WO2023045148A1 - Électrolyte non aqueux et batterie au lithium-ion de celui-ci - Google Patents

Électrolyte non aqueux et batterie au lithium-ion de celui-ci Download PDF

Info

Publication number
WO2023045148A1
WO2023045148A1 PCT/CN2021/140301 CN2021140301W WO2023045148A1 WO 2023045148 A1 WO2023045148 A1 WO 2023045148A1 CN 2021140301 W CN2021140301 W CN 2021140301W WO 2023045148 A1 WO2023045148 A1 WO 2023045148A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolytic solution
ion battery
electrolyte
carbonate
Prior art date
Application number
PCT/CN2021/140301
Other languages
English (en)
Chinese (zh)
Inventor
黄秋洁
白晶
王霹霹
欧霜辉
毛冲
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2023045148A1 publication Critical patent/WO2023045148A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to the field of energy storage devices, in particular to a non-aqueous electrolyte and a lithium ion battery thereof.
  • the current high-voltage ternary cathode materials face serious problems such as poor high-temperature storage and cycle gas production.
  • the conventional electrolyte will be oxidized and decomposed on the surface of the positive electrode of the battery at a high voltage of 4.5V. Especially under high temperature conditions, the oxidative decomposition of the electrolyte will be accelerated, and at the same time, the deterioration reaction of the positive electrode material will be promoted.
  • Japanese patent JP1998189042A discloses a vinyl sulfate (DTD) electrolyte.
  • DTD vinyl sulfate
  • the high-temperature storage characteristics of lithium-ion batteries can be improved, but the floating charge performance of vinyl sulfate at a high voltage of 4.5V is not ideal.
  • the purpose of this application is to provide a non-aqueous electrolyte and lithium-ion battery thereof.
  • This non-aqueous electrolyte can inhibit the oxidation and decomposition of the electrolyte, and can improve the high voltage (4.5V) ternary positive electrode material system.
  • the high-temperature storage performance of lithium-ion batteries can also improve the floating charge performance of lithium-ion batteries.
  • the first aspect of the present application provides a non-aqueous electrolyte, including lithium salt, non-aqueous organic solvent and additives, the additives include cyclic nitrogen-containing sulfuric acid ester, the cyclic nitrogen-containing sulfuric acid ester
  • the additives include cyclic nitrogen-containing sulfuric acid ester, the cyclic nitrogen-containing sulfuric acid ester
  • the chemical formula is shown in structural formula I or structural formula II,
  • the cyclic nitrogen-containing sulfuric acid ester additive of the present application reacts at the positive electrode/electrolyte interface when it is charged for the first time, forming an interface film containing S and O, which is relatively stable under high temperature conditions and can It can significantly improve the high-temperature storage performance of lithium-ion batteries.
  • this kind of interfacial film containing S and O is not stable under continuous high voltage (especially at 4.5V), and it is easy to decompose to generate SO 2 and other gases, which will cause the battery to generate gas and deteriorate the battery performance.
  • its trifluoroalkylbenzene ring structure can be polymerized to form a polymer interface film with LiF and adhere to the surface of the interface film containing S and O when it is charged and discharged for the first time. It is extremely stable under high voltage, can inhibit the decomposition of the interfacial film containing S and O under continuous high voltage, and greatly improve the float charge performance of lithium-ion batteries.
  • the -N- structure also participates in the formation of some N x O y -containing interfacial films, which increases the toughness of the former two interfacial films and makes the interfacial films difficult to break.
  • the positive electrode/electrolyte interface can be optimized through the combination of the three structures, and the surface activity of the electrode can be reduced to inhibit the oxidative decomposition of the electrolyte, thereby Improve the floating charge performance and high temperature storage performance of lithium-ion batteries at high voltage (especially at 4.5V).
  • the compound of structural formula I adopts 1,2,5-thiadiazoline-1,1-dioxide and 1-bromo-trifluoro-p-xylene to undergo a substitution reaction under the action of potassium carbonate, and then undergoes recrystallization or column Prepared by chromatographic purification.
  • Its reaction formula is as follows.
  • the synthetic route of the compound of structural formula II is similar to the synthetic route of structural formula I.
  • the mass percentage of the cyclic nitrogen-containing sulfuric acid ester in the non-aqueous electrolyte is 0.1-5%, more preferably 0.5-2%, specifically but not limited to 0.1%, 0.5% , 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
  • the mass percentage of the lithium salt in the non-aqueous electrolyte is 6.5-15.5%.
  • the lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bistrifluoromethanesulfonate Lithium imide (LiN(CF 3 SO 2 ) 2 ), lithium bisoxalate borate (C 4 BLiO 8 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorooxalate borate (C 2 BF 2 LiO 4 ) , at least one of lithium difluorodioxalate phosphate (LiDFBP) and lithium bisfluorosulfonimide (LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiClO 4 lithium per
  • the organic solvent is at least one of chain carbonate, cyclic carbonate and carboxylate. More preferably, described non-aqueous organic solvent is selected from ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), At least one of butyl acetate (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), ethyl propionate (EP) and ethyl butyrate (Eb) .
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • n-Ba butyl acetate
  • ⁇ -Bt ⁇ -butyrolactone
  • propyl propionate n-Pp
  • EP ethyl propionate
  • Eb
  • the second aspect of the present application provides a lithium-ion battery, including a positive electrode material, a negative electrode material and an electrolyte, the electrolyte is the aforementioned non-aqueous electrolyte, and the positive electrode material is nickel-cobalt-manganese oxide or nickel-cobalt-aluminum Oxide, and the highest charging voltage is 4.5V.
  • the lithium-ion battery of the present application includes a cyclic nitrogen-containing sulfuric acid ester additive with a special structure because of its non-aqueous electrolyte additives.
  • the combination of the three structures can optimize the positive electrode/electrolyte interface and reduce the surface activity of the electrode.
  • the oxidative decomposition of the electrolyte improves the float charge performance and high temperature storage performance of the lithium-ion battery at high voltage (especially at 4.5V).
  • the chemical formula of the nickel-cobalt-manganese oxide is LiNi x Co y Mnz M (1-xyz) O 2
  • the chemical formula of the nickel-cobalt aluminum oxide is LiNi x Co y Al z N ( 1-xyz) O 2
  • M is at least one of Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V and Ti
  • N is Mn, Mg, Cu, Zn, Sn, At least one of B, Ga, Cr, Sr, V and Ti, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1.
  • the negative electrode material is at least one selected from artificial graphite, natural graphite, lithium titanate, silicon-carbon composite material and silicon oxide.
  • the electrolyte is prepared in a vacuum glove box with a moisture content of ⁇ 1ppm.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 ternary material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , binder PVDF and conductive agent SuperP are uniformly mixed at a mass ratio of 95:1:4 to make lithium ions with a certain viscosity
  • lithium-ion battery the positive electrode, diaphragm and negative electrode are stacked into square batteries, packed in polymer, filled with the non-aqueous electrolyte of lithium-ion battery prepared above, and processed by chemical formation, volume separation, etc. After the process, a lithium-ion battery with a capacity of 1000mAh is produced.
  • Example 2-7 The electrolyte formulations of Examples 2-7 and Comparative Examples 1-4 are shown in Table 1, and the steps of preparing the electrolyte and preparing the battery are the same as those of Example 1.
  • the lithium-ion batteries produced in Examples 1-7 and Comparative Examples 1-4 were subjected to a float charge performance test and a high-temperature storage test respectively.
  • the specific test conditions are as follows, and the performance test results are shown in Table 2.
  • Lithium-ion battery was discharged at 0.5C to 3.0V at 25°C, then charged at 0.5C to 4.5V, charged at 4.5V to 0.05C at constant voltage, placed in an oven at 45°C, and kept at 4.5V for 50 days to monitor the lithium ion battery.
  • the thickness change value of the ion battery, and the thickness of the initial 50% SOC is used as a benchmark.
  • this kind of interfacial film containing S and O is not stable under continuous high voltage (especially at 4.5V), and it is easy to decompose to generate SO 2 and other gases, which will cause the battery to generate gas and deteriorate the battery performance.
  • its trifluoroalkylbenzene ring structure can be polymerized to form a polymer interface film with LiF and adhere to the surface of the interface film containing S and O when it is charged and discharged for the first time. It is extremely stable under high voltage, can inhibit the decomposition of the interfacial film containing S and O under continuous high voltage, and greatly improve the float charge performance of lithium-ion batteries.
  • the -N- structure also participates in the formation of some N x O y -containing interfacial films, thereby increasing the toughness of the former two interfacial films and making the interfacial films difficult to break, so the floating charge performance and high-temperature storage performance are both better.
  • Comparative Example 2 contains ethylene sulfate (DTD), it can improve the high-temperature storage performance to a certain extent, but the effect is not obvious under the high-voltage system of 4.5V, and it cannot solve the floating charge problem at the same time.
  • DTD ethylene sulfate
  • Comparative Example 3 only contains a single fluorobenzene, although it can improve the floating charge performance to a certain extent, it cannot solve the problem of floating charge and high temperature storage under high voltage system.
  • comparative example 4 contains vinyl sulfate (DTD) and fluorobenzene at the same time, because the oxidation-reduction potential of fluorobenzene and DTD is different, the reaction conditions and the degree of reaction on the electrode surface are all different, although it is added at the same time, it still does not reach much According to this application, as a cyclic nitrogen-containing sulfuric acid ester additive with a special structure, the technical effect achieved by the combination of its -SO 2 - structure and the trifluoroalkylbenzene ring structure, so the floating charge performance and high temperature storage performance are poor .
  • DTD vinyl sulfate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un électrolyte non aqueux et une batterie au lithium-ion associée. L'électrolyte non aqueux comprend un sel de lithium, un solvant organique non aqueux et un additif. L'additif comprend un sulfate contenant de l'azote cyclique, et la formule chimique du sulfate contenant de l'azote cyclique est présentée dans la formule structurale I ou la formule structurale II. Dans l'additif de sulfate contenant de l'azote cyclique ayant une structure spéciale dans la présente invention, la structure-SO2 de celle-ci peut former un film d'interface contenant S et O, ce qui peut améliorer les performances de stockage à haute température d'une batterie au lithium-ion. Un film d'interface polymère formé par une structure cyclique de trifluoroalkyle benzène est extrêmement stable à des tensions continues élevées, ce qui peut inhiber la décomposition du film d'interface contenant S et O à des tensions élevées en continu, ce qui permet d'améliorer considérablement les performances de charge flottante de la batterie au lithium-ion. Au moyen de la combinaison de la structure-SO2, la structure cyclique de trifluoroalkyle benzène, et la structure-N, l'interface électrode positive/électrolyte peut être optimisée, et l'activité de surface d'une électrode est réduite pour inhiber ainsi la décomposition oxydative de l'électrolyte, ce qui permet d'améliorer les performances de charge flottante et les performances de stockage à haute température de la batterie au lithium-ion à une tension élevée (en particulier à 4,5V).
PCT/CN2021/140301 2021-09-24 2021-12-22 Électrolyte non aqueux et batterie au lithium-ion de celui-ci WO2023045148A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111125369.1 2021-09-24
CN202111125369.1A CN113851716B (zh) 2021-09-24 2021-09-24 非水电解液及其锂离子电池

Publications (1)

Publication Number Publication Date
WO2023045148A1 true WO2023045148A1 (fr) 2023-03-30

Family

ID=78979768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140301 WO2023045148A1 (fr) 2021-09-24 2021-12-22 Électrolyte non aqueux et batterie au lithium-ion de celui-ci

Country Status (2)

Country Link
CN (1) CN113851716B (fr)
WO (1) WO2023045148A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402155A (zh) * 2023-12-12 2024-01-16 蓝固(淄博)新能源科技有限公司 含噻二唑结构的电解液添加剂、其制备方法、电解液和锂离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118173891A (zh) * 2022-12-09 2024-06-11 Sk新能源株式会社 锂二次电池用电解液及包含该电解液的锂二次电池
CN115650261B (zh) * 2022-12-13 2023-04-18 深圳新宙邦科技股份有限公司 一种六氟磷酸锂的重结晶提纯方法、电解液及锂离子电池
CN117410568B (zh) * 2023-09-01 2024-05-31 华南师范大学 一种宽温域的高电压锂电池电解液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040639A1 (en) * 2015-08-06 2017-02-09 Ningde Contemporary Amperex Technology Limited Electrolyte and lithium-ion battery comprising said electrolyte
CN111883828A (zh) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 一种锂离子电池非水电解液和锂离子电池
CN111900477A (zh) * 2020-08-04 2020-11-06 松山湖材料实验室 高电压锂离子电池电解液成膜添加剂、电解液及其电池
CN113363580A (zh) * 2021-06-16 2021-09-07 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590682B2 (ja) * 2000-04-26 2010-12-01 三菱化学株式会社 リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
WO2010029048A1 (fr) * 2008-09-09 2010-03-18 Sekmed Srl Dérivés de 1,2,5-thiadiazole utiles en tant qu’adjuvants immunologiques
JP2014170689A (ja) * 2013-03-04 2014-09-18 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池
CN105514489A (zh) * 2016-01-28 2016-04-20 宁德新能源科技有限公司 电解液以及含有该电解液的锂离子电池
CN112582673A (zh) * 2019-09-29 2021-03-30 比亚迪股份有限公司 一种锂离子电池电解液及锂离子电池
CN113113668B (zh) * 2021-04-09 2022-05-17 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040639A1 (en) * 2015-08-06 2017-02-09 Ningde Contemporary Amperex Technology Limited Electrolyte and lithium-ion battery comprising said electrolyte
CN111883828A (zh) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 一种锂离子电池非水电解液和锂离子电池
CN111900477A (zh) * 2020-08-04 2020-11-06 松山湖材料实验室 高电压锂离子电池电解液成膜添加剂、电解液及其电池
CN113363580A (zh) * 2021-06-16 2021-09-07 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402155A (zh) * 2023-12-12 2024-01-16 蓝固(淄博)新能源科技有限公司 含噻二唑结构的电解液添加剂、其制备方法、电解液和锂离子电池
CN117402155B (zh) * 2023-12-12 2024-03-08 蓝固(淄博)新能源科技有限公司 含噻二唑结构的电解液添加剂、其制备方法、电解液和锂离子电池

Also Published As

Publication number Publication date
CN113851716A (zh) 2021-12-28
CN113851716B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023045148A1 (fr) Électrolyte non aqueux et batterie au lithium-ion de celui-ci
CN109728340B (zh) 锂离子电池
CN111082139B (zh) 非水电解液及锂离子电池
WO2018099097A1 (fr) Électrolyte et batterie secondaire au lithium
WO2022262232A1 (fr) Électrolyte non aqueux et batterie rechargeable
WO2018107745A1 (fr) Électrolyte et batterie secondaire au lithium
WO2022262230A1 (fr) Électrolyte non aqueux et batterie secondaire associée
WO2022262233A1 (fr) Électrolyte non aqueux et batterie rechargeable de ce dernier
CN111430801B (zh) 锂离子二次电池的电解液及其应用
CN110783628A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2023050597A1 (fr) Additif, additif contenant un électrolyte et batterie au lithium-ion
CN114552010A (zh) 锂金属电池用添加剂、电解液及其锂金属电池
CN109390629B (zh) 一种电解液以及电池
WO2023159798A1 (fr) Électrolyte utilisé pour une batterie à métal alcalin et batterie à métal alcalin associée
CN113851642B (zh) 非水电解液及其锂离子电池
WO2022213668A1 (fr) Additif d'électrolyte et électrolyte non aqueux et batterie au lithium-ion contenant l'additif
CN114335723B (zh) 添加剂和含有该添加剂的非水电解液及锂离子电池
CN114976247A (zh) 一种电解液和含有该电解液的电池
CN114400375A (zh) 电解液、电化学装置及电子装置
WO2022095772A1 (fr) Électrolyte non aqueux de batterie au lithium-ion et batterie au lithium-ion
CN109904520B (zh) 非水电解液及二次电池
CN114566708B (zh) 一种锂离子电池非水电解液及锂离子电池
CN117497859B (zh) 一种锂离子电池及其电解液
CN109309250A (zh) 电解液及二次锂电池
CN114865085A (zh) 电解液添加剂、锂离子电池电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE