、水素原子またはメチル基であることが好ましく、水素原子であることがより好ましい。
 一般式(2)で表される芳香族炭化水素基の具体例としては、例えば、フェニル基、トリル基、キシリル基、2,6-キシリル基、2,4,6-トリメチルフェニル基、2-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、2,6-ジ-tert-ブチル-4-メチルフェニル基、ノニルフェニル基等が挙げられ、フェニル基、トリル基、キシリル基、2,6-キシリル基であることが好ましく、フェニル基、2,6-キシリル基であることがより好ましく、フェニル基であることがさらにより好ましい。これにより、(B)縮合リン酸エステル化合物のハンドリング性および保存安定性が向上する。
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44がとり得る炭素原子数1~4のアルキル基としては、一般式(1)中のR11~R14がとり得る炭素原子数1~10のアルキル基の例として上記で挙げたものうちの炭素原子数1~4のものが挙げられる。
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44がとり得る炭素原子数1~4のアルコキシ基としては、上記に挙げた炭素原子数1~4のアルキル基に対応するアルコキシ基が挙げられる。
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44がとり得る炭素原子数3~8のシクロアルキル基としては、一般式(1)中のR11~R14がとり得る炭素原子数1~10のアルキル基の例として上記に挙げたアルキル基のうちの炭素原子数3~8のものに対応するシクロアルキル基が挙げられ、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチルやこれらがアルキル基で置換されたもの等が挙げられる。
 一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44がとり得る炭素原子数6~10のアリール基としては、例えば、フェニル基、トリル基、キシリル基、2,4,6-トリメチルフェニル基、2-tert-ブチルフェニル基、4-tert-ブチルフェニル基、ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等が挙げられる。
 一般式(4)中、Xがとり得る炭素原子数1~5のアルキリデン基としては、例えば、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、イソブチリデン等が挙げられ、炭素原子数1~5のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、イソブチレン基、ペンチレン基等が挙げられる。
 一般式(4)中、Xは直接結合、炭素原子数1~5のアルキリデン基又は炭素原子数1~5のアルキレン基であることが熱安定性、融点の調整の容易性、ならびに原料入手の容易性の点で好ましい。
 一般式(3)で表される2価の芳香族炭化水素基の具体例としては、例えば、1,4-フェニレン基、1,3-フェニレン基等が挙げられる。
 一般式(4)で表される2価の芳香族炭化水素基の具体例としては、例えば、4,4’-ビフェニレン基、4、4’-イソプロピリデンジフェニレン基、4,4’-チオジフェニレン基、4,4’-スルホニルジフェニレン基等が挙げられる。
 (B)縮合リン酸エステル化合物の融点は、150℃以下であり、好ましくは125℃以下であり、より好ましくは110℃以下である。
 本明細書において、(B)縮合リン酸エステル化合物は、常温にて液体であってもよい。
 以下、一般式(1)で表され融点が150℃以下であるか、又は常温で液体である縮合リン酸エステル化合物を「(B)成分」と記載する場合がある。「(B)成分」には、(1)一般式(1)で表され、単独で融点を測定した場合に150℃以下である化合物、(2)一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物であって、該複数の化合物の混合物の融点が150℃以下、好ましくは125℃以下、より好ましくは110℃以下である縮合リン酸エステル化合物、(3)一般式(1)で表され、常温で液体である化合物、及び(4)一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物の混合物であって、常温で液体である混合物、が含まれる。(B)縮合リン酸エステル化合物が常温にて液体であることにより、本発明の熱可塑性樹脂組成物を用いて製造した三次元造形物の層間密着性および積層造形安定性が良好になる。常温としては、25℃が挙げられる。
 本発明における融点は、以下の融点測定方法により測定される。ここで、式(1)で表される複数の化合物が樹脂組成物中に存在する場合のそれらの化合物の融点は、化合物ごとに測定した値とする。ただし樹脂組成物中に、rのみが異なる以外は同構造である式(1)で表される複数の化合物が存在する場合は、該複数の化合物の融点は、rのみが異なる以外は同構造である式(1)で表される複数の化合物の混合物として測定した値とする。
<融点測定方法>
 融点は示差熱-熱重量測定装置を用いて融点を測定する。試料をアルミニウムパンに10±0.5mg秤取り、大気雰囲気下、25℃から450℃まで10℃/分で昇温し、融解ピークのピークトップを融点とする。
 (B)縮合リン酸エステル化合物の具体例としては、例えば、以下の化合物No.1~5が挙げられる。なお、下記の化合物No.1~5におけるrは、それぞれ、1~30の数を表す。
 また、常温で液体であるとは、25℃で液体であることをさす。液体であることは、B型粘度計で測定可能な粘度を有することをさす。ハンドリング性の点から、B型粘度計(25℃)で測定した粘度が150,000mPa・s以下であることが好ましく、100,000mPa・s以下であることがより好ましく、80,000mPa・s以下であることが更に好ましく、60,000mPa・s以下であることが特に好ましい。また、濁りや結晶、固体の析出がないことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 これらの化合物は、単独で使用しても2種以上を併用してもよい。
 (B)縮合リン酸エステル化合物は、層間密着性および積層造形安定性の点から、上記化合物No.1、No.2、No.3およびNo.5のうち1種以上であることが好ましく、難燃性の点から、化合物No.1およびNo.2のうち1種以上であることがより好ましい。
 本発明の熱可塑性樹脂組成物における(B)成分の配合量の下限は、(A)成分と(B)成分の合計100質量部に対して、1質量部以上であり、難燃性の点から、7質量部以上が好ましく、10質量部以上がより好ましく、12質量部以上がさらにより好ましい。一方、(B)成分の配合量の上限は、(A)成分と(B)成分の合計100質量部に対して、35質量部以下であり、層間密着性および積層造形安定性の点から、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらにより好ましい。
 本発明の(B)縮合リン酸エステル化合物の製造方法は特に制限されないが、例えば、上記化合物No.1の場合、4,4’-ジヒドロキシビフェニルとフェノールとオキシ塩化リンとを塩化マグネシウムなどの触媒の存在下に反応させ脱塩酸することで製造することができる。
 本発明の熱可塑性樹脂組成物は、本発明の効果を損なわない範囲で、(A)熱可塑性樹脂及び(B)縮合リン酸エステル化合物以外の他の成分を含有する場合がある。前記他の成分としては、本発明の熱可塑性樹脂組成物に配合できる成分として後述する任意の添加剤を用いることができる。
 本発明の熱可塑性樹脂組成物は、燃焼時のドリップを抑制するために、(C)フッ素含有ポリマーの1種以上を含有することが好ましい。
 (C)フッ素含有ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマー、テトラフルオロエチレン/エチレンコポリマー、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等が挙げられる。中でも、ドリップ防止性能の点から、ポリテトラフルオロエチレンが好ましい。
 フッ素含有ポリマーを含有させる場合の(C)フッ素含有ポリマーの含有量は、(A)熱可塑性樹脂100質量部に対して、好ましくは0.03~5質量部であり、より好ましくは0.05~3質量部であり、さらにより好ましくは0.1~1質量部である。0.03質量部以上とすることでドリップ防止効果が十分なものとでき、5質量部以下とすることで樹脂の特性の低下を防止しやすい。
 また、本発明の熱可塑性樹脂組成物には、必要に応じて更に、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等を添加し、樹脂組成物を安定化することが好ましい。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(6-tert-ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ-tert-ブチルフェノール)、2,2’-エチリデンビス(4-sec-ブチル-6-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-tert-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-tert-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-tert-ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、チオジエチレングリコールビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-tert-ブチル-4-メチル-6-(2-ヒドロキシ-3-tert-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の使用量は、(A)熱可塑性樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト、トリス〔2-tert-ブチル-4-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジデシルモノフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラキス(トリデシル)-4,4’-n-ブチリデンビス(2-tert-ブチル-5-メチルフェノール)ジホスファイト、ヘキサキス(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-tert-ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-tert-ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ-tert-ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の使用量は、(A)熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、及びペンタエリスリトールテトラキス(β-アルキルメルカプトプロピオネート類が挙げられる。これらのチオエーテル系酸化防止剤の使用量は、(A)熱可塑性樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-tert-オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、2,4-ジ-tert-アミルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ-tert-ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ-tert-ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の使用量は、(A)熱可塑性樹脂100質量部に対して0.001~30質量部であることが好ましく、0.01~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-tert-オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス(2,2,6,6-テトラメチル-1-オクチルオキシ-4-ピペリジル)デカンジオアート、ビス(2,2,6,6-テトラメチル-1-ウンデシルオキシピペリジン-4-イル)カーボネート、BASF社製TINUVINNOR 371等が挙げられる。これらのヒンダードアミン系光安定剤の使用量は、(A)熱可塑性樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.01~10質量部であることがより好ましい。
 本発明の熱可塑性樹脂組成物は、本発明の効果を著しく損なわない範囲で、任意成分として、充填剤を含有してもよい。
 上記充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、ガラス繊維、炭素繊維、クレー、ドロマイト、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェートおよびハイドロタルサイト等を挙げることができ、粒子径(繊維状においては繊維径や繊維長およびアスペクト比)を適宜選択して用いることができる。これらは1種を単独で用いてもよく、2種以上を併用して用いてもよい。また、充填剤は、必要に応じて表面処理したものを用いることができる。これらの充填剤を配合する場合の配合量は、樹脂組成物のFDM式プリンターノズルからの吐出安定性および造形物の層間密着強度保持の観点から、(A)熱可塑性樹脂100質量部に対して、1~50質量部であることが好ましく、3~45質量部であることがより好ましく、5~43質量部であることがさらにより好ましい。
 本発明の熱可塑性樹脂組成物には、必要に応じて更に、通常合成樹脂に使用される添加剤、例えば、架橋剤、帯電防止剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、強化材、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、シリコーンオイル、シランカップリング剤等を、本発明の効果を損なわない範囲で、任意成分として、配合することができる。
 本発明の熱可塑性樹脂組成物は、(A)成分および(B)成分を混合することで得ることができる。必要に応じて、上記の任意の添加剤を混合してもよい。任意の添加剤は、(A)成分または(B)成分に予め混合されていてもよく、(A)成分および(B)成分を混合する際に混合してもよく、(A)成分および(B)成分の混合物中に混合してもよい。
 上記成分の混合方法は特に限定されず、公知の方法を適用することができる。例えば、タンブラーミキサー、ヘンシェルミキサー、リボンブレンダー、V型混合機、W型混合機、スーパーミキサー、ナウターミキサー等の混合機で混合する方法、押出し機等で溶融混練する方法、溶媒と共に混合し溶液流延する方法等が挙げられる。(B)成分が常温で液体の場合は、ハンドリング性の点から、押出し機等で溶融混練する方法等により(A)成分および(B)成分を一体化させ、常温で固体の樹脂組成物となるように混合することが好ましい。
 本発明の熱可塑性樹脂組成物の形状は特に限定されず、糸状、ペレット状、粉末状、顆粒状又はフレーク状であってもよく、ハンドリング性の観点から、糸状、ペレット状、顆粒状であることが好ましい。
 本発明の熱可塑性樹脂組成物の形状は糸状であることが好ましい。糸状であることにより、一般に販売されているFDM方式による三次元造形装置のフィラメント材料として好適に用いることができる。本発明の熱可塑性樹脂組成物が糸状の場合、長さが10cm以上であることが好ましく、200cm以上であることがより好ましい。
 本発明の熱可塑性樹脂組成物の形状が糸状である場合、その平均直径は1.55~1.95mmであることが好ましく、1.65~1.85mmであることがより好ましい。平均直径が上記の範囲にあることにより、一般に販売されているFDM方式による三次元造形装置のフィラメント材料として好適に用いることができる。
 平均直径の測定方法としては、例えば、デジタルノギスによる物理的な測定方法などが挙げられる。
 例えばデジタルノギスで平均直径を測定する場合、フィラメント材料の長手方向において異なる20箇所以上の直径を測定し、その平均値を求める。測定箇所は糸状の樹脂組成物の長手方向において互いに100mm以上離間した箇所であることが好ましい。また、糸状である場合の断面形状としては、円、楕円などが挙げられ、断面形状が円形でない場合、直径とは、断面を横断する最大線分の長さを意味する。
 糸状の熱可塑性樹脂組成物を製造する方法は特に限定されず、公知の方法を適用することができる。例えば、本発明の熱可塑性樹脂組成物を押出機により押出成形し、水冷または空冷した後に、巻取り機で巻き取る方法が挙げられる。また、本発明のフィラメント状樹脂組成物は、延伸されていても、延伸されていなくてもよい。
 糸状の熱可塑性樹脂組成物の平均直径の調整方法としては、押出機への樹脂材料のフィード速度、押出機のスクリュー回転数、押出機ダイス孔の口径、巻取り機の巻取り速度などを適切に選択することが挙げられる。
 糸状の熱可塑性樹脂組成物は、(A)成分及び(B)成分を混合した樹脂材料を公知の方法で糸状に成形することで得ることができる。樹脂材料には、必要に応じて、上述の任意の添加剤を混合してもよい。任意の添加剤は、(A)熱可塑性樹脂に予め混合されていてもよく、(A)成及び(B)の各成分を混合する際に混合してもよく、(A)成分及び(B)成分の混合物中に混合してもよい。樹脂材料の組成は、上記の熱可塑性樹脂組成物の組成と同じであり、上述した本発明の熱可塑性樹脂組成物における組成についての説明は全て(A)成分及び(B)成分を混合した樹脂材料に全て該当させることができる。
 本発明の造形体は、本発明の熱可塑性樹脂組成物をフィラメント材料として用いて、三次元造形装置により、製造することができる。造形装置としては、FDM方式の三次元造形装置(3Dプリンター)が挙げられ、市販のものを用いることができる。本発明の造形体をFDM方式で製造する際の、造形装置のノズル温度は300℃以下であることが好ましい。本発明では、特定の縮合リン酸エステル化合物を用いることにより、当該比較的低い温度域においても、幅広い熱可塑性樹脂(例えば一般的な汎用プラスチックやエンジニアリングプラスチック)において、FDM方式の三次元造形が可能である。このような比較的低い温度領域でも三次元造形が可能であり、且つ優れた難燃性を有する造形体を製造できる本発明は、産業上の利用可能性に優れたものである。
 本発明の造形体は、難燃性、層間密着性、積層造形安定性に優れることから、各種用途に好適に用いることができる。
 本発明の造形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、鉄道、航空、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用することができる。より具体的には、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務用OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器等の用途に用いられる。
 更に、本発明の造形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隔壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の、自動車、車両、鉄道車両、船舶、航空機、建物、住宅および建築用材料や、土木材料、衣料、カーテン、シーツ、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品、等の各種用途に使用される。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらによって何ら制限されるものではない。
[実施例1~12、比較例1~9]
<熱可塑性樹脂組成物の製造方法>
 表1に記載の熱可塑性樹脂組成物をブレンドしたのち、単軸押出機(装置名:D3038、東洋精機製作所製)を用いて押出温度:250℃、スクリュー回転速度:25rpmの条件で溶融混錬し、糸状の熱可塑性樹脂組成物(以下、フィラメントとも称する)を製造した。押出機から吐出したフィラメントを水で冷却しながら、測長機(装置名:Filameasure、Filabot社製)を取り付けたフィラメント巻取り機(装置名:カセ巻取り機、日本プラコン株式会社製)で、平均直径が1.65~1.85mmになるよう巻取り、熱溶解積層造形用のフィラメントを得た。糸状の熱可塑性樹脂組成物の平均直径はデジタルノギスを用い、上述した方法にて測定した。フィラメントはフィラメントリールに巻きつけたのち、80℃で減圧乾燥させた。なお、表1~2に示した配合量はすべて質量部基準である。
<評価用試験片の作成方法>
 上記で得られたフィラメントを巻き付けたリールを3Dプリンタ(Afinia 3D製 H+1)に取り付け、以下に示す条件でFDM方式での造形を行い、125mm×13mm×1.6mmおよび80mm×10mm×4mmの試験片を得た。
ノズル温度:280℃
ステージ温度:90℃
積層ピッチ:0.2 mm
充填率:99%以上(ソリッド)
ラスター配向:0°/90°
積層方向:X-Y (Flat)
<層間密着性の評価>
 層間密着性は、積層造形時にノズルから押し出された樹脂と前積層面の密着度で評価した。評価結果を以下の2段階で表す。
 A:ノズルから押し出された樹脂と前積層面の密着が良好であり、目的の形状が問題なく造形できる。
 B:ノズルから押し出された樹脂と前積層面の密着が弱く、造形中に剥がれてしまい、目的の形状が造形できない。
<積層造形安定性の評価>
 積層造形安定性は、造形時のノズルからの樹脂の押出挙動の安定性で評価した。評価結果を以下の3段階で表す。
 A:樹脂の押出速度が一定であり、積層時の樹脂の太さにバラつきがなく、安定している。
 B:樹脂の押出速度がやや不安定であり、積層時の樹脂の太さに若干のバラつきはあるものの、目的の形状を得ることはできる。
 C:樹脂の押出速度が不安定であり、積層時の樹脂の太さのバラつきが大きい。部分的に積層ができておらず、目的の形状を得ることができない。
<難燃性の評価1:接炎後の消火時間>
 得られた125mm×13mm×1.6mmの試験片を23℃、湿度50%RHの恒温恒湿槽内に2日間静置した後、垂直に保持し、下端にバーナーの火を10秒間接炎させた後で炎を取り除き、試験片に着火した火が消える時間(単位:秒)を測定した。この時間が短いほど難燃性が高いことを意味する。結果を表1~2に示す。
<難燃性の評価2:酸素指数>
 得られた80mm×10mm×4mmの試験片を23℃、湿度50%RHの恒温恒湿槽内に2日間静置した後、JIS K7201-2に準拠して試験片の酸素指数を測定した。酸素指数は、窒素と酸素の混合ガス中で、垂直の小型試験片が燃焼を維持する最少酸素濃度であり、この値が高いほど燃えにくいと言える。結果を表1~2に示す。
<融点測定方法>
 示差熱-熱重量測定装置(リガク社製 TG-DTA8122)を用いて融点を測定した。試料をアルミニウムパンに10±0.5mg秤取り、大気雰囲気下、25℃から450℃まで10℃/分で昇温し、融解ピークのピークトップを融点とした。
 表1~2中の各成分の詳細は次の通りである。
(A)成分 A-1:ポリカーボネート樹脂(三菱エンジニアリングプラスチック製 ユーピロンS-3000F)
(A)成分 A-2:ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体、日本エイアンドエル製 AT-05)
(B)成分 B-1:下記式で表す化合物(r1が1~7である化合物の混合物、常温で液体(25℃の粘度28,000mPa・s))
Figure JPOXMLDOC01-appb-C000014
(B)成分 B-2:下記式で表す化合物(r2が1~7である化合物の混合物、常温で液体(25℃の粘度19,000mPa・s))
Figure JPOXMLDOC01-appb-C000015
(B)成分 B-3:下記式で表す化合物(常温で固体、融点95℃)
Figure JPOXMLDOC01-appb-C000016
(B)の比較成分 BX-1:下記式で表す化合物(常温で固体、融点185℃)
Figure JPOXMLDOC01-appb-C000017
(B)の比較成分 BX-2:トリフェニルホスフェート
Figure JPOXMLDOC01-appb-C000018
(C)成分 C-1:ポリテトラフルオロエチレン(ダイキン工業製 ポリフロンMPAFA-500H)
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表1~2に示すように、本発明の組成(実施例1~12)では、層間密着性、積層造形安定性、難燃性とも良好であることが確認された。
 一方、(B)成分の配合量が本発明の範囲外となる組成(比較例1、2、7)では、層間密着性、積層造形安定性、難燃性のいずれかが劣る結果だった。また、常温で固体で融点が本発明の範囲外である縮合リン酸エステル化合物を使用した組成(比較例3、4、8)では、層間密着性に劣り、また、積層造形安定性の点でもそれぞれ対応する実施例1、3,11・12に対して劣る結果だった。また、本発明の(B)成分とは異なる構造のリン酸エステル化合物を使用した組成(比較例5、6、9)では、層間密着性、積層造形安定性の点で劣る結果だった。

Claims (10)

  1.  (A)熱可塑性樹脂と、
     (B)縮合リン酸エステル化合物と、
     を含有する熱可塑性樹脂組成物であって、
     前記(B)縮合リン酸エステル化合物は、
     下記一般式(1)で表され、かつ、融点が150℃以下であるか、又は常温で液体であり、
     (B)縮合リン酸エステル化合物の配合量が(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物の合計100質量部に対して、1~35質量部である、
     熱溶解積層造形用の熱可塑性樹脂組成物(但し、前記樹脂組成物が一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物を含む場合、前記の融点150℃以下であるか、又は常温で液体であることには、当該複数の化合物の混合物が融点150℃以下であるか、又は常温で液体であることが含まれる。)。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R11、R12、R13およびR14は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、または下記一般式(2)で表される芳香族炭化水素基を表し、R15は下記一般式(3)または(4)で表される2価の芳香族炭化水素基を表し、rは1~30の数である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、R21およびR22はそれぞれ独立に、水素原子、ヒドロキシ基または炭素原子数1~10のアルキル基を表し、*は結合手を表す。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44はそれぞれ独立に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数6~10のアリール基、ニトロ基、ハロゲン原子またはシアノ基を表し、Xは直接結合、2価の硫黄原子、スルホニル基、炭素原子数1~5のアルキリデン基または炭素原子数1~5のアルキレン基を表し、*は結合手を表す。
  2.  さらに(C)フッ素含有ポリマーの1種以上を、(A)熱可塑性樹脂100質量部に対して、0.03~5質量部含有する、請求項1に記載の熱可塑性樹脂組成物。
  3.  請求項1または2に記載の熱可塑性樹脂組成物であって、その形状が糸状である、熱可塑性樹脂組成物。
  4.  請求項3に記載の熱可塑性樹脂組成物であって、その形状が平均直径1.55~1.95mmの糸状である、熱可塑性樹脂組成物。
  5.  請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物であって、(A)熱可塑性樹脂が縮合系高分子化合物を1種以上含む、熱可塑性樹脂組成物。
  6.  請求項5に記載の熱可塑性樹脂組成物であって、(A)熱可塑性樹脂が縮合系高分子化合物として、ポリカーボネート樹脂を含む、熱可塑性樹脂組成物。
  7.  請求項1~6のいずれか1項に記載の熱可塑性樹脂組成物を用いて、三次元造形装置により造形体を製造する方法。
  8.  請求項7に記載の方法であって、三次元造形装置のノズル温度が300℃以下である、方法。
  9.  請求項7または8の方法により得られる造形体。
  10.  熱溶解積層造形用フィラメント材料の製造への樹脂材料の使用であって、
     前記樹脂材料が、
     (A)熱可塑性樹脂と、
     (B)縮合リン酸エステル化合物と、
     を含有し、
     前記(B)縮合リン酸エステル化合物が、下記一般式(1)で表され、かつ、融点150℃以下であるか、又は常温で液体であり、
     (B)縮合リン酸エステル化合物の配合量が(A)熱可塑性樹脂と(B)縮合リン酸エステル化合物の合計100質量部に対して、1~35質量部である、使用(但し、前記樹脂組成物が一般式(1)で表され、かつ、R11、R12、R13、R14及びR15が同じでrが異なる複数の化合物を含む場合、前記の融点150℃以下であるか、又は常温で液体であることには、当該複数の化合物の混合物が融点150℃以下であるか、又は常温で液体であることが含まれる。)
    Figure JPOXMLDOC01-appb-C000004
     一般式(1)中、R11、R12、R13およびR14は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、または下記一般式(2)で表される芳香族炭化水素基を表し、R15は下記一般式(3)または(4)で表される2価の芳香族炭化水素基を表し、rは1~30の数である。
    Figure JPOXMLDOC01-appb-C000005
     一般式(2)中、R21およびR22はそれぞれ独立に、水素原子、ヒドロキシ基または炭素原子数1~10のアルキル基を表し、*は結合手を表す。
    Figure JPOXMLDOC01-appb-C000006
     一般式(3)および(4)中、R31、R32、R41、R42、R43およびR44はそれぞれ独立に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数6~10のアリール基、ニトロ基、ハロゲン原子またはシアノ基を表し、Xは直接結合、2価の硫黄原子、スルホニル基、炭素原子数1~5のアルキリデン基または炭素原子数1~5のアルキレン基を表し、*は結合手を表す。
     
     
PCT/JP2022/030327 2021-09-21 2022-08-08 熱可塑性樹脂組成物、造形体を製造する方法および造形体 WO2023047822A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280056817.3A CN117836121A (zh) 2021-09-21 2022-08-08 热塑性树脂组合物、制造造形体的方法及造形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021152967 2021-09-21
JP2021-152967 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023047822A1 true WO2023047822A1 (ja) 2023-03-30

Family

ID=85719445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030327 WO2023047822A1 (ja) 2021-09-21 2022-08-08 熱可塑性樹脂組成物、造形体を製造する方法および造形体

Country Status (3)

Country Link
CN (1) CN117836121A (ja)
TW (1) TW202313824A (ja)
WO (1) WO2023047822A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209513A (ja) * 2012-03-30 2013-10-10 Asahi Kasei Chemicals Corp 無塗装高鮮映難燃耐衝撃射出成形品とその製造方法
US20160298268A1 (en) * 2013-11-21 2016-10-13 Sabic Global Technologies B.V. Reduced density article
CN106433177A (zh) 2016-10-20 2017-02-22 蒙宇 一种高弯曲强度的3d打印用玻璃纤维复合材料
JP2017149038A (ja) 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 押出積層による3次元造形物作成用樹脂フィラメント及びその造形品
JP2017149898A (ja) * 2016-02-26 2017-08-31 日本ゼオン株式会社 難燃性樹脂組成物及び樹脂成形体
WO2019044864A1 (ja) * 2017-09-04 2019-03-07 大塚化学株式会社 造形物及びその製造方法
US10434705B2 (en) 2014-03-06 2019-10-08 Sabic Global Technologies B.V. Additive manufactured items with flame resistance, process for making and process for testing their flame performance
WO2020158647A1 (ja) * 2019-01-30 2020-08-06 コニカミノルタ株式会社 熱溶融押出方式用材料、3dプリンター用造形材料、3dプリンター用造形材料の製造方法及び3次元造形物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209513A (ja) * 2012-03-30 2013-10-10 Asahi Kasei Chemicals Corp 無塗装高鮮映難燃耐衝撃射出成形品とその製造方法
US20160298268A1 (en) * 2013-11-21 2016-10-13 Sabic Global Technologies B.V. Reduced density article
US10434705B2 (en) 2014-03-06 2019-10-08 Sabic Global Technologies B.V. Additive manufactured items with flame resistance, process for making and process for testing their flame performance
JP2017149038A (ja) 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 押出積層による3次元造形物作成用樹脂フィラメント及びその造形品
JP2017149898A (ja) * 2016-02-26 2017-08-31 日本ゼオン株式会社 難燃性樹脂組成物及び樹脂成形体
CN106433177A (zh) 2016-10-20 2017-02-22 蒙宇 一种高弯曲强度的3d打印用玻璃纤维复合材料
WO2019044864A1 (ja) * 2017-09-04 2019-03-07 大塚化学株式会社 造形物及びその製造方法
WO2020158647A1 (ja) * 2019-01-30 2020-08-06 コニカミノルタ株式会社 熱溶融押出方式用材料、3dプリンター用造形材料、3dプリンター用造形材料の製造方法及び3次元造形物

Also Published As

Publication number Publication date
CN117836121A (zh) 2024-04-05
TW202313824A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
KR100385286B1 (ko) 난연성수지, 그것의 조성물 및 그 제조법
US5744526A (en) Color and hydrolytic stabilization of aromatic polycarbonate resins
TW201702301A (zh) 樹脂添加劑組成物及防靜電性熱可塑性樹脂組成物
KR20020087042A (ko) 시안아크릴산 에스테르 안정화제 화합물을 포함하는폴리카보네이트 수지 조성물
JP2009292965A (ja) 難燃性熱可塑性樹脂組成物
EP2868694B1 (en) Cellulose ester-based resin composition
JPWO2019049668A1 (ja) 組成物及び難燃性樹脂組成物
JPH01245049A (ja) 組成物
EP3252104B1 (en) Flame retardant resin composition and molded article using the same
JPWO2019054155A1 (ja) 組成物及び難燃性樹脂組成物
WO2016093108A1 (ja) 新規トリアジン化合物及びこれを用いてなる合成樹脂組成物
JP2016113445A (ja) 新規トリアジン化合物及びこれを用いてなる合成樹脂組成物
KR102206409B1 (ko) 자외선 흡수성 폴리카보네이트
WO2023047822A1 (ja) 熱可塑性樹脂組成物、造形体を製造する方法および造形体
JP2003534430A (ja) 低揮発性uv吸収性化合物を含むカーボネートポリマー組成物
TWI635113B (zh) 成型品、使用此之絕緣材料、及聚酯樹脂組成物之電絕緣性的改善方法
WO2024048380A1 (ja) 難燃性積層造形物の製造方法および難燃性積層造形物
WO2021002192A1 (ja) 耐熱安定助剤および耐熱安定剤組成物
JP2023026250A (ja) 流動性向上剤、熱可塑性樹脂組成物および成形品
KR102607279B1 (ko) 고분자 수지 조성물, 이를 포함하는 성형품, 및 고분자 연신 필름
WO2021193883A1 (ja) 難燃剤組成物、難燃性合成樹脂組成物および成形体
KR20220161299A (ko) 유리섬유 함유 난연성 폴리카보네이트 수지 조성물 및 성형체
WO2022249856A1 (ja) 熱可塑性樹脂組成物、造形体の製造方法、造形体及び樹脂材料の使用
JP2023045169A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
JP5371641B2 (ja) 難燃性ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549402

Country of ref document: JP