WO2023043100A1 - 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재 - Google Patents

다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재 Download PDF

Info

Publication number
WO2023043100A1
WO2023043100A1 PCT/KR2022/013133 KR2022013133W WO2023043100A1 WO 2023043100 A1 WO2023043100 A1 WO 2023043100A1 KR 2022013133 W KR2022013133 W KR 2022013133W WO 2023043100 A1 WO2023043100 A1 WO 2023043100A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
layer
biodegradable film
point
Prior art date
Application number
PCT/KR2022/013133
Other languages
English (en)
French (fr)
Inventor
이석인
한권형
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to CN202280061601.6A priority Critical patent/CN118019644A/zh
Publication of WO2023043100A1 publication Critical patent/WO2023043100A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a multi-layered biodegradable film, a manufacturing method thereof, and an eco-friendly packaging material including the same.
  • Plastic films often used for packaging include cellophane, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), nylon, and polyethylene terephthalate (PET). .
  • polyvinyl chloride films generate harmful substances such as dioxins when incinerated, so their use is subject to many regulations.
  • polyethylene film lacks heat resistance and mechanical properties, so its use is limited except for low-grade packaging applications.
  • Polypropylene, nylon, and polyethylene terephthalate have relatively stable molecular structures and have good mechanical properties.
  • they when landfilled without special treatment after being used for packaging, they are hardly decomposed due to chemical and biological stability and accumulate in the ground. It shortens the life of the landfill and causes problems of soil pollution.
  • polylactic acid films which are aliphatic polyesters with high biodegradability of the resin itself, have recently been used in various ways, but these films have good mechanical properties, but have a unique crystal structure. Due to the lack of flexibility, its use is limited.
  • Japanese Patent Laid-Open No. 2006-272712 discloses a method for producing a film using only a biodegradable aliphatic polyester other than polylactic acid, but in this case, the glass transition temperature is too low for biaxial stretching. Not only is it not easy to manufacture the film by this method, but the final film has low mechanical strength and high thermal shrinkage, causing many problems during processing.
  • Japanese Patent Publication No. 2003-160202 discloses a method of imparting flexibility and heat sealing to a film by blending polylactic acid with aliphatic-aromatic co-polyester, but according to this method, polylactic acid The transparency of the final film is significantly lowered due to low compatibility with the aliphatic-aromatic co-polyester and the use of plasticizers, making it difficult to use for packaging applications requiring transparency.
  • multilayer films containing polylactic acid and aliphatic-aromatic co-polyester have large positional deviations in layer uniformity when forming the film under specific extrusion temperature conditions, making it difficult to control the film appearance and thickness.
  • marks or defects of the layer are easy to occur, which can adversely affect the physical properties of the film, and it is difficult to control the thickness, which may cause problems in processability, productivity, and moldability.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-272712
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-160202
  • An object of the present invention is to provide a multi-layer biodegradable sheet or film with improved flexibility, transparency, noise level and appearance characteristics of the film by adjusting the layer uniformity of the multi-layer biodegradable film.
  • Another object of the present invention is to efficiently control the melt viscosity range of the first resin layer and the second resin layer in order to adjust the uniformity (LUI) of the first resin layer of the multi-layered biodegradable sheet or film to an optimal range. And, by finely adjusting the thickness of each layer, it is intended to provide a method for producing a multi-layered biodegradable film capable of satisfying all of the above properties desired in the present invention.
  • Another object of the present invention is to provide a biodegradable, eco-friendly, and high-quality eco-friendly packaging material by using the uniformity-controlled multilayer biodegradable film.
  • thermoplastic resin layers including a first resin layer containing a polylactic acid-based polymer as a main component and a second resin layer containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component are used. are alternately laminated, and the uniformity (LUI) of the first resin layer represented by Equation 1 below is 0.2 ⁇ m or less, providing a multilayer biodegradable film:
  • the t max, N is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film,
  • N is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film
  • the t max, S is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t min, S is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t max, C is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point C of the multilayer biodegradable film,
  • the t min, C is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multilayer biodegradable film.
  • the present invention relates to two or more different thermoplastic materials including a first resin layer containing a polylactic acid-based polymer as a main component and a second resin layer containing an aliphatic polyester-based resin or an aliphatic-aromatic copolymerized polyester-based resin as a main component.
  • a multi-layered biodegradable sheet in which resin layers are alternately laminated and the uniformity (LUI s ) of the first resin layer represented by the following formula 1-1 is less than 2.3 ⁇ m:
  • FE-SEM field emission scanning electron microscope
  • t max, N1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet,
  • N1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet
  • t max S1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • S1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • the t max, C1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet,
  • the t min, C1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet.
  • the present invention provides a step of preparing a first resin mainly composed of a polylactic acid polymer and a second resin mainly composed of an aliphatic polyester resin or an aliphatic-aromatic copolymerized polyester resin (step 1); melt-extruding the first resin and the second resin to alternately laminate the first resin layer and the second resin layer to obtain a sheet in which two or more different thermoplastic resin layers are alternately laminated (step 2); and biaxially stretching and heat-setting the stacked sheets to obtain a multilayer biodegradable film (step 3), wherein the multilayer biodegradable film has a uniformity (LUI) of the first resin layer represented by Equation 1 It provides a method for producing a multi-layered biodegradable film of 0.2 ⁇ m or less.
  • LAI uniformity
  • the present invention provides an eco-friendly packaging material including the multi-layered biodegradable film.
  • the multi-layered biodegradable film according to the present invention has excellent uniformity, flexibility and transparency, and can also improve appearance characteristics and noise level.
  • the multi-layered biodegradable film is characterized in that it can implement a uniformity within a specific range with little thickness variation by location.
  • the manufacturing method of the multi-layered biodegradable film according to the embodiment is an economical and efficient method, and can further improve formability, processability and productivity.
  • the melting temperature of the first resin and the second resin and the melting temperature difference thereof it is possible to efficiently control the melt viscosity range of the first resin layer and the second resin layer.
  • the uniformity (LUI) of the first resin layer of the multi-layered biodegradable film can be adjusted to an optimal range.
  • the multi-layered biodegradable film is biodegradable along with the above characteristics and completely decomposes when landfilled, and has environmentally friendly characteristics, it can be used in various fields as a packaging material to provide a high-quality eco-friendly packaging material.
  • FIG. 1 is a schematic diagram of a multi-layered biodegradable film according to an embodiment of the present invention.
  • Figure 2 is a perspective view of a multi-layered biodegradable film according to another embodiment of the present invention.
  • FIG. 3 is a perspective view (a) cut along line A-A' in FIG. 2 and an enlarged view (b) of a cross section thereof.
  • Figure 4 schematically shows a method for producing a multi-layered biodegradable film according to an embodiment of the present invention.
  • Embodiments are not limited to the contents disclosed below, and may be modified in various forms unless the gist of the invention is changed.
  • first resin layer a first resin layer
  • second resin layer a second resin layer
  • first and second are used to describe various components, and the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
  • thermoplastic materials including a first resin layer containing a polylactic acid-based polymer as a main component and a second resin layer containing an aliphatic polyester-based resin or an aliphatic-aromatic copolymerized polyester-based resin as a main component
  • a multilayer biodegradable film in which resin layers are alternately laminated, and the uniformity (LUI) of the first resin layer represented by Equation 1 below is 0.2 ⁇ m or less:
  • the t max, N is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film,
  • N is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film
  • the t max, S is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t min, S is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t max, C is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point C of the multilayer biodegradable film,
  • the t min, C is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multilayer biodegradable film.
  • thermoplastic resin layers including a first resin layer and a second resin layer having the specific composition are alternately laminated, and in particular, the uniformity (LUI) of the first resin layer is 0.2 ⁇ m or less
  • LAI uniformity
  • the multi-layered biodegradable film has technical significance in that it can be biodegradable along with the above characteristics, and has environmentally friendly characteristics by being completely degraded when landfilled, so that it can be used in more diverse fields to exhibit excellent characteristics.
  • the multilayer biodegradable film 100 includes a first resin layer 110 containing a polylactic acid-based polymer as a main component, an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester Two or more types of different thermoplastic resin layers including the second resin layer 120 containing a resin as a main component are alternately laminated.
  • the multi-layered biodegradable film 100 may include a first resin layer 110 'as an outermost layer on both sides. Specifically, the outermost layer on both sides of the multi-layered biodegradable film is the first resin layer 110'.
  • the first resin layer and the second resin layer having the specific main component specifically, the first resin layer having a polylactic acid-based polymer as a main component, and an aliphatic polyester-based resin or aliphatic resin layer on one surface of the first resin layer -
  • the first resin layer and the second resin layer having the specific main component specifically, the first resin layer having a polylactic acid-based polymer as a main component, and an aliphatic polyester-based resin or aliphatic resin layer on one surface of the first resin layer -
  • the first resin layer may include a polylactic acid (PLA)-based polymer as a main component.
  • PLA polylactic acid
  • main component means that the ratio of a specific component to all components is 50% by weight or more, specifically 80% by weight or more, 85% by weight or more, 90% by weight or more, 95% by weight or more, 96% by weight or more % or more, 97 wt% or more, or 98 wt% or more.
  • the polylactic acid-based polymer is, for example, 50% by weight or more, specifically 80% by weight or more, 85% by weight or more, 90% by weight or more, 95% by weight or more, 96% by weight or more, based on the total weight of the first resin layer. 97% by weight or more, or 98% by weight or more.
  • the polylactic acid-based polymer is based on biomass, unlike petroleum-based resins, it is possible to utilize renewable resources and emits less carbon dioxide, which is the main culprit of global warming, compared to conventional resins during production, It is eco-friendly as it is biodegraded by moisture and microorganisms when landfilled.
  • the polylactic acid-based polymer may have a weight average molecular weight (Mw) of 100,000 to 1,000,000 g/mol, such as 100,000 to 800,000 g/mol, 100,000 to 500,000 g/mol, or 100,000 to 300,000 g/mol.
  • the weight average molecular weight (Mw) may be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the polylactic acid-based polymer may include L-lactic acid, D-lactic acid, D, L-lactic acid, or a combination thereof.
  • the polylactic acid-based polymer may be a random copolymer of L-lactic acid and D-lactic acid.
  • the content of the D-lactic acid is, for example, 1 wt% to 5 wt%, for example 1 wt% to 4 wt%, for example 1 wt% to 3 wt%, for example 1 wt% based on the total weight of the polylactic acid-based polymer. % to 2.5% by weight, or such as 1% to 2% by weight.
  • the content of the L-lactic acid may be, for example, 80% to 99% by weight, for example, 83% to 99% by weight, or, for example, 85% to 99% by weight based on the total weight of the polylactic acid-based polymer.
  • the content of L-lactic acid satisfies the above range, there may be an advantage in that heat resistance properties of the film are improved.
  • the first resin layer may include an aliphatic polyester polylactic acid-based polymer alone.
  • the first resin layer may include a resin obtained by copolymerizing a polylactic acid-based polymer with a small amount of other hydroxycarboxylic acid units.
  • the hydroxy carboxylic acid unit may include glycolic acid or 2-hydroxy-3,3-dimethyl butyric acid, and the like, and the hydroxy carboxylic acid unit is 5% by weight based on the total weight of the first resin layer may be included below.
  • the first resin layer may include a mixed resin obtained by mixing the polylactic acid-based polymer with a small amount of a vinyl acetate and a vinyl laurate copolymer.
  • the vinyl acetate and vinyl laurate copolymer may be included in an amount of 30% by weight or less based on the total weight of the first resin layer.
  • the first resin layer may include a mixed resin obtained by mixing the polylactic acid-based polymer with a butyl acrylate-based rubber having a core-shell structure.
  • the butyl acrylate-based rubber of the core-shell structure may be included in an amount of 10% by weight or less based on the total weight of the first resin layer.
  • the first resin layer contains a conventional static agent, antistatic agent, antioxidant, heat stabilizer, sunscreen, antiblocking agent and other inorganic lubricants within a range that does not impair the effect of the present invention. It does not matter if it is added in
  • the second resin layer includes an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component.
  • the aliphatic polyester-based resin may be a resin different from that used in the first resin layer
  • the multilayer biodegradable film is an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin together with the first resin layer.
  • the multilayered biodegradable film includes only the first resin layer containing polylactic acid-based polymer as a main component, the polylactic acid-based polymer may have good mechanical and optical properties, but lacks flexibility and has a high noise level. When manufactured as a biodegradable film, there may be a problem in that its use is very limited.
  • the multi-layered biodegradable film includes only a first resin layer, and the first resin layer contains the polylactic acid-based polymer with an aliphatic polyester-based resin different from the polylactic acid-based polymer or an aliphatic-aromatic copolymerized polyester-based resin. When a film is formed by blending, the transparency of the final film is significantly lowered, and there may be limitations in using it for packaging applications requiring transparency.
  • the second resin layer may include an aliphatic polyester-based resin or an aliphatic-aromatic copolymerized polyester-based resin obtained by polycondensation of an acid component containing an aliphatic or aromatic dicarboxylic acid as a main component and a glycol component containing an alkylene glycol as a main component.
  • aliphatic dicarboxylic acid examples include succinic acid, adipic acid, sebacic acid, glutalic acid, malonic acid, oxalic acid, azelaic acid, nonanedicarboxylic acid, and mixtures thereof.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, diphenylsulfonic acid dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethane dicarboxylic acid, cyclohexane dicarboxylic acid, and mixtures thereof. It can be used by including other aliphatic or aromatic dicarboxylic acid components.
  • glycol component examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, propylene glycol, neopentyl glycol, 2-methyl-1, Alkylene glycols such as 3-propanediol and diethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, polyethylene glycol, and mixtures thereof may be used.
  • the content of the aliphatic component in the acid component may be, for example, 30 mol% or more, eg 40 mol% or more, eg 45 mol% or more, eg 50 mol% or more.
  • the content of the aliphatic component in the acid component may be 30 mol% to 80 mol%, 30 mol% to 70 mol%, or 40 mol% to 60 mol%.
  • the aliphatic polyester-based resin or aliphatic-aromatic copolymerized polyester-based resin is, for example, a polybutylene adipate terephthalate (PBAT) resin, a polybutylene succinate (PBS) resin, Polybutylene adipate (PBA) resin, polybutylene succinate-adipate (PBSA) resin, polybutylene succinate-terephthalate (PBST) resin, polyhydroxybutylate-valerate (PHBV) resin, poly It may include at least one selected from the group consisting of a caprolactone (PCL) resin and a polybutylene succinate adipate terephthalate (PBSAT) resin.
  • PCL caprolactone
  • PBSAT polybutylene succinate adipate terephthalate
  • the aliphatic polyester-based resin or aliphatic-aromatic copolymerized polyester-based resin is, for example, a polybutylene adipate terephthalate (PBAT) resin, a polybutylene succinate (PBS) resin, and a polybutylene adipate. It may include at least one selected from the group consisting of paint (PBA) resins.
  • PBAT polybutylene adipate terephthalate
  • PBS polybutylene succinate
  • PBA paint
  • the aliphatic polyester-based resin may include, for example, at least one selected from the group consisting of polybutylene succinate (PBS) resin and polybutylene adipate (PBA) resin, for example, polybutylene Len succinate (PBS) resin may be included.
  • the aliphatic-aromatic co-polyester-based resin may include at least one selected from the group consisting of polybutylene adipate terephthalate (PBAT) resin and polybutylene succinate-terephthalate (PBST) resin, For example, polybutylene adipate terephthalate (PBAT) resin may be included.
  • a polybutylene adipate terephthalate (PBAT) resin in the second resin layer, it can be naturally degraded by microorganisms and is environmentally friendly, and has breaking strength, tensile strength, elongation, It is possible to improve mechanical properties such as optical properties, hardness, melt strength and water resistance, and in particular, it is possible to improve flexibility while maintaining appropriate strength by improving tensile strength and elongation and lowering Young's modulus.
  • the polybutylene adipate terephthalate (PBAT) resin has advantages over other biodegradable polyester resins, such as polylactic acid-based polymers, in terms of elasticity, flexibility, and low noise level.
  • a second resin layer containing the polybutylene adipate terephthalate (PBAT) resin as a main component is formed and laminated alternately with the first resin layer containing the polylactic acid-based polymer as a main component to obtain a multi-layered biodegradable film.
  • PBAT polybutylene adipate terephthalate
  • the second resin layer may include the aliphatic polyester-based resin or the aliphatic-aromatic co-polyester-based resin alone.
  • the second resin layer may include a mixed resin obtained by mixing the aliphatic polyester-based resin or the aliphatic-aromatic co-polyester-based resin together with a polyhydroxyalkanoate (PHA) unit.
  • the polyhydroxyalkanoate (PHA) unit is poly[3-hydroxybutyrate] (P3-HB); poly[4-hydroxybutyrate] (P4-HB); poly[3-hydroxyvalerate] (PHV); poly[3-hydroxybutyrate]-co-poly[3-hydroxyvalerate] (PHBV); poly[3-poly[3-hydroxyhexanoate] (PHC); poly[3-hydroxyheptanoate] (PHH); poly[3-hydroxyoctanoate] (PHO); poly[3-hydroxynonanoate] (PHN); poly[3-hydroxydecanoate] (PHD); poly[3-hydroxydodecanoate] (PHDD); and poly[3-hydroxytetradecanoate] (PHA) unit
  • the aliphatic polyester-based resin or aliphatic-aromatic co-polyester-based resin is, for example, 50% by weight or more, specifically 80% by weight or more, 85% by weight or more, 90% by weight or more, based on the total weight of the second resin layer. , 95% by weight or more, 96% by weight or more, 97% by weight, or 98% by weight or more.
  • the aliphatic polyester-based resin or aliphatic-aromatic co-polyester-based resin has a weight average molecular weight (Mw) of, for example, 50,000 to 400,000 g/mol, for example 50,000 to 300,000 g/mol, for example 50,000 to 200,000 g/mol, or for example 50,000 g/mol. to 100,000 g/mol.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) may be measured by gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) of the aliphatic polyester-based resin or aliphatic-aromatic copolymerized polyester-based resin satisfies the above range, compatibility and processability with the first resin layer containing the polylactic acid-based polymer as a main component are further improved. It can be excellent, and flexibility, transparency, and noise reduction effect can be further improved while maintaining appropriate strength of the multilayer biodegradable film.
  • the second resin layer contains a conventional electrostatic agent, antistatic agent, antioxidant, heat stabilizer, sunscreen, antiblocking agent and other inorganic lubricants within a range that does not impair the effect of the present invention. It does not matter if it is added in
  • the effect of the present invention is not impaired by using a third resin layer mainly composed of an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin different from that used in the second resin layer. It may be used by alternately stacking the first resin layer and the second resin layer within the range not shown.
  • each of the aliphatic polyester-based resin and the aliphatic-aromatic co-polyester-based resin that can be used for the third resin layer are the same as those used for the second resin layer above.
  • the third resin layer may also be added with conventional electrostatic agents, antistatic agents, antioxidants, heat stabilizers, sunscreens, antiblocking agents, and other inorganic lubricants within a range that does not impair the effects of the present invention.
  • At least one side of the surface of the film is corona treated to increase the processability of the film, or an inorganic material for preventing static electricity or blocking Particle coating may be performed, or coating treatment may be performed to improve printability with a printed layer.
  • the multi-layered biodegradable film according to one embodiment may further include a corona layer disposed on the other surface of the first resin layer.
  • the corona layer may be directly formed on the other surface of the first resin layer.
  • the corona layer is formed by corona treatment of the first resin layer, and may include a polar functional group selected from the group consisting of -CO, -COOH, and -OH.
  • the surface tension of the first resin layer with respect to the corona-treated surface may be 38 dyn/cm or more, such as 38 to 70 dyn/cm, such as 38 to 68 dyn/cm, or, for example, 38 to 66 dyn/cm. there is.
  • the surface tension of the corona-treated surface of the first resin layer satisfies the above range, adhesion, printability, coating characteristics, deposition characteristics, etc. of the multilayer biodegradable film may be further improved.
  • the thickness of the corona layer may be properly adjusted depending on the use and purpose of the multilayer biodegradable film, specifically, for example, 0.1 nm to 1000 nm, for example, 0.2 nm to 900 nm, or for example, 0.1 nm to 800 nm, but is limited thereto. It doesn't work.
  • the multi-layered biodegradable film according to another embodiment may further include a coating layer disposed on the other surface of the first resin layer.
  • the coating layer may include a primer coating layer, and in this case, antistatic performance may be improved.
  • the primer coating layer includes a corona layer on the other surface of the first resin layer or, when the multilayer biodegradable film includes the corona layer, the other surface of the first resin layer, and on the other surface (lower surface) of the corona layer.
  • the primer coating layer may be included.
  • a primer coating layer may be formed by performing a primer treatment on the other surface of the first resin layer.
  • a primer coating layer may be formed by priming one surface (lower surface) of the corona layer disposed on the other surface of the first resin layer.
  • the primer coating layer may include at least one selected from the group consisting of ammonium-based compounds having antistatic properties, phosphoric acid-based compounds, and polymers such as acrylic resins and urethane-based resins.
  • the surface resistance of the primer coating layer may be 0.1 to 30 ⁇ / ⁇ , 0.2 to 28 ⁇ / ⁇ , 0.3 to 26 ⁇ / ⁇ , 0.4 to 24 ⁇ / ⁇ , or 1 to 20 ⁇ / ⁇ .
  • the surface resistance is, for example, evaluated for antistatic performance by a surface resistance meter under a relative humidity (60% ⁇ 10%) at room temperature (22 ⁇ 2 ° C).
  • the thickness of the coating layer may be appropriately adjusted depending on the use and purpose of the multilayer biodegradable film, and may be specifically 15 nm to 50 nm, 20 nm to 45 nm, 25 nm to 40 nm, or 30 nm to 35 nm, It is not limited to this.
  • the multilayer biodegradable film 100 includes a first resin layer 110 containing a polylactic acid-based polymer as a main component, an aliphatic polyester-based resin or an aliphatic-aromatic copolymerized poly Two or more different thermoplastic resin layers including the second resin layer 120 containing an ester-based resin as a main component are alternately laminated.
  • the multi-layered biodegradable film 100 may include a first resin layer 110 'as an outermost layer on both sides. Specifically, the outermost layer on both sides of the multi-layered biodegradable film is the first resin layer 110'.
  • the outermost layer of the multi-layered biodegradable film is a first resin layer containing a polylactic acid-based polymer as a main component, it is more advantageous in terms of stretching and moldability, processability, and productivity. If the outermost layer of the multilayer biodegradable film includes a second resin layer containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component, stretching may not be easy and casting may be easy. Without doing so, adhesion can easily occur and reduce moldability, processability, and productivity.
  • the sum of the thicknesses of the outermost layers on both sides may be 5 to 40% of the total thickness of the film. Specifically, the sum of the thicknesses of the outermost layers on both sides is 10 to 40%, 15 to 40%, 20 to 40%, 25 to 40%, 30 to 40%, 30 to 38%, or 30 to 30% of the total thickness of the film. It may be 37%.
  • the resin layer in contact with the outermost layer on both sides may be a second resin layer.
  • the total number of layers of the multi-layered biodegradable film may be adjusted in consideration of the thickness of individual layers of the film, but may be 5 or more layers including the outermost layer on both sides.
  • the multi-layer biodegradable film may have 5 to 500 layers, 5 to 300 layers, 5 to 250 layers, 5 to 225 layers, 7 to 400 layers, 7 to 350 layers, 7 to 300 layers. layer, 7 to 250 layers, 7 to 220 layers, 10 to 200 layers, 10 to 150 layers, 10 to 100 layers, or 10 to 50 layers.
  • the multi-layered biodegradable film has less than 5 layers including the outermost layer on both sides, there may be a problem in that transparency is lowered.
  • the average thickness ratio of individual layers of the first resin layer and the second resin layer excluding the outermost layer on both sides may be 1:0.5 to 2.
  • the average thickness ratio of the individual layers of the first resin layer and the second resin layer excluding the outermost layer may be, for example, 1:0.5 to 2, for example 1:0.5 to 1.5, or for example 1:0.5 to 1.3. there is.
  • the average layer thickness ratio of the first resin layer and the second resin layer excluding the outermost layer satisfies the above range, it may be more advantageous to control the overall uniformity of the multilayer biodegradable film.
  • the average thickness of the individual layers of the first resin layer excluding the outermost layer on both sides may be, for example, 10 to 1000 nm, 50 to 800 nm, or 100 to 600 nm, for example.
  • the total thickness of the first resin layer excluding the outermost layer on both sides is, for example, 3 ⁇ m to 40 ⁇ m, for example 3 ⁇ m to 30 ⁇ m, for example 3 ⁇ m to 20 ⁇ m, for example 5 ⁇ m to 18 ⁇ m , or for example 5 ⁇ m to 15 ⁇ m.
  • the total thickness of the first resin layer including the outermost layer on both sides is, for example, 5 ⁇ m to 60 ⁇ m, for example 5 ⁇ m to 50 ⁇ m, for example 8 ⁇ m to 40 ⁇ m, for example 8 ⁇ m to 30 ⁇ m , for example 10 ⁇ m to 30 ⁇ m, or for example 10 ⁇ m to 20 ⁇ m.
  • the average thickness of the individual layers of the second resin layer may be, for example, 10 nm to 800 nm, eg 50 nm to 700 nm, or eg 100 nm to 600 nm.
  • uniformity control may be more easily performed, and thus, appearance characteristics and mechanical properties of the film may be further improved.
  • the total thickness of the second resin layer is for example 2.5 ⁇ m to 40 ⁇ m, for example 4 ⁇ m to 30 ⁇ m, for example 4 ⁇ m to 20 ⁇ m, for example 4 ⁇ m to 15 ⁇ m, or for example 5 ⁇ m ⁇ m to 10 ⁇ m.
  • the total thickness of the second resin layer and the average thickness of the individual layers satisfy the above range, it may be more advantageous to achieve desired effects in the present invention.
  • the total thickness of the multilayer biodegradable film, including the outermost layer on both sides, is, for example, 7.5 ⁇ m to 100 ⁇ m, 9 ⁇ m to 80 ⁇ m, such as 12 ⁇ m to 55 ⁇ m, such as 13 ⁇ m to 50 ⁇ m, eg 13 ⁇ m to 40 ⁇ m, eg 15 ⁇ m to 40 ⁇ m, eg 15 ⁇ m to 35 ⁇ m or eg 20 ⁇ m to 25 ⁇ m.
  • the multi-layered biodegradable film according to the embodiment has excellent uniformity, flexibility and transparency at the same time, and has a low noise level.
  • the uniformity (LUI) represented by Equation 1 below of the first resin layer may be 0.2 ⁇ m or less.
  • the t max, N is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film,
  • N is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film
  • the t max, S is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t min, S is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t max, C is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point C of the multilayer biodegradable film,
  • the t min, C is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multilayer biodegradable film.
  • the individual layers of the first resin layer refer to each layer except for the outermost layer on both sides (110' in FIGS. 1 and 3) of the first resin layer. Therefore, the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 of the first resin layer are the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 excluding the outermost layer 110' on both sides of the first resin layer, respectively. means thickness.
  • the uniformity (LUI) of the first resin layer represented by Equation 1 may be an important physical property that determines the appearance characteristics of the multilayer biodegradable film, the thickness uniformity of the film, and flexibility, transparency, and noise level.
  • the uniformity (LUI) of the first resin layer may be adjusted to a specific range, it is possible to control the uniformity of the final multi-layered biodegradable film, and as a result, physical properties, appearance characteristics, and noise level of the film may be varied.
  • the uniformity (LUI) of the first resin layer can be a measure of the quality of a molded article such as a packaging material including the multi-layer biodegradable film, thickness deviation of each position of the first resin layer of the multi-layer biodegradable film It is very important to control the uniformity (LUI) by reducing .
  • the uniformity (LUI) of the multilayer biodegradable film 100 is the central point in the width (W) direction of the multilayer biodegradable film "C", a point 50 mm away from one end in the width direction ( After selecting W1) as “N” and a point (W2) 50 mm away from the other end in the width direction as "S", when cutting (A-A') in the thickness direction of the multilayer biodegradable film, this cut It can be measured using a field emission scanning electron microscope (FE-SEM) in a cross-section.
  • FE-SEM field emission scanning electron microscope
  • FIG. 3 are a perspective view (a) cut along line A-A' in FIG. 2 and an enlarged view (b) of a cross section thereof.
  • the thickness at each position of the individual layers of the stacked first resin layer (at this time, excluding the thickness of the outermost layer 110' on both sides), that is, the thickness at point N (t N1, t N2, t N3 ...) , the thickness at point C (tc 1, t C2, t C3 ...) , and the thickness at point S (t S1, t S2, t S3 7)
  • the maximum thickness t max , N , t max , C , t max , S and the minimum thickness t min , N , t min, C , t min and S can be obtained, respectively, and the uniformity (LUI) represented by Equation 1 can be measured using each of these values.
  • the uniformity (LUI) of the first resin layer is obtained by obtaining the thickness by position of each individual layer except for the outermost layer on both sides of the stacked first resin layer, and subtracting the minimum value from the maximum value of the thickness by each position It can be a value divided by 3.
  • the uniformity (LUI) of the first resin layer may be lower as the thickness deviation of each position of the first resin layer is lower, and may be higher as the thickness deviation of each position is higher.
  • the uniformity (LUI) of the first resin layer is, for example, 0.2 ⁇ m or less, for example, 0.15 ⁇ m or less, for example, 0.12 ⁇ m or less, for example, 0.1 ⁇ m or less, or, for example, For example, it may be 0.08 ⁇ m or less.
  • the uniformity (LUI) of the first resin layer when the uniformity (LUI) of the first resin layer satisfies the above range, the uniformity of the multi-layered biodegradable film can be reduced by location, thereby improving the appearance characteristics of the film. It can further improve flexibility and transparency, and improve noise characteristics.
  • thickness control and thickness deviation control are easy to further improve processability, thereby further improving processability, productivity and moldability there is.
  • the uniformity (LUI) of the first resin layer exceeds the above range, there may be a problem with the appearance characteristics of the film, and marks or defects may occur in each layer due to deterioration of uniformity at each location, and as a result, the corresponding Physical properties for each location may be deteriorated.
  • the uniformity (LUI) of the first resin layer is, for example, 0.1 ⁇ m or less, for example 0.09 ⁇ m or less, or for example 0.08 ⁇ m or less.
  • the uniformity (LUI) of the first resin layer is, for example For example, it may be 0.15 ⁇ m or less, such as 0.12 ⁇ m or less, or, for example, 0.10 ⁇ m or less.
  • the uniformity (LUI) of the first resin layer is, for example, 0.2 ⁇ m or less , for example 0.15 ⁇ m or less, or for example 0.13 ⁇ m or less.
  • the uniformity (LUI) of the first resin layer may be more advantageous in achieving the object according to the embodiment of the present invention as the value is smaller within the above range.
  • the multilayer biodegradable film according to an embodiment of the present invention may have a uniformity difference ( ⁇ t N,S ) of 0.06 ⁇ m or less in the width direction of the multilayer biodegradable film represented by Equation 2 below:
  • t max, N , t min, N , t max, S , and t min, S are as defined above.
  • the uniformity difference ( ⁇ t N,S ) at both ends of the multilayer biodegradable film in the width direction is, for example, 0.05 ⁇ m or less, for example, 0.03 ⁇ m or less, for example, 0.027 ⁇ m or less, for example, 0.025 ⁇ m or less. ⁇ m or less, such as 0.02 ⁇ m or less, or for example 0.015 ⁇ m or less.
  • the uniformity difference ( ⁇ t N,S ) at both ends of the multilayer biodegradable film in the width direction is advantageous as it is closer to 0. In this case, the thickness deviation at both ends of the film is reduced to improve the appearance characteristics of the film, , flexibility and transparency can be further improved, and noise characteristics can be improved.
  • the uniformity difference ( ⁇ t N,S ) at both ends of the multilayer biodegradable film in the width direction is out of the above range, there may be a problem with the appearance characteristics of the film, and the uniformity deteriorates, such as marks or defects on each layer. This may occur, and as a result, physical properties for each location may be deteriorated.
  • the difference between t max, N and t min, N is, for example, 0.15 ⁇ m or less, for example 0.13 ⁇ m or less, for example 0.12 ⁇ m or less, for example 0.1 ⁇ m or less, for example 0.08 ⁇ m or less, or for example 0.07 ⁇ m or less.
  • the difference between t max, S and t min, S may be, for example, 0.15 ⁇ m or less, eg 0.12 ⁇ m or less, eg 0.1 ⁇ m or less, or eg less than 0.1 ⁇ m.
  • the difference between the t max, C and t min, C is, for example, 0.2 ⁇ m or less, such as 0.15 ⁇ m or less, such as 0.13 ⁇ m or less, such as 0.12 ⁇ m or less, or, for example, 0.1 ⁇ m or less. It may be less than a ⁇ m.
  • At least one of the difference between t max, N and t min, N , the difference between t max, S and t min, S , and the difference between t max, C and t min, C of the multilayer biodegradable film is within the above range
  • the thickness deviation of the film may be reduced to improve the appearance characteristics of the film, further improve flexibility and transparency, and improve noise characteristics.
  • the multi-layered biodegradable film may have a soft noise complex (FNC) of 20 or less represented by Equation 3 below:
  • the YM and N AVG are values excluding the unit measured by the multilayer biodegradable film specimen, respectively.
  • the YM is a multi-layered biodegradable film specimen made according to ASTM D882, cut to a length of 150 mm and a width of 15 mm, mounted so that the distance between chucks is 50 mm, and tested at a tensile speed of 200 mm / min, and then the measurement starting point Young's modulus (kgf/mm2), which is the value of the straight line slope from
  • the N AVG is a multi-layered biodegradable film cut to A4 size of 210 mm ⁇ 297 mm in a box of 650 (W) mm ⁇ 450 (D) mm ⁇ 500 (H) mm made of polycarbonate, and a digital noise analyzer Average noise level (dB) calculated by measuring the noise level measured 5 times when making noise for more than 5 seconds by placing it 30 cm away from the film, holding both ends of the film with a jig and twisting it back and forth at a rate of 30 times/min repeatedly am.
  • dB digital noise analyzer Average noise level
  • the flexible noise composite factor (FNC) represented by Equation 3 represents the value obtained by dividing the product of the Young's modulus and the noise level of the multilayer biodegradable film by 1000, which represents the degree of composite characteristics of the flexibility and noise level of the multilayer biodegradable film. is an indicator of
  • the flexible noise complexity (FNC) may be lower as the Young's modulus and/or noise level of the multilayer biodegradable film is lower.
  • the flexible noise complex (FNC) having these characteristics satisfies the above specific range or less, the flexibility and transparency of the multi-layered biodegradable film can be further improved, and the noise level can be reduced, further comprising the multi-layered biodegradable film.
  • the quality of molded products such as packaging materials can be further improved.
  • the multi-layered biodegradable film may have, for example, 20 or less, for example 2 to 20, for example 3 to 18, for example 5 to 18, or for example 10 to 19 days. there is.
  • FNC flexible noise complexity
  • the Young's modulus of the multilayer biodegradable film is preferably 300 kgf/mm2 or less, 250 kgf/mm2 or less, or 240 kgf/mm2 or less.
  • the Young's modulus was measured by making the multi-layered biodegradable film specimen in accordance with ASTM D882, cutting it into a length of 150 mm and width of 15 mm, and then mounting the specimen so that the gap between chucks was 50 mm, and the specimen was tested in a tensile tester (Instron 5566A) After testing at a tensile speed of 200 mm/min using , the slope of a straight line from the measurement start point to the point at which elongation reaches 3% can be measured as Young's modulus (kgf/mm2).
  • the Young's modulus of a single-layer polylactic acid polymer film made by a general method is 350 kgf/mm2 or more, and its flexibility is remarkably low, so that the film is stiff and its use may be limited.
  • the Young's modulus of the multilayer biodegradable film satisfies 300 kgf/mm2 or less, it is more advantageous to control the flexible noise complex (FNC) to 20 or less, so that desired effects can be easily implemented.
  • the average noise level (N AVG ) of the multilayer biodegradable film is a box of 650 (W) mm ⁇ 450 (D) mm ⁇ 500 (H) mm made of polycarbonate.
  • N AVG average noise level
  • the multi-layered biodegradable film 30 cm away from the digital noise analyzer (Cirrus Research PlC, model name: CR-162C), and both ends of the film.
  • the noise level measured when making noise for more than 5 seconds by repeatedly twisting back and forth at a speed of 30 times/min by holding a jig was defined as the average noise level calculated by measuring 5 times.
  • controlling the average noise level (N AVG ) within a specific range may be good in terms of providing a high-quality packaging material.
  • the average noise level (N AVG ) of the multilayer biodegradable film may be, for example, 86dB or less, for example, 85dB or less, for example, 80dB or less, or, for example, 79.5dB or less.
  • the average noise level (N AVG ) of the multi-layered biodegradable film is 80 dB or less, it is more advantageous to control the flexible noise complexity (FNC) to 20 or less, thereby providing a high-quality packaging material due to low noise level. there is.
  • the multilayer biodegradable film may have an apparent noise quality composite index (QCI) of 28 or less, represented by Equation 4 below:
  • the HZ, LUI, and N AVG are values excluding units measured with the multilayer biodegradable film specimen, respectively.
  • the HZ is the haze (%) of the multilayer biodegradable film
  • the LUI and the N AVG are each as defined above.
  • the apparent noise quality composite index (QCI) represented by Equation 4 is a value obtained by dividing the sum of haze, uniformity, and noise level of the multilayer biodegradable film by 3, and the uniformity (LUI) of the first resin layer, the final multilayer biodegradable film It is an index that indicates the degree of complex characteristics of uniformity, transparency and noise level.
  • the apparent noise quality complex index (QCI) may satisfy the above range as all of the haze, uniformity, and noise characteristics (noise reduction effect) of the multilayer biodegradable film are excellent. That is, the apparent noise quality composite index (QCI) may be lower as haze, uniformity, and/or noise level of the multilayer biodegradable film are respectively lower.
  • the haze and uniformity of the multilayer biodegradable film can be further improved at the same time, and the noise level can be reduced, further including the multilayer biodegradable film.
  • the quality of molded products such as packaging materials can be further improved.
  • the apparent noise quality composite index (QCI) of the multilayer biodegradable film may be, for example, 15 to 28, 20 to 28, 22 to 28, or 25 to 28, for example.
  • QCI apparent noise quality composite index
  • the haze of the multilayer biodegradable film according to the embodiment of the present invention is preferably 10% or less, 5% or less, or 3% or less. When the haze exceeds 10%, the use may be limited due to lack of transparency.
  • the multi-layered biodegradable film of the present invention may have a biodegradation rate of at least 60% or more, preferably 80% or more, and more preferably 90% or more in view of the nature of the product to reduce the environmental load.
  • preparing a first resin mainly composed of a polylactic acid-based polymer and a second resin containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component step 1; melt-extruding the first resin and the second resin to alternately laminate the first resin layer and the second resin layer to obtain a sheet in which two or more different thermoplastic resin layers are alternately laminated (step 2); and biaxially stretching and heat-setting the stacked sheets to obtain a multilayer biodegradable film (step 3), wherein the multilayer biodegradable film has a uniformity (LUI) of the first resin layer represented by Equation 1
  • LAI uniformity
  • Method for manufacturing a multi-layered biodegradable film according to an embodiment of the present invention is melt-extruded using a first resin and a second resin containing a specific resin as a main component, and alternately stacking the first resin layer and the second resin layer to form a second resin layer.
  • Formability, processability and productivity can be further improved by obtaining a sheet in which different types or more of different thermoplastic resin layers are alternately laminated, and biaxially stretching and heat-setting the sheet, and the excellent uniformity desired in the present invention by an economical and efficient method,
  • a multi-layered biodegradable film having flexibility and transparency at the same time and improved noise level can be obtained.
  • the manufacturing method of the multi-layered biodegradable film can efficiently control the melt viscosity range of the first resin layer and the second resin layer by controlling the melting temperature of the first resin and the second resin and the melting temperature difference thereof. Therefore, there is technical significance in that the uniformity (LUI) of the first resin layer can be adjusted to an optimal range by finely adjusting the thickness of each layer at each position.
  • the manufacturing method of the multilayer biodegradable film (S100) includes a first resin containing a polylactic acid-based polymer as a main component and a second resin containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component.
  • a step of preparing each resin (S110) may be included.
  • the first resin and the second resin each have a melt viscosity in a specific range, and the melt viscosity range and melt viscosity difference between the first resin layer and the second resin layer formed therefrom are efficiently controlled.
  • the uniformity can be controlled by reducing the thickness deviation of each position of the film, and thus, flexibility, transparency, and noise level within a desired range can be implemented.
  • melt viscosity of the first resin and the second resin can be a very important factor in controlling the uniformity (LUI) of the first resin layer of the multilayer biodegradable film of the present invention.
  • the thickness uniformity of the film may vary depending on the melt viscosity.
  • thickness uniformity and physical properties of the film may vary depending on the difference in melt viscosity.
  • the melt viscosity of the first resin and the second resin forming the first resin layer and the second resin layer by adjusting the melt viscosity of the first resin and the second resin forming the first resin layer and the second resin layer, the melt viscosity of the first resin layer and the second resin layer The difference can be reduced, and thus the uniformity of the first resin layer can be controlled within a desired range.
  • the first resin may have a melt viscosity of, for example, 5,000 poise to 12,000 poise, for example, 6,500 poise to 11,000 poise, or, for example, 8,000 poise to 10,000 poise at 210 °C.
  • the melt viscosity can be measured using a rheometer (RDS).
  • the melt viscosity of the first resin may be the same as or similar to that of the first resin layer formed therefrom. Therefore, when the melt viscosity of the first resin satisfies the above range, it is possible to implement a first resin layer having a melt viscosity of the same or similar range, thereby easily reducing the uniformity of the first resin layer to 0.2 ⁇ m or less. can be controlled If the melt viscosity of the first resin is out of the above range, the uniformity of the multi-layered biodegradable film may deteriorate due to a large deviation in thickness by position.
  • the first resin may have a melting temperature (Tm) of, for example, 100 °C to 250 °C, 110 °C to 220 °C, or 130 °C to 220 °C, for example.
  • Tm melting temperature
  • the first resin may have a glass transition temperature (Tg) of, for example, 30 °C to 80 °C, for example, 40 °C to 80 °C, for example, 40 °C to 70 °C, or, for example, 45 °C to 65 °C.
  • Tg glass transition temperature
  • the melting temperature (Tm) and the glass transition temperature (Tg) of the first resin respectively satisfy the above ranges, to improve the uniformity of the first resin layer of the multilayer biodegradable film as well as mechanical properties and optical properties may be more advantageous.
  • the second resin may have a melt viscosity of, for example, 4,000 poise to 8,000 poise, for example, 5,000 poise to 7,000 poise, or, for example, 6,000 poise to 7,000 poise at 210 °C.
  • the melt viscosity of the second resin may be the same as that of the second resin layer formed therefrom.
  • a second resin layer having a melt viscosity in the same range may be implemented, and the difference in melt viscosity between the first resin layer and the second resin layer is within a desired range. Since it can be controlled, it may be more advantageous to control the uniformity (LUI) of the first resin layer of the multilayer film.
  • the first resin may be the same as the type and characteristics of the resin included in the first resin layer described above.
  • the second resin may be the same as the type and characteristics of the resin included in the above-described second resin layer.
  • the first resin and the second resin are melt-extruded, and the first resin layer and the second resin layer are alternately laminated, so that two or more different thermoplastic resin layers are alternately formed. It may include a step (S120) of obtaining a laminated sheet.
  • the first resin layer and the second resin layer can be obtained by controlling the melt extrusion temperature of the first resin and the second resin, and two or more different thermoplastic resin layers are alternately laminated thereon.
  • the uniformity By obtaining this alternately laminated sheet, it is possible to control the uniformity by reducing the thickness deviation of each position of the final film, thereby implementing a desired range of flexibility, transparency and noise level.
  • the first resin and the second resin obtained in step (S110) may be melt-extruded using two extruders and a multilayer feed block in which two layers are alternately laminated, respectively, with an extruder.
  • the branched first resin layer and the second resin layer are alternately stacked and passed through a die, and about 10
  • An unstretched multilayer biodegradable sheet can be obtained by adhering to a cooling roll cooled to 40° C. to 40° C.
  • the melt extrusion temperature of the first resin and the second resin and the difference between the melt extrusion temperatures may be very important. Specifically, it is important to control the melt viscosities of the first resin layer and the second resin layer and their melt viscosity difference in order to obtain a multilayer biodegradable film having uniformity within the specific range.
  • the first resin and This can be achieved by controlling the melt extrusion temperature of the second resin.
  • the melt-extrusion temperature of the first resin and the melt-extrusion temperature of the second resin may be the same or different, and the difference between the melt-extrusion temperature of the first resin and the melt-extrusion temperature of the second resin is, for example, 30 ° C. or less, such as less than 30°C, such as less than 20°C, such as less than 15°C, such as less than 15°C, such as less than 10°C, or less than 5°C, such as less than 5°C.
  • the melt extrusion temperature of the first resin may be, for example, greater than 180 °C to 250 °C, eg 190 °C to 240 °C, or eg 190 °C to 230 °C.
  • the melt extrusion temperature of the second resin may be, for example, greater than 180 °C to 250 °C, such as 190 °C to 240 °C, or 190 °C to 230 °C.
  • Melt viscosities of the first resin layer and the second resin layer formed by the melt extrusion temperature of the first resin and the second resin and their melt viscosity deviations may be controlled. If the melt extrusion temperature of the first resin and the second resin is out of the above range, the desired melt viscosity of the first resin layer and the second resin layer cannot be achieved, and thus the location of the multi-layered biodegradable film. It may be difficult to implement the uniformity of the first resin layer within a desired range due to a large thickness deviation.
  • the melt viscosity of the first resin layer may be greater than the melt viscosity of the second resin layer.
  • melt viscosity of the first resin layer is greater than the melt viscosity of the second resin layer, but exhibiting a difference of more than a specific melt viscosity.
  • multilayer biodegradable films consisting of less than 5 layers or coextruded products are advantageous in terms of layer uniformity when melt viscosities are similar to each other, but multilayer biodegradable films of 5 or more layers, for example, tens or more layers, especially the first resin layer
  • the melt viscosity of the second resin layer is lower than that of the first resin layer, and their optimum melt viscosity difference ( ⁇ V) is about 500 poise or more, such as about When it is 2,000 poise or more, the desired physical property effect in the present invention can be satisfied.
  • the melt viscosity of the second resin layer is greater than or similar to that of the first resin layer, the first resin layer and the second resin layer pass through a very narrow slit in the multilayer block and are alternately laminated. In the process, the pressure between the interfaces constituting the layers increases, and the layer composition may become non-uniform.
  • Optimum uniformity of the multilayer biodegradable film can be secured by controlling the melt extrusion temperature so that the viscosity of the second resin layer is lower than the melt viscosity of the first resin layer and the difference is within a specific range.
  • melt viscosity difference ( ⁇ V) between layers at 210 ° C. represented by Equation 5 below may be 500 poise or more:
  • V1 is the melt viscosity of the first resin layer
  • the V2 is the melt viscosity of the second resin layer.
  • the interlayer viscosity difference ( ⁇ V) at 210 ° C is, for example, 700 poise or more, eg 800 poise or more, eg 1,000 poise or more, eg 1,500 poise or more, eg 2,000 poise or more, for example 2,200 poise or more, or for example 2,500 poise or more, for example 3,500 poise or less, for example 3,200 poise or less, for example 3,000 poise or less, or for example 2,700 poise or less.
  • the interlayer viscosity difference ( ⁇ V) may be 500 to 3,000 poise, or, for example, 700 to 3,000 poise.
  • the first resin layer may have a melt viscosity of, for example, 7,000 poise to 12,000 poise, for example, 7,500 poise to 11,000 poise, or, for example, 8,000 poise to 10,000 poise at 210 °C.
  • the melt viscosity of the first resin layer can be measured using a rheometer (RDS).
  • the second resin layer may have a melt viscosity of, for example, 4,000 poise to 8,000 poise, for example, 5,000 poise to 7,000 poise, or, for example, 6,000 poise to 7,000 poise at 210 °C.
  • melt viscosities of the first resin layer and the second resin layer satisfy the above range, it is possible to control the uniformity of the first resin layer of the multilayer film, and further achieve the desired effect in the present invention. can be advantageous
  • melt extrusion for example, by applying a quantitative conveying equipment (eg a gear pump) in the melt conveying conduit, sufficient quantitative conveying and plasticization can be achieved.
  • a quantitative conveying equipment eg a gear pump
  • two extruders and a multilayer feed block in which two layers are alternately laminated When used, layer formation can be well done.
  • drying the first resin and the second resin may be further included before the melt extrusion.
  • the drying step may be performed at, for example, 60° C. to 100° C. for 4 hours to 24 hours.
  • the manufacturing method of the multi-layer biodegradable film (S100) may include biaxially stretching and heat-setting the laminated sheets to obtain a multi-layer biodegradable film (S130).
  • the laminated sheet may be biaxially stretched, and the biaxially stretched step is, for example, preheating at 50° C. to 80° C., followed by longitudinal stretching 2 to 4 times in the machine direction (MD) at 40° C. to 100° C. and stretching 3 to 6 times in the transverse direction (MD) at 50°C to 150°C.
  • MD machine direction
  • MD transverse direction
  • the physical properties and formability of the multi-layered biodegradable film can be further improved, so that a high-quality packaging material can be implemented.
  • the thickness deviation of the multi-layered biodegradable film is severe, the strength of one side not being stretched may be reduced, and the thermal properties may also be deteriorated.
  • the heat setting step may be performed at 50 °C to 150 °C, 70 °C to 150 °C, 100 °C to 150 °C, or 110 °C to 140 °C.
  • a corona layer, a coating layer, or both may be further formed on the other surface of the first resin layer.
  • a corona layer may be formed by corona treatment of the first resin layer.
  • corona discharge occurs when a high frequency-high voltage output is applied between the discharge electrode and the treatment roll.
  • the corona treatment can be performed by passing through a desired surface.
  • the corona discharge intensity may be, for example, 3 to 20 kW.
  • the corona discharge treatment effect may be insignificant, and conversely, when the corona discharge intensity exceeds the above range, excessive surface modification may cause surface damage.
  • composition and physical properties of the corona layer are as described above.
  • a coating layer may be formed on the other surface of the first resin layer.
  • the coating layer may include a primer coating layer, and the primer coating layer includes at least one selected from the group consisting of polymers such as ammonium-based compounds, phosphoric acid-based compounds, and acrylic resins and urethane-based resins on the other surface of the first resin layer. Surface roughness may be formed by priming with a primer composition to further improve adhesive properties.
  • the primer coating layer forms a corona layer on the other surface of the first resin layer, or, when the multilayer biodegradable film includes the corona layer, forms a corona layer on the other surface of the first resin layer, and the primer on the other surface of the corona layer.
  • a coating layer may be formed.
  • the primer composition may contain a curing agent component, and more specific examples include 4,4'-diaminodiphenylmethane (DDM), aromatic diamine, and mixtures thereof.
  • DDM 4,4'-diaminodiphenylmethane
  • the amount of the curing agent component may be added in an amount of 0.1 to 50% by weight based on the total weight of the primer composition.
  • the primer treatment method conventional methods used in the art may be used, and for example, spray spraying, brushing, rolling, and the like may be used.
  • the primer composition is applied to the surface of the first resin layer using an airless spray under the conditions of an induction time of 1 to 30 minutes, a spray pressure of 5 to 500 Mpa, a nozzle diameter of 0.46 to 0.58 mm, and a spray angle of 40 to 80 °. can spray.
  • surface treatment such as plasma treatment, ultraviolet irradiation treatment, flame treatment, or saponification treatment may be appropriately performed in order to increase the adhesiveness of the multilayer biodegradable film.
  • the multilayer biodegradable film is prepared according to the manufacturing method of the embodiment, it is economical and efficient, and it may be more effective to prepare a multilayer biodegradable film having desired configuration and physical properties.
  • two or more different resin layers including a first resin layer containing a polylactic acid-based polymer as a main component and a second resin layer containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component are used. It is possible to provide a multi-layered biodegradable sheet in which thermoplastic resin layers are alternately laminated and the uniformity (LUI s ) represented by the following formula 1-1 of the first resin layer is less than 2.3 ⁇ m:
  • FE-SEM field emission scanning electron microscope
  • t max, N1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet,
  • N1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet
  • t max S1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • S1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • the t max, C1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet,
  • the t min, C1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet.
  • the uniformity (LUI s ) of the first resin layer may be, for example, 2.2 ⁇ m or less, for example, 2.0 ⁇ m or less, or, for example, less than 2.0 ⁇ m.
  • the uniformity of the multi-layered biodegradable sheet when the uniformity (LUI s ) of the first resin layer satisfies the above range, the uniformity of the multi-layered biodegradable sheet can reduce the thickness deviation by position, thereby improving the appearance characteristics of the sheet can be improved, transparency and flexibility can be further improved, and noise characteristics (noise reduction effect) can be improved.
  • the number of layers of the multi-layer biodegradable sheet may be the same as the number of layers of the multi-layer biodegradable film.
  • the total thickness of the multi-layer biodegradable sheet may be, for example, 200 ⁇ m to 500 ⁇ m, for example 250 ⁇ m to 450 ⁇ m, for example 250 ⁇ m to 400 ⁇ m, or for example 250 ⁇ m to 350 ⁇ m.
  • the manufacturing method of the multi-layer biodegradable sheet includes preparing a first resin mainly composed of a polylactic acid-based polymer and a second resin containing an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin as a main component, respectively. (step 1); and melt-extruding the first resin and the second resin to alternately laminate the first resin layer and the second resin layer to obtain a sheet in which two or more different thermoplastic resin layers are alternately laminated (step 2). ; can be included.
  • Steps 1 and 2 may be performed in the same manner as steps 1 and 2 in the method for manufacturing the multi-layered biodegradable film.
  • the present invention may provide an eco-friendly packaging material including the multi-layered biodegradable film.
  • the eco-friendly packaging material includes a multi-layer biodegradable film
  • the multi-layer biodegradable film includes a first resin layer containing a polylactic acid-based polymer as a main component, and an aliphatic polyester-based resin or an aliphatic-aromatic co-polyester-based resin.
  • Two or more different thermoplastic resin layers including a second resin layer as a main component may be alternately laminated, and the uniformity (LUI) of the first resin layer represented by Equation 1 may be 0.2 ⁇ m or less.
  • the eco-friendly packaging material may be in the form of a film that can be used, for example, as a general disposable packaging material and food packaging material, and may be in the form of a fiber that can be used as a fabric, knitted fabric, non-woven fabric, rope, etc. It may be in the form of a container that can be used as a container for packaging food.
  • the eco-friendly packaging material can provide excellent physical properties and quality by including a multi-layered biodegradable film having excellent uniformity, flexibility and transparency, and low noise level.
  • a packaging material having environmentally friendly properties since it is biodegradable and can be completely decomposed upon landfill to provide a packaging material having environmentally friendly properties, it can be used in various fields as a packaging material and exhibit excellent properties.
  • a polylactic acid resin (Nature Works LLC, 4032D) having a D-lactide content of about 1.4% and a melt viscosity of about 8,770 poise at about 210 ° C. as a resin of the first resin layer and a resin of the second resin layer at 210 ° C.
  • Polybutylene adipate-terephthalate (PBAT) an aliphatic-aromatic copolymerized polyester resin having a melt viscosity of about 6,259 poise and an aliphatic component content of 50 mol% among acid components (XINJIANG BLUE RIDGE TUNHE POLYESTER CO. , LTD.) resin was used.
  • the resin of the first resin layer is dried at about 80 ° C. for 6 hours with a dehumidifying dryer, and the resin of the second resin layer is dried at about 80 ° C. for 2 hours with a dehumidifying dryer to remove moisture, and then two extruders and two layers are alternately Using a multi-layer feed block laminated to, the resin of the first resin layer was melt-extruded with an extruder having a temperature of 210 ° C, and the resin of the second resin layer was melt-extruded with an extruder having a temperature of 210 ° C.
  • the first resin layer is branched into 15 layers and the second resin layer is branched into 14 layers, and then the branched first resin layer and the second resin layer are alternately stacked on a 780 mm die. It was passed through and brought into close contact with a cooling roll cooled to about 21° C. to obtain a 29-layer unstretched multi-layered biodegradable sheet. At this time, the first resin layer was placed on the outermost layer on both sides of the upper and lower surfaces, and the sum of the thicknesses of the outermost layers on both sides was 30% of the total thickness.
  • the thus obtained unstretched multilayer biodegradable sheet was stretched 3.0 times in the machine direction at about 65 ° C and 3.9 times in the transverse direction at 120 ° C, heat-set at 150 ° C, and a relaxation rate of 1% was applied to obtain a total thickness of the multi-layer biodegradable film
  • a multi-layered biodegradable film having 29 layers of 20 ⁇ m and a uniformity (LUI) of the first resin layer of about 0.077 ⁇ m was prepared.
  • Example 1 As shown in Table 1, except for adjusting the thickness of the first resin layer and the second resin layer, the total number of layers of the film, the sum of the thicknesses of the outermost layers on both sides, and the uniformity (LUI) of the first resin layer, respectively. , In the same manner as in Example 1, a multi-layer biodegradable film having a total thickness of 57 layers of 20 ⁇ m was prepared.
  • the same polylactic acid resin as in Example 1 was used, and it was dried at about 80° C. for 6 hours with a dehumidifying dryer to remove moisture.
  • the resin of the first resin layer from which the water was removed was melt-extruded with an extruder having a temperature of 210°C, passed through a 780 mm die, and adhered to a cooling roll cooled to 20°C to obtain a single-layer unstretched sheet.
  • the obtained single-layer unstretched sheet was stretched 3.0 times in the machine direction at 65°C and 3.8 times in the transverse direction at 120°C, heat-set at 120°C, and a relaxation rate of 1% was applied to prepare a single-layer film having a thickness of 20 ⁇ m.
  • Comparative Example 2 Preparation of a single-layer biodegradable film
  • the resin of the first resin layer and the resin of the second resin layer used in Example 1 were hand-mixed at a weight ratio of 80:20, respectively, and then blended in a 45 pie twin screw extruder at 200 °C. After drying this at about 60 ° C. for 8 hours in a dehumidifying dryer, melt extrusion at 200 ° C. to prepare a single layer film having a thickness of 30 ⁇ m.
  • the resin of the first resin layer is melt-extruded with an extruder having a temperature of 210 ° C and the resin of the second resin layer is melt-extruded with an extruder having a temperature of 180 ° C, and the thickness of the first resin layer and the second resin layer, except for adjusting the sum of the thicknesses of the outermost layers on both sides and the uniformity (LUI) of the first resin layer, respectively, the multilayer biodegradable film was carried out in the same manner as in Example 1, and the total thickness of the multilayer biodegradable film was 29 layers of 20 ⁇ m. A biodegradable film was prepared.
  • the resin of the first resin layer is melt-extruded with an extruder having a temperature of 210 ° C and the resin of the second resin layer is melt-extruded with an extruder having a temperature of 140 ° C, the thickness of the first resin layer and the second resin layer, except for adjusting the sum of the thicknesses of the outermost layers on both sides and the uniformity (LUI) of the first resin layer, respectively, the multilayer biodegradable film was carried out in the same manner as in Example 2, and the total thickness of the multilayer biodegradable film was 43 layers of 25 ⁇ m. A biodegradable film was prepared.
  • the resin of the first resin layer is melt-extruded with an extruder having a temperature of 210 ° C and the resin of the second resin layer is melt-extruded with an extruder having a temperature of 190 ° C, and the thickness of the first resin layer and the second resin layer, except for adjusting the sum of the thicknesses of the outermost layers on both sides and the uniformity (LUI) of the first resin layer, respectively, the multilayer biodegradable film was carried out in the same manner as in Example 3, and the total thickness of the multilayer biodegradable film was 57 layers of 20 ⁇ m. A biodegradable film was prepared.
  • the thickness of the multi-layered biodegradable film was measured by dividing a film width of 500 mm at 10 point intervals and averaging using MFC-101 (Nikon Co.).
  • the central point in the width (W) direction of the multilayer biodegradable film prepared according to Examples 1 to 3 and Comparative Examples 3 to 5 is "C", and one in the width direction After selecting a point (W1) 50 mm away from one end as "N” and a point (W2) 50 mm away from the other end in the width direction as "S", the multilayer biodegradable film was cut in the thickness direction ( A-A'), the thickness of each position of each layer of the laminated first resin layer was measured using a field emission scanning electron microscope (FE-SEM) (JSM-6701F / JEOL Co.) in the cut cross section.
  • FE-SEM field emission scanning electron microscope
  • each position of the individual layers of the laminated first resin layer that is, the thickness at point N (t N1, t N2, t N3 ...) , the thickness at point C ( tc 1, t C2, t C3 ...) , the thickness at the point S (t S1, t S2, t S3 ...) are measured, respectively, and the thickness of each layer of the laminated first resin layer at each position t max , N , t max , C , t max , S , and minimum thickness t min , N , of the thicknesses of the individual layers of the first resin layer.
  • t min, C , t min and S were respectively obtained, and the uniformity (LUI) represented by Equation 1 was measured using each of these values.
  • the maximum thickness and the minimum thickness among the thicknesses of the individual layers of the first resin layer were obtained from the positional thicknesses of the individual layers of the stacked first resin layer, respectively, and the following Equation 1 of the first resin layer was obtained using each of these values.
  • the uniformity (LUI) expressed as:
  • the t max, N is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film,
  • N is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multilayer biodegradable film
  • the t max, S is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t min, S is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point S of the multilayer biodegradable film,
  • the t max, C is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point C of the multilayer biodegradable film,
  • the t min, C is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multilayer biodegradable film.
  • the individual layers of the first resin layer refer to each layer except for the outermost layer on both sides (110' in FIGS. 1 and 3) of the first resin layer. Therefore, the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 of the first resin layer are the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 excluding the outermost layer 110' on both sides of the first resin layer, respectively. means thickness.
  • the laminated first resin layer In the multi-layer biodegradable sheet (unstretched sheet) of Examples 1 to 3 and Comparative Examples 3 to 5 in the same manner as the uniformity (LUI) of the first resin layer of the multi-layer biodegradable film, the laminated first resin layer The maximum thickness and the minimum thickness were obtained among the thicknesses of each position of the individual layers of , and the uniformity (LUIs) represented by Equation 1-1 below of the first resin layer was measured using each of these values.
  • FE-SEM field emission scanning electron microscope
  • t max, N1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet,
  • N1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layer on both sides of the first resin layer measured at point N of the multi-layered biodegradable sheet
  • t max S1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • S1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point S of the multi-layered biodegradable sheet,
  • the t max, C1 is the maximum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet,
  • the t min, C1 is the minimum thickness among the thicknesses of individual layers excluding the outermost layers on both sides of the first resin layer measured at point C of the multi-layered biodegradable sheet.
  • the individual layers of the first resin layer refer to each layer except for the outermost layer on both sides (110' in FIGS. 1 and 3) of the first resin layer. Therefore, the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 of the first resin layer are the maximum thickness and the minimum thickness among the thicknesses of the individual layers 110 excluding the outermost layer 110' on both sides of the first resin layer, respectively. means thickness.
  • the flexible noise complexity (FNC) represented by the following formula 3 was calculated using the values of YM and N AVG measured in Evaluation Examples 4 and 5:
  • the YM and N AVG are values excluding the unit measured by the multilayer biodegradable film specimen, respectively.
  • the YM is a multi-layered biodegradable film specimen made in accordance with ASTM D882, cut to a length of 150 mm and a width of 15 mm, mounted so that the gap between chucks is 50 mm, and tested at a tensile speed of 200 mm / min, and then the measurement starting point Young's modulus (kgf/mm2), which is the value of the straight line slope from
  • the N AVG is a multi-layered biodegradable film cut to A4 size of 210 mm ⁇ 297 mm in a box of 650 (W) mm ⁇ 450 (D) mm ⁇ 500 (H) mm made of polycarbonate, and a digital noise analyzer Average noise level (dB) calculated by measuring the noise level measured 5 times when making noise for more than 5 seconds by placing it 30 cm away from the film, holding both ends of the film with a jig and twisting it back and forth at a rate of 30 times/min repeatedly am.
  • dB digital noise analyzer Average noise level
  • the exterior noise quality complex index (QCI) represented by Equation 4 below was calculated using the values of LUI, HZ, and N AVG measured in Evaluation Examples 2, 3, and 5:
  • the HZ, LUI, and N AVG are values excluding units measured with the multilayer biodegradable film specimen, respectively.
  • the HZ is the haze (%) of the multilayer biodegradable film
  • the LUI is the uniformity represented by Equation 1 above,
  • the N AVG is a multi-layered biodegradable film cut to A4 size of 210 mm ⁇ 297 mm in a box of 650 (W) mm ⁇ 450 (D) mm ⁇ 500 (H) mm made of polycarbonate, and a digital noise analyzer Average noise level (dB) calculated by measuring the noise level measured 5 times when making noise for more than 5 seconds by placing it 30 cm away from the film, holding both ends of the film with a jig and twisting it back and forth at a rate of 30 times/min repeatedly am.
  • dB digital noise analyzer Average noise level
  • the multi-layer biodegradable sheets and films of Examples 1 to 3 according to the present invention have very excellent uniformity of the first resin layer, flexibility, noise level and transparency compared to the single- or multi-layer biodegradable sheets and films of Comparative Examples. Overall, all of the physical properties were excellent.
  • the uniformity (LUIs) of the first resin layer of the multi-layer biodegradable sheet of Examples 1 to 3 is 1.12 to 1.91, and the first resin layer of the multi-layer biodegradable film
  • the uniformity (LUI) is 0.077 to 0.122, and it can be seen that the uniformity of the first resin layer is significantly improved compared to the multilayer biodegradable sheets and films of Comparative Examples 3 to 5 having LUIs and LUIs of 2.3 or more and 0.221 or more, respectively.
  • the multilayer biodegradable films of Examples 1 to 3 have a Young's modulus of 221 kgf / mm to 233 kgf / mm and a noise level of 79.5 dB or less, whereas the single-layer biodegradable film of Comparative Example 1 With a Young's modulus of 384 kgf/mm2 and a noise level of 88.3 dB, it was confirmed that the flexibility was reduced and the noise level was very high.
  • the multilayer biodegradable films of Comparative Examples 3 to 5 had lower flexibility and significantly increased noise level.
  • the multilayer biodegradable films of Examples 1 to 3 all had haze of 3% or less and had excellent transparency, whereas the single or multilayer biodegradable films of Comparative Examples 1 to 3 and 5 had haze of about It exceeded 3%, and in particular, the single-layer biodegradable film of Comparative Example 2 had a haze of 25%, and it could be seen that the transparency was significantly reduced.
  • the multi-layer biodegradable sheet and film of Examples 1 to 3 of the present invention have excellent biodegradability and excellent uniformity of the first resin layer, resulting in uniformity, flexibility, noise level, transparency and appearance of the final film. Since all of these are excellent, it can be confirmed that it can be used in an environmentally friendly manner for various purposes including packaging applications such as food packaging materials.
  • first resin layer (individual layer)
  • N Point 50 mm away from one end of the multilayer biodegradable film in the width direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

본 발명은 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재를 제공한다. 구체적으로, 상기 다층 생분해성 필름은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 균일도(LUI)가 0.2 ㎛ 이하로 조절 됨으로써, 우수한 생분해성은 물론 최종 필름의 균일도를 향상시킬 수 있고, 유연성 및 투명성을 향상시키고, 외관 특성 및 소음도를 개선할 수 있어, 포장재로서 다양한 분야에 활용되어 고품질의 친환경 포장재를 제공할 수 있다.

Description

다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
본 발명은 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재에 관한 것이다.
포장 용도로 많이 사용되는 플라스틱 필름으로는 셀로판(cellophane), 폴리비닐클로라이드(PVC), 폴리에틸렌(PE), 폴리프로필렌(PP), 나일론(nylon), 및 폴리에틸렌테레프탈레이트(PET) 등을 들 수 있다.
그러나, 셀로판 필름은 제조 공정 중에 심한 환경오염을 유발하여 생산 자체에 많은 규제를 받고 있으며, 폴리비닐클로라이드 필름은 소각 시 다이옥신 등과 같은 유해물질을 발생하여 사용에 많은 규제를 받고 있다. 또한, 폴리에틸렌 필름은 내열성과 기계적 특성이 부족하여 저급 포장 용도 이외에는 그 사용에 제한이 있다. 폴리프로필렌, 나일론, 및 폴리에틸렌테레프탈레이트 등은 비교적 안정한 분자 구조를 가져 양호한 기계적 특성을 지니고 있으나, 이들은 포장 용도로 사용된 후 특별한 처리 없이 매립되면 화학적, 생물학적 안정성 때문에 거의 분해가 되지 않고 땅 속에 축적되어 매립지의 수명을 단축하고 토양 오염의 문제를 유발한다.
이러한 분해가 되지 않는 플라스틱 필름의 단점을 보완하기 위해, 최근 들어 수지 자체의 생분해성이 높은 지방족 폴리에스터인 폴리락트산 필름이 다양하게 사용되고 있으나, 이 필름은 기계적 특성은 양호하나, 고유의 결정구조로 인하여 유연성이 부족하여 그 용도가 제한적이다.
이러한 문제점을 개선하기 위해, 일본 특허공개 제2006-272712호는 폴리락트산 이외의 생분해성 지방족 폴리에스터를 단독으로 사용하여 필름을 제조하는 방법을 개시하고 있으나, 이 경우 유리전이 온도가 너무 낮아 이축연신 방법으로는 필름을 제조하기가 쉽지 않을 뿐만 아니라, 최종 필름의 기계적 강도가 낮고 열수축률이 높아 가공 과정 중에 많은 문제가 발생한다.
한편, 일본 특허공개 제2003-160202호는 폴리락트산을 지방족-방향족 공중합 폴리에스터와 블렌딩하여 필름에 유연성 및 열밀봉(heat sealing)성을 부여하는 방법을 개시하고 있으나, 이 방법에 의하면, 폴리락트산과 지방족-방향족 공중합 폴리에스터와의 낮은 상용성 및 가소제의 사용으로 인해 최종 필름의 투명성이 현저히 저하되어 투명성이 요구되는 포장 용도에는 사용하기 어렵다는 문제가 있다.
또한, 폴리락트산과 지방족-방향족 공중합 폴리에스터를 포함하는 다층 필름은 특정 압출 온도 조건에서 필름 성형 시, 층 균일도의 위치별 편차가 커서 필름 외관 및 두께 조절이 어렵고, 상기 균일도의 위치별 편차가 심한 경우 층의 자국 또는 결함 등이 발생하기 쉬워 필름의 물성에 악영향을 줄 수 있고, 두께 조절이 어려워 가공성, 생산성 및 성형성에도 문제가 있을 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 특허공개 제2006-272712호
(특허문헌 2) 일본 특허공개 제2003-160202호
본 발명의 목적은 다층 생분해성 필름의 층 균일도를 조절하여, 필름의 유연성, 투명성, 소음도 및 외관 특성이 동시에 개선된, 다층 생분해성 시트 또는 필름을 제공하고자 한다.
본 발명의 또 다른 목적은 상기 다층 생분해성 시트 또는 필름의 제 1 수지층의 균일도(LUI)를 최적의 범위로 조절하기 위해, 제 1 수지층과 제 2 수지층의 용융 점도 범위를 효율적으로 제어하고, 각각의 층의 두께를 미세하게 조절하여, 본 발명에서 목적하는 상기 특성을 모두 만족시킬 수 있는 다층 생분해성 필름의 제조 방법을 제공하고자 한다.
본 발명의 또 다른 목적은 상기 균일도가 조절된 다층 생분해성 필름을 사용함으로써, 생분해가 가능하면서 친환경적이며, 고품질의 친환경 포장재를 제공하고자 한다.
본 발명은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인, 다층 생분해성 필름을 제공한다:
Figure PCTKR2022013133-appb-img-000001
상기 식 1에서,
500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
또한, 본 발명은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 하기 식 1-1로 표시되는 균일도(LUIs)가 2.3 ㎛ 미만인, 다층 생분해성 시트를 제공한다:
Figure PCTKR2022013133-appb-img-000002
상기 식 1-1에서,
650 mm의 폭 및 300 ㎛의 두께를 갖는 상기 다층 생분해성 시트의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
아울러, 본 발명은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지 및 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지를 각각 준비하는 단계(단계 1); 상기 제 1 수지 및 상기 제 2 수지를 각각 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻는 단계(단계 2); 및 상기 적층된 시트를 이축연신하고 열고정하여 다층 생분해성 필름을 얻는 단계(단계 3);를 포함하고, 상기 다층 생분해성 필름은 상기 제 1 수지층의 상기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인, 다층 생분해성 필름의 제조방법을 제공한다.
나아가 본 발명은 상기 다층 생분해성 필름을 포함하는, 친환경 포장재를 제공한다.
본 발명에 따른 다층 생분해성 필름은 우수한 균일도, 유연성 및 투명성을 동시에 가지면서, 외관 특성 및 소음도도 개선될 수 있다. 특히, 상기 다층 생분해성 필름은 위치별 두께 편차가 적어 특정 범위의 균일도를 구현할 수 있다는 데에 특징이 있다.
또한, 구현예에 따른 다층 생분해성 필름의 제조방법은 경제적이고 효율적인 방법으로, 성형성, 가공성 및 생산성을 더욱 향상시킬 수 있다. 특히, 제 1 수지 및 제 2 수지의 용융 온도 및 이들의 용융 온도 차이를 제어함으로써, 상기 제 1 수지층과 제 2 수지층의 용융 점도 범위를 효율적으로 제어할 수 있고, 이로 인해 각각의 층의 위치별 두께를 미세하게 조절하여, 상기 다층 생분해성 필름의 제 1 수지층의 균일도(LUI)를 최적의 범위로 조절할 수 있다.
나아가, 상기 다층 생분해성 필름은 상기 특성과 함께 생분해가 가능하고, 매립시 완전 분해되어 환경 친화적인 특성을 가지므로, 포장재로서 다양한 분야에 활용되어 고품질의 친환경 포장재를 제공할 수 있다.
도 1은 본 발명의 일 구현예에 따른 다층 생분해성 필름의 모식도이다.
도 2는 본 발명의 다른 구현예에 따른 다층 생분해성 필름의 사시도이다.
도 3은 도 2에서의 A-A' 선을 따라 절개한 사시도(a), 및 이의 단면에 대한 확대도(b)이다.
도 4는 본 발명의 일 구현예에 따른 다층 생분해성 필름을 제조하는 방법을 개략적으로 나타낸 것이다.
이하 본 발명에 대해 보다 구체적으로 설명한다.
구현예는 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석된다.
또한, 본 명세서에 기재된 구성요소의 물성 값, 치수, 반응 조건 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.
한편, 본 명세서에서 제 1 수지층, 제 2 수지층, 또는 제 1, 제 2 등의 용어는 다양한 구성요소를 설명하기 위해 사용되는 것이고, 상기 구성요소들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로 구별하는 목적으로만 사용된다.
또한, 각 구성요소의 "일면"/"타면" 또는 "상"/"하"에 대한 기준은 도면을 기준으로 설명하며, 이들 용어는 구성요소를 구분하기 위한 용어일 뿐, 실제 적용 시 상호 호환될 수 있다.
본 명세서에서 하나의 구성요소가 다른 구성요소의 상 또는 하에 형성되는 것으로 기재되는 것은, 하나의 구성요소가 다른 구성요소의 상 또는 하에 직접, 또는 또 다른 구성요소를 개재하여 간접적으로 형성되는 것을 모두 포함한다.
또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다. 또한, 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
일 구현예에서, 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인, 다층 생분해성 필름을 제공한다:
Figure PCTKR2022013133-appb-img-000003
상기 식 1에서,
500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
일 구현예에서는 상기 특정 조성을 갖는 제 1 수지층과 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 특히 상기 제 1 수지층의 균일도(LUI)가 0.2 ㎛ 이하로 조절됨으로써, 우수한 균일도, 유연성 및 투명성을 동시에 가지면서, 외관 특성 및 소음도도 개선된 다층 생분해성 필름을 제공할 수 있다.
나아가, 상기 다층 생분해성 필름은 상기 특성과 함께, 생분해가 가능하고, 매립시 완전 분해되어 환경 친화적인 특성을 가지므로, 보다 다양한 분야에 활용되어 우수한 특성을 발휘할 수 있다는 것에 기술적 의의가 있다.
[다층 생분해성 필름]
도 1을 참조하면, 본 발명의 구현예에 따른 다층 생분해성 필름(100)은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층(110)과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층(120)을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있다. 또한, 상기 다층 생분해성 필름(100)은 양면 최외각 층으로서 제 1 수지층(110')을 포함할 수 있다. 구체적으로, 상기 다층 생분해성 필름의 양면 최외각 층은 제 1 수지층(110')이다.
일 구현예에서는 상기 특정 주성분을 갖는 제 1 수지층 및 제 2 수지층, 구체적으로 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층, 및 상기 제 1 수지층의 일면에 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 포함함으로써, 유연성을 향상시키고 소음도를 낮출 수 있을 뿐만 아니라, 상기 제 1 수지층 및 제 2 수지층의 층간 상용성이 좋아 층간 접착 특성을 향상시킬 수 있고, 성형성, 가공성 및 생산성을 더욱 향상시킬 수 있다.
이하, 구현예에 따른 다층 생분해성 필름의 각 층을 구체적으로 설명한다.
제 1 수지층
일 구현예에 따르면, 상기 제 1 수지층은 폴리락트산(PLA)계 중합체를 주성분으로 포함할 수 있다.
본 발명에 있어서, 「주성분」이란 특정 성분이 전체 성분 중에 차지하는 비율이 50 중량% 이상인 것을 의미하고, 구체적으로 80 중량% 이상, 85 중량% 이상, 90 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 또는 98 중량% 이상을 의미할 수 있다.
구체적으로, 상기 폴리락트산계 중합체는 상기 제 1 수지층의 전체 중량에 대해 예를 들어 50 중량% 이상, 구체적으로 80 중량% 이상, 85 중량% 이상, 90 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 또는 98 중량% 이상으로 포함될 수 있다.
상기 폴리락트산계 중합체는 석유기반의 수지와 달리 바이오매스(biomass)를 기반으로 하기 때문에, 재생자원의 활용이 가능하고, 생산시 기존의 수지에 비해 지구온난화의 주범인 이산화탄소의 배출이 적으며, 매립시 수분 및 미생물에 의해 생분해 되는 등 친환경적이다.
상기 폴리락트산계 중합체는 중량평균 분자량(Mw)이 100,000 내지 1,000,000 g/mol, 예컨대 100,000 내지 800,000 g/mol, 100,000 내지 500,000 g/mol, 또는 100,000 내지 300,000 g/mol일 수 있다. 상기 중량평균 분자량(Mw)은 겔 투과 크로마토그래피법(GPC)에 의해 측정될 수 있다. 상기 폴리락트산계 중합체의 중량평균 분자량(Mw)이 상기 범위를 만족하는 경우, 상기 다층 생분해성 필름의 기계적 특성 및 광학적 특성을 더욱 향상시킬 수 있다.
상기 폴리락트산계 중합체는 L-락트산, D-락트산, D, L-락트산, 또는 이들의 조합을 포함할 수 있다. 구체적으로, 상기 폴리락트산계 중합체는 L-락트산 및 D-락트산의 랜덤 공중합체일 수 있다. 이때, 상기 D-락트산의 함량은 상기 폴리락트산계 중합체의 총 중량을 기준으로 예컨대 1 중량% 내지 5 중량%, 예컨대 1 중량% 내지 4 중량%, 예컨대 1 중량% 내지 3 중량%, 예컨대 1 중량% 내지 2.5 중량%, 또는 예컨데 1 중량% 내지 2 중량%일 수 있다. 상기 D-락트산의 함량이 상기 범위를 만족하는 경우 필름의 연신 공정성이 향상되는 이점이 있을 수 있다.
상기 L-락트산의 함량은 상기 폴리락트산계 중합체의 총 중량을 기준으로 예컨대 80 중량% 내지 99 중량%, 예컨대 83 중량% 내지 99 중량%, 또는 예컨대 85 중량% 내지 99 중량%일 수 있다. 상기 L-락트산의 함량이 상기 범위를 만족하는 경우 필름의 내열 특성이 향상되는 이점이 있을 수 있다.
한편, 구현예에 따르면, 상기 제 1 수지층은 지방족 폴리에스터인 폴리락트산계 중합체를 단독으로 포함할 수 있다.
또 다른 구현예에 따르면, 상기 제 1 수지층은 폴리락트산계 중합체를 소량의 다른 하이드록시 카복실산 단위와 함께 공중합하여 얻은 수지를 포함할 수 있다. 이때, 상기 하이드록시 카복실산 단위로는 글리콜산 또는 2-하이드록시-3,3-다이메틸부틸산 등을 들 수 있으며, 상기 하이드록시 카복실산 단위는 제 1 수지층의 총 중량을 기준으로 5 중량% 이하로 포함될 수 있다.
또 다른 구현예에 따르면, 상기 제 1 수지층은 상기 폴리락트산계 중합체를 소량의 비닐아세테이트 및 비닐라우레이트 공중합체와 함께 혼합하여 얻은 혼합 수지를 포함할 수 있다. 이때, 상기 비닐아세테이트 및 비닐라우레이트 공중합체는 상기 제 1 수지층의 총 중량 기준으로 30 중량% 이하로 포함될 수 있다.
또 다른 구현예에 따르면, 상기 제 1 수지층은 상기 폴리락트산계 중합체를 코어쉘 구조의 부틸 아크릴레이트계 러버와 함께 혼합하여 얻은 혼합 수지를 포함할 수 있다. 이때, 상기 코어쉘 구조의 부틸 아크릴레이트계 러버는 상기 제 1 수지층의 총 중량을 기준으로 10 중량% 이하로 포함될 수 있다.
한편, 본 발명의 구현예에 따르면, 제 1 수지층에는 통상의 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 블로킹 방지제 및 기타 무기활제가 본 발명의 효과를 손상시키지 않는 범위 내에서 첨가되어도 무방하다.
제 2 수지층
일 구현예에 따르면, 상기 제 2 수지층은 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 포함한다.
이때, 상기 지방족 폴리에스터계 수지는 상기 제 1 수지층에 사용된 것과 상이한 수지 일 수 있으며, 상기 다층 생분해성 필름이 상기 제 1 수지층과 함께 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 포함하는 제 2 수지층을 함께 포함함으로써, 유연성을 더욱 향상시키고 소음도를 저감시킬 수 있을 뿐만 아니라, 상기 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과 층간 상용성이 좋아 우수한 층간 접착 특성을 유지할 수 있고, 성형성, 가공성 및 생산성을 더욱 향상시킬 수 있다.
만일, 상기 다층 생분해성 필름이 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층만을 포함하는 경우, 상기 폴리락트산계 중합체는 기계적 및 광학적 특성은 양호할 수 있으나, 유연성이 부족하고 소음도가 커서, 다층 생분해성 필름으로 제조 시, 그 용도가 매우 제한적인 문제점이 있을 수 있다. 또한, 상기 다층 생분해성 필름이 제 1 수지층만을 포함하고, 상기 제 1 수지층이 상기 폴리락트산계 중합체를 상기 폴리락트산계 중합체와 상이한 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지와 블렌딩하여 필름을 형성하는 경우 최종 필름의 투명성이 현저히 저하되어 투명성이 요구되는 포장 용도에는 사용하는 데에 한계가 있을 수 있다.
구체적으로, 상기 제 2 수지층은 지방족 또는 방향족 디카복실산을 주성분으로 하는 산 성분과 알킬렌글리콜을 주성분으로 하는 글리콜 성분을 중축합한 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 포함할 수 있다.
상기 지방족 디카복실산의 구체적인 예로는 숙신산, 아디프산, 세바스산, 글루탈산, 말론산, 옥살산, 아젤라산, 노난디카복실산 및 이들의 혼합물을 들 수 있다.
상기 방향족 디카복실산으로는 테레프탈산, 이소프탈산, 나프탈렌-2,6-디카복실산, 디페닐설폰산디카복실산, 디페닐에테르디카복실산, 디페녹시에탄디카복실산, 시클로헥산디카복실산 및 이들의 혼합물을 들 수 있으며, 다른 지방족 또는 방향족 디카복실산 성분을 포함하여 사용할 수 있다.
상기 글리콜 성분의 구체적인 예로는 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 프로필렌글리콜, 네오펜틸글리콜, 2-메틸-1,3-프로판디올, 디에틸렌글리콜 등의 알킬렌글리콜, 1,4-시클로헥산디올, 1,4-시클로헥산디메탄올, 폴리에틸렌글리콜 및 이들의 혼합물을 사용할 수 있다.
이때 높은 생분해성을 구현하기 위해서는 산 성분 중 지방족 성분의 함량이 예를 들어 30 몰% 이상, 예를 들어 40 몰% 이상, 예를 들어 45 몰% 이상, 예를 들어 50 몰% 이상일 수 있다. 구체적으로 상기 산 성분 중 지방족 성분의 함량이 30 몰% 내지 80 몰%, 30 몰% 내지 70 몰%, 또는 40 몰% 내지 60 몰%일 수 있다. 상기 산 성분 중 지방족 성분의 함량이 상기 범위를 만족하는 경우 생분해성을 더욱 향상시키면서, 목적하는 물성을 구현할 수 있다.
본 발명의 구현예에 따르면, 상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지는 예를 들어, 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지, 폴리부틸렌숙시네이트(PBS) 수지, 폴리부틸렌아디페이트(PBA) 수지, 폴리부틸렌숙시네이트-아디페이트(PBSA) 수지, 폴리부틸렌숙시네이트-테레프탈레이트(PBST) 수지, 폴리하이드록시부틸레이트-발레레이트(PHBV) 수지, 폴리카프로락톤(PCL) 수지, 및 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT) 수지로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지는 예를 들어, 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지, 폴리부틸렌숙시네이트(PBS) 수지, 및 폴리부틸렌아디페이트(PBA) 수지로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
더욱 구체적으로, 상기 지방족 폴리에스터계 수지는 예를 들어 폴리부틸렌숙시네이트(PBS) 수지 및 폴리부틸렌아디페이트(PBA) 수지로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 예컨대 폴리부틸렌숙시네이트(PBS) 수지를 포함할 수 있다. 또한, 상기 지방족-방향족 공중합 폴리에스터계 수지는 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지 및 폴리부틸렌숙시네이트-테레프탈레이트(PBST) 수지로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며, 예컨대 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지를 포함할 수 있다.
본 발명의 일 구현예에 따라 상기 제 2 수지층에 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지를 포함함으로써, 미생물 등에 의해 자연 분해될 수 있어서 친환경적으로 유리하며, 파괴강도, 인장강도, 신율, 광학특성, 경도, 용융 장력(melt strength) 및 내수성 등의 기계적 물성을 향상시킬 수 있으며, 특히 인장 강도 및 신율을 향상시키고 영률을 낮추어, 적절한 강도를 유지하면서 유연성을 향상시킬 수 있다. 특히, 상기 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지는 다른 생분해성 폴리에스터 수지, 예컨대, 폴리락트산계 중합체보다 신축성이 더 우수하고, 유연성이 우수하고 소음도가 낮은 장점이 있다. 이러한 이유로 상기 폴리부틸렌아디페이트 테레프탈레이트(PBAT) 수지를 주성분으로 하는 제 2 수지층을 형성하여, 이를 상기 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과 교대로 적층하여 다층 생분해성 필름을 형성하는 경우, 적절한 강도를 유지하면서 우수한 유연성 및 투명성을 구현하고, 소음 저감 효과를 동시에 달성할 수 있어서, 다양한 생분해성 제품에 활용이 가능하다는 큰 이점이 있다.
한편, 본 발명의 구현예에 따르면, 상기 제 2 수지층은 상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 단독으로 포함할 수 있다.
또 다른 구현예에 따르면, 상기 제 2 수지층은, 상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 폴리하이드록시알카노에이트(PHA) 단위와 함께 혼합하여 얻은 혼합 수지를 포함할 수 있다. 상기 폴리하이드록시알카노에이트(PHA) 단위는 폴리[3-하이드록시부틸레이트](P3-HB); 폴리[4-하이드록시부틸레이트](P4-HB); 폴리[3-하이드록시발레레이트](PHV); 폴리[3-하이드록시부틸레이트]-코-폴리[3-하이드록시발레레이트](PHBV); 폴리[3-폴리[3-하이드록시헥사노에이트](PHC); 폴리[3-하이드록시헵타노에이트](PHH); 폴리[3-하이드록시옥타노에이트](PHO); 폴리[3-하이드록시노나노에이트](PHN); 폴리[3-하이드록시데카노에이트](PHD); 폴리[3-하이드록시도데카노에이트](PHDD); 및 폴리[3-하이드록시테트라데카노에이트](PHTD)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 폴리하이드록시알카노에이트(PHA) 단위는 제 2 수지층의 전체 중량 기준으로 30 중량% 이하로 포함될 수 있다.
상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지는 상기 제 2 수지층의 전체 중량에 대해 예를 들어 50 중량% 이상, 구체적으로 80 중량% 이상, 85 중량% 이상, 90 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량%, 또는 98 중량% 이상으로 포함될 수 있다.
상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지는 중량평균 분자량(Mw)이 예컨대 50,000 내지 400,000 g/mol, 예컨대 50,000 내지 300,000 g/mol, 예컨대 50,000 내지 200,000 g/mol, 또는 예컨대 50,000 내지 100,000 g/mol일 수 있다. 상기 중량평균 분자량(Mw)은 겔 투과 크로마토그래피법(GPC)에 의해 측정될 수 있다. 상기 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지의 중량평균 분자량(Mw)이 상기 범위를 만족하는 경우, 상기 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과 상용성 및 가공성이 더욱 우수하게 될 수 있고, 상기 다층 생분해성 필름의 적절한 강도를 유지하면서 유연성, 투명성, 및 소음 저감 효과를 더욱 향상시킬 수 있다.
한편, 본 발명의 구현예에 따르면, 제 2 수지층에는 통상의 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 블로킹 방지제 및 기타 무기활제가 본 발명의 효과를 손상시키지 않는 범위 내에서 첨가되어도 무방하다.
제 3 수지층
한편, 본 발명의 구현예에 따르면, 상기 제 2 수지층에 사용된 것과 상이한 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 3 수지층을 본 발명의 효과를 손상시키지 않는 범위 내에서 제 1 수지층 및 제 2 수지층과 교대로 적층하여 사용할 수도 있다.
제 3 수지층에 사용될 수 있는 지방족 폴리에스터계 수지 및 지방족-방향족 공중합 폴리에스터계 수지 각각의 구체적인 예는 상기에서 제 2 수지층에 사용된 수지와 동일하다.
마찬가지로, 제 3 수지층도 통상의 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 블로킹 방지제 및 기타 무기활제가 본 발명의 효과를 손상시키지 않는 범위 내에서 첨가되어도 무방하다.
코로나층 또는 코팅층
한편, 본 발명의 효과를 손상시키지 않는 범위 내에서 후가공 공정의 효과를 높이기 위하여, 적어도 필름의 표면의 한쪽 면에 필름의 가공 적성을 높이기 위한 코로나 처리를 수행하거나, 정전기 방지나 블로킹 방지를 위한 무기물 입자 코팅을 수행하거나, 인쇄층과의 인쇄 적성 향상을 위한 코팅 처리를 수행할 수 있다.
일 구현예에 따른 다층 생분해성 필름은 상기 제 1 수지층의 타면 상에 배치되는 코로나층을 더 포함할 수 있다. 구체적으로, 상기 코로나층은 상기 제 1 수지층의 타면에 직접 형성될 수 있다.
상기 다층 생분해성 필름이 코로나층을 더 포함함으로써, 다층 생분해성 필름 표면의 유분 등의 오염을 제거하고 접착 부위와 친화성 있는 표면을 만들어 접착 강도를 증가시킬 수 있으며, 화학적 및 물리적으로 표면 개질이 되어 친수성, 접착성, 인쇄성, 코팅 특성, 증착 특성 등이 더욱 향상될 수 있다.
상기 코로나층은 상기 제 1 수지층의 코로나 처리에 의해 형성되고, -CO, -COOH 및 -OH로 이루어진 군으로부터 선택된 극성 작용기를 포함할 수 있다.
상기 제 1 수지층에서 상기 코로나 처리된 면에 대한 표면 장력이 38 dyn/cm 이상일 수 있고, 예컨대 38 내지 70 dyn/cm, 예컨대 38 내지 68 dyn/cm, 또는 예컨대 38 내지 66 dyn/cm일 수 있다. 상기 제 1 수지층에서 상기 코로나 처리된 면에 대한 표면 장력이 상기 범위를 만족하는 경우, 상기 다층 생분해성 필름의 접착성, 인쇄성, 코팅 특성, 증착 특성 등을 더욱 향상시킬 수 있다.
상기 코로나층의 두께는 다층 생분해성 필름의 용도 및 목적에 따라 적절히 조절할 수 있으며, 구체적으로 예컨대 0.1 nm 내지 1000 nm, 예컨대 0.2 nm 내지 900 nm, 또는 예컨대 0.1 nm 내지 800 nm일 수 있으나, 이에 한정되지는 않는다.
또 다른 구현예에 따른 다층 생분해성 필름은 상기 제 1 수지층의 타면 상에 배치되는 코팅층을 더 포함할 수 있다.
상기 코팅층은 프라이머 코팅층을 포함할 수 있으며, 이 경우 대전 방지 성능을 향상시킬 수 있다.
상기 프라이머 코팅층은 상기 제 1 수지층의 타면, 또는 상기 다층 생분해성 필름이 상기 코로나층을 포함하는 경우, 상기 제 1 수지층의 타면에 코로나층을 포함하고, 상기 코로나층의 타면(하면)에 상기 프라이머 코팅층을 포함할 수 있다.
구체적으로, 상기 제 1 수지층의 타면 상에 프라이머 처리를 하여 프라이머 코팅층을 형성할 수 있다. 또는 상기 제 1 수지층의 타면 상에 배치된 상기 코로나층의 일면(하면)에 프라이머 처리하여 프라이머 코팅층을 형성할 수 있다.
상기 프라이머 코팅층은 대전 방지 성능을 가지는 암모늄계 화합물, 인산계 화합물 및 아크릴계 수지 및 우레탄계 수지 등의 고분자로 이루어진 군으로부터 선택된 1 종 이상을 포함할 수 있다.
상기 프라이머 코팅층의 표면저항은 0.1 내지 30 Ω/□, 0.2 내지 28 Ω/□, 0.3 내지 26 Ω/□, 0.4 내지 24 Ω/□, 또는 1 내지 20 Ω/□일 수 있다.
상기 표면저항은 예컨대 상온(22 ± 2℃)에서 상대습도 (60% ± 10%) 하에, 표면저항 측정기로 대전 방지 성능을 평가한 것이다.
상기 코팅층의 두께는 다층 생분해성 필름의 용도 및 목적에 따라 적절히 조절할 수 있으며, 구체적으로 15 nm 내지 50 nm, 20 nm 내지 45 nm, 25 nm 내지 40 nm, 또는 30 nm 내지 35 nm일 수 있으나, 이에 한정되지는 않는다.
[다층 생분해성 필름의 구조적 특징]
도 1을 다시 참조하면, 본 발명의 구현예에 따른 다층 생분해성 필름(100)은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층(110)과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층(120)을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있다.
또한, 상기 다층 생분해성 필름(100)은 양면 최외각 층으로서 제 1 수지층(110')을 포함할 수 있다. 구체적으로, 상기 다층 생분해성 필름의 양면 최외각 층은 제 1 수지층(110')이다.
상기 다층 생분해성 필름의 최외각 층이 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층인 경우, 연신하는 데에 더욱 유리하고, 성형성, 가공성 및 생산성 측면에서 더욱 유리할 수 있다. 만일, 상기 다층 생분해성 필름의 최외각 층으로서 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 경우, 연신이 용이하지 않을 수 있고, 캐스팅이 용이하지 않고 점착이 쉽게 일어나 성형성, 가공성 및 생산성을 저하시킬 수 있다.
본 발명의 구현예에 따르면, 상기 양면 최외각 층의 두께의 합이 상기 필름 전체 두께의 5 내지 40%일 수 있다. 구체적으로, 상기 양면 최외각 층의 두께의 합이 상기 필름 전체 두께의 10 내지 40%, 15 내지 40%, 20 내지 40%, 25 내지 40%, 30 내지 40%, 30 내지 38% 또는 30 내지 37%일 수 있다.
상기 양면 최외각 층의 두께의 합이 상기 범위를 만족하는 경우, 본 발명에서 목적하는 효과를 구현하는 데에 더욱 유리할 수 있고, 연신하는 데에 더욱 유리하고, 성형성, 가공성 및 생산성 측면에서 매우 유리할 수 있다.
또한, 상기 양면 최외각 층과 접하는 수지층은 제 2 수지층일 수 있다.
본 발명의 구현예에 따르면, 상기 다층 생분해성 필름의 전체 층수는 필름의 개별 층의 두께를 고려하여 조절할 수 있으나, 상기 양면 최외각 층을 포함하여 5층 이상일 수 있다. 예를 들어, 상기 다층 생분해성 필름은 5층 내지 500층, 5층 내지 300층, 5층 내지 250층, 5층 내지 225층, 7층 내지 400층, 7층 내지 350층, 7층 내지 300층, 7층 내지 250층, 7층 내지 220층, 10층 내지 200층, 10층 내지 150층, 10층 내지 100층, 또는 10층 내지 50층일 수 있다. 상기 다층 생분해성 필름이 상기 양면 최외각 층을 포함하여 5층 미만인 경우 투명성이 저하되는 문제점이 있을 수 있다.
한편, 본 발명의 구현예에 따른 다층 생분해성 필름에 있어서, 상기 양면 최외각 층을 제외한 제 1 수지층 및 제 2 수지층의 개별 층 평균 두께비가 1 : 0.5 내지 2일 수 있다. 상기 최외각 층을 제외한 제 1 수지층 및 제 2 수지층의 개별 층 평균 두께비는 예를 들어 1 : 0.5 내지 2, 예를 들어 1 : 0.5 내지 1.5, 또는 예를 들어 1 : 0.5 내지 1.3일 수 있다. 상기 최외각 층을 제외한 제 1 수지층 및 제 2 수지층의 개별 층 평균 두께비가 상기 범위를 만족하는 경우, 다층 생분해성 필름의 전체적인 균일도 조절에 더욱 유리할 수 있다.
상기 양면 최외각 층을 제외한 제 1 수지층의 개별층의 평균 두께는 예를 들어 10 내지 1000 nm, 예를 들어 50 내지 800 nm, 또는 예를 들어 100 내지 600 nm일 수 있다.
상기 양면 최외각 층을 제외한 제 1 수지층의 총 두께는 예를 들어 3 ㎛ 내지 40 ㎛, 예를 들어 3 ㎛ 내지 30 ㎛, 예를 들어 3 ㎛ 내지 20 ㎛, 예를 들어 5 ㎛ 내지 18 ㎛, 또는 예를 들어 5 ㎛ 내지 15 ㎛일 수 있다.
상기 양면 최외각 층을 포함한 제 1 수지층의 총 두께는 예를 들어 5 ㎛ 내지 60 ㎛, 예를 들어 5 ㎛ 내지 50 ㎛, 예를 들어 8 ㎛ 내지 40 ㎛, 예를 들어 8 ㎛ 내지 30 ㎛, 예를 들어 10 ㎛ 내지 30 ㎛, 또는 예를 들어 10 ㎛ 내지 20 ㎛일 수 있다.
상기 제 1 수지층의 총 두께 및 개별층의 평균 두께가 상기 범위를 만족하는 경우 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 제 2 수지층의 개별층의 평균 두께는 예를 들어 10 nm 내지 800 nm, 예를 들어 50 내지 700 nm, 또는 예를 들어 100 내지 600 nm일 수 있다. 상기 제 2 수지층의 개별 층의 평균 두께가 상기 범위를 만족하는 경우, 균일도 조절이 더욱 용이할 수 있고, 이로 인해 필름의 외관 특성 및 기계적 물성을 더욱 향상시킬 수 있다.
상기 제 2 수지층의 총 두께는 예를 들어 2.5 ㎛ 내지 40 ㎛, 예를 들어 4 ㎛ 내지 30 ㎛, 예를 들어 4 ㎛ 내지 20 ㎛, 예를 들어 4 ㎛ 내지 15 ㎛, 또는 예를 들어 5 ㎛ 내지 10 ㎛일 수 있다. 상기 제 2 수지층의 총 두께 및 개별층의 평균 두께가 상기 범위를 만족하는 경우 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 다층 생분해성 필름의 총 두께는 상기 양면 최외각 층을 포함하여 예를 들어 7.5 ㎛ 내지 100 ㎛, 9 ㎛ 내지 80 ㎛, 예를 들어 12 ㎛ 내지 55 ㎛, 예를 들어 13 ㎛ 내지 50 ㎛, 예를 들어 13 ㎛ 내지 40 ㎛, 예를 들어 15 ㎛ 내지 40 ㎛, 예를 들어 15 ㎛ 내지 35 ㎛ 또는 예를 들어 20 ㎛ 내지 25 ㎛일 수 있다.
[다층 생분해성 필름의 물성]
구현예에 따른 다층 생분해성 필름은 우수한 균일도, 유연성 및 투명성을 동시에 가지면서, 소음도가 낮은 특징이 있다.
우선, 상기 다층 생분해성 필름에 있어서, 상기 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)는 0.2 ㎛ 이하일 수 있다.
Figure PCTKR2022013133-appb-img-000004
상기 식 1에서,
500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
이때, 상기 제 1 수지층의 개별층은 제 1 수지층 중 양면 최외각 층(도 1 및 3의 110')을 제외한 각각의 층을 의미한다. 따라서, 상기 제 1 수지층의 개별층(110)의 두께 중 최대 두께 및 최소 두께는 각각 제 1 수지층 중 양면 최외각 층(110')을 제외한 개별층(110)의 두께 중 최대 두께 및 최소 두께를 의미한다.
상기 식 1로 표시되는 제 1 수지층의 균일도(LUI)는 상기 다층 생분해성 필름의 외관 특성, 필름의 두께 균일도, 및 유연성, 투명성 및 소음도 정도를 좌우하는 중요한 물성일 수 있다. 특히, 상기 제 1 수지층의 균일도(LUI)를 특정 범위로 조절함으로써, 최종 다층 생분해성 필름의 균일도를 제어할 수 있고, 이로 인해 필름의 물성, 외관 특성 및 소음도가 달라질 수 있다.
일반적으로, 다층 생분해성 필름의 성형 시, 균일도 측면에서 위치별 두께 편차가 큰 경우 필름의 외관 및 두께 조절이 어렵고, 이로 인해 필름의 유연성 및 투명성이 저하되고 소음도가 커져서 전반적으로 물성이 저하될 수 있다. 나아가, 위치별 두께 편차로 인해 연신이 어려워지고, 가공성, 생산성 및 성형성에도 문제가 있을 수 있다.
따라서, 상기 제 1 수지층의 균일도(LUI)는 상기 다층 생분해성 필름을 포함하는 포장재 등의 성형품의 품질을 나타내는 척도가 될 수 있으므로, 상기 다층 생분해성 필름의 제 1 수지층의 위치별 두께 편차를 줄여 균일도(LUI)를 제어하는 것이 매우 중요하다.
도 2를 참조하면, 상기 다층 생분해성 필름(100)의 균일도(LUI)는 다층 생분해성 필름의 폭(W) 방향의 중앙 지점을 "C", 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(W1)을 "N", 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(W2)을 "S"로 선정한 후, 상기 다층 생분해성 필름의 두께 방향으로 절단(A-A') 시, 이 절단된 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 측정될 수 있다.
도 3의 (a) 및 (b)는, 각각 도 2에서의 A-A' 선을 따라 절개한 사시도(a), 및 이의 단면에 대한 확대도(b)이다.
도 3의 (b)을 참조하면, 상기 적층된 제 1 수지층의 개별 층의 위치별 두께(이때, 양면 최외각 층(110')의 두께를 제외한다), 즉 N 지점에서의 두께(tN1, tN2, tN3 ···), C 지점에서의 두께(tc1, tC2, tC3 ···), S 지점에서의 두께(tS1, tS2, tS3 ···)를 각각 측정하고, 상기 적층된 제 1 수지층의 개별 층의 위치별 두께 중에서 최대 두께인 tmax, N, tmax, C, tmax, S, 및 최소 두께인 tmin, N, tmin, C, tmin, S를 각각 구하고, 이들의 각 값들을 이용하여 상기 식 1로 표시되는 균일도(LUI)를 측정할 수 있다. 즉, 상기 제 1 수지층의 균일도(LUI)는 상기 적층된 제 1 수지층 중 양면 최외각 층을 제외한 각 개별 층의 위치별 두께를 구하고, 각각의 위치별 두께의 최대값에서 최소값을 뺀 후 3으로 나눈 값일 수 있다.
상기 제 1 수지층의 균일도(LUI)는 제 1 수지층의 위치별 두께 편차가 낮을수록 낮고, 상기 위치별 두께 편차가 높을수록 높을 수 있다.
상기 다층 생분해성 필름에 있어서, 상기 제 1 수지층의 균일도(LUI)는 예를 들어 0.2 ㎛ 이하, 예를 들어 0.15 ㎛ 이하, 예를 들어 0.12 ㎛ 이하, 예를 들어 0.1 ㎛ 이하, 또는 예를 들어 0.08 ㎛ 이하일 수 있다.
상기 다층 생분해성 필름에 있어서, 상기 제 1 수지층의 균일도(LUI)가 상기 범위를 만족하는 경우, 다층 생분해성 필름의 균일도의 위치별 편차를 줄일 수 있고, 이로 인해 필름의 외관 특성을 향상시킬 수 있고, 유연성 및 투명성을 더욱 향상시키고, 소음 특성을 개선시킬 수 있다. 또한, 상기 제 1 수지층의 균일도(LUI)가 상기 범위를 만족하는 경우, 두께 조절 및 두께 편차 조절이 용이하여 공정성을 더욱 향상 시킬 수 있고, 이로 인해 가공성, 생산성 및 성형성을 더욱 향상시킬 수 있다. 만일 상기 제 1 수지층의 균일도(LUI)가 상기 범위를 초과하는 경우, 필름의 외관 특성에 문제가 있을 수 있고, 위치별 균일도가 나빠져 각 층에 자국 또는 결함 등이 발생할 수 있고, 이로 인해 해당 위치별 물성이 저하될 수 있다.
본 발명의 일 구현예에 따라, 다층 생분해성 필름의 층이 5층 내지 30층이고, 필름의 두께가 20 내지 25 ㎛인 경우, 상기 제 1 수지층의 균일도(LUI)는 예를 들어 0.1 ㎛ 이하, 예를 들어 0.09 ㎛ 이하, 또는 예를 들어 0.08 ㎛ 이하일 수 있다.
본 발명의 또 다른 구현예에 따라, 다층 생분해성 필름의 층이 30층 초과 내지 50층 미만이고, 필름의 두께가 20 내지 25 ㎛인 경우, 상기 제 1 수지층의 균일도(LUI)는 예를 들어 0.15 ㎛ 이하, 예를 들어 0.12 ㎛ 이하, 또는 예를 들어 0.10 ㎛ 이하일 수 있다.
본 발명의 또 다른 구현예에 따라, 다층 생분해성 필름의 층이 50층 이상이고, 필름의 두께가 20 내지 25 ㎛인 경우, 상기 제 1 수지층의 균일도(LUI)는 예를 들어 0.2 ㎛ 이하, 예를 들어 0.15 ㎛ 이하, 또는 예를 들어 0.13 ㎛ 이하일 수 있다.
상기 상기 제 1 수지층의 균일도(LUI)는 상기 범위 내에서 그 값이 작을수록, 본 발명의 구현예에 따른 목적을 달성하는 데에 더욱 유리할 수 있다.
또한, 본 발명의 구현예에 따른 다층 생분해성 필름은 하기 식 2로 표시되는 다층 생분해성 필름의 폭 방향의 양 끝의 균일도 차(△tN,S)가 0.06 ㎛ 이하일 수 있다:
Figure PCTKR2022013133-appb-img-000005
상기 식 2에서,
상기 tmax, N, tmin, N, tmax, S, 및 tmin, S는 상기에서 정의한 바와 같다.
구체적으로, 상기 다층 생분해성 필름의 폭 방향의 양 끝의 균일도 차(△tN,S)는 예를 들어 0.05 ㎛ 이하, 예를 들어 0.03 ㎛ 이하, 예를 들어 0.027 ㎛ 이하, 예를 들어 0.025 ㎛ 이하, 예를 들어 0.02 ㎛ 이하, 또는 예를 들어 0.015 ㎛ 이하일 수 있다. 상기 다층 생분해성 필름의 폭 방향의 양 끝의 균일도 차(△tN,S)는 0에 가까울 수록 유리하며, 이 경우 필름의 양 끝의 두께 편차가 감소하여 필름의 외관 특성을 향상시킬 수 있고, 유연성 및 투명성을 더욱 향상시키고, 소음 특성을 개선시킬 수 있다. 만일 상기 다층 생분해성 필름의 폭 방향의 양 끝의 균일도 차(△tN,S)가 상기 범위를 벗어나는 경우, 필름의 외관 특성에 문제가 있을 수 있고, 균일도가 나빠져 각 층에 자국 또는 결함 등이 발생할 수 있고, 이로 인해 해당 위치별 물성이 저하될 수 있다.
본 발명의 일 구현예에 따르면, N 지점에 대하여, 상기 tmax, N 및 tmin, N의 차는 예를 들어 0.15 ㎛ 이하, 예를 들어 0.13 ㎛ 이하, 예를 들어 0.12 ㎛ 이하, 예를 들어 0.1 ㎛ 이하, 예를 들어 0.08 ㎛ 이하, 또는 예를 들어 0.07 ㎛ 이하일 수 있다.
S 지점에 대하여, 상기 tmax, S 및 tmin, S의 차는 예를 들어 0.15 ㎛ 이하, 예를 들어 0.12 ㎛ 이하, 예를 들어 0.1 ㎛ 이하, 또는 예를 들어 0.1 ㎛ 미만일 수 있다.
C 지점에 대하여, 상기 tmax, C 및 tmin, C의 차는 예를 들어 0.2 ㎛ 이하, 예를 들어 0.15 ㎛ 이하, 예를 들어 0.13 ㎛ 이하, 예를 들어 0.12 ㎛ 이하, 또는 예를 들어 0.1 ㎛ 이하일 수 있다.
상기 다층 생분해성 필름의 tmax, N 및 tmin, N의 차, 상기 tmax, S 및 tmin, S의 차, 및 상기 tmax, C 및 tmin, C의 차 중 적어도 하나가 상기 범위를 만족하는 경우, 필름의 두께 편차가 감소하여 필름의 외관 특성을 향상시킬 수 있고, 유연성 및 투명성을 더욱 향상시키고, 소음 특성을 개선시킬 수 있다.
한편, 상기 다층 생분해성 필름은 하기 식 3으로 표시되는 유연소음복합도(FNC)가 20 이하일 수 있다:
Figure PCTKR2022013133-appb-img-000006
상기 식 3에서,
상기 YM 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
상기 YM은 ASTM D882에 의거하여 다층 생분해성 필름 시편을 만든 후, 길이 150 mm 및 폭 15 mm로 재단하고, 척간 간격이 50 mm가 되도록 장착하여 인장 속도 200 mm/min로 실험한 후, 측정 시작점부터 신율 3% 도달 시점까지의 직선 기울기 값인 영률(Young's modulus, kgf/㎟)이고,
상기 NAVG는 폴리카보네이트로 제작된 650(W) mm × 450(D) mm × 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단한 다층 생분해성 필름을 디지털 소음분석기로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출한 평균 소음도(dB)이다.
상기 식 3으로 표시되는 유연소음복합도(FNC)는 상기 다층 생분해성 필름의 영률 및 소음도의 곱의 값을 1000으로 나눈 값을 나타내며, 이는 상기 다층 생분해성 필름의 유연성 및 소음도의 복합 특성 정도를 나타내는 지표이다.
상기 유연소음복합도(FNC)는 상기 다층 생분해성 필름의 영률 및/또는 소음도가 낮을수록 낮을 수 있다.
이러한 특성을 갖는 유연소음복합도(FNC)는 상기 특정 범위 이하를 만족할 때, 상기 다층 생분해성 필름의 유연성 및 투명성을 더욱 향상시키고, 소음도를 저감시킬 수 있으며, 나아가 상기 다층 생분해성 필름을 포함하는 포장재 등의 성형품의 품질을 더욱 향상시킬 수 있다.
상기 다층 생분해성 필름의 유연소음복합도(FNC)는 예를 들어 20 이하, 예를 들어 2 내지 20, 예를 들어 3 내지 18, 예를 들어 5 내지 18, 또는 예를 들어 10 내지 19일 수 있다. 상기 유연소음복합도(FNC)가 상기 범위를 만족하는 경우 상기 다층 생분해성 필름의 유연성 및 소음 특성을 동시에 개선할 수 있다.
한편, 상기 식 3에 있어서, 상기 다층 생분해성 필름의 영률은 300 kgf/㎟ 이하, 250 kgf/㎟ 이하, 또는 240 kgf/㎟ 이하인 것이 좋다. 상기 영률은 ASTM D882에 의거하여 상기 다층 생분해성 필름 시편을 만든 후, 길이 150 mm, 폭 15 mm로 절단한 후, 척간 간격이 50 mm가 되도록 장착하여 상기 시편을 인장시험기(인스트론사 5566A)을 이용하여 인장 속도 200 mm/min로 실험한 후, 측정 시작점부터 신율 3% 도달 시점까지의 직선 기울기를 영률(Young's modulus, kgf/㎟)로 측정할 수 있다.
일반적인 방법으로 만들어진 단층 폴리락트산 중합체 필름의 영률은 350kgf/㎟ 이상으로 유연성이 현저히 떨어져 필름이 뻣뻣하여 용도가 제한될 수 있다. 상기 다층 생분해성 필름의 영률이 300 kgf/㎟ 이하를 만족하는 경우, 상기 유연소음복합도(FNC)를 20 이하로 제어하는 데에 더욱 유리하여 목적하는 효과를 용이하게 구현할 수 있다.
또한, 상기 식 3에 있어서, 상기 다층 생분해성 필름의 평균 소음도(NAVG)는 다층 생분해성 필름을 폴리카보네이트로 제작된 650(W) mm × 450(D) mm × 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단하고, 상기 다층 생분해성 필름을 디지털 소음분석기(Cirrus Research PlC사, 모델명:CR-162C)로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출한 평균 소음도로 정의하였다.
상기 다층 생분해성 필름은 특정 범위 이하로 상기 평균 소음도(NAVG)를 제어하는 것이 고품질의 포장재를 제공하는 측면에서 좋을 수 있다.
구체적으로, 상기 다층 생분해성 필름의 평균 소음도(NAVG)는 예컨대 86dB 이하, 예컨대 85dB 이하, 예컨대 80dB 이하, 또는 예컨대 79.5dB 이하일 수 있다.
특히, 상기 다층 생분해성 필름의 평균 소음도(NAVG)가 80dB 이하인 경우, 상기 유연소음복합도(FNC)를 20 이하로 제어하는 데에 더욱 유리하여, 낮은 소음도로 인해 품질 좋은 포장재를 제공할 수 있다.
아울러, 상기 다층 생분해성 필름은 하기 식 4로 표시되는 필름의 외관소음 품질복합지수(QCI)가 28 이하일 수 있다:
Figure PCTKR2022013133-appb-img-000007
상기 식 4에서,
상기 HZ, LUI, 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
상기 HZ는 상기 다층 생분해성 필름의 헤이즈(%)이고,
상기 LUI 및 상기 NAVG는 각각 상기에서 정의한 바와 같다.
상기 식 4로 표시되는 외관소음 품질복합지수(QCI)는 상기 다층 생분해성 필름의 헤이즈, 균일도 및 소음도의 합을 3으로 나눈값으로서, 제 1 수지층의 균일도(LUI), 최종 다층 생분해성 필름의 균일도, 투명성 및 소음도의 복합 특성 정도를 나타내는 지표이다.
상기 외관소음 품질복합지수(QCI)는 상기 다층 생분해성 필름의 헤이즈, 균일도 및 소음 특성(소음 저감 효과)이 모두 우수할수록 상기 범위를 만족할 수 있다. 즉, 상기 외관소음 품질복합지수(QCI)는 상기 다층 생분해성 필름의 헤이즈, 균일도 및/또는 소음도가 각각 낮을수록 낮을 수 있다.
이러한 특성을 갖는 외관소음 품질복합지수(QCI)는 상술한 범위를 만족할 때, 상기 다층 생분해성 필름의 헤이즈 및 균일도를 동시에 더욱 향상시키고, 소음도를 저감시킬 수 있으며, 나아가 상기 다층 생분해성 필름을 포함하는 포장재 등의 성형품의 품질을 더욱 향상시킬 수 있다.
상기 다층 생분해성 필름의 외관소음 품질복합지수(QCI)는 예를 들어 15 내지 28, 예를 들어 20 내지 28, 예를 들어 22 내지 28, 또는 예를 들어 25 내지 28일 수 있다. 상기 다층 생분해성 필름의 외관소음 품질복합지수(QCI)를 상기 범위로 만족하는 경우, 유연성, 소음 저감 효과 및 투명성을 동시에 향상시킬 수 있으므로, 포장재로서 다양한 분야에 활용되어 고품질의 친환경 포장재를 제공하는 데에 더욱 유리할 수 있다.
또한, 본 발명의 구현예에 따른 다층 생분해성 필름의 헤이즈(haze)는 10% 이하, 5% 이하, 또는 3% 이하인 것이 좋다. 상기 헤이즈가 10%를 초과하는 경우에는 투명성이 부족하여 용도가 제한될 수 있다.
본 발명의 다층 생분해성 필름은 환경 부하를 줄이고자 하는 제품의 특성상 적어도 60% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상의 생분해율을 가질 수 있다.
[다층 생분해성 필름의 제조방법]
일 구현예에 따라, 폴리락트산계 중합체를 주성분으로 하는 제 1 수지 및 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지를 각각 준비하는 단계(단계 1); 상기 제 1 수지 및 상기 제 2 수지를 각각 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻는 단계(단계 2); 및 상기 적층된 시트를 이축연신하고 열고정하여 다층 생분해성 필름을 얻는 단계(단계 3);를 포함하고, 상기 다층 생분해성 필름은 상기 제 1 수지층의 상기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인 다층 생분해성 필름의 제조방법을 제공한다.
본 발명의 구현예에 따른 다층 생분해성 필름의 제조방법은 특정 수지를 주성분으로 포함하는 제 1 수지 및 제 2 수지를 사용하여 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻고, 이를 이축연신 및 열고정함으로써, 성형성, 가공성 및 생산성을 더욱 향상시킬 수 있으며, 경제적이고 효율적인 방법으로 본 발명에서 목적하는 우수한 균일도, 유연성 및 투명성을 동시에 가지면서, 소음도도 개선된 다층 생분해성 필름을 얻을 수 있다.
특히, 상기 다층 생분해성 필름의 제조방법은 제 1 수지 및 제 2 수지의 용융 온도 및 이들의 용융 온도 차이를 제어함으로써, 상기 제 1 수지층과 제 2 수지층의 용융 점도 범위를 효율적으로 제어할 수 있고, 이로 인해 각각의 층의 위치별 두께를 미세하게 조절하여, 상기 제 1 수지층의 균일도(LUI)를 최적의 범위로 조절할 수 있다는 데에 기술적 의의가 있다.
도 4를 참조하면, 상기 다층 생분해성 필름의 제조방법(S100)은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지 및 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지를 각각 준비하는 단계(S110)을 포함할 수 있다.
본 발명의 구현예에 따르면, 상기 제 1 수지 및 제 2 수지는 각각 특정 범위의 용융 점도를 가져, 이로부터 형성된 제 1 수지층 및 제 2 수지층의 용융 점도 범위 및 용융 점도 차이를 효율적으로 조절하여 필름의 위치별 두께 편차를 줄여 균일도를 제어할 수 있고, 이로 인해 목적하는 범위의 유연성, 투명성 및 소음도를 구현할 수 있다.
따라서, 상기 제 1 수지 및 제 2 수지의 용융 점도는 본 발명의 다층 생분해성 필름의 제 1 수지층의 균일도(LUI)를 조절하는 데에 매우 중요한 요소가 될 수 있다.
일반적으로, 5층 이상, 예컨대 5층 내지 수백층의 다층 필름을 형성하는 경우, 용융 점도에 따라 필름의 두께 균일도가 달라질 수 있다. 특히 용융 점도 차이에 따라 필름의 두께 균일도 및 물성이 달라질 수 있다. 특히, 얇은 층으로 이루어진 다층 생분해성 필름의 경우, 층 수가 많을수록 균일도를 조절하는 것이 어렵고, 각 위치별 층의 두께 편차가 커지는 문제점이 있을 수 있다.
이에, 본 발명에서는 구현예에 따라, 상기 제 1 수지층 및 제 2 수지층을 형성하는 제 1 수지 및 제 2 수지의 용융 점도를 조절함으로써, 상기 제 1 수지층 및 제 2 수지층의 용융 점도 차를 줄이고, 이로 인해 상기 제 1 수지층의 균일도를 목적하는 범위 이하로 제어할 수 있다.
구체적으로, 상기 제 1 수지는 210℃에서 용융 점도가 예컨대 5,000 poise 내지 12,000 poise, 예컨대 6,500 poise 내지 11,000 poise, 또는 예컨대 8,000 poise 내지 10,000 poise일 수 있다. 이때, 상기 용융 점도는 레오미터(RDS)를 이용하여 측정할 수 있다.
상기 제 1 수지의 용융 점도는 이로부터 형성된 제 1 수지층의 용융 점도와 동일 또는 유사할 수 있다. 따라서, 상기 제 1 수지의 용융 점도가 상기 범위를 만족하는 경우, 동일 또는 유사한 범위의 용융 점도를 갖는 제 1 수지층을 구현할 수 있고, 이로 인해 상기 제 1 수지층의 균일도를 0.2 ㎛ 이하로 용이하게 제어할 수 있다. 만일, 상기 제 1 수지의 용융 점도가 상기 범위를 벗어나는 경우, 상기 다층 생분해성 필름의 위치별 두께 편차가 커져 균일도가 나빠질 수 있다.
한편, 상기 제 1 수지는 용융 온도(Tm)가 예컨대 100℃ 내지 250℃, 예컨대 110℃ 내지 220℃, 또는 예컨대 130℃ 내지 220℃일 수 있다.
상기 제 1 수지는 유리전이 온도(Tg)가 예컨대 30℃ 내지 80℃, 예컨대 40℃내지 80℃, 예컨대 40℃ 내지 70℃, 또는 예컨대 45℃ 내지 65℃일 수 있다.
상기 제 1 수지의 용융 온도(Tm) 및 유리전이 온도(Tg)가 각각 상기 범위를 만족하는 경우 상기 다층 생분해성 필름의 제 1 수지층의 균일도는 물론, 기계적 특성 및 광학적 특성을 향상시키는 데에 더욱 유리할 수 있다.
한편, 상기 제 2 수지는 210℃에서 용융 점도가 예컨대 4,000 poise 내지 8,000 poise, 예컨대 5,000 poise 내지 7,000 poise, 또는 예컨대 6,000 poise 내지 7,000 poise일 수 있다.
상기 제 2 수지의 용융 점도는 이로부터 형성된 제 2 수지층의 용융 점도와 동일할 수 있다. 상기 제 2 수지의 용융 점도가 상기 범위를 만족하는 경우, 동일한 범위의 용융 점도를 갖는 제 2 수지층을 구현할 수 있고, 상기 제 1 수지층 및 제 2 수지층의 용융 점도 차이를 목적하는 특정 범위로 제어할 수 있어서, 상기 다층 필름의 제 1 수지층의 균일도(LUI)를 제어하는 데에 더욱 유리할 수 있다.
상기 제 1 수지는 상술한 제 1 수지층에 포함된 수지의 종류 및 특성 등과 동일할 수 있다.
또한, 상기 제 2 수지는 상술한 제 2 수지층에 포함된 수지의 종류 및 특성 등과 동일 수 있다.
상기 다층 생분해성 필름의 제조방법(S100)은 상기 제 1 수지 및 상기 제 2 수지를 각각 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻는 단계(S120)를 포함할 수 있다.
본 발명의 구현예에 따르면, 상기 제 1 수지 및 제 2 수지의 용융 압출온도를 제어하여 제 1 수지층 및 제 2 수지층을 얻을 수 있고, 이들을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻음으로써, 최종 필름의 위치별 두께 편차를 줄여 균일도를 제어할 수 있고, 이로 인해 목적하는 범위의 유연성, 투명성 및 소음도를 구현할 수 있다.
구체적으로, 상기 단계 (S110)에서 얻은 제 1 수지 및 제 2 수지를 2개의 압출기와 두 층이 교대로 적층되는 다층 피드블럭을 사용하여, 각각 압출기로 용융 압출할 수 있다. 또한, 상기 다층 피드블럭 내에서 제 1 수지층 및 제 2 수지층을 분기시킨 후, 이들 분기된 제 1 수지층과 제 2 수지층이 교대로 적층되도록 하여 다이(die)에 통과시키고, 약 10℃ 내지 40℃로 냉각된 냉각롤에 밀착시켜 미연신 다층 생분해성 시트를 얻을 수 있다.
이때, 본 발명에서 목적하는 특정 범위의 균일도가 제어된 다층 생분해성 필름을 얻기 위해서, 제 1 수지 및 제 2 수지의 용융 압출 온도, 및 이들의 용융 압출 온도 차이가 매우 중요할 수 있다. 구체적으로, 상기 특정 범위의 균일도를 갖는 다층 생분해성 필름을 얻기 위해 제 1 수지층과 상기 제 2 수지층의 용융 점도 및 이들의 용융 점도 차이를 제어하는 것이 중요하며, 이를 위해, 제 1 수지 및 제 2 수지의 용융 압출 온도를 제어함으로써 달성할 수 있다.
상기 제 1 수지의 용융 압출 온도와 상기 제 2 수지의 용융 압출 온도는 동일하거나 상이할 수 있으며, 상기 제 1 수지의 용융 압출 온도와 상기 제 2 수지의 용융 압출 온도의 차이는 예를 들어 30℃ 이하, 예를 들어 30℃ 미만, 예를 들어 20℃ 이하, 예를 들어 15℃ 이하, 예를 들어 15℃ 미만, 예를 들어 10℃ 이하, 또는 예를 들어 5℃ 이하일 수 있다. 이 경우, 최적의 점도차의 구간 확보로 인해, 최종 필름의 위치별 두께 편차를 줄여 제 1 수지층의 균일도를 상기 범위로 제어할 수 있고, 이로 인해 목적하는 범위의 유연성, 투명성 및 소음도를 구현할 수 있고, 외관 특성을 개선할 수 있다.
상기 제 1 수지의 용융 압출 온도는 예를 들어 180℃ 초과 내지 250℃, 예를 들어 190℃ 내지 240℃, 또는 예를 들어 190℃ 내지 230℃일 수 있다.
상기 제 2 수지의 용융 압출 온도는 예를 들어 180℃ 초과 내지 250℃, 예를 들어 190℃ 내지 240℃, 또는 예를 들어 190℃ 내지 230℃일 수 있다.
상기 제 1 수지 및 제 2 수지의 용융 압출 온도에 의해 형성되는 제 1 수지층 및 제 2 수지층의 용융 점도 및 이들의 용융 점도 편차를 제어할 수 있다. 만일, 상기 제 1 수지 및 제 2 수지의 용융 압출 온도가 상기 범위를 벗어나는 경우, 상기 제 1 수지층 및 제 2 수지층의 목적하는 용융 점도를 구현할 수 없고, 이로 인해 상기 다층 생분해성 필름의 위치별 두께 편차가 커져 상기 제 1 수지층의 균일도를 목적하는 범위로 구현하는 데에 어려움이 있을 수 있다.
본 발명의 구현예에 따르면, 상기 제 1 수지층의 용융 점도는 상기 제 2 수지층의 용융 점도보다 더 클 수 있다. 이 경우, 상기 다층 생분해성 필름의 위치별 제 1 수지층의 균일도를 용이하게 제어할 수 있어 유리하다. 만일, 상기 제 2 수지층의 용융 점도가 상기 제 1 수지층의 용융 점도보다 더 클 경우, 본 발명에서 목적하는 효과를 달성하는 데에 어려움이 있을 수 있고, 가공성, 생산성 및 성형성도 저하될 수 있다.
또한, 상기 제 1 수지층의 용융 점도가 상기 제 2 수지층의 용융 점도보다 크되, 특정 용융 점도 이상의 차를 나타내는 것이 본 발명에서 구현하는 효과를 달성하는 데에 유리할 수 있다.
일반적으로 5층 미만으로 이루어진 다층 생분해성 필름, 또는 공압출 제품에서는 용융 점도가 서로 유사할 경우 층 균일도 측면에서 유리하지만, 5층 이상, 예컨대 수십층 이상의 다층 생분해성 필름, 특히 제 1 수지층이 상기 필름의 양면 최외각 층을 형성하는 구조에서는 제 1 수지층의 용융 점도 보다 제 2 수지층의 용융 점도가 더 낮고, 이들의 최적의 용융 점도 차이(△V)가 약 500 poise 이상, 예컨대 약 2,000 poise 이상일 때 본 발명에서 목적하는 물성 효과를 충족할 수 있다.
만일, 상기 제 2 수지층의 용융 점도가 제 1 수지층의 용융 점도 보다 크거나 유사할 경우, 제 1 수지층과 제 2 수지층이 다층 블록 내 매우 좁은 슬릿을 통과하며, 교대로 적층되어지는 과정에서 층을 구성하는 계면간 압력이 서로 커져 층 구성이 균일하지 않게 될 수 있다. 제 2 수지층의 점도를 제 1 수지층의 용융 점도보다 낮고 특정 범위의 차이가 나도록 용융 압출 온도를 조절함으로써 다층 생분해성 필름의 최적의 균일도를 확보할 수 있다.
구체적으로, 하기 식 5로 표시되는 210℃에서 층간 용융 점도차(△V)는 500 poise 이상일 수 있다:
Figure PCTKR2022013133-appb-img-000008
상기 식 5에서,
상기 V1은 제 1 수지층의 용융 점도이고,
상기 V2는 제 2 수지층의 용융 점도이다.
상기 210℃에서 층간 점도차(△V)는 예를 들어 700 poise 이상, 예를 들어 800 poise 이상, 예를 들어 1,000 poise 이상, 예를 들어 1,500 poise 이상, 예를 들어 2,000 poise 이상, 예를 들어 2,200 poise 이상, 또는 예를 들어 2,500 poise 이상일 수 있고, 예를 들어 3,500 poise 이하, 예를 들어 3,200 poise 이하, 예를 들어 3,000 poise 이하, 또는 예를 들어 2,700 poise 이하일 수 있다. 구체적으로, 상기 층간 점도차(△V)는 500 내지 3,000 poise, 또는 예를 들어 700 내지 3,000 poise일 수 있다.
구체적으로, 상기 제 1 수지층은 210℃에서 용융 점도가 예컨대 7,000 poise 내지 12,000 poise, 예컨대 7,500 poise 내지 11,000 poise, 또는 예컨대 8,000 poise 내지 10,000 poise일 수 있다. 이때, 상기 제 1 수지층의 용융 점도는 레오미터(RDS)를 이용하여 측정할 수 있다.
상기 제 2 수지층은 210℃에서 용융 점도가 예컨대 4,000 poise 내지 8,000 poise, 예컨대 5,000 poise 내지 7,000 poise, 또는 예컨대 6,000 poise 내지 7,000 poise일 수 있다.
상기 제 1 수지층 및 상기 제 2 수지층의 용융 점도가 상기 범위를 만족하는 경우, 상기 다층 필름의 제 1 수지층의 균일도를 제어할 수 있고, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
아울러, 상기 용융 압출 시 예컨대 용융 이송 도관 내 정량 이송 장비(예컨대 기어 펌프)를 적용함으로써, 충분히 정량 이송 및 가소화시킬 수 있으며, 이 경우 2개의 압출기와 두 층이 교대로 적층되는 다층 피드블럭을 사용할 때 층 형성이 잘 될 수 있다.
한편, 구현예에 따라 상기 용융 압출 전에 상기 제 1 수지 및 상기 제 2 수지를 건조하는 단계를 더 포함할 수 있다. 상기 건조 단계는 예컨대 60℃ 내지 100℃에서 4 시간 내지 24 시간 동안 수행될 수 있다.
한편, 상기 다층 생분해성 필름의 제조방법(S100)은 상기 적층된 시트를 이축연신하고 열고정하여 다층 생분해성 필름을 얻는 단계(S130)를 포함할 수 있다.
구체적으로, 상기 적층된 시트를 이축연신할 수 있으며, 상기 이축연신 단계는 예컨대 50℃ 내지 80℃로 예열한 후, 40℃ 내지 100℃에서 종방향(MD)으로 2 내지 4배 종연신하는 단계 및 50℃ 내지 150℃에서 횡방향(MD)으로 3 내지 6배 연신하는 단계를 포함할 수 있다.
상기 적층된 시트를 양방향으로 이축연신을 수행함으로써, 상기 다층 생분해성 필름의 물성 및 성형성 등을 더욱 향상시킬 수 있으므로, 고품질의 포장재를 구현할 수 있다.
만일, 종방향 및 횡방향 중 한 방향으로만 일축연신하는 경우, 상기 다층 생분해성 필름의 두께 편차가 심하고, 연신을 수행 안한쪽의 강도가 떨어질 수 있으며, 열적 특성도 저하될 수 있다.
또한, 상기 열고정 단계는 50℃ 내지 150℃, 70℃ 내지 150℃, 100℃ 내지 150℃, 또는 110℃ 내지 140℃에서 수행될 수 있다.
한편, 상기 다층 생분해성 필름의 제조방법(S100)은 상기 제 1 수지층의 타면 상에 코로나층, 코팅층 또는 이들 둘 다를 더 형성할 수 있다.
구체적으로, 상기 제 1 수지층의 코로나 처리에 의해 코로나층을 형성할 수 있다.
상기 코로나 처리는 고주파-고전압 출력을 방전전극-처리 롤 간에 인가했을 때 코로나 방전이 일어나는데, 이 때 원하는 면을 통과시킴으로써, 코로나 처리를 실시할 수 있다.
구체적으로, 상기 코로나 방전 세기는 예컨대 3 내지 20 kW일 수 있다. 상기 코로나 방전 세기가 상기 범위 미만인 경우, 코로나 방전 처리 효과가 미미할 수 있고, 반대로 상기 코로나 방전 세기가 상기 범위를 초과하는 경우 과도한 표면 개질에 의해 표면 손상을 야기할 수 있다.
상기 코로나층의 구성 및 물성은 상술한 바와 같다.
또한, 상기 제 1 수지층의 타면 상에 코팅층을 형성할 수 있다.
상기 코팅층은 프라이머 코팅층을 포함할 수 있으며, 상기 프라이머 코팅층은 상기 제 1 수지층의 타면 상에 암모늄계 화합물, 인산계 화합물 및 아크릴계 수지 및 우레탄계 수지 등의 고분자로 이루어진 군으로부터 선택된 1 종 이상을 포함하는 프라이머 조성물로 프라이머 처리하여 표면 조도를 형성하여 접착 특성을 더욱 향상시킬 수 있다.
상기 프라이머 코팅층은 상기 제 1 수지층의 타면, 또는 상기 다층 생분해성 필름이 상기 코로나층을 포함하는 경우, 상기 제 1 수지층의 타면에 코로나층을 형성하고, 상기 코로나층의 타면 상에 상기 프라이머 코팅층을 형성할 수 있다.
또한, 상기 프라이머 조성물은 경화제 성분을 함유할 수 있고, 보다 구체적인 예로는 4,4'-디아미노디페닐메탄(DDM), 방향족 디아민 및 이들의 혼합물이 가능하다. 이때, 상기 경화제 성분의 첨가량은 상기 프라이머 조성물 총 중량을 기준으로 0.1 내지 50 중량%의 양으로 첨가될 수 있다.
상기 프라이머 처리 방법으로는 당업계에서 사용되는 통상적인 방법을 사용할 수 있으며, 예를 들어 스프레이 분사법, 브러싱, 롤링 등을 사용할 수 있다. 구체적으로, 에어리스 스프레이를 이용하여 유도시간 1 내지 30 분, 분사압력 5 내지 500 Mpa, 노즐구경 0.46 내지 0.58 mm, 및 분사각도 40 내지 80 °의 조건으로 프라이머 조성물을 상기 제 1 수지층의 표면에 분사할 수 있다.
이외에도, 다층 생분해성 필름의 접착성을 높이기 위해, 플라즈마 처리, 자외선 조사 처리, 프레임(화염) 처리 또는 비누화 처리 등과 같은 표면 처리를 적절히 수행할 수 있다.
구현예의 제조방법에 따라 상기 다층 생분해성 필름을 제조하는 경우, 경제적이고 효율적이며, 목적하는 구성 및 물성을 갖는 다층 생분해성 필름을 제조하는 데에 더욱 효과적일 수 있다.
[다층 생분해성 시트 및 이의 제조방법]
일 구현예에 따르면, 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 하기 식 1-1로 표시되는 균일도(LUIs)가 2.3 ㎛ 미만인 다층 생분해성 시트를 제공할 수 있다:
Figure PCTKR2022013133-appb-img-000009
상기 식 1-1에서,
650 mm의 폭 및 300 ㎛의 두께를 갖는 상기 다층 생분해성 시트의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
상기 다층 생분해성 시트에 있어서, 상기 제 1 수지층의 균일도(LUIs)는 예를 들어 2.2 ㎛ 이하, 예를 들어 2.0 ㎛ 이하, 또는 예를 들어 2.0 ㎛ 미만일 수 있다.
상기 다층 생분해성 시트에 있어서, 상기 제 1 수지층의 균일도(LUIs)가 상기 범위를 만족하는 경우, 다층 생분해성 시트의 균일도의 위치별 두께 편차를 줄일 수 있고, 이로 인해 시트의 외관 특성을 향상시킬 수 있고, 투명성 및 유연성을 더욱 향상시키고, 소음 특성(소음 저감 효과)을 개선시킬 수 있다.
상기 다층 생분해성 시트의 층 수는 상기 다층 생분해성 필름의 층 수와 동일할 수 있다.
또한, 상기 다층 생분해성 시트의 총 두께는 예를 들어 200 ㎛ 내지 500 ㎛, 예를 들어 250 ㎛ 내지 450 ㎛, 예를 들어 250 ㎛ 내지 400 ㎛ 또는 예를 들어 250 ㎛ 내지 350 ㎛일 수 있다.
한편, 본 발명의 구현예에 따라 상기 다층 생분해성 시트의 제조방법을 제공할 수 있다.
구체적으로, 상기 다층 생분해성 시트의 제조방법은 폴리락트산계 중합체를 주성분으로 하는 제 1 수지 및 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지를 각각 준비하는 단계(단계 1); 및 상기 제 1 수지 및 상기 제 2 수지를 각각 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻는 단계(단계 2);를 포함할 수 있다.
상기 단계 1 및 상기 단계 2는 상기 다층 생분해성 필름의 제조방법에서의 단계 1 및 2와 동일하게 수행될 수 있다.
[친환경 포장재]
본 발명은 일 구현예에 따라 상기 다층 생분해성 필름을 포함하는 친환경 포장재를 제공할 수 있다.
구체적으로, 상기 친환경 포장재는 다층 생분해성 필름을 포함하고, 상기 다층 생분해성 필름이 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고, 상기 제 1 수지층의 상기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하일 수 있다.
상기 친환경 포장재는 예를 들어 일반적인 일회용 포장재 및 식품 포장재 등으로 이용될 수 있는 필름 형태일 수 있고, 직물, 편물, 부직포, 로프(rope) 등으로 이용될 수 있는 섬유 형태일 수 있으며, 도시락 등과 같은 식품 포장용 용기로 이용될 수 있는 용기 형태일 수 있다.
상기 친환경 포장재는 우수한 균일도, 유연성 및 투명성을 동시에 가지면서, 소음도가 낮은 다층 생분해성 필름을 포함함으로써 우수한 물성 및 품질을 제공할 수 있다. 또한, 생분해가 가능하며, 매립시 완전히 분해되어 환경 친화적인 특성을 갖는 포장재를 제공할 수 있으므로, 포장재로서 다양한 분야에 활용되어 우수한 특성을 발휘할 수 있다.
발명의 실시를 위한 형태
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
실시예
실시예 1 : 다층 생분해성 필름의 제조
제 1 수지층의 수지로서 D-락타이드 함량이 약 1.4%이고, 약 210℃에서 용융 점도가 약 8,770 poise를 갖는 폴리락트산 수지(Nature Works LLC, 4032D)와 제 2 수지층의 수지로서 210℃에서 용융 점도가 약 6,259 poise를 가지며, 산 성분 중 지방족 성분의 함량이 50몰%인 지방족-방향족 공중합 폴리에스터계 수지인 폴리부틸렌아디페이트-테레프탈레이트(PBAT)(XINJIANG BLUE RIDGE TUNHE POLYESTER CO., LTD.) 수지를 사용하였다.
상기 제 1 수지층의 수지는 제습 건조기로 약 80℃에서 6시간, 상기 제 2 수지층의 수지는 제습 건조기로 약 80℃에서 2시간 건조하여 수분을 제거한 후, 2개의 압출기와 두 층이 교대로 적층되는 다층 피드블럭을 사용하여, 제 1 수지층의 수지는 온도가 210℃인 압출기로, 제 2 수지층의 수지는 온도가 210℃인 압출기로 용융 압출하였다.
상기 다층 피드블럭 내에서 제 1 수지층은 15층, 제 2 수지층은 14층으로 분기시킨 후, 이들 분기된 제 1 수지층과 제 2 수지층이 교대로 적층되도록 780 mm 다이(die)에 통과시키고, 약 21℃로 냉각된 냉각롤에 밀착시켜 29층의 미연신 다층 생분해성 시트를 얻었다. 이때, 상기 상/하면의 양면 최외각 층에는 제 1 수지층을 위치시키고, 상기 양면 최외각 층의 두께의 합이 전체 두께의 30%가 되도록 하였다.
이렇게 얻어진 미연신 다층 생분해성 시트를 약 65℃에서 종방향 3.0배, 120℃에서 횡방향 3.9배로 연신한 후, 150℃에서 열고정하고, 이완율 1%를 부여하여, 다층 생분해성 필름의 전체 두께가 20 ㎛의 29층이고, 제 1 수지층의 균일도(LUI)가 약 0.077 ㎛인 다층 생분해성 필름을 제조하였다.
실시예 2 : 다층 생분해성 필름의 제조
표 1과 같이, 제 1 수지층 및 제 2 수지층의 두께, 필름의 총 층 수, 양면 최외각 층의 두께의 합, 및 제 1 수지층의 균일도(LUI)를 각각 조절한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다층 생분해성 필름의 전체 두께가 25 ㎛의 43층인 다층 생분해성 필름을 제조하였다.
실시예 3 : 다층 생분해성 필름의 제조
표 1과 같이, 제 1 수지층 및 제 2 수지층의 두께, 필름의 총 층 수, 양면 최외각 층의 두께의 합, 및 제 1 수지층의 균일도(LUI)를 각각 조절한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다층 생분해성 필름의 전체 두께가 20 ㎛의 57층인 다층 생분해성 필름을 제조하였다.
비교예 1 : 단층 생분해성 필름의 제조
제 1 수지층의 수지로서 실시예 1과 동일한 폴리락트산 수지를 사용하고, 이를 제습 건조기로 약 80℃에서 6시간 건조하여 수분을 제거하였다. 상기 수분이 제거된 제 1 수지층의 수지를 온도가 210℃인 압출기로 용융 압출하고, 780 mm 다이를 통과 시킨 후, 20℃로 냉각된 냉각롤에 밀착시켜 단층 미연신 시트를 얻었다. 이렇게 얻어진 단층 미연신 시트를 65℃에서 종방향 3.0배, 120℃에서 횡방향 3.8배로 연신한 후, 120℃에서 열고정하고, 이완율 1%를 부여하여 두께 20 ㎛의 단층 필름을 제조하였다.
비교예 2 : 단층 생분해성 필름의 제조
실시예 1에서 사용한 제 1 수지층의 수지와 제 2 수지층의 수지를 각각 80:20 중량비로 핸드 믹싱한 후, 200℃에서 45 파이 이축 압출기에서 블렌딩하였다. 이를 제습 건조기로 약 60℃에서 8시간 건조한 후, 200℃에서 용융 압출하여, 두께 30 ㎛의 단층 필름을 제조하였다.
비교예 3 : 다층 생분해성 필름의 제조
표 1과 같이, 제 1 수지층의 수지를 온도가 210℃인 압출기로, 제 2 수지층의 수지를 온도가 180℃인 압출기로 용융 압출하고, 제 1 수지층 및 제 2 수지층의 두께, 양면 최외각 층의 두께의 합, 및 제 1 수지층의 균일도(LUI)를 각각 조절한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다층 생분해성 필름의 전체 두께가 20 ㎛의 29층인 다층 생분해성 필름을 제조하였다.
비교예 4 : 다층 생분해성 필름의 제조
표 1과 같이, 제 1 수지층의 수지를 온도가 210℃인 압출기로, 제 2 수지층의 수지를 온도가 140℃인 압출기로 용융 압출하고, 제 1 수지층 및 제 2 수지층의 두께, 양면 최외각 층의 두께의 합, 및 제 1 수지층의 균일도(LUI)를 각각 조절한 것을 제외하고는, 실시예 2와 동일하게 실시하여 다층 생분해성 필름의 전체 두께가 25 ㎛의 43층인 다층 생분해성 필름을 제조하였다.
비교예 5 : 다층 생분해성 필름의 제조
표 1과 같이, 제 1 수지층의 수지를 온도가 210℃인 압출기로, 제 2 수지층의 수지를 온도가 190℃인 압출기로 용융 압출하고, 제 1 수지층 및 제 2 수지층의 두께, 양면 최외각 층의 두께의 합, 및 제 1 수지층의 균일도(LUI)를 각각 조절한 것을 제외하고는, 실시예 3과 동일하게 실시하여 다층 생분해성 필름의 전체 두께가 20 ㎛의 57층인 다층 생분해성 필름을 제조하였다.
상기 실시예 1 내지 3 및 비교예 1 내지 5에 따라 제조된 단층 또는 다층 생분해성 필름에 대한 각 층의 특성, 및 공정 조건을 하기 표 1에 정리하였다:
Figure PCTKR2022013133-appb-img-000010
평가예
상기 실시예 1 내지 3 및 비교예 1 내지 5에 따라 제조된 단층 또는 다층 생분해성 필름에 대한 물성 측정 및 성능 평가를 다음과 같은 방법으로 실시한 후, 그 결과를 하기 표 1에 나타내었다.
평가예 1: 두께
실시예 및 비교예에서 제조된 단층 또는 다층 생분해성 필름의 전체 폭에 대한 두께를 측정하였다.
상기 다층 생분해성 필름의 두께는 MFC-101(Nikon사)를 이용하여 필름 폭 500mm를 10 포인트 간격으로 나누어 평균을 내어 두께를 측정하였다.
평가예 2: 균일도(LUI)
<다층 생분해성 필름의 제 1 수지층의 균일도>
실시예 1 내지 3 및 비교예 3 내지 5의 다층 생분해성 필름에 있어서, 제 1 수지층의 균일도(LUI)를 측정하였다.
구체적으로, 도 1 및 도 3을 참고하여, 상기 실시예 1 내지 3 및 비교예 3 내지 5에 따라 제조된 다층 생분해성 필름의 폭(W) 방향의 중앙 지점을 "C", 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(W1)을 "N", 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(W2)를 "S"로 선정한 후, 상기 다층 생분해성 필름의 두께 방향으로 절단하였고(A-A'), 이 절단된 단면에서 전계방사형 주사전자현미경(FE-SEM)(JSM-6701F / JEOL사)을 이용하여 적층된 제 1 수지층의 개별 층의 위치별 두께를 각각 측정하였다.
도 3의 (b)을 참조하면, 상기 적층된 제 1 수지층의 개별 층의 위치별, 즉 N 지점에서의 두께(tN1, tN2, tN3 ···), C 지점에서의 두께(tc1, tC2, tC3 ···), S 지점에서의 두께(tS1, tS2, tS3 ···)를 각각 측정하고, 상기 적층된 제 1 수지층의 개별 층의 위치별 두께에서 제 1 수지층의 개별층의 두께 중 최대 두께인 tmax, N, tmax, C, tmax, S, 및 최소 두께인 tmin, N, tmin, C, tmin, S를 각각 구하고, 이들의 각 값들을 이용하여 상기 식 1로 표시되는 균일도(LUI)를 측정하였다.
상기 적층된 제 1 수지층의 개별 층의 위치별 두께에서 제 1 수지층의 개별층의 두께 중 최대 두께 및 최소 두께를 각각 구하였고, 이들의 각 값들을 이용하여 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)를 측정하였다:
Figure PCTKR2022013133-appb-img-000011
상기 식 1에서,
500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
이때, 상기 제 1 수지층의 개별층은 제 1 수지층 중 양면 최외각 층(도 1 및 3의 110')을 제외한 각각의 층을 의미한다. 따라서, 상기 제 1 수지층의 개별층(110)의 두께 중 최대 두께 및 최소 두께는 각각 제 1 수지층 중 양면 최외각 층(110')을 제외한 개별층(110)의 두께 중 최대 두께 및 최소 두께를 의미한다.
<미연신 시트의 균일도>
상기 다층 생분해성 필름의 제 1 수지층의 균일도(LUI)와 동일한 방법으로, 실시예 1 내지 3 및 비교예 3 내지 5의 다층 생분해성 시트(미연신 시트)에 있어서, 적층된 제 1 수지층의 개별 층의 위치별 두께 중에서 최대 두께 및 최소 두께를 각각 구하였고, 이들의 각 값들을 이용하여 제 1 수지층의 하기 식 1-1로 표시되는 균일도(LUIs)를 측정하였다.
Figure PCTKR2022013133-appb-img-000012
상기 식 1-1에서,
650 mm의 폭 및 300 ㎛의 두께를 갖는 상기 다층 생분해성 시트의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 개별 층의 두께를 각각 측정하였을 때,
상기 tmax, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
상기 tmax, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
상기 tmax, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
상기 tmin, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
이때, 상기 제 1 수지층의 개별층은 제 1 수지층 중 양면 최외각 층(도 1 및 3의 110')을 제외한 각각의 층을 의미한다. 따라서, 상기 제 1 수지층의 개별층(110)의 두께 중 최대 두께 및 최소 두께는 각각 제 1 수지층 중 양면 최외각 층(110')을 제외한 개별층(110)의 두께 중 최대 두께 및 최소 두께를 의미한다.
평가예 3: 헤이즈(HZ)
일본정밀과학사(Nihon Semitsu Kogaku)의 Hazemeter(모델명:SEP-H)를 이용하여 ASTM D1003 표준에 의거하여 측정하였다.
평가예 4: 영률(YM)
ASTM D882에 의거하여 실시예 및 비교예에서 제조한 단층 또는 다층 생분해성 필름 시편을 만든 후, 길이 150 mm, 폭 15 mm로 절단한 후, 척간 간격이 50 mm가 되도록 장착하여 상기 시편을 인장시험기, 인스트론 5566A를 이용하여 인장 속도 200 mm/min로 실험한 후, 측정 시작점부터 신율 3% 도달 시점까지의 직선 기울기 값을 영률(Young's modulus, kgf/㎟)로 측정하였다.
평가예 5: 소음도(NAVG)
실시예 및 비교예에서 제조한 단층 또는 다층 생분해성 필름을 폴리카보네이트로 제작된 650(W) mm × 450(D) mm × 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단하고, 상기 다층 생분해성 필름을 디지털 소음분석기(Cirrus Research PlC사, 모델명:CR-162C)로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출하였다.
평가예 6: 유연소음복합도(FNC)
상기 평가예 4 및 5에서 측정된 YM 및 NAVG의 값을 이용하여 하기 식 3으로 표시되는 유연소음복합도(FNC)를 계산하였다:
Figure PCTKR2022013133-appb-img-000013
상기 식 3에서,
상기 YM 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
상기 YM은 ASTM D882에 의거하여 다층 생분해성 필름 시편을 만든 후, 길이 150 mm 및 폭 15 mm로 재단하고, 척간 간격이 50 mm가 되도록 장착하여 인장 속도 200 mm/min로 실험한 후, 측정 시작점부터 신율 3% 도달 시점까지의 직선 기울기 값인 영률(Young's modulus, kgf/㎟)이고,
상기 NAVG는 폴리카보네이트로 제작된 650(W) mm × 450(D) mm × 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단한 다층 생분해성 필름을 디지털 소음분석기로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출한 평균 소음도(dB)이다.
평가예 7: 외관소음 품질복합지수(QCI)
상기 평가예 2, 3 및 5에서 측정된 LUI, HZ, NAVG의 값을 이용하여 하기 식 4로 표시되는 외관소음 품질복합지수(QCI)를 계산하였다:
Figure PCTKR2022013133-appb-img-000014
상기 식 4에서,
상기 HZ, LUI, 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
상기 HZ는 상기 다층 생분해성 필름의 헤이즈(%)이고,
상기 LUI는 상기 식 1로 표시되는 균일도이고,
상기 NAVG는 폴리카보네이트로 제작된 650(W) mm × 450(D) mm × 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단한 다층 생분해성 필름을 디지털 소음분석기로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출한 평균 소음도(dB)이다.
Figure PCTKR2022013133-appb-img-000015
상기 표 2로부터, 본 발명에 따른 실시예 1 내지 3의 다층 생분해성 시트 및 필름은 비교예의 단층 또는 다층 생분해성 시트 및 필름에 비해 제 1 수지층의 균일도가 매우 우수하고, 유연성, 소음도 및 투명성 등의 물성이 전반적으로 모두 우수하였다.
구체적으로 살펴보면, 제 1 수지층의 균일도와 관련하여, 실시예 1 내지 3의 다층 생분해성 시트의 제 1 수지층의 균일도(LUIs)는 1.12 내지 1.91이고, 다층 생분해성 필름의 제 1 수지층의 균일도(LUI)는 0.077 내지 0.122로서, LUIs 및 LUI가 각각 2.3 이상 및 0.221 이상인 비교예 3 내지 5의 다층 생분해성 시트 및 필름에 비해 제 1 수지층의 균일도가 현저히 개선되었음을 알 수 있다.
또한, 유연성 및 소음도와 관련하여, 실시예 1 내지 3의 다층 생분해성 필름은 221 kgf/㎟ 내지 233 kgf/㎟의 영률 및 79.5 dB 이하의 소음도를 갖는 반면, 비교예 1의 단층 생분해성 필름은 384 kgf/㎟의 영률 및 88.3 dB의 소음도로서, 유연성이 저하되었고, 소음도가 매우 높아짐을 확인하였다. 또한, 비교예 3 내지 5의 다층 생분해성 필름은 동일 층 수 및 두께를 갖는 실시예 1 내지 3의 다층 생분해성 필름과 각각 비교해 볼 때, 유연성이 저하되었고, 소음도가 매우 높아짐을 확인하였다.
한편, 투명성과 관련하여, 실시예 1 내지 3의 다층 생분해성 필름은 헤이즈가 모두 3% 이하로, 투명성이 우수한 반면, 비교예 1 내지 3 및 5의 단층 또는 다층 생분해성 필름의 경우 헤이즈가 약 3%를 초과하였고, 특히 비교예 2의 단층 생분해성 필름은 헤이즈가 25%로서, 투명성이 현저히 감소함을 알 수 있다.
따라서, 본 발명의 실시예 1 내지 3의 다층 생분해성 시트 및 필름은, 생분해성이 우수함은 물론, 제 1 수지층의 균일도가 매우 우수하여, 최종 필름의 균일도, 유연성, 소음도, 투명성 및 외관 특성이 모두 우수하므로, 식품 포장재 등의 포장용도를 비롯한 다양한 용도에 친환경적으로 사용될 수 있음을 확인할 수 있다.
[부호의 설명]
100 : 다층 생분해성 필름
110 : 제 1 수지층(개별층)
110' : 양면 최외각 층
120 : 제 2 수지층(개별층)
N: 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점
C: 다층 생분해성 필름의 폭 방향의 중앙 지점
S: 다층 생분해성 필름의 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점
W: 폭
W1: 다층 생분해성 필름의 한 쪽 단부로부터 떨어진 폭
W2: 다층 생분해성 필름의 다른 한 쪽 단부로부터 떨어진 폭
L: 길이
A-A': 절개선

Claims (14)

  1. 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고,
    상기 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인, 다층 생분해성 필름:
    Figure PCTKR2022013133-appb-img-000016
    상기 식 1에서,
    500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
    상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
    상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
    상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
  2. 제 1 항에 있어서,
    하기 식 2로 표시되는 다층 생분해성 필름의 폭 방향의 양 끝의 균일도 차(△tN,S)가 0.06 ㎛ 이하인, 다층 생분해성 필름:
    Figure PCTKR2022013133-appb-img-000017
    상기 식 2에서,
    상기 tmax, N, tmin, N, tmax, S, 및 tmin, S는 제 1 항에서 정의한 바와 같다.
  3. 제 1 항에 있어서,
    하기 식 3으로 표시되는 유연소음복합도(FNC)가 20 이하인, 다층 생분해성 필름:
    Figure PCTKR2022013133-appb-img-000018
    상기 식 3에서,
    상기 YM 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
    상기 YM은 ASTM D882에 의거하여 다층 생분해성 필름 시편을 만든 후, 길이 150 mm 및 폭 15 mm로 재단하고, 척간 간격이 50 mm가 되도록 장착하여 인장 속도 200 mm/min로 실험한 후, 측정 시작점부터 신율 3% 도달 시점까지의 직선 기울기 값인 영률(Young's modulus, kgf/㎟)이고,
    상기 NAVG는 폴리카보네이트로 제작된 650(W) mm Х 450(D) mm Х 500(H) mm의 박스 내에서, 210 mm × 297 mm의 A4 크기로 재단한 다층 생분해성 필름을 디지털 소음분석기로부터 30 cm 떨어진 곳에 위치시키고, 상기 필름의 양 끝을 지그로 잡아 30 회/분 속도로 앞뒤로 비틀기를 반복하여 5초 이상 소음을 낼 때 측정한 소음도를 5회 측정하여 산출한 평균 소음도(dB)이다.
  4. 제 3 항에 있어서,
    하기 식 4로 표시되는 필름의 외관소음 품질복합지수(QCI)가 28 이하인, 다층 생분해성 필름:
    Figure PCTKR2022013133-appb-img-000019
    상기 식 4에서,
    상기 HZ, LUI, 및 NAVG는 각각 상기 다층 생분해성 필름 시편으로 측정된 단위를 제외한 수치로서,
    상기 HZ는 상기 다층 생분해성 필름의 헤이즈(%)이고,
    상기 LUI는 제 1 항에서 정의한 바와 같고,
    상기 NAVG는 제 3 항에서 정의한 바와 같다.
  5. 제 1 항에 있어서,
    상기 필름의 양면 최외각 층이 각각 제 1 수지층이고,
    상기 양면 최외각 층의 두께의 합이 상기 필름 전체 두께의 5 내지 40%인, 다층 생분해성 필름.
  6. 제 1 항에 있어서,
    상기 필름이 5층 이상이고,
    상기 양면 최외각 층을 제외한 제 1 수지층 및 제 2 수지층의 개별층 평균 두께비가 1 : 0.5 내지 2인, 다층 생분해성 필름.
  7. 제 1 항에 있어서,
    상기 지방족-방향족 공중합 폴리에스터계 수지의 산 성분 중 지방족 성분의 함량이 30 몰% 이상인, 다층 생분해성 필름.
  8. 폴리락트산계 중합체를 주성분으로 하는 제 1 수지층과, 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지층을 포함하는 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층되어 있고,
    상기 제 1 수지층의 하기 식 1-1로 표시되는 균일도(LUIs)가 2.3 ㎛ 미만인, 다층 생분해성 시트:
    Figure PCTKR2022013133-appb-img-000020
    상기 식 1-1에서,
    650 mm의 폭 및 300 ㎛의 두께를 갖는 상기 다층 생분해성 시트의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
    상기 tmax, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, N1은 상기 다층 생분해성 시트의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
    상기 tmax, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, S1는 상기 다층 생분해성 시트의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
    상기 tmax, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, C1는 상기 다층 생분해성 시트의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
  9. 폴리락트산계 중합체를 주성분으로 하는 제 1 수지 및 지방족 폴리에스터계 수지 또는 지방족-방향족 공중합 폴리에스터계 수지를 주성분으로 하는 제 2 수지를 각각 준비하는 단계(단계 1);
    상기 제 1 수지 및 상기 제 2 수지를 각각 용융 압출하여 제 1 수지층과 제 2 수지층을 교대로 적층하여 2종류 이상의 서로 다른 열가소성 수지층이 교대로 적층된 시트를 얻는 단계(단계 2); 및
    상기 적층된 시트를 이축연신하고 열고정하여 다층 생분해성 필름을 얻는 단계(단계 3);를 포함하고,
    상기 다층 생분해성 필름은 상기 제 1 수지층의 하기 식 1로 표시되는 균일도(LUI)가 0.2 ㎛ 이하인, 다층 생분해성 필름의 제조방법:
    Figure PCTKR2022013133-appb-img-000021
    상기 식 1에서,
    500 mm의 폭 및 20 내지 25 ㎛의 두께를 갖는 상기 다층 생분해성 필름의 폭 방향의 한 쪽 단부로부터 50 mm 떨어진 지점(N), 폭 방향의 다른 한 쪽 단부로부터 50 mm 떨어진 지점(S), 및 폭 방향의 중앙 지점(C)에서 두께 방향으로 절단한 단면에서 전계방사형 주사전자현미경(FE-SEM)을 이용하여 적층된 제 1 수지층의 양면 최외각 층을 제외한 개별 층의 두께를 각각 측정하였을 때,
    상기 tmax, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, N은 상기 다층 생분해성 필름의 N 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이며,
    상기 tmax, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, S는 상기 다층 생분해성 필름의 S 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이고,
    상기 tmax, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최대 두께이고,
    상기 tmin, C는 상기 다층 생분해성 필름의 C 지점에서 측정한 제 1 수지층의 양면 최외각 층을 제외한 개별층의 두께 중 최소 두께이다.
  10. 제 9 항에 있어서,
    상기 제 1 수지층의 용융 점도가 상기 제 2 수지층의 용융 점도보다 더 큰, 다층 생분해성 필름의 제조방법.
  11. 제 9 항에 있어서,
    하기 식 5로 표시되는 210℃에서의 층간 용융 점도차(△V)가 500 poise 이상인, 다층 생분해성 필름의 제조방법:
    Figure PCTKR2022013133-appb-img-000022
    상기 식 5에서,
    상기 V1은 제 1 수지층의 용융 점도이고,
    상기 V2는 제 2 수지층의 용융 점도이다.
  12. 제 9 항에 있어서,
    상기 제 1 수지의 용융 압출 온도와 상기 제 2 수지의 용융 압출 온도의 차이가 30℃ 미만인, 다층 생분해성 필름의 제조방법.
  13. 제 9 항에 있어서,
    상기 제 1 수지의 용융 압출 온도는 180℃ 초과 내지 250℃이고,
    상기 제 2 수지의 용융 압출 온도는 180℃ 초과 내지 250℃인, 다층 생분해성 필름의 제조방법.
  14. 제 1 항의 다층 생분해성 필름을 포함하는, 친환경 포장재.
PCT/KR2022/013133 2021-09-15 2022-09-01 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재 WO2023043100A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061601.6A CN118019644A (zh) 2021-09-15 2022-09-01 多层可生物降解膜、其制造方法和包括该膜的环保包装材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210123507A KR102625876B1 (ko) 2021-09-15 2021-09-15 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
KR10-2021-0123507 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023043100A1 true WO2023043100A1 (ko) 2023-03-23

Family

ID=85603114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013133 WO2023043100A1 (ko) 2021-09-15 2022-09-01 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재

Country Status (3)

Country Link
KR (1) KR102625876B1 (ko)
CN (1) CN118019644A (ko)
WO (1) WO2023043100A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050102639A (ko) * 2003-02-10 2005-10-26 다마폴리 가부시키가이샤 폴리락트산 다층 필름 및 그 성형방법
US20060019111A1 (en) * 2004-07-22 2006-01-26 Tohcello Co., Ltd. Biaxially stretched polylactic acid multilayer film and the use thereof
KR20120041974A (ko) * 2010-10-22 2012-05-03 에스케이씨 주식회사 다층 생분해성 필름
KR20140027221A (ko) * 2011-04-12 2014-03-06 데이진 가부시키가이샤 배향 적층 필름
JP2015039870A (ja) * 2013-08-23 2015-03-02 帝人株式会社 複合フィルムおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005339B2 (ja) 2001-11-22 2007-11-07 ユニチカ株式会社 生分解性ごみ袋
JP2006272712A (ja) 2005-03-29 2006-10-12 Ajinomoto Co Inc ポリブチレンサクシネート積層フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050102639A (ko) * 2003-02-10 2005-10-26 다마폴리 가부시키가이샤 폴리락트산 다층 필름 및 그 성형방법
US20060019111A1 (en) * 2004-07-22 2006-01-26 Tohcello Co., Ltd. Biaxially stretched polylactic acid multilayer film and the use thereof
KR20120041974A (ko) * 2010-10-22 2012-05-03 에스케이씨 주식회사 다층 생분해성 필름
KR20140027221A (ko) * 2011-04-12 2014-03-06 데이진 가부시키가이샤 배향 적층 필름
JP2015039870A (ja) * 2013-08-23 2015-03-02 帝人株式会社 複合フィルムおよびその製造方法

Also Published As

Publication number Publication date
CN118019644A (zh) 2024-05-10
KR102625876B1 (ko) 2024-01-16
KR20230040199A (ko) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021241931A1 (ko) 생분해성 폴리에스테르 수지 조성물, 부직포 및 필름, 및 이의 제조방법
WO2020116927A1 (ko) 공압출 발포 공법으로 제조되는 다층구조의 폴리락트산 수지 발포시트, 성형품, 그 제조방법 및 그 제조장치
WO2015016449A1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2015053444A1 (ko) 기재 사이에 나노섬유를 포함하는 필터 및 이의 제조방법
WO2016171327A1 (ko) 나노섬유를 포함하는 나노 멤브레인
WO2019054732A1 (ko) 인조가죽 및 이의 제조방법
WO2023043100A1 (ko) 다층 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
WO2012128518A9 (ko) 폴리에스테르계 증착필름
WO2018004288A2 (ko) 폴리에스테르 다층필름
WO2018124585A1 (ko) 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법
WO2022220513A1 (ko) 이축연신 필름, 적층체, 및 상기 필름을 포함하는 친환경 포장재
WO2023008766A1 (ko) 표면 경도와 복원성이 향상된 적층 필름 및 이를 포함하는 디스플레이 장치
WO2020067658A1 (ko) 자동차 내장재용 인조가죽 및 이의 제조방법
WO2015156638A1 (ko) 폴리에스테르 필름, 이의 제조방법 및 이를 이용한 폴리에스테르 성형품, 이의 제조방법
WO2016171485A1 (ko) 친수성 및 방오성, 내후성이 향상된 광촉매 시트 및 그의 제조방법
WO2023008901A1 (ko) 생분해성 다층 필름, 이의 제조 방법 및 이를 포함하는 친환경 포장재
WO2023080498A1 (ko) 다층 배리어 필름, 이의 제조방법 및 이를 포함하는 포장재
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법
WO2023068594A1 (ko) 생분해성 폴리에스테르 수지, 및 이를 포함하는 생분해성 폴리에스테르 필름 및 적층체
WO2024019353A1 (ko) 다층 시트 및 다층 전자장치
WO2023043101A1 (ko) 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재
WO2021066604A1 (ko) 표면 보호 필름, 표면 보호 필름의 제조 방법 및 유기 발광 전자 장치의 제조 방법
WO2023163327A1 (ko) 다층 배리어 필름 및 이를 포함하는 포장재료
WO2023163328A1 (ko) 다층 배리어 필름 및 이를 포함하는 포장재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE