WO2023042297A1 - 空気調和機および方法 - Google Patents

空気調和機および方法 Download PDF

Info

Publication number
WO2023042297A1
WO2023042297A1 PCT/JP2021/033923 JP2021033923W WO2023042297A1 WO 2023042297 A1 WO2023042297 A1 WO 2023042297A1 JP 2021033923 W JP2021033923 W JP 2021033923W WO 2023042297 A1 WO2023042297 A1 WO 2023042297A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
outdoor
heat exchanger
heat transfer
air conditioner
Prior art date
Application number
PCT/JP2021/033923
Other languages
English (en)
French (fr)
Inventor
光希 其田
亮一 高藤
智大 加藤
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2021/033923 priority Critical patent/WO2023042297A1/ja
Priority to JP2023547998A priority patent/JPWO2023042297A1/ja
Publication of WO2023042297A1 publication Critical patent/WO2023042297A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an air conditioner and method for suppressing the generation of odors.
  • the indoor unit of an air conditioner performs heat exchange with a heat exchanger and discharges the air into the room again to perform air conditioning.
  • Patent Document 1 discloses that frost or ice is attached to the surface of the fins of the heat exchanger periodically (for example, after the operation is finished), and the moisture obtained by thawing the frost or ice discloses a technique for cleaning stains. According to Patent Document 1, the maintainability of the heat exchanger can be improved, and the discomfort caused by the smell can be reduced.
  • heat exchangers are mainly composed of fins and heat transfer tubes, and in recent years, those using aluminum as a raw material have also been developed.
  • aluminum is easily oxidized, and white rust tends to occur on the surface. Since white rust easily adsorbs odor components, it is preferable to remove it from the viewpoint of suppressing odors entering the room as described above.
  • Patent Document 1 freezes the fins, not the heat transfer tubes of the heat exchanger. Therefore, there is a demand for a technique for removing white rust on the surface of aluminum heat transfer tubes and odor components adhering to the surface, and suppressing the discharge of odorous air into the indoor space.
  • the present invention has been made in view of the above problems in the prior art, and an object thereof is to provide an air conditioner and method for suppressing the generation of odors.
  • An air conditioner comprising an indoor heat exchanger having heat transfer tubes and fins, and a controller for controlling operation,
  • the heat transfer tubes are made of aluminum
  • the control unit There is provided an air conditioner that performs a cleaning operation in which the temperature of the heat transfer tubes is set to 0° C. or less to deposit frost or ice on the heat transfer tubes or the fins.
  • the present invention can provide an air conditioner and method for suppressing the generation of odors.
  • FIG. 2 is a side cross-sectional view showing an indoor heat exchanger included in the indoor unit of the embodiment; 4 is a flow chart showing a cleaning operation in this embodiment;
  • the air conditioner 1 is described by exemplifying a room air conditioner (RAC), but the type of the air conditioner 1 is not particularly limited. It may be a multi-air conditioner (VRF) or the like.
  • the air conditioner 1 includes an indoor unit (IDU) 10, an outdoor unit 20, and a refrigerant pipe 40 connecting the indoor unit 10 and the outdoor unit 20.
  • the indoor unit 10 is arranged in a room where air conditioning is performed, and provides air conditioning desired by the user by means of a remote control terminal such as a remote control 30 operated by the user.
  • the indoor unit 10 accommodates the filter 13, the indoor fan 14, and the indoor heat exchanger 101 (not shown in FIG. 1, see FIG. 2, etc.) in the housing 11.
  • the indoor unit 10 further includes a wind direction plate 12 to adjust the direction of the wind when the conditioned air is blown into the room.
  • the indoor unit 10 is provided with a drain pan (not shown) below the indoor heat exchanger 101 for receiving moisture generated from the heat exchanger.
  • the drain pan discharges water to the outside of the air-conditioned space (for example, outdoors) through a hose.
  • the air conditioner 1 also includes an outdoor unit (ODU) 20.
  • the outdoor unit 20 accommodates a compressor 26 , an outdoor heat exchanger (HEX) 25 , an outdoor fan 22 , and a fan motor 23 in a housing 21 .
  • the compressor 26 compresses the refrigerant returned from the indoor unit 10 after conditioning the indoor air and sends it to the heat exchanger 25 to change the thermodynamic state of the refrigerant so as to enable the conditioning to be provided. adjust.
  • the outdoor fan 22 is driven by a fan motor 23 , sucks outside air from the back of the outdoor unit 20 and blows it onto the heat exchanger 25 , enabling heat exchange with the refrigerant passing through the heat exchanger 25 .
  • the outdoor unit 20 is equipped with an electric box 27.
  • the electrical box 27 accommodates electronic devices for controlling various electrical devices provided in the outdoor unit 20, and controls the outdoor unit 20 using appropriate firmware.
  • the front side of the outdoor unit 20 where the outdoor fan 22 is arranged is covered with a grill structure 24 to protect the fingers of users and workers from entering the outdoor unit 20 .
  • the grill structure 24 has the strength necessary to protect the internal elements of the outdoor unit 20 when it comes into contact with the fingers of a user or operator, is hit by an external object, or is transported.
  • FIG. 2 is an overall view explaining the configuration of the air conditioner 1 of this embodiment.
  • an indoor unit 10 and an outdoor unit 20 are connected by a refrigerant pipe 40 to form a closed circuit.
  • Refrigerant is enclosed in this closed circuit, and a refrigeration cycle, which will be described later, is realized by circulating the refrigerant. It is assumed that the indoor unit 10 is provided in an indoor space.
  • the outdoor unit 20 includes a compressor 201 whose rotation frequency can be varied by an inverter, a four-way valve (reversible valve) 202, an outdoor heat exchanger 203 that exchanges heat with outdoor air, and a refrigerant flow rate of the outdoor heat exchanger 203.
  • An outdoor expansion valve 204 constituted by an electronic expansion valve or the like, an accumulator 207, and the like are connected to each other by piping.
  • An outdoor fan 208 for blowing air to the outdoor heat exchanger 203 is provided near the outdoor heat exchanger 203 .
  • the outdoor unit 20 may be provided with a bypass circuit for branching part of the refrigerant to pass through the subcooling heat exchanger and then returning it to the suction side of the compressor 201 .
  • the outdoor unit 20 further includes an inverter compressor frequency control device 210 that controls the frequency of the compressor 201, an outdoor fan blowing capacity control device 211 that controls the blowing capacity of the outdoor fan 208, and an opening degree of the outdoor expansion valve 204.
  • An outdoor expansion valve opening control device 212 and a four-way valve control device 214 for controlling the four-way valve 202 are provided.
  • the outdoor unit 20 also includes refrigerant temperature detectors 215 and 216, an outdoor heat exchanger liquid temperature detector 206, an outdoor temperature detector 209 for detecting the outdoor temperature, and a compressor suction pressure for detecting the suction pressure to the compressor 201.
  • a detector 220 and a compressor discharge pressure detector 221 for detecting the discharge pressure of the compressor 201 are provided.
  • the outdoor unit 20 is also provided with a detector 213 that detects the current value of the compressor 201 .
  • the outdoor unit 20 is also provided with an outdoor control unit 205 that receives signals from the indoor control unit 102 and controls each unit of the outdoor unit 20 .
  • an indoor heat exchanger 101 that exchanges heat with indoor air is provided, and an indoor fan 103 for blowing air to the indoor heat exchanger 101 is provided near the indoor heat exchanger 101.
  • the indoor unit 10 is further provided with a drain pan 110 that receives moisture generated from the indoor heat exchanger 101 and discharges it to the outside.
  • the drain pan 110 is arranged below the indoor heat exchanger 101, and moisture generated from the indoor heat exchanger 101 is discharged from the drain pan 110 to the outside through a hose.
  • the indoor unit 10 is further provided with an indoor fan blowing capacity control device 104 that controls the blowing capacity of the indoor fan 103, and an indoor temperature detector 105 that detects the room temperature. Further, the indoor space is provided with an air conditioning setting device (remote controller 30, etc.) 108 for storing indoor temperature setting values and setting the desired room temperature. Furthermore, the indoor unit 10 is provided with an indoor control unit 102 that controls each unit of the indoor unit 10 .
  • the indoor control unit 102 of the indoor unit 10 and the outdoor control unit 205 of the outdoor unit 20 are connected via the communication line 50, and can mutually transmit and receive control signals.
  • the communication between the indoor controller 102 and the outdoor controller 205 may be wired communication such as the communication line 50, or wireless.
  • FIG. 3A and 3B are diagrams showing the hardware configuration of the indoor control unit 102 in this embodiment.
  • FIG. 3A shows the indoor control unit 102
  • FIG. 3B shows the outdoor control unit 205. .
  • the indoor controller 102 of this embodiment includes a CPU 301 , a RAM 302 , a ROM 303 , a sensor I/F 304 , an LED I/F 305 and a motor 306 .
  • the CPU 301 is a device that executes a program that controls the operation of the indoor unit 10 and performs predetermined processing.
  • a RAM 302 is a volatile storage device for providing an execution space for programs executed by the CPU 301, and is used for storing and developing programs and data.
  • a ROM 303 is a non-volatile storage device for storing programs executed by the CPU 301, firmware, and the like.
  • the sensor I/F 304 is an interface that receives detection signals output by various sensors such as the room temperature detector 106 .
  • a detection signal received by the sensor I/F 304 is output to, for example, the CPU 301, and the CPU 301 controls the air conditioning operation based on the detection signal.
  • the LED I/F 305 is an interface that outputs control signals such as lighting, extinguishing, and blinking to the LEDs provided as indicators in the indoor unit 10 . By confirming the lighting state of the LED, the user can recognize the operation status of the air conditioner 1 and the presence or absence of an abnormality.
  • the motor 306 drives the indoor fan 103 in FIG.
  • the outdoor controller 205 of this embodiment includes a CPU 301 , a RAM 302 , a ROM 303 , a sensor I/F 304 , an LED I/F 305 , a motor 306 and a coil 307 .
  • the CPU 301, RAM 302, ROM 303, sensor I/F 304, LED I/F 305, and motor 306 are the same as the configuration of the indoor control unit 102 described with reference to FIG.
  • a coil 307 controls the electric valve of the four-way valve 202 in FIG.
  • FIG. 4 is a diagram illustrating a refrigeration cycle in the air conditioner 1 of this embodiment.
  • the refrigeration cycle in the air conditioner 1 is composed of an indoor unit 10 and an outdoor unit 20, which are connected via refrigerant pipes 40. It should be noted that FIG. 4 simplifies the component configuration of the general view of FIG. 2 for the convenience of explaining the refrigeration cycle.
  • the indoor unit 10 includes an indoor heat exchanger 101, an indoor fan 103, and an indoor controller 102.
  • the outdoor unit 20 includes a compressor 201 , a four-way valve 202 , an outdoor heat exchanger 203 , an outdoor expansion valve 204 and an outdoor fan 208 .
  • the arrows in FIG. 4 indicate the direction in which the refrigerant flows during the cooling operation, and in the following description of the refrigeration cycle, the operation during the cooling operation will be described as an example for convenience. During heating operation, the direction of refrigerant flow is reversed from the direction indicated by the arrow in FIG.
  • the indoor unit 10 performs heat exchange between the air in the indoor space and the refrigerant flowing through the indoor heat exchanger 101 using the indoor fan 103, and discharges the air into the room again, thereby performing air conditioning in the indoor space. .
  • the indoor heat exchanger 101 operates as an evaporator and exchanges heat between the low-temperature, low-pressure liquid refrigerant and the air blown from the indoor fan 103 .
  • the indoor unit 10 can lower the temperature of the indoor space by discharging the heat-exchanged air.
  • the refrigerant that has flowed out of the indoor heat exchanger 101 is a low-temperature, low-pressure gas refrigerant, and flows to the outdoor unit 20 via the refrigerant pipe 40 .
  • the indoor control unit 102 controls the operation of the indoor unit 10 that constitutes the air conditioner 1 based on a signal received from, for example, a remote controller or the like. Send.
  • the air conditioner 1 can perform a predetermined operation desired by the user, such as a cooling operation, a dehumidifying operation, a heating operation, and a cleaning operation.
  • the compressor 201 is driven by a motor to compress low-temperature, low-pressure gas refrigerant that has flowed in from the outdoor unit side, and discharges the gas refrigerant as high-temperature, high-pressure gas refrigerant.
  • Gas refrigerant discharged from the compressor 201 passes through the four-way valve 202 and flows into the outdoor heat exchanger 203 .
  • the outdoor heat exchanger 203 exchanges heat between the refrigerant flowing inside and the outside air sent from the outdoor fan 208 .
  • the outdoor heat exchanger 203 operates as a condenser and discharges the refrigerant as a high-temperature liquid through heat exchange. Note that the outdoor heat exchanger 203 operates as an evaporator during heating operation.
  • the refrigerant discharged from the outdoor heat exchanger 203 is expanded in volume by the outdoor expansion valve 204 and is decompressed, thereby lowering its temperature. After that, the refrigerant flows to the indoor unit 10, and the cooling operation is performed to lower the temperature of the indoor space as described above.
  • the four-way valve 202 is a valve that switches the refrigerant flow path according to the operation mode of the air conditioner 1 . That is, the connection is as shown by the solid line in FIG. 4 during the cooling operation, and the connection is as shown by the broken line during the heating operation.
  • one of the indoor heat exchanger 101 and the outdoor heat exchanger 203 can be operated as a condenser, and the other can be operated as an evaporator, and appropriate air conditioning operation can be performed.
  • FIG. 5 is a perspective view showing the indoor heat exchanger 101 included in the indoor unit 10 of this embodiment.
  • FIG. 6 is a side sectional view showing the indoor heat exchanger 101 included in the indoor unit 10 of this embodiment. It should be noted that the indoor heat exchanger 101 shown in FIGS. 5 and 6 is merely for explaining its configuration.
  • the indoor heat exchanger 101 of this embodiment mainly includes pipes 101a and fins 101b.
  • Each pipe 101a is connected by a U-shaped tube member 101c to form a refrigerant flow path as one heat transfer tube.
  • the fins 101b are arranged at a constant pitch in the longitudinal direction of the pipe 101a, and the air flow generated by the indoor fan 103 passes between the fins 101b, thereby exchanging heat with the refrigerant flowing inside the pipe 101a.
  • the side surface of the indoor heat exchanger 101 is as shown in FIG. That is, the indoor heat exchanger 101 of the present embodiment is configured by providing holes through which the pipes 101a pass through a plurality of plate-like fins 101b.
  • the holes provided in the fins 101b are formed by a so-called burring process, and the plate material rises in the direction of the holes, whereby the fins 101b can be arranged at a constant pitch.
  • the surface of the pipe 101a is covered with this raised portion.
  • the heat transfer tube consisting of the pipe 101a and the U-shaped tube member 101c in this embodiment is made of aluminum.
  • aluminum is easily oxidized, and the white rust that forms on its surface easily absorbs odors.
  • the heat transfer tube has a portion covered with the fins 101b and a portion not covered. Since the ends of the pipes 101a and the U-shaped tube member 101c of the heat transfer tubes are not covered with the fins 101b, white rust is likely to occur. Therefore, in the air conditioner 1 of the present embodiment, in order to prevent the odor absorbed by the white rust from being discharged into the room, the white rust of the heat transfer tubes and the odor components adhering to the surface are cleaned.
  • the indoor control unit 102 controls the temperature of the refrigerant passing through the heat transfer tubes to lower the temperature, thereby cleaning the white rust on the heat transfer tube surfaces with moisture generated by condensation on the heat transfer tube surfaces.
  • the indoor control unit 102 controls the temperature of the refrigerant passing through the heat transfer tubes to be 0° C. or lower, and freezes moisture generated on the surfaces of the heat transfer tubes.
  • the indoor control unit 102 performs control to defrost the surfaces of the heat transfer tubes, and the water generated by the defrosting cleans the surfaces of the heat transfer tubes from white rust and adhering odor components.
  • the odor components can be diluted with water by the following method, and the odor can be suppressed more efficiently.
  • the heat transfer tube of the present embodiment is mainly made of aluminum, but in order to more efficiently suppress the odor associated with the occurrence of white rust, it is necessary to apply a coating treatment or an anti-corrosion treatment such as using an aluminum alloy. processing may be performed.
  • An example of a coating treatment includes coating with zinc, but the embodiment is not particularly limited.
  • the heat transfer tubes pipe 101a and U-shaped tube member 101c
  • FIG. 7 is a flow chart showing the cleaning operation in this embodiment.
  • the cleaning operation described in FIG. 7 is for cleaning by freezing the water adhering to the surface of the heat transfer tube, but this is not intended to limit the embodiment, and cleaning is performed using condensed water. good too.
  • the cleaning operation in this embodiment starts from step S1000.
  • the air conditioner 1 is performing air conditioning operations such as cooling operation, dehumidifying operation, and heating operation.
  • step S1001 the process branches depending on whether or not the air conditioning operation has ended by remote control operation or the like. If the air conditioning operation has not ended (NO), the process returns to step S1001 to wait for the end of the air conditioning operation.
  • the cleaning operation is started when the air conditioning operation ends, but the embodiment is not particularly limited and can be started at any timing. Therefore, in other embodiments, the air conditioner 1 may start the cleaning operation by the user's remote control operation, for example. In still another embodiment, the cleaning operation may be started when the air conditioning operation has been performed for a predetermined time or longer. In still another embodiment, the cleaning operation may be started, for example, when a preset day of the week or time comes.
  • step S1002 the refrigerant whose temperature has been lowered is allowed to flow through the indoor heat exchanger. That is, in step S1002, the indoor control unit 102 controls the four-way valve 202 so that the indoor heat exchanger 101 functions as an evaporator in the refrigeration circuit shown in FIG. Configure. In addition, the indoor control unit 102, together with the outdoor control unit 205, controls the operation of various devices such as the rotational speed of the compressor 201, the degree of opening of the outdoor expansion valve 204, and the rotational speeds of the outdoor fan 208 and the indoor fan 103. Control the temperature below freezing.
  • step S1002 the indoor control unit 102 controls the surface temperature of the heat transfer tubes to be equal to or lower than the dew point temperature.
  • step S1003 the process branches depending on whether the surface of the heat transfer tube is frozen. If the surface of the heat transfer tube is not frozen (NO), the process returns to step S1002 to repeat the above process.
  • step S1003 if the surface of the heat transfer tube is frozen (YES), proceed to step S1004.
  • the criterion for branching in step S1003 can be determined arbitrarily. For example, it can be determined that freezing has occurred when a predetermined amount of frost or ice has adhered. Further, in the case of an embodiment in which the cleaning is performed using condensed moisture, determination may be made based on whether or not a predetermined amount of moisture has adhered.
  • step S1004 the frost or ice on the surface of the heat transfer tubes of the indoor heat exchanger 101 is thawed to produce moisture, which cleans the surface of the heat transfer tubes of white rust and adhering odor components.
  • the moisture generated in step S1004 is discharged to the outside through the drain pan of the indoor unit 10 .
  • the thawing in step S1004 is, for example, a method of stopping the operation of the refrigerating cycle, a method of stopping the refrigerating cycle and then rotating the indoor fan 103 to blow air, or a method of operating the indoor heat exchanger 101 to act as a condenser. etc., but the embodiments are not particularly limited.
  • step S1006 the air conditioner 1 ends the cleaning operation.
  • the air conditioner 1 of the present embodiment cleans the indoor heat exchanger 101 of the indoor unit 10 to remove white rust and odorous components. can be suppressed from being discharged into the indoor space.
  • frost or ice can be adhered to the heat transfer tube, especially the portion not covered with the fins 101b (the end of the pipe 101a and the U-shaped tube member) to wash it, and the odor component can be removed. Removes white rust and dilutes odor components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】 においの発生を抑制する空気調和機および方法を提供すること。 【解決手段】 伝熱管およびフィン101bを有する室内熱交換器11と、運転動作を制御する制御部102とを備える空気調和機1であって、伝熱管はアルミニウムで構成され、制御部102は、伝熱管の温度を0℃以下の温度にして前記伝熱管または前記フィンに霜または氷を付着させる洗浄運転を行う。

Description

空気調和機および方法
 本発明は、においの発生を抑制する空気調和機および方法に関する。
 空気調和機における室内機は、吸入した室内の空気を熱交換器にて熱交換し、室内に再度吐出することで空気調和を行う。
 ここで、熱交換器に汚れなどが付着していると、臭気を含んだ空気が吐出され、室内にいる人に不快感を与えることとなる。そのため、従来の空気調和機においては、室内機の熱交換器やフィルターなどを定期的に洗浄することが求められていた。
 この点につき、特開2018-189270号公報(特許文献1)では、定期的(例えば、運転終了後)に熱交換器のフィンの表面に霜または氷を付着させ、霜または氷を解凍した水分によって汚れを洗浄する技術が開示されている。特許文献1によれば、熱交換器のメンテナンス性を向上でき、ひいてはにおいによる不快感を低減することができる。
 ところで、熱交換器は、主にフィンおよび伝熱管から構成され、近年ではアルミニウムを原材料とするものも開発されるようになっている。しかしながらアルミニウムは酸化しやすく、表面に白サビが生じやすい。白サビはにおい成分を吸着しやすいため、上記のように室内への臭気の抑制の観点から除去することが好ましい。
 しかしながら、特許文献1に記載の技術は、フィンを凍結させるものであり、熱交換器の伝熱管を凍結するものではない。そのため、アルミニウムの伝熱管の表面に生じた白サビや、表面に付着したにおい成分を除去し、室内空間に臭気を含む空気が吐出されるのを抑制する技術が求められていた。
特開2018-189270号公報
 本発明は、上記従来技術における課題に鑑みてなされたものであり、においの発生を抑制する空気調和機および方法を提供することを目的とする。
 すなわち、本発明によれば、
 伝熱管およびフィンを有する室内熱交換器と、運転動作を制御する制御部とを備える空気調和機であって、
 前記伝熱管はアルミニウムで構成され、
 前記制御部は、
 前記伝熱管の温度を0℃以下の温度にして前記伝熱管または前記フィンに霜または氷を付着させる洗浄運転を行う
 空気調和機が提供される。
 本発明により、においの発生を抑制する空気調和機および方法が提供できる。
本実施形態の空気調和機の概略図。 本実施形態の空気調和機の構成を説明する全体図。 本実施形態における室内制御部および室外制御部のハードウェア構成を示す図。 本実施形態の空気調和機における冷凍サイクルを説明する図。 本実施形態の室内機に含まれる室内熱交換器を示す斜視図。 本実施形態の室内機に含まれる室内熱交換器を示す側面断面図。 本実施形態における洗浄運転を示すフローチャート。
 以下、本発明を、実施形態をもって説明するが、本発明は後述する実施形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜その説明を省略するものとする。また、以下の実施形態では、空気調和機1はルームエアコン(RAC)を例示して説明しているが、空気調和機1の形式は特に限定されることは無く、パッケージエアコン(PAC)、ビル用マルチエアコン(VRF)などであってもよい。
 空気調和機1は、室内機(IDU)10と、室外機20と、室内機10と室外機20とを連結する冷媒配管40とを含む。室内機10は、空気調和が行われる室内に配置され、ユーザが操作するリモコン30といった遠隔操作端末により、ユーザが所望する空気調和を提供する。
 室内機10は、筐体11内にフィルター13、室内ファン14および室内熱交換器101(図1において図示せず。図2など参照)を収容する。室内機10は、さらに風向板12を備え、空気調和した空気を室内に吹き出す際の風向を調節することができる。
 さらに、室内機10は、室内熱交換器101の下部に、当該熱交換器から生じた水分を受けるドレンパン(図示せず)を備える。ドレンパンはホースを介して空調空間外部(例えば屋外など)に水分を排出する。
 また空気調和機1は、室外機(ODU)20を備えている。室外機20は、筐体21内に、圧縮機26と、室外熱交換器(HEX)25と、室外ファン22と、ファンモータ23とを収容する。圧縮機26は、室内空気の空気調和後に室内機10から戻された冷媒を圧縮し、熱交換器25に送付して冷媒の熱力学的状態を、提供すべき空気調和を可能とするように調整する。室外ファン22は、ファンモータ23により駆動され、室外機20の背面から外気を吸引して熱交換器25に吹き付け、熱交換器25内を通過する冷媒との間の熱交換を可能とする。
 さらに室外機20は、電気箱27を備える。電気箱27は、室外機20が備える各種電気機器の制御を行う電子機器が収容されていて、適切なファームウェアによる室外機20を制御する。室外機20は、室外ファン22が配置される前面側がグリル構造体24により覆われていて、ユーザや作業者の手指が室外機20内に入らないように保護している。またグリル構造体24は、ユーザ、作業者の手指が接触した場合、外部物体の衝突、または搬送時に室外機20の内部要素を保護するために必要な強度を備えている。
 図2は、本実施形態の空気調和機1の構成を説明する全体図である。空気調和機1は、室内機10および室外機20が冷媒配管40で接続されて閉回路を構成している。この閉回路の中には冷媒が封入されており、冷媒が循環することで後述する冷凍サイクルが実現される。室内機10は、室内空間に設けられているものとする。
 まず、室外機20の構成について説明する。室外機20には、インバータにより回転周波数を可変できる圧縮機201、四方弁(可逆弁)202、室外空気と熱交換を行う室外熱交換器203、室外熱交換器203の冷媒流量を調整するために電子膨張弁などで構成された室外膨張弁204、アキュムレータ207などが配管接続されて設けられている。室外熱交換器203の近傍には、室外熱交換器203に送風するための室外ファン208が設けられている。また、室外機20には、冷媒の一部を分岐させて過冷却熱交換器を通過させた後、圧縮機201の吸込側に戻すためのバイパス回路が設けられていてもよい。
 室外機20には、さらに、圧縮機201の周波数を制御するインバータ圧縮機周波数制御装置210、室外ファン208の送風能力を制御する室外ファン送風能力制御装置211、室外膨張弁204の開度を制御する室外膨張弁開度制御装置212、四方弁202を制御する四方弁制御装置214が設けられている。
 室外機20には、また冷媒温度検知器215、216、室外熱交換器液温度検知器206、室外気温を検知する室外気温検知器209、圧縮機201への吸入圧力を検知する圧縮機吸入圧力検知器220、圧縮機201の吐出圧力を検知する圧縮機吐出圧力検知器221が設けられている。室外機20には、また圧縮機201の電流値を検出する検出部213が設けられている。室外機20にはまた、室内制御部102からの信号を受けて、室外機20の各部を制御する室外制御部205が設けられている。
 次に、室内機10の構成について説明する。室内機10においては、室内空気と熱交換を行う室内熱交換器101が設けられ、室内熱交換器101の近傍には、室内熱交換器101に送風するための室内ファン103が設けられている。
 室内機10には、さらに、室内熱交換器101から生じた水分を受け、外部に排出するドレンパン110が設けられている。ドレンパン110は室内熱交換器101の下部に配置されており、室内熱交換器101から生じた水分はドレンパン110からホースを通って外部に排出される。
 室内機10には、さらに、室内ファン103の送風能力を制御する室内ファン送風能力制御装置104、室内温度を検知する室内温度検知器105が設けられている。さらに、室内空間には、室内の温度設定値を記憶し、好みの室温に設定するための空調設定器(リモコン30など)108が設けられている。さらに、室内機10には、室内機10の各部を制御する室内制御部102が設けられている。
 また、室内機10の室内制御部102と、室外機20の室外制御部205は、通信線50を介して接続され、相互に制御信号を送受信することができる。なお、室内制御部102と室外制御部205との通信は、通信線50のような有線通信であってもよいし、無線によって行われてもよい。
 図3は、本実施形態における室内制御部102のハードウェア構成を示す図であり、図3(a)は室内制御部102を、図3(b)は室外制御部205を、それぞれ示している。
 まず、図3(a)について説明する。本実施形態の室内制御部102は、CPU301、RAM302、ROM303、センサI/F304、LED I/F305、モータ306を含んで構成される。
 CPU301は、室内機10の動作を制御するプログラムを実行し、所定の処理を行う装置である。RAM302は、CPU301が実行するプログラムの実行空間を提供するための揮発性の記憶装置であり、プログラムやデータの格納用、展開用として使用される。ROM303は、CPU301が実行するプログラムやファームウェアなどを記憶するための不揮発性の記憶装置である。
 センサI/F304は、室内温度検知器106などの各種センサが出力する検出信号を受け付けるインターフェースである。センサI/F304が受け付けた検出信号は、例えばCPU301に出力され、CPU301は検出信号に基づいて空気調和運転の制御を行う。
 LED I/F305は、室内機10にインジケータとして設けられているLEDに対して、点灯、消灯、点滅などの制御信号を出力するインターフェースである。ユーザはLEDの点灯状態を確認することで、空気調和機1の運転状況や異常の有無などを認識することができる。
 モータ306は、図2における室内ファン103を駆動する。
 次に図3(b)について説明する。本実施形態の室外制御部205は、CPU301、RAM302、ROM303、センサI/F304、LED I/F305、モータ306、コイル307を含んで構成される。なお、CPU301、RAM302、ROM303、センサI/F304、LED I/F305、モータ306については、図3(a)で説明した室内制御部102の構成と同様であるため、説明は省略する。
 コイル307は、図2における四方弁202の電動弁を制御する。
 ここまで、本実施形態に係る空気調和機1の全体的な構成について説明した。次に、冷凍サイクルの構成について説明する。図4は、本実施形態の空気調和機1における冷凍サイクルを説明する図である。
 図4に示すように、空気調和機1における冷凍サイクルは、室内機10および室外機20から構成され、両者は冷媒配管40を介して接続されている。なお、図4は、冷凍サイクルを説明する便宜のため、図2の全体図の部品構成を簡略化したものである点に留意されたい。
 室内機10は室内熱交換器101と、室内ファン103と、室内制御部102を含んで構成される。また、室外機20は、圧縮機201と、四方弁202と、室外熱交換器203と、室外膨張弁204と、室外ファン208とを含んで構成される。ここで、図4中の矢印は、冷房運転時の冷媒の流れる方向を示しており、以下の冷凍サイクルの説明においては、便宜的に冷房運転時における動作を例に説明する。なお、暖房運転時には、冷媒の流れる方向は図4の矢印の方向から反転する。
 室内機10は、室内ファン103によって、室内空間の空気と、室内熱交換器101を流れる冷媒との間で熱交換をし、空気を再度室内に吐出することで、室内空間の空気調和を行う。冷房運転時における室内熱交換器101は、蒸発器として動作し、低温低圧の液冷媒と、室内ファン103から送風される空気とを熱交換する。室内機10は、熱交換された空気を吐出することで、室内空間の温度を下げることができる。なお、室内熱交換器101から流出した冷媒は、低温低圧のガス冷媒であり、冷媒配管40を介して、室外機20に流れる。
 室内制御部102は、例えばリモコンなどから受けた信号に基づいて、空気調和機1を構成する室内機10の動作を制御し、また、室外制御部205に室外機20の動作を制御する信号を送信する。これによって、空気調和機1は、冷房運転、除湿運転、暖房運転、洗浄運転などのユーザが所望する所定の運転動作を実行することができる。
 次に室外機20について説明する。圧縮機201は、モータの駆動によって、室外機側から流入した低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する。圧縮機201から吐出されたガス冷媒は、四方弁202を通り、室外熱交換器203に流入する。室外熱交換器203は、内部を通流する冷媒と、室外ファン208から送り込まれる外気との間で熱交換を行う。冷房運転時における室外熱交換器203は、凝縮器として動作し、熱交換によって冷媒を高温の液体として吐出する。なお、室外熱交換器203は、暖房運転時には蒸発器として動作する。
 室外熱交換器203から吐出された冷媒は、室外膨張弁204によって体積が膨張され、減圧されることによって温度が低下する。その後、冷媒は室内機10に流れ、上述したように室内空間の温度を下げる冷房運転を行う。
 四方弁202は、空気調和機1の運転モードに応じて、冷媒の流路を切り替える弁である。すなわち、冷房運転時には図4における実線のような接続となり、暖房運転時には破線のような接続とする。これによって、室内熱交換器101および室外熱交換器203のいずれか一方を凝縮器とし、他方を蒸発器として動作させることができ、適切な空気調和運転を行うことができる。
 ここまで、空気調和機1の構成について説明した。次に室内熱交換器101について図5および図6を以て説明する。図5は、本実施形態の室内機10に含まれる室内熱交換器101を示す斜視図である。図6は、本実施形態の室内機10に含まれる室内熱交換器101を示す側面断面図である。なお、図5および図6に示す室内熱交換器101は、単にその構成を説明するためのものである点に留意されたい。
 本実施形態の室内熱交換器101は、図5(A)、(B)に示すように、主にパイプ101a、フィン101bを有して構成される。各パイプ101aは、U字管部材101cで接続されて、1つの伝熱管として冷媒流路を構成している。フィン101bは、パイプ101aの長手方向に一定のピッチで並び、室内ファン103によって生じた空気の流れがフィン101b間を通過することで、パイプ101a内を流れる冷媒と熱交換することができる。
 ここで、室内熱交換器101の側面は、図6に示すようになっている。すなわち、本実施形態の室内熱交換器101は、複数の板状のフィン101bにパイプ101aを通すために穴が設けられ、パイプ101aが通されることで構成される。フィン101bに設けられる穴は、いわゆるバーリング加工によって開けられ、穴の開いた方向に板材が立ち上がり、これによって、フィン101bを一定のピッチで配置することができる。また、図6に示すように、パイプ101aの表面はこの立ち上がり部分によって覆われている。
 本実施形態におけるパイプ101aおよびU字管部材101cからなる伝熱管は、アルミニウムで構成される。一方で、アルミニウムは酸化しやすく、また表面に生じる白サビはにおいを吸着しやすいという性質がある。ここで、図6に示すように、伝熱管は、フィン101bによって覆われている部分と、覆われていない部分とがある。伝熱管のうちパイプ101aの端部やU字管部材101cなどは、フィン101bに覆われていないことから、白サビが発生しやすい。そこで本実施形態の空気調和機1は、白サビに吸着したにおいが室内に吐出されるのを防止するために、伝熱管の白サビや、表面に付着したにおい成分を洗浄する処理を行う。
 白サビの洗浄は以下のようにして行う。すなわち、室内制御部102は、伝熱管内を通過する冷媒の温度を下げる制御を行うことで、伝熱管表面を結露させて生じた水分によって、伝熱管表面の白サビを洗浄する。また、白サビを洗浄する他の方法として、室内制御部102は、伝熱管内を通過する冷媒の温度を0℃以下とする制御を行い、伝熱管表面に生じた水分を凍結させる。その後、室内制御部102は伝熱管の表面を解凍する制御を行い、解凍によって生じた水分によって、伝熱管表面の白サビや付着したにおい成分を洗浄する。また、におい成分は水溶性であることが多いことから、以下の方法によって水分でにおい成分を薄めることができ、においの抑制をより効率的に行うことができる。
 本実施形態の空気調和機1は、上述した方法によって、伝熱管に特段の耐腐食処理を行わずとも、白サビを洗浄できるため、においを含む空気が室内に吐出されるのを防止する。なお、上述の通り本実施形態の伝熱管は主にアルミニウムで構成されるが、白サビの発生に伴いにおいをより効率的に抑制するために、コーティング処理や、アルミニウム合金を用いるなどの耐腐食処理を行ってもよい。コーティング処理の一例としては、亜鉛によるコーティングが挙げられるが、特に実施形態を限定するものではない。また、コスト低減の観点から、伝熱管(パイプ101aおよびU字管部材101c)には耐腐食処理を行わず、フィン101bのみに耐腐食処理を行うこととしてもよい。
 次に、上述した洗浄運転における制御について図7を以て説明する。図7は、本実施形態における洗浄運転を示すフローチャートである。なお、図7において説明する洗浄運転は、伝熱管の表面に付着した水分を凍結して洗浄するものであるが、実施形態を限定するものではなく、結露させた水分によって洗浄するものであってもよい。
 本実施形態における洗浄運転は、ステップS1000から開始する。なお、ステップS1000の時点で、空気調和機1は、冷房運転、除湿運転、暖房運転などの空気調和運転を行っている。ステップS1001では、リモコン操作などによって、空気調和運転が終了したか否かによって処理が分岐する。空気調和運転が終了していない場合(NO)、ステップS1001に戻り、空気調和運転の終了を待機する。
 空気調和運転が終了した場合(YES)、ステップS1002に進み、洗浄運転を開始する。なお、説明する実施形態では、空気調和運転の終了を契機に洗浄運転を開始しているが、特に実施形態を限定するものではなく、任意のタイミングで開始することができる。したがって、他の実施形態においては、空気調和機1は、例えばユーザのリモコン操作によって洗浄運転を開始することとしてもよい。また、さらに別の実施形態では、所定時間以上の空気調和運転が行われた場合に、洗浄運転を開始することとしてもよい。さらに別の実施形態では、例えば、予め設定された曜日や時刻になった場合に、洗浄運転を開始することとしてもよい。
 洗浄運転が開始されると、ステップS1002において、温度を低下させた冷媒を室内熱交換器に流す。すなわち、ステップS1002では、室内制御部102は、図4に示した冷凍回路において、室内熱交換器101が蒸発器となるように四方弁202を制御して、冷房運転時と同様の冷凍サイクルを構成する。また、室内制御部102は、室外制御部205とともに、圧縮機201の回転速度、室外膨張弁204の開度、室外ファン208および室内ファン103の回転速度など各種装置の動作を、伝熱管の表面温度が氷点下になるように制御する。
 なお、結露水によって洗浄する実施形態の場合には、ステップS1002において、室内制御部102は、伝熱管の表面温度が露点温度以下になるように制御する。
 その後、ステップS1003では、伝熱管表面が凍結したか否かによって処理を分岐する。伝熱管表面が凍結していない場合(NO)、ステップS1002に戻り、上記の処理を繰り返す。
 一方で、伝熱管表面が凍結した場合(YES)、ステップS1004に進む。なお、ステップS1003における分岐の判定基準は、任意に定めることができ、例えば所定量の霜や氷が付着したことでもって凍結したと判定することができる。また、結露した水分によって洗浄する実施形態の場合には、所定量の水分が付着したか否かによって判定することとしてもよい。
 ステップS1004では、室内熱交換器101の伝熱管表面の霜または氷を解凍して水分を生じさせ、これによって伝熱管の表面に生じた白サビや、付着したにおい成分を洗浄する。ステップS1004で生じた水分は、室内機10のドレンパンを介して外部に排出される。ステップS1004における解凍は、例えば、冷凍サイクルの動作を停止する方法、冷凍サイクルを停止したうえで室内ファン103を回転させて送風する方法、室内熱交換器101が凝縮器となるように動作させる方法などが挙げられるが、特に実施形態を限定するものではない。
 その後、ステップS1006において、空気調和機1は、洗浄運転を終了する。図7に示した処理によって、本実施形態の空気調和機1は、室内機10の室内熱交換器101を洗浄して白サビやにおい成分を除去し、その後の空気調和運転において臭気を含む空気が室内空間に吐出されるのを抑制することができる。図7に示した方法によって、伝熱管の、特にフィン101bで覆われていない部分(パイプ101aの端部やU字管部材)に霜または氷を付着させて洗浄することができ、におい成分を含む白サビの除去、におい成分の希釈化ができる。
 以上、説明した本発明の実施形態によれば、においの発生を抑制する空気調和機および方法を提供することができる。
 以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
1…空気調和機、10…室内機、11…筐体、12…風向板、13…フィルター、14…室内ファン、20…室外機、21…筐体、22…室外ファン、23…ファンモータ、24…グリル構造体、25…熱交換器、26…圧縮機、27…電気箱、30…リモコン、40…冷媒配管、101…室内熱交換器、101a…パイプ、101b…フィン、101c…U字管部材、102…室内制御部、103…室内ファン、104…室内ファン送風能力制御装置、105…室内温度検知器、110…ドレンパン、201…圧縮機、202…四方弁、203…室外熱交換器、204…室外膨張弁、205…室外制御部、206…室外熱交換器液温度検知器、207…アキュムレータ、208…室外ファン、209…室外気温検知器、210…インバータ圧縮機周波数制御装置、211…室外ファン送風能力制御装置、212…室外膨張弁開度制御装置、213…検出部、214…四方弁制御装置、215,216…冷媒温度検知器、220…圧縮機吸入圧力検知器、221…圧縮機吐出圧力検知器、301…CPU、302…RAM、303…ROM、304…センサI/F、305…LED I/F、306…モータ、307…コイル
 

Claims (4)

  1.  伝熱管およびフィンを有する室内熱交換器と、運転動作を制御する制御部とを備える空気調和機であって、
     前記伝熱管はアルミニウムで構成され、
     前記制御部は、
     前記伝熱管の温度を0℃以下の温度にして前記伝熱管または前記フィンに霜または氷を付着させる洗浄運転を行う
     空気調和機。
  2.  前記制御部は、前記洗浄運転において、前記伝熱管のうち前記フィンによって覆われていない部分に霜または氷を付着させることを特徴とする、請求項1に記載の空気調和機。
  3.  前記伝熱管が耐腐食処理されていることを特徴とする、請求項1または2に記載の空気調和機。
  4.  前記伝熱管は耐腐食処理されず、前記フィンのみ耐腐食処理されていることを特徴とする、請求項1または2に記載の空気調和機。
     
     
     
     
     
     
     
     
                     
PCT/JP2021/033923 2021-09-15 2021-09-15 空気調和機および方法 WO2023042297A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/033923 WO2023042297A1 (ja) 2021-09-15 2021-09-15 空気調和機および方法
JP2023547998A JPWO2023042297A1 (ja) 2021-09-15 2021-09-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033923 WO2023042297A1 (ja) 2021-09-15 2021-09-15 空気調和機および方法

Publications (1)

Publication Number Publication Date
WO2023042297A1 true WO2023042297A1 (ja) 2023-03-23

Family

ID=85601989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033923 WO2023042297A1 (ja) 2021-09-15 2021-09-15 空気調和機および方法

Country Status (2)

Country Link
JP (1) JPWO2023042297A1 (ja)
WO (1) WO2023042297A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100784A (ja) * 2016-12-19 2018-06-28 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018189270A (ja) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911658B1 (ja) * 1969-12-11 1974-03-19
DE102008009371A1 (de) * 2008-02-14 2009-08-20 Henkel Ag & Co. Kgaa Verfahren zur Herstellung eines Wärmetauschers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100784A (ja) * 2016-12-19 2018-06-28 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018189270A (ja) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
JPWO2023042297A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
JP6353998B1 (ja) 空気調和機
JP6349013B1 (ja) 空気調和機
JP6559923B1 (ja) 空気調和機
JP6486586B1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
JP6641066B1 (ja) 空気調和機
CN112254219A (zh) 一种空调室内机自清洁控制方法
EP3795913A1 (en) Air conditioner
WO2022162942A1 (ja) 空気調和機
JP2018200167A (ja) 空気調和機
CN113324316A (zh) 空气调节系统
WO2010137311A1 (ja) 暖房専用空気調和装置
WO2023042297A1 (ja) 空気調和機および方法
JP6552773B1 (ja) 空気調和機
JP7266999B2 (ja) 空気調和機およびその施工方法
JP2001004254A (ja) 冷凍装置
JP2022041710A (ja) 空気調和装置
JP6435443B1 (ja) 空気調和機
WO2020070890A1 (ja) 空気調和機
JP4178906B2 (ja) 空気調和機および空気調和機の制御方法
WO2022049873A1 (ja) 空気調和装置
JP7454489B2 (ja) 空気調和機
JPH05272782A (ja) 空気調和機
CN115968434B (zh) 室内空调系统
WO2022163698A1 (ja) 冷凍サイクル装置
JP2022061897A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547998

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957480

Country of ref document: EP

Kind code of ref document: A1