WO2020070890A1 - 空気調和機 - Google Patents

空気調和機

Info

Publication number
WO2020070890A1
WO2020070890A1 PCT/JP2018/037442 JP2018037442W WO2020070890A1 WO 2020070890 A1 WO2020070890 A1 WO 2020070890A1 JP 2018037442 W JP2018037442 W JP 2018037442W WO 2020070890 A1 WO2020070890 A1 WO 2020070890A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
drain pump
drain
time
heat exchanger
Prior art date
Application number
PCT/JP2018/037442
Other languages
English (en)
French (fr)
Inventor
伸至 武内
悟己 時田
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201880005908.8A priority Critical patent/CN111279133B/zh
Priority to JP2019521841A priority patent/JP6698221B1/ja
Priority to ES201990070A priority patent/ES2863076R1/es
Priority to MYPI2019005474A priority patent/MY196763A/en
Priority to PCT/JP2018/037442 priority patent/WO2020070890A1/ja
Priority to FR1910357A priority patent/FR3086999B1/fr
Priority to TW108135893A priority patent/TWI705222B/zh
Publication of WO2020070890A1 publication Critical patent/WO2020070890A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/14Details or features not otherwise provided for mounted on the ceiling

Definitions

  • the present invention relates to an air conditioner.
  • a drain pan is provided inside the indoor unit of the air conditioner to temporarily store the water that has dropped and adhered to the indoor heat exchanger.
  • the water collected in the drain pan is referred to as “drain water”. Drain water is drained to the outside through a pipe, but if the drain water is not drained properly, it remains in the drain pan. As a result, an unpleasant odor or mold may be generated. Therefore, some indoor units of the air conditioner include a drain pump for forcibly draining drain water to the outside (for example, see Patent Document 1).
  • Freeze-washing operation means that ice (including frost) is adhered to the surface of the indoor heat exchanger, then the ice is thawed (melted), and the generated heat is used to drop indoor water to perform indoor heat exchange. This is an operation to remove fine dust adhering to the vessel.
  • the present invention has been made to solve the above-described problem, and has as its main object to provide an air conditioner that reduces the remaining amount of drain water when performing a freeze washing operation.
  • the present invention relates to an air conditioner, which includes a refrigeration cycle including a compressor for compressing a refrigerant and an indoor heat exchanger, and water dropped on the indoor heat exchanger.
  • a drain pan for temporarily storing water as drain water, a drain pump for draining the drain water collected in the drain pan to the outside, a control device for controlling operations of the refrigeration cycle and the drain pump, and the control device Performs a freezing operation in which the indoor heat exchanger functions as an evaporator and keeps the surface temperature of the indoor heat exchanger below freezing, and "the drive time of the drain pump after the end of the normal cooling operation ⁇ the freezing operation.
  • the drain pump is driven so as to satisfy the relationship of “drain pump drive time”. Other means will be described later.
  • the present embodiment an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail with reference to the drawings. It should be noted that the drawings are only schematically shown so that the present invention can be sufficiently understood. Therefore, the present invention is not limited only to the illustrated example. In addition, in each of the drawings, common constituent elements and similar constituent elements are denoted by the same reference numerals, and redundant description thereof will be omitted.
  • FIG. 1 is a system diagram of an air conditioner 100 according to the present embodiment.
  • the air conditioner 100 includes an outdoor unit 30, an indoor unit 60, and a control device 20 for controlling these.
  • the indoor unit 60 sets an operation mode (cooling, heating, dehumidification, ventilation, etc.), an indoor air volume (rapid wind, strong wind, weak wind, etc.), a target indoor temperature, and the like according to a signal input from the remote controller 90.
  • the control device 20 includes hardware as a general computer, such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a RAM (Random Access Memory), and a ROM (Read Only Memory). , A control program executed by the CPU, various data, and the like.
  • the control device 20 controls each unit of the outdoor unit 30 and the indoor unit 60 based on the control program. The details will be described later.
  • the outdoor unit 30 includes a compressor 32, a four-way valve 34, and an outdoor heat exchanger 36.
  • the compressor 32 includes a motor 32a and has a function of compressing the refrigerant flowing through the four-way valve 34.
  • a suction side temperature sensor 41 for detecting the temperature of the refrigerant drawn into the compressor 32 and a suction side pressure sensor 45 for detecting the pressure of the refrigerant drawn into the compressor 32 are provided in the pipe a1.
  • a discharge-side temperature sensor 42 for detecting the temperature of the refrigerant discharged from the compressor 32 and a discharge-side pressure sensor 46 for detecting the pressure of the refrigerant discharged from the compressor 32 are provided in the pipe a2.
  • the compressor 32 is provided with a compressor temperature sensor 43 for detecting the temperature of the compressor 32.
  • the four-way valve 34 has a function of switching the direction of the refrigerant supplied to the indoor unit 60 according to whether the indoor heat exchanger 64 of the indoor unit 60 functions as an evaporator or a condenser.
  • the indoor heat exchanger 64 functions as an evaporator, for example, during a cooling operation
  • the four-way valve 34 is switched to connect the pipes a2 and a3 and connect the pipes a1 and a6 along the path indicated by the solid line.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 32 is cooled by the outdoor heat exchanger 36.
  • the cooled refrigerant is supplied to the indoor unit 60 via the pipe a5.
  • the four-way valve 34 connects the pipes a2 and a6 and connects the pipes a1 and a3 along the path indicated by the broken line. Can be switched.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 32 is supplied to the indoor unit 60 via the pipes a2 and a6.
  • the outdoor fan 48 includes a motor 48 a and sends air to the outdoor heat exchanger 36.
  • the outdoor heat exchanger 36 is a heat exchanger that exchanges heat between the air sent from the outdoor fan 48 and the refrigerant, and is connected to the compressor 32 via the four-way valve 34.
  • the outdoor unit 30 includes an outdoor heat exchanger inlet temperature sensor 51 that detects the temperature of air flowing into the outdoor heat exchanger 36, and an outdoor heat exchanger that detects the temperature of the gas-side refrigerant of the outdoor heat exchanger 36.
  • a refrigerant gas temperature sensor 53 and an outdoor heat exchanger refrigerant liquid temperature sensor 55 that detects the temperature of the liquid-side refrigerant of the outdoor heat exchanger 36 are mounted.
  • the power supply unit 54 receives a three-phase AC voltage from the commercial power supply 22.
  • the power measurement unit 58 is connected to the power supply unit 54, and the power consumption of the air conditioner 100 is measured by this.
  • the DC voltage output from the power supply unit 54 is supplied to the motor control unit 56.
  • the motor control unit 56 includes an inverter (not shown), and supplies an AC voltage to the motor 32a of the compressor 32 and the motor 48a of the outdoor fan 48. Further, the motor control unit 56 controls the motors 32a and 48a without a sensor, and thereby detects the rotation speed of the motors 32a and 48a.
  • the indoor unit 60 includes an indoor expansion valve 62, an indoor heat exchanger 64, an indoor fan 66, a motor control unit 67, and a remote control communication unit 68 for performing bidirectional communication with the remote control 90.
  • the indoor fan 66 includes a motor 66a and sends air to the indoor heat exchanger 64.
  • the motor control section 67 includes an inverter (not shown), and supplies an AC voltage to the motor 66a. Further, the motor control section 67 controls the motor 66a without a sensor, and thereby detects the rotation speed of the motor 66a.
  • the indoor expansion valve 62 is inserted between the pipes a5 and a7, and has a function of adjusting the flow rate of the refrigerant flowing through the pipes a5 and a7 and depressurizing the refrigerant on the secondary side of the indoor expansion valve 62. doing.
  • the indoor heat exchanger 64 is a heat exchanger that exchanges heat between the indoor air sent from the indoor fan 66 and the refrigerant, and is connected to the indoor expansion valve 62 via a pipe a7.
  • the indoor unit 60 includes an indoor heat exchanger inlet air temperature sensor 70, an indoor heat exchanger discharge air temperature sensor 72, an indoor heat exchanger inlet humidity sensor 74, an indoor heat exchanger refrigerant liquid temperature sensor 25, An indoor heat exchanger refrigerant gas temperature sensor 26.
  • the indoor heat exchanger inlet air temperature sensor 70 detects the temperature of the air sucked by the indoor fan 66.
  • the indoor heat exchanger exhaust air temperature sensor 72 detects the temperature of the air exhausted from the indoor heat exchanger 64.
  • the indoor heat exchanger inlet humidity sensor 74 detects the humidity of the air sucked by the indoor fan 66. Further, the indoor heat exchanger refrigerant liquid temperature sensor 25 and the indoor heat exchanger refrigerant gas temperature sensor 26 are provided at a connection point between the indoor heat exchanger 64 and the pipe a6, and measure the temperature of the refrigerant flowing through the connection point. To detect.
  • the compressor 32, the four-way valve 34, the outdoor heat exchanger 36, the indoor expansion valve 62, the indoor heat exchanger 64, and the pipes a1 to a7 form a refrigeration cycle RC.
  • FIG. 2 is a side sectional view of the indoor unit 60.
  • the indoor unit 60 is a ceiling cassette type device.
  • the ceiling cassette type means a configuration buried in the ceiling 130 and exposing the lower surface to the air conditioning room.
  • the indoor unit 60 may be a device such as a wall-mounted type, a ceiling-embedded type, or a floor-standing type.
  • the indoor heat exchanger 64 is formed in a plate shape bent in a substantially V shape, and is installed at the center of the indoor unit 60.
  • the indoor fan 66 has fins arranged in a substantially cylindrical shape, and is disposed in front of the indoor heat exchanger 64.
  • a drain pan 140 that temporarily collects water that has condensed on these surfaces and that has fallen is disposed below the indoor heat exchanger 64 and the indoor fan 66.
  • the indoor unit 60 is provided with a drain pump PO for forcibly draining drain water accumulated in the drain pan 140 to the outside.
  • a description will be given assuming that the capacity of the drain pan 140 is equal to or slightly smaller than the assumed amount of drain water generated in a short time in the freeze washing operation described later.
  • An inclined air filter 142 is provided behind the indoor heat exchanger 64.
  • the lower surface of the indoor unit 60 is covered with a decorative plate 143.
  • an air inlet 144 formed by cutting a slit in the decorative plate 143 is formed below the air filter 142.
  • the indoor heat exchanger inlet air temperature sensor 70 is provided between the indoor heat exchanger 64 and the air filter 142.
  • An air blowing passage 146 is formed in front of the indoor fan 66.
  • the left and right wind direction plates 148 are provided in the middle of the air blowing passage 146, and control the direction of the airflow in the left and right direction (perpendicular to the paper surface).
  • the vertical wind direction plate 150 is provided at the outlet of the air blowing passage 146, rotates around the fulcrum 150a, and controls the direction of the air flow in the vertical direction.
  • the left and right wind direction plates 148 and the upper and lower wind direction plates 150 are rotationally driven by the control device 20 (see FIG. 1).
  • the vertical wind direction plate 150 shown by a solid line in FIG. 2 indicates a position when the air conditioner is in a fully opened state.
  • the vertical wind direction plate 150 is rotated to the fully closed position 152 indicated by a dashed line. Further, when performing a cleaning operation described later, the vertical wind direction plate 150 is rotated to a position 156 indicated by a dashed line, and thereafter, is rotated to a cleaning operation position 154. And, as the opening degree of the vertical wind direction plate 150 increases, the pipe resistance of the air blowing passage 146 decreases. However, even when the vertical wind direction plate 150 is closed at the fully closed position 152, a gap FS is formed between the vertical wind direction plate 150 and the decorative plate 143, and there is a slight gap through the gap FS. The air flows.
  • a cleaning lamp (not shown) is provided on the decorative board 143 to indicate the need.
  • a suction panel (not shown) for selectively sucking air in the air-conditioning room is provided between the air suction port 144 and the air filter 142.
  • the air conditioner 100 can perform a freeze washing operation.
  • the “freezing and washing operation” refers to a process in which ice (including frost) is attached to the surface of the indoor heat exchanger 64 and then thawed (thawed). This is an operation operation in which fine dust attached to the exchanger 64 is washed off.
  • a larger amount of drain water is generated in a shorter time than in the normal cooling operation.
  • FIG. 3 is a flowchart illustrating the operation of the air conditioner 100 during the freeze cleaning operation.
  • FIG. 4 is a time chart showing the operation of the air conditioner 100 during the freeze cleaning operation.
  • a freezing operation request is generated when the user operates the remote controller 90 to instruct execution of the freezing / cleaning operation, or when it is time to automatically perform the freezing / cleaning operation.
  • the control is executed by the control device 20.
  • step S105 determines whether the freezing operation is possible.
  • the freeze cleaning operation is stopped (step S110).
  • step S115 drives the drain pump PO (step S115). Since drain water may be generated at the beginning of the freezing operation, the drain pump PO may be driven at the beginning of the freezing operation.
  • step S120 starts the freezing operation (step S120), and thereafter stops the freezing operation when a desired time has elapsed (when sufficient ice adheres to the indoor heat exchanger 64) (step S125).
  • step S130 starts a defrosting operation for removing dust on the surface of the indoor heat exchanger 64 (step S130), and thereafter, after a desired time has elapsed, stops the drain pump PO (step S135).
  • step S140 the drying operation is started (step S140).
  • step S135 the process of stopping the drain pump PO
  • step S135 can be deleted according to the operation, or can be moved after step S140 (the process of the drying operation).
  • FIG. 4 shows an example in which a freeze-cleaning operation is performed by interruption during a normal cooling operation.
  • the processes of “operation stop (of normal cooling operation)”, “compressor protection” operation, “blowing” operation, and “freeze washing” operation are sequentially performed.
  • “freeze washing” operation each processing of the “freeze” operation, the “thaw” operation, and the “drying” operation is performed.
  • “drying” operation each process of the “blowing” operation, the “heating” operation, and the “radiation” operation is performed.
  • the “compressor protection” operation is an operation operation for stopping the drive of the compressor 32 and protecting the compressor 32. By stopping the driving of the compressor 32, the lubricating oil floating in the internal space is dropped in the direction of the oil storage unit (not shown), so that the lubricating oil can be prevented from flowing out of the compressor 32.
  • the “blowing” operation is an operation in which the indoor fan 66 is driven to blow air to the indoor heat exchanger 64.
  • the “freezing” operation is an operation for lowering the temperature of the indoor heat exchanger 64 and causing ice to adhere to the surface of the indoor heat exchanger 64.
  • the “thaw” operation is an operation of raising the temperature of the indoor heat exchanger 64 to thaw (melt) the ice adhered to the surface of the indoor heat exchanger 64 to flow down dust on the surface of the indoor heat exchanger 64.
  • the “drying” operation is an operation for drying the surface of the indoor heat exchanger 64.
  • the “heating” operation is an operation for increasing the temperature of the indoor heat exchanger 64.
  • the “radiation” operation is an operation for releasing the heat of the indoor heat exchanger 64 to the surroundings.
  • an “operation stop” process from the cooling operation is performed from time t0 to time t1.
  • the “compressor protection” operation is performed from time t1 to time t2.
  • the “blowing” operation is performed from time t2 to time t3.
  • the “freezing” operation is performed from time t3 to time t5.
  • the “thaw” operation is performed from time t5 to time t6.
  • the “blowing” operation is performed from time t6 to time t7.
  • the “heating” operation is performed from time t7 to time t8.
  • the “radiation” operation is performed from time t8 to time t9.
  • the “blowing” operation is performed after time t9.
  • the “freeze washing” operation is performed from time t3 to time t9.
  • the “drying” operation is performed from time t6 to time t9.
  • the indoor fan 66 and the outdoor fan 48 are each driven at a desired rotation speed.
  • the inclination of the vertical wind direction plate 150 is set to an upward angle dedicated to freezing.
  • the drain pump PO is driven from time t1 to time t1a, and stops driving at time t1a.
  • Time t1a is a time between time t1 and time t2.
  • the indoor fan 66 is continuously driven.
  • the rotation speed of the indoor fan 66 in the “blowing” operation is higher than the rotation speed during the period from the time t1 to the time t2 (during the “compressor protection” operation) (hereinafter the same).
  • the indoor fan 66 is driven until time t4 and stopped at time t4.
  • the outdoor fan 48 is driven until time t5, and stops driving at time t5.
  • the compressor 32 is driven until time t5, and stops driving at time t5.
  • the rotation speed of the indoor fan 66 during the “freezing” operation is higher than the rotation speed during the period from the time t1 to the time t2 (during the “compressor protection” operation) and during the period from the time t2 to the time t3. (Period during "Blowing” operation).
  • the rotation speed of the outdoor fan 48 in the “freezing” operation is higher than the rotation speed in the period from the time t1 to the time t3 (during the “compressor protection” operation and the “blowing” operation).
  • the indoor fan 66 is driven.
  • the inclination of the vertical wind direction plate 150 is set to a downward angle dedicated to freezing.
  • the indoor fan 66 continues to be driven, and stops driving at time t8.
  • the outdoor fan 48 is driven until time t8, and stops driving at time t8.
  • the rotation speed of the outdoor fan 48 in the “heating” operation is higher than the rotation speed during the period from the time t1 to the time t3 (the period during the “compressor protection” operation and the “blowing” operation), and from the time t3.
  • the rotation speed is lower than the rotation speed during the period up to time t5 (during the “freezing” operation).
  • the indoor fan 66 In the “radiation” operation from time t8 to time t9, the indoor fan 66, the outdoor fan 48, and the compressor 32 stop driving. In the “blowing” operation after time t9, the indoor fan 66 is driven.
  • the air conditioner 100 has the following features.
  • the control device 20 performs a freezing operation in which the indoor heat exchanger 64 functions as an evaporator and the surface temperature of the indoor heat exchanger 64 is below freezing, and “the normal cooling operation ends”.
  • the drain pump PO is driven so as to satisfy the following relationship: Driving time of drain pump ⁇ Driving time of drain pump after freezing operation.
  • the “drive time of the drain pump after the end of the normal cooling operation” is a time from time t1 to time t1a. Further, the “drive time of the drain pump after the freezing operation” is a time after time t5.
  • the air conditioner 100 according to the present embodiment can efficiently and reliably drain drain water to the outside by driving the drain pump PO so as to satisfy the above relationship. Therefore, the air conditioner 100 according to the present embodiment can surely reduce the remaining amount of the drain water when performing the freeze washing operation.
  • the air conditioner 100 according to the present embodiment can prevent the drain water from overflowing from the drain pan 140 and suppress the generation of an unusual odor and the generation of mold due to the drain water remaining in the drain pan 140. it can.
  • control device 20 executes the thawing operation after the freezing operation, and drives the drain pump PO for at least a part of the time during the thawing operation.
  • the air conditioner 100 according to the present embodiment can reduce the remaining amount of the drain water when performing the freeze washing operation.
  • control device 20 executes the drying operation after the freezing operation, and drives the drain pump PO for at least a part of the time during the thawing operation and during the drying operation.
  • the air conditioner 100 according to the present embodiment can more efficiently reduce the remaining amount of the drain water when the freeze washing operation is performed.
  • control device 20 drives the drain pump PO while driving the indoor fan 66 in the drying operation.
  • the air conditioner 100 drives the drain pump PO while driving the indoor fan 66 in the drying operation. Thereby, the air conditioner 100 according to the present embodiment can efficiently and reliably reduce the remaining amount of the drain water when the freeze washing operation is performed.
  • control device 20 keeps driving the drain pump PO on for at least a part of the time during the freezing operation, the thawing operation, and the drying operation.
  • the drain pump PO generates a relatively loud noise when the drive is switched on / off. Therefore, the control device 20 of the air conditioner 100 according to the present embodiment keeps the drive of the drain pump PO on at least a part of the time during the freezing operation, the thawing operation, and the drying operation. Thereby, the air conditioner 100 according to the present embodiment can reduce the generation of noise caused by the drain pump PO.
  • the control device 20 stops the drain pump PO after a lapse of a predetermined time or more after the normal cooling operation ends, and then keeps stopping the drain pump PO until the freezing operation starts.
  • the air conditioner 100 according to the present embodiment can secure time for stopping the drain pump PO. Therefore, the air conditioner 100 according to the present embodiment can achieve reduction in energy consumption by that amount, that is, energy saving.
  • the control device 20 keeps driving the drain pump PO for a fixed time or more even after the drying operation is completed.
  • “after the drying operation is completed” means after time t9.
  • the air conditioner 100 according to the present embodiment can drain almost all the drain water remaining in the drain pan 140 to the outside by keeping the drain pump PO driven for a certain period of time or more even after the drying operation ends. Therefore, the air conditioner 100 according to the present embodiment can efficiently and reliably reduce the remaining amount of the drain water when performing the freeze washing operation.
  • the air conditioner 100 of the present embodiment it is possible to reduce the remaining amount of the drain water when performing the freeze washing operation.
  • the present invention is not necessarily limited to the one including all the described components. Further, the present invention can add another component to a certain component, or change some components to another component. Further, the present invention can also eliminate some components.
  • the indoor unit 60 has been described as a ceiling cassette type device.
  • the present invention is applicable even if the indoor unit 60 is an apparatus of a wall-mounted type, a ceiling-mounted type, a floor-standing type, or the like.
  • the operation of the air conditioner 100 may be modified as in a first modification shown in FIG. 5 or a second modification shown in FIG.
  • FIG. 5 is a time chart showing the operation of the first modification of the air conditioner 100.
  • FIG. 6 is a time chart showing the operation of the second modification of the air conditioner 100.
  • the operation of the first modification shown in FIG. 5 is an operation when a stop operation by the user is received during the freezing operation.
  • the operation of the first modification illustrated in FIG. 5 is different from the operation of the above-described embodiment illustrated in FIG. 4 in that the indoor fan 66 is stopped by receiving the stop operation.
  • the time from the end of the operation in the normal cooling operation to the start of the operation of the drain pump PO (that is, from the time t1a when the drain pump PO is stopped to the time t3) Time) is T11.
  • the time from the reception of the stop operation to the start of driving of the drain pump PO (that is, the time from time tA to time tB) is T12.
  • the time T12 is a value greater than the time T11 (that is, a value that satisfies the relationship of “T12> T11”).
  • the time from the reception of the stop operation when the stop operation by the user is received during the freezing operation to the start of the drive of the drain pump PO is from the end of the operation in the normal cooling operation. It is longer than the time until the start of driving of the drain pump PO.
  • the lubricating oil floating in the internal space of the compressor 32 can have time to fall in the direction of the oil storage unit (not shown). Thereby, the operation of the first modified example can suppress that the lubricating oil floating in the internal space of the compressor 32 flows out of the compressor 32 and the operating efficiency of the refrigeration cycle RC is reduced.
  • the operation of the second modification shown in FIG. 6 is an operation in a case where the drain pan 140 has a size enough to store the drain water generated in a short time in the freeze washing operation without overflowing. is there.
  • the operation of the second modified example shown in FIG. 6 is different from the operation of the above-described embodiment shown in FIG. 4 in that the drain pump PO is stopped at least partly during the drying operation. .
  • the time for stopping the drain pump PO can be secured. Therefore, the operation of the second modified example can realize reduction of energy consumption by that much, that is, energy saving. In the operation of the second modification, the generation of noise can be suppressed only for the time when the drain pump PO is stopped.
  • Reference Signs List 20 control device 22 commercial power supply 25 indoor heat exchanger refrigerant liquid temperature sensor 26 indoor heat exchanger refrigerant gas temperature sensor 30 outdoor unit 32 compressor 32a, 48a, 66a motor 34 four-way valve 36 outdoor heat exchanger 41 suction side temperature sensor 42 Discharge side temperature sensor 43 Compressor temperature sensor 45 Suction side pressure sensor 46 Discharge side pressure sensor 48 Outdoor fan 51 Outdoor heat exchanger inlet temperature sensor 53 Outdoor heat exchanger refrigerant gas temperature sensor 54 Power supply unit 55 Outdoor heat exchanger refrigerant liquid temperature Sensors 56, 67 Motor control unit 58 Power measurement unit 60 Indoor unit 62 Indoor expansion valve 64 Indoor heat exchanger 66 Indoor fan 68 Remote control communication unit 70 Indoor heat exchanger inlet air temperature sensor 72 Indoor heat exchanger exhaust air temperature sensor 74 Indoor heat exchanger inlet humidity sensor 90 Remote control 1 0 air conditioner 130 ceiling 140 drain pan 142 air filter 143 decorative board 144 air inlet 146 air outlet passage 148 left and right wind direction board 150 vertical wind direction board 150a fulcrum 152 fully closed position 154 washing operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

空気調和機(100)は、圧縮機(32)と室内熱交換器(64)とを有する冷凍サイクル(RC)と、室内熱交換器に付着して落下した水をドレン水として一時的に溜めるドレンパン(140)と、ドレンパンに溜まったドレン水を外部に排水するドレンポンプ(PO)と、冷凍サイクルとドレンポンプの動作を制御する制御装置(20)と、を備えている。制御装置は、室内熱交換器を蒸発器として機能させ室内熱交換器の表面温度を氷点下にする凍結運転を実行し、「通常の冷房運転終了後のドレンポンプの駆動時間<凍結運転後のドレンポンプの駆動時間」の関係を満たすように、ドレンポンプを駆動させる。

Description

空気調和機
 本発明は、空気調和機に関する。
 空気調和機の室内機の内部には、室内熱交換器に付着して落下した水を一時的に溜めるドレンパンが設けられている。以下、ドレンパンに溜まった水を「ドレン水」と称する。ドレン水は、配管を介して外部に排水されるが、その排水が良好に行われないと、ドレンパンに残る。これにより、異臭が発生したりやカビが発生したりすることがある。そこで、空気調和機の室内機の中には、ドレン水を強制的に外部に排水するためのドレンポンプを備えるものがある(例えば、特許文献1参照)。
 一方、空気調和機の中には、いわゆる「凍結洗浄運転」を行うものがある。「凍結洗浄運転」とは、室内熱交換器の表面に氷(霜を含む)を付着させた後に氷を解凍(融解)させ、これにより発生した水が落下する勢いを利用して室内熱交換器に付着した微細な塵埃を流し落とす運転動作である。
特開2018-25355号公報
 しかしながら、従来の空気調和機では、凍結洗浄運転に関連してドレンポンプを駆動させることが考慮されていなかった。そのため、従来の空気調和機では、凍結洗浄運転を行う場合に、どのようなドレンポンプの駆動制御を行えば、ドレン水の残量を確実に低減することができるのかが不明であった。
 本発明は、前記した課題を解決するためになされたものであり、凍結洗浄運転を行った場合のドレン水の残量を低減する空気調和機を提供することを主な目的とする。
 前記目的を達成するため、本発明は、空気調和機であって、冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、前記室内熱交換器に付着して落下した水をドレン水として一時的に溜めるドレンパンと、前記ドレンパンに溜まった前記ドレン水を外部に排水するドレンポンプと、前記冷凍サイクルと前記ドレンポンプの動作を制御する制御装置と、を備え、前記制御装置は、前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結運転を実行し、「通常の冷房運転終了後の前記ドレンポンプの駆動時間<前記凍結運転後のドレンポンプの駆動時間」の関係を満たすように、前記ドレンポンプを駆動させる構成とする。
 その他の手段は、後記する。
 本発明によれば、凍結洗浄運転を行った場合のドレン水の残量を低減することができる。
実施形態に係る空気調和機の系統図である。 実施形態に係る空気調和機の室内機の側断面図である。 実施形態に係る空気調和機の凍結洗浄運転時の動作を示すフローチャートである。 実施形態に係る空気調和機の凍結洗浄運転時の動作を示すタイムチャートである。 空気調和機の第1変形例の動作を示すタイムチャートである。 空気調和機の第2変形例の動作を示すタイムチャートである。
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
 [実施形態]
 <空気調和機の構成>
 以下、図1を参照して、本実施形態に係る空気調和機100の構成について説明する。図1は、本実施形態に係る空気調和機100の系統図である。
 図1に示すように、空気調和機100は、室外機30と、室内機60と、これらを制御する制御装置20と、を備えている。室内機60は、リモコン90から入力される信号に応じて運転モード(冷房,暖房,除湿、換気等)、室内風量(急風、強風、弱風等)、目標室内温度等を設定する。
 (制御装置の構成)
 制御装置20は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラムおよび各種データ等が格納されている。制御装置20は、制御プログラムに基づいて、室外機30および室内機60の各部を制御する。なお、その詳細については後述する。
 (室外機の構成)
 室外機30は、圧縮機32と、四方弁34と、室外熱交換器36と、を備えている。圧縮機32は、モータ32aを備えており、四方弁34を介して流入する冷媒を圧縮する機能を有している。配管a1には、圧縮機32に吸入される冷媒の温度を検出する吸入側温度センサ41と、圧縮機32に吸入される冷媒の圧力を検出する吸入側圧力センサ45と、が設置されている。また、配管a2には、圧縮機32から吐出される冷媒の温度を検出する吐出側温度センサ42と、圧縮機32から吐出される冷媒の圧力を検出する吐出側圧力センサ46と、が設置されている。また、圧縮機32には、圧縮機32の温度を検出する圧縮機温度センサ43が装着されている。
 四方弁34は、室内機60の室内熱交換器64を蒸発器として機能させるか、凝縮器として機能させるかに応じて、室内機60に供給する冷媒の向きを切り替える機能を有している。室内熱交換器64を蒸発器として機能させる場合、例えば冷房運転時には、四方弁34は、実線の経路に沿って、配管a2,a3を接続するとともに配管a1,a6を接続するように切り替えられる。この場合、圧縮機32から吐出された高温高圧の冷媒は、室外熱交換器36によって冷却される。冷却された冷媒は、配管a5を介して、室内機60に供給される。
 また、室内熱交換器64を凝縮器として機能させる場合、例えば暖房運転時には、四方弁34は、破線の経路に沿って、配管a2,a6を接続するとともに、配管a1,a3を接続するように切り替えられる。この場合、圧縮機32から吐出された高温高圧の冷媒は、配管a2,a6を介して、室内機60に供給される。室外ファン48は、モータ48aを備え、室外熱交換器36に対して送風する。
 室外熱交換器36は、室外ファン48から送られてくる空気と、冷媒との熱交換を行う熱交換器であり、四方弁34を介して圧縮機32に接続されている。また、室外機30には、室外熱交換器36に流入する空気の温度を検出する室外熱交換器入口温度センサ51と、室外熱交換器36のガス側冷媒の温度を検出する室外熱交換器冷媒ガス温度センサ53と、室外熱交換器36の液側冷媒の温度を検出する室外熱交換器冷媒液温度センサ55と、が装着されている。
 電源部54は、商用電源22から三相交流電圧を受電する。電源部54には、電力測定部58が接続されており、これによって空気調和機100の消費電力が計測される。電源部54が出力する直流電圧は、モータ制御部56に供給される。モータ制御部56はインバータ(図示せず)を備えており、圧縮機32のモータ32aおよび室外ファン48のモータ48aに交流電圧を供給する。また、モータ制御部56は、モータ32a,48aをセンサレスで制御し、これによってモータ32a,48aの回転速度を検出する。
 (室内機の構成)
 室内機60は、室内用膨張弁62と、室内熱交換器64と、室内ファン66と、モータ制御部67と、リモコン90との間で双方向の通信を行うリモコン通信部68と、を備えている。室内ファン66は、モータ66aを備え、室内熱交換器64に対して送風する。モータ制御部67はインバータ(図示せず)を備えており、モータ66aに交流電圧を供給する。また、モータ制御部67は、モータ66aをセンサレスで制御し、これによってモータ66aの回転速度を検出する。
 室内用膨張弁62は、配管a5,a7の間に挿入され、配管a5,a7を通流する冷媒の流量を調整するとともに、室内用膨張弁62の二次側の冷媒を減圧する機能を有している。室内熱交換器64は、室内ファン66から送られてくる室内空気と冷媒との熱交換を行う熱交換器であり、配管a7を介して室内用膨張弁62に接続されている。
 また、室内機60は、室内熱交換器入口空気温度センサ70と、室内熱交換器排出空気温度センサ72と、室内熱交換器入口湿度センサ74と、室内熱交換器冷媒液温度センサ25と、室内熱交換器冷媒ガス温度センサ26と、を備えている。
 ここで、室内熱交換器入口空気温度センサ70は、室内ファン66が吸い込む空気の温度を検出する。また、室内熱交換器排出空気温度センサ72は、室内熱交換器64から排出される空気の温度を検出する。
 また、室内熱交換器入口湿度センサ74は、室内ファン66が吸い込む空気の湿度を検出する。また、室内熱交換器冷媒液温度センサ25、室内熱交換器冷媒ガス温度センサ26は、室内熱交換器64と、配管a6との接続箇所に設けられ、その箇所を通流する冷媒の温度を検出する。このように、圧縮機32、四方弁34、室外熱交換器36、室内用膨張弁62、室内熱交換器64および配管a1~a7は、冷凍サイクルRCを形成している。
 <室内機の構成>
 以下、図2を参照して、室内機60の構成について説明する。図2は、室内機60の側断面図である。本実施形態では、室内機60が天井カセット型の装置であるものとして説明する。天井カセット型とは、天井130に埋設され、下面を空調室に露出させる構成を意味している。ただし、室内機60は、壁掛け型、天井埋め込み型、床置き型等の装置であってもよい。
 図2に示すように、室内熱交換器64は、略V字状に折れ曲がった板状に形成され、室内機60の中央部に設置される。室内ファン66は、略円筒状にフィンを配列したものであり、室内熱交換器64の前方に配置されている。室内熱交換器64および室内ファン66の下方には、これらの表面に結露して落下した水を受けて一時的に溜めるドレンパン140が配置されている。以下、ドレンパン140に溜まった水を「ドレン水」と称する。室内機60には、ドレンパン140に溜まったドレン水を強制的に外部に排水するためのドレンポンプPOが設けられている。本実施形態では、ドレンパン140の容積が後記する凍結洗浄運転で短時間のうちに発生するドレン水の想定発生量と同程度か又はそれよりも若干小さいものとして説明する。
 室内熱交換器64の後方には、傾斜したエアフィルタ142が設けられている。また、室内機60の下面は化粧板143で覆われている。そして、エアフィルタ142の下方には、化粧板143にスリットを刻んで成る空気吸込み口144が形成されている。室内熱交換器入口空気温度センサ70は、室内熱交換器64とエアフィルタ142との間に設けられている。
 室内ファン66の前方には、空気吹出し通路146が形成されている。左右風向板148は、空気吹出し通路146の途中に設けられ、左右方向(紙面に対する垂直方向)に気流の方向を制御する。上下風向板150は、空気吹出し通路146の出口部分に設けられ、支点150aを中心として回動し、上下方向に気流の方向を制御する。左右風向板148および上下風向板150は、制御装置20(図1参照)によって回動駆動される。図2に実線で示す上下風向板150は、全開状態であるときの位置を示している。
 空気調和機100が停止中であるとき、上下風向板150は、一点鎖線で示す全閉位置152に回動される。また、後述する洗浄運転を実行する際には、上下風向板150は、一点鎖線で示す位置156に回動され、その後に洗浄運転位置154に回動される。そして、上下風向板150の開度が大きくなるほど、空気吹出し通路146の管路抵抗が小さくなる。但し、上下風向板150が全閉位置152に閉まっている場合であっても、上下風向板150と、化粧板143との間には隙間FSが形成されており、隙間FSを介して若干の空気が通流するようになっている。
 なお、本実施形態では、例えば室内機60の内部の洗浄が必要な場合に、そのことを示すための洗浄ランプ(図示せず)が化粧板143に設けられている。また、空調室の空気の吸い込みを選択的に行うための吸い込みパネル(図示せず)が空気吸込み口144とエアフィルタ142との間に設けられている。
 <空気調和機の凍結洗浄運転時の動作>
 本実施形態に係る空気調和機100は、凍結洗浄運転を行うことができる。「凍結洗浄運転」とは、室内熱交換器64の表面に氷(霜を含む)を付着させた後に氷を解凍(融解)させ、これにより発生した水が落下する勢いを利用して室内熱交換器64に付着した微細な塵埃を流し落とす運転動作である。「凍結洗浄運転」では、通常の冷房運転よりも大量のドレン水が短時間のうちに発生する。
 以下、図3及び図4を参照して、空気調和機100の凍結洗浄運転時の動作について説明する。図3は、空気調和機100の凍結洗浄運転時の動作を示すフローチャートである。図4は、空気調和機100の凍結洗浄運転時の動作を示すタイムチャートである。
 図3に示すルーチンの処理は、ユーザがリモコン90を操作して凍結洗浄運転の実行を指令した場合や、凍結洗浄運転を自動的に行うタイミングになった場合に、凍結運転要求が発生し、それに応答して制御装置20の制御によって実行される。
 図3に示すように、凍結運転要求の発生時に凍結洗浄運転の処理を開始する。
 すると、制御装置20は、凍結運転が可能か否かを判定する(ステップS105)。ステップS105で、凍結運転が不能であると判定された場合(“No”の場合)に、凍結洗浄運転を停止する(ステップS110)。一方、ステップS105で、凍結運転が可能であると判定された場合(“Yes”の場合)に、制御装置20は、ドレンポンプPOを駆動させる(ステップS115)。なお、凍結運転の初期にドレン水が発生することがあるため、凍結運転の初期にドレンポンプPOを駆動させるようにしてもよい。
 次に、制御装置20は、凍結運転を開始し(ステップS120)、その後、所望時間経過すると(十分な氷が室内熱交換器64に付着すると)、凍結運転を停止する(ステップS125)。次に、制御装置20は、室内熱交換器64の表面の塵埃を流し落とすための解凍運転を開始し(ステップS130)、その後、所望時間経過すると、ドレンポンプPOを停止させて(ステップS135)、乾燥運転を開始する(ステップS140)。この後、所望時間経過すると、制御装置20は、一連のルーチンの処理(凍結洗浄運転の処理)を停止する。なお、ステップS135の処理(ドレンポンプPOの停止の処理)は、運用に応じて削除したり、ステップS140(乾燥運転の処理)の後に移動させたりすることができる。
 図4は、通常の冷房運転を行っている最中に、割り込みで凍結洗浄運転を行う場合の例を示している。図4に示す例では、順に、「(通常の冷房運転の)運転停止」処理、「圧縮機保護」運転、「送風」運転、「凍結洗浄」運転の各処理が行われている。「凍結洗浄」運転では、「凍結」運転、「解凍」運転、「乾燥」運転の各処理が行われている。また、「乾燥」運転では、「送風」運転、「暖房」運転、「放熱」運転の各処理が行われている。
 ここで、「圧縮機保護」運転は、圧縮機32の駆動を停止させて、圧縮機32を保護する運転動作である。圧縮機32は、駆動を停止することにより、内部空間を漂う潤滑油を貯油部(図示せず)の方向に落下させて、潤滑油が圧縮機32の外部に流出しないようにすることができる。「送風」運転は、室内ファン66を駆動させて室内熱交換器64に風を当てる運転動作である。「凍結」運転は、室内熱交換器64の温度を下げて室内熱交換器64の表面に氷を付着させる運転動作である。「解凍」運転は、室内熱交換器64の温度を上げて室内熱交換器64の表面に付着した氷を解凍(融解)して室内熱交換器64の表面の塵埃を流し落とす運転動作である。「乾燥」運転は、室内熱交換器64の表面を乾燥させる運転動作である。「暖房」運転は、室内熱交換器64の温度を上げる運転動作である。「放熱」運転は、室内熱交換器64の熱を周囲に放出させる運転動作である。
 図4に示す例では、以下の処理が行われている。
 まず、時刻t0から時刻t1に亘って冷房運転からの「運転停止」処理が行われている。
 また、時刻t1から時刻t2に亘って「圧縮機保護」運転が行われている。
 また、時刻t2から時刻t3に亘って「送風」運転が行われている。
 また、時刻t3から時刻t5に亘って「凍結」運転が行われている。
 また、時刻t5から時刻t6に亘って「解凍」運転が行われている。
 また、時刻t6から時刻t7に亘って「送風」運転が行われている。
 また、時刻t7から時刻t8に亘って「暖房」運転が行われている。
 また、時刻t8から時刻t9に亘って「放熱」運転が行われている。
 また、時刻t9以降で「送風」運転が行われている。
 また、時刻t3から時刻t9に亘って「凍結洗浄」運転が行われている。
 また、時刻t6から時刻t9に亘って「乾燥」運転が行われている。
 時刻t0から時刻t1までの「運転停止」処理では、以下のような状態になっている。時刻t0までの冷房運転で作動していた室内ファン66と室外ファン48と圧縮機32は駆動を停止している。上下風向板150は任意の角度で下方に下がっている(開いている)。吸い込みパネル(図示せず)は任意の角度で開いている。洗浄ランプ(図示せず)は点灯している。ドレンポンプPOは駆動している。
 以下、各運転動作について、状態が変化している構成要素について説明する。
 時刻t1から時刻t2までの「圧縮機保護」運転では、室内ファン66と室外ファン48がそれぞれ所望の回転速度で駆動している。上下風向板150の傾きが凍結専用上向の角度に設定されている。ドレンポンプPOが時刻t1から時刻t1aまで駆動し、時刻t1aで駆動を停止している。なお、時刻t1aは、時刻t1と時刻t2の間の時刻である。
 時刻t2から時刻t3までの「送風」運転では、室内ファン66が引き続き駆動している。「送風」運転での室内ファン66の回転速度は、時刻t1から時刻t2までの期間(「圧縮機保護」運転中の期間)の回転速度よりも速くなっている(以下、同様)。
 時刻t3から時刻t5までの「凍結」運転では、室内ファン66が時刻t4まで駆動し、時刻t4で駆動を停止している。室外ファン48が時刻t5まで駆動し、時刻t5で駆動を停止している。圧縮機32が時刻t5まで駆動し、時刻t5で駆動を停止している。「凍結」運転での室内ファン66の回転速度は、時刻t1から時刻t2までの期間(「圧縮機保護」運転中の期間)の回転速度よりも速く、かつ、時刻t2から時刻t3までの期間(「送風」運転中の期間)の回転速度よりも遅くなっている。また、「凍結」運転での室外ファン48の回転速度は、時刻t1から時刻t3までの期間(「圧縮機保護」運転及び「送風」運転中の期間)の回転速度よりも速くなっている。
 時刻t5から時刻t6までの「解凍」運転では、室内ファン66と室外ファン48と圧縮機32が駆動を停止している。
 時刻t6から時刻t7までの「送風」運転では、室内ファン66が駆動している。上下風向板150の傾きが凍結専用下向の角度に設定されている。
 時刻t7から時刻t8までの「暖房」運転では、室内ファン66が引き続き駆動しており、時刻t8で駆動を停止している。室外ファン48が時刻t8まで駆動し、時刻t8で駆動を停止している。「暖房」運転での室外ファン48の回転速度は、時刻t1から時刻t3までの期間(「圧縮機保護」運転及び「送風」運転中の期間)の回転速度よりも速く、かつ、時刻t3から時刻t5までの期間(「凍結」運転中の期間)の回転速度よりも遅くなっている。
 時刻t8から時刻t9までの「放熱」運転では、室内ファン66と室外ファン48と圧縮機32が駆動を停止している。
 時刻t9以降の「送風」運転では、室内ファン66が駆動している。
 <空気調和機の主な特徴>
 本実施形態に係る空気調和機100は、以下のような特徴を有している。
 (1)図4に示すように、制御装置20は、室内熱交換器64を蒸発器として機能させ室内熱交換器64の表面温度を氷点下にする凍結運転を実行し、「通常の冷房運転終了後のドレンポンプの駆動時間<凍結運転後のドレンポンプの駆動時間」の関係を満たすように、ドレンポンプPOを駆動させる。
 なお、図4に示す例では、「通常の冷房運転終了後のドレンポンプの駆動時間」とは、時刻t1から時刻t1aまでの時間である。また、「凍結運転後のドレンポンプの駆動時間」とは、時刻t5以降の時間である。
 「凍結洗浄運転」では、通常の冷房運転よりも大量のドレン水が短時間のうちに発生する。本実施形態に係る空気調和機100は、前記した関係を満たすようにドレンポンプPOを駆動させることによって、ドレン水を効率よく確実に外部に排水することができる。そのため、本実施形態に係る空気調和機100は、凍結洗浄運転を行った場合のドレン水の残量を確実に低減することができる。このような本実施形態に係る空気調和機100は、ドレンパン140からドレン水が溢れ出ることを防ぐとともに、ドレンパン140にドレン水が残ることに起因する異臭の発生やカビの発生を抑制することができる。
 (2)制御装置20は、好ましくは、凍結運転終了後に解凍運転を実行し、解凍運転中の少なくとも一部の時間、ドレンポンプPOを駆動させるとよい。これにより、本実施形態に係る空気調和機100は、凍結洗浄運転を行った場合のドレン水の残量を低減することができる。
 (3)制御装置20は、好ましくは、凍結運転終了後に乾燥運転を実行し、解凍運転中と乾燥運転中の少なくとも一部の時間、ドレンポンプPOを駆動させるとよい。これにより、本実施形態に係る空気調和機100は、凍結洗浄運転を行った場合のドレン水の残量をさらに効率よく低減することができる。
 (4)制御装置20は、好ましくは、乾燥運転で室内ファン66を駆動している間、ドレンポンプPOを駆動させるとよい。
 室内機60の内部では、室内ファン66が駆動している間は、室内熱交換器64に付着した氷の解凍で発生した水がドレンパン140に落下して、ドレンパン140にドレン水が溜まる可能性がある。そこで、本実施形態に係る空気調和機100は、乾燥運転で室内ファン66を駆動している間、ドレンポンプPOを駆動させる。これにより、本実施形態に係る空気調和機100は、凍結洗浄運転を行った場合のドレン水の残量を効率よく確実に低減することができる。
 (5)制御装置20は、好ましくは、凍結運転、解凍運転、及び乾燥運転中の少なくとも一部の時間、ドレンポンプPOの駆動をオンさせ続けるとよい。
 ドレンポンプPOは、駆動のオン/オフの切替時に比較的大きな音が発生する。そこで、本実施形態に係る空気調和機100の制御装置20は、凍結運転、解凍運転、及び乾燥運転中の少なくとも一部の時間、ドレンポンプPOの駆動をオンさせ続ける。これにより、本実施形態に係る空気調和機100は、ドレンポンプPOに起因する騒音の発生を低減することができる。
 (6)制御装置20は、好ましくは、通常の冷房運転が終了すると所定時間以上経過した後にドレンポンプPOを停止させ、その後、凍結運転を開始するまでドレンポンプPOを停止させ続けるとよい。これにより、本実施形態に係る空気調和機100は、ドレンポンプPOを停止させる時間を確保することができる。そのため、本実施形態に係る空気調和機100は、その分だけ消費エネルギーの低減を実現すること、つまり、省エネルギーを実現することができる。
 (7)制御装置20は、好ましくは、乾燥運転が終了した後も一定時間以上、ドレンポンプPOを駆動させ続けるとよい。なお、図4に示す例では、「乾燥運転が終了した後」とは、時刻t9以降を意味している。本実施形態に係る空気調和機100は、乾燥運転が終了した後も一定時間以上、ドレンポンプPOを駆動させ続けることによって、ドレンパン140に残るほぼ全てのドレン水を外部に排水することができる。そのため、本実施形態に係る空気調和機100は、凍結洗浄運転を行った場合のドレン水の残量を効率よく確実に低減することができる。
 以上の通り、本実施形態に係る空気調和機100によれば、凍結洗浄運転を行った場合のドレン水の残量を低減することができる。
 なお、本発明は、前記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や変形を行うことができる。
 例えば、前記した実施形態は、本発明の要旨を分かり易く説明するために詳細に説明したものである。そのため、本発明は、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、本発明は、ある構成要素に他の構成要素を追加したり、一部の構成要素を他の構成要素に変更したりすることができる。また、本発明は、一部の構成要素を削除することもできる。
 例えば、前記した実施形態では、室内機60が天井カセット型の装置であるものとして説明した。しかしながら、本発明は、室内機60が、壁掛け型、天井埋め込み型、床置き型等の装置であっても適用することができる。
 例えば、空気調和機100の動作は、図5に示す第1変形例や、図6に示す第2変形例のように変形してもよい。図5は、空気調和機100の第1変形例の動作を示すタイムチャートである。図6は、空気調和機100の第2変形例の動作を示すタイムチャートである。
 (第1変形例)
 図5に示す第1変形例の動作は、凍結運転中にユーザによる停止操作を受け付けた場合の動作である。図5に示す第1変形例の動作は、図4に示す前記した実施形態の動作と比較すると、停止操作を受け付けることによって、室内ファン66が停止している点で相違している。
 図5に示すように、第1変形例の動作では、通常の冷房運転での運転終了からドレンポンプPOの駆動開始までの時間(つまり、ドレンポンプPOを停止させている時刻t1aから時刻t3までの時間)がT11となっている。一方、停止操作を受け付けてからドレンポンプPOの駆動開始までの時間(つまり、時刻tAから時刻tBまでの時間)がT12となっている。そして、時間T12は、時間T11よりも大きな値(つまり、「T12>T11」の関係を満たす値)になっている。つまり、第1変形例の動作では、凍結運転中にユーザによる停止操作を受け付けた場合での停止操作を受け付けてからドレンポンプPOの駆動開始までの時間は、通常の冷房運転での運転終了からドレンポンプPOの駆動開始までの時間よりも長くなっている。
 このような第1変形例の動作は、圧縮機32の内部空間を漂う潤滑油を貯油部(図示せず)の方向に落下させる時間を確保することができる。これにより、第1変形例の動作は、圧縮機32の内部空間を漂う潤滑油が圧縮機32の外部に流出して、冷凍サイクルRCの動作効率が低下することを抑制することができる。
 (第2変形例)
 図6に示す第2変形例の動作は、ドレンパン140が凍結洗浄運転で短時間のうちに発生するドレン水を溢れさせずに溜めることができる程度の大きさを有している場合の動作である。図6に示す第2変形例の動作は、図4に示す前記した実施形態の動作と比較すると、乾燥運転中の少なくとも一部の時間でドレンポンプPOを停止させている点で相違している。
 このような第2変形例の動作は、ドレンポンプPOを停止させる時間を確保することができる。そのため、第2変形例の動作は、その分だけ消費エネルギーの低減を実現すること、つまり、省エネルギーを実現することができる。また、第2変形例の動作は、ドレンポンプPOを停止させる時間だけ騒音の発生を抑制することができる。
 20  制御装置
 22  商用電源
 25  室内熱交換器冷媒液温度センサ
 26  室内熱交換器冷媒ガス温度センサ
 30  室外機
 32  圧縮機
 32a,48a,66a  モータ
 34  四方弁
 36  室外熱交換器
 41  吸入側温度センサ
 42  吐出側温度センサ
 43  圧縮機温度センサ
 45  吸入側圧力センサ
 46  吐出側圧力センサ
 48  室外ファン
 51  室外熱交換器入口温度センサ
 53  室外熱交換器冷媒ガス温度センサ
 54  電源部
 55  室外熱交換器冷媒液温度センサ
 56,67  モータ制御部
 58  電力測定部
 60  室内機
 62  室内用膨張弁
 64  室内熱交換器
 66  室内ファン
 68  リモコン通信部
 70  室内熱交換器入口空気温度センサ
 72  室内熱交換器排出空気温度センサ
 74  室内熱交換器入口湿度センサ
 90  リモコン
 100  空気調和機
 130  天井
 140  ドレンパン
 142  エアフィルタ
 143  化粧板
 144  空気吸込み口
 146  空気吹出し通路
 148  左右風向板
 150  上下風向板
 150a  支点
 152  全閉位置
 154  洗浄運転位置
 156  位置
 a1,a2,a3,a5,a6,a7  配管
 FS  隙間
 PO  ドレンポンプ
 RC  冷凍サイクル

Claims (9)

  1.  冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、
     前記室内熱交換器に付着して落下した水をドレン水として一時的に溜めるドレンパンと、
     前記ドレンパンに溜まった前記ドレン水を外部に排水するドレンポンプと、
     前記冷凍サイクルと前記ドレンポンプの動作を制御する制御装置と、を備え、
     前記制御装置は、
     前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結運転を実行し、
     「通常の冷房運転終了後の前記ドレンポンプの駆動時間<前記凍結運転後のドレンポンプの駆動時間」の関係を満たすように、前記ドレンポンプを駆動させる
    空気調和機。
  2.  請求項1に記載の空気調和機において、
     前記制御装置は、
     前記凍結運転終了後に解凍運転を実行し、
     前記解凍運転中の少なくとも一部の時間、前記ドレンポンプを駆動させる
    ことを特徴とする空気調和機。
  3.  請求項2に記載の空気調和機において、
     前記制御装置は、
     前記凍結運転終了後に乾燥運転を実行し、
     前記解凍運転中と前記乾燥運転中の少なくとも一部の時間、前記ドレンポンプを駆動させる
    ことを特徴とする空気調和機。
  4.  請求項3に記載の空気調和機において、
     室内ファンを備え、
     前記制御装置は、前記乾燥運転で前記室内ファンを駆動している間、前記ドレンポンプを駆動させる
    ことを特徴とする空気調和機。
  5.  請求項3に記載の空気調和機において、
     前記制御装置は、前記凍結運転、前記解凍運転、及び前記乾燥運転中の少なくとも一部の時間、前記ドレンポンプの駆動をオンさせ続ける
    ことを特徴とする空気調和機。
  6.  請求項1に記載の空気調和機において、
     前記制御装置は、前記通常の冷房運転が終了すると所定時間以上経過した後に前記ドレンポンプを停止させ、その後、前記凍結運転を開始するまで前記ドレンポンプを停止させ続ける
    ことを特徴とする空気調和機。
  7.  請求項4に記載の空気調和機において、
     前記制御装置は、前記乾燥運転が終了した後も一定時間以上、前記ドレンポンプを駆動させ続ける
    ことを特徴とする空気調和機。
  8.  請求項1に記載の空気調和機において、
     前記凍結運転中にユーザによる停止操作を受け付けた場合での停止操作を受け付けてから前記ドレンポンプの駆動開始までの時間は、前記通常の冷房運転での運転終了から前記ドレンポンプの駆動開始までの時間よりも長い
    ことを特徴とする空気調和機。
  9.  冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、
     前記室内熱交換器に付着して落下した水をドレン水として一時的に溜めるドレンパンと、
     前記ドレンパンに溜まった前記ドレン水を外部に排水するドレンポンプと、
     前記冷凍サイクルとドレンポンプの動作を制御する制御装置と、を備え、
     前記制御装置は、凍結運転、解凍運転、及び乾燥運転を含む凍結洗浄運転を行う機能を有するとともに、
     前記ドレンパンは、前記解凍運転で短時間のうちに発生するドレン水を溢れさせずに溜めることができる程度の大きさを有しており、
     前記制御装置は、前記乾燥運転中の少なくとも一部の時間、前記ドレンポンプを停止させる
    空気調和機。
PCT/JP2018/037442 2018-10-05 2018-10-05 空気調和機 WO2020070890A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880005908.8A CN111279133B (zh) 2018-10-05 2018-10-05 空调机
JP2019521841A JP6698221B1 (ja) 2018-10-05 2018-10-05 空気調和機
ES201990070A ES2863076R1 (es) 2018-10-05 2018-10-05 Acondicionador de aire
MYPI2019005474A MY196763A (en) 2018-10-05 2018-10-05 Air-Conditioner
PCT/JP2018/037442 WO2020070890A1 (ja) 2018-10-05 2018-10-05 空気調和機
FR1910357A FR3086999B1 (fr) 2018-10-05 2019-09-20 climatiseur
TW108135893A TWI705222B (zh) 2018-10-05 2019-10-03 空調機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037442 WO2020070890A1 (ja) 2018-10-05 2018-10-05 空気調和機

Publications (1)

Publication Number Publication Date
WO2020070890A1 true WO2020070890A1 (ja) 2020-04-09

Family

ID=70055387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037442 WO2020070890A1 (ja) 2018-10-05 2018-10-05 空気調和機

Country Status (7)

Country Link
JP (1) JP6698221B1 (ja)
CN (1) CN111279133B (ja)
ES (1) ES2863076R1 (ja)
FR (1) FR3086999B1 (ja)
MY (1) MY196763A (ja)
TW (1) TWI705222B (ja)
WO (1) WO2020070890A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477658B (zh) * 2017-03-27 2021-07-06 张益艳 一种空调机组

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64242B2 (ja) * 1980-05-02 1989-01-05 Satoshi Kemi
JP2005226900A (ja) * 2004-02-12 2005-08-25 Matsushita Electric Ind Co Ltd 空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361189B1 (ko) * 2000-12-13 2002-11-21 삼성전자 주식회사 배수펌프를 갖는 공기조화기
KR20050119846A (ko) * 2004-06-17 2005-12-22 삼성전자주식회사 응축수 배수용 펌프 제어 장치 및 그 방법
US8651824B2 (en) * 2005-03-25 2014-02-18 Diversitech Corporation Condensate pump
KR20070073525A (ko) * 2006-01-05 2007-07-10 삼성전자주식회사 멀티형 공기조화기의 배수펌프 제어장치 및 방법
JP2008164282A (ja) * 2008-02-12 2008-07-17 Sanyo Electric Co Ltd 空気調和機
US20110091330A1 (en) * 2009-10-21 2011-04-21 Deoliviera Marcelo Condensate Removal Pump Controller Using Acoustic Liquid Level Sensor
CN103090460B (zh) * 2011-11-07 2016-04-06 华为技术有限公司 用于供暖、通风或空气调节系统的冷凝水排放方法和装置
CN105944465A (zh) * 2016-05-06 2016-09-21 广东美的制冷设备有限公司 空调器及其清洁控制方法
CN106766447A (zh) * 2016-11-30 2017-05-31 美的集团武汉制冷设备有限公司 空调器蒸发器清洗控制方法、装置及空调器
CN106765919B (zh) * 2016-12-08 2019-06-28 珠海格力电器股份有限公司 一种空调的控制方法、装置及空调
WO2018174719A1 (en) * 2017-03-23 2018-09-27 Jets As Arrangement for accumulation and evacuation of defrosting and condensation water from refrigeration and cooling units
CN109790994A (zh) * 2017-04-28 2019-05-21 日立江森自控空调有限公司 空调机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64242B2 (ja) * 1980-05-02 1989-01-05 Satoshi Kemi
JP2005226900A (ja) * 2004-02-12 2005-08-25 Matsushita Electric Ind Co Ltd 空気調和機

Also Published As

Publication number Publication date
JPWO2020070890A1 (ja) 2021-02-15
ES2863076R1 (es) 2021-10-14
MY196763A (en) 2023-05-03
CN111279133A (zh) 2020-06-12
ES2863076A2 (es) 2021-10-08
TW202014645A (zh) 2020-04-16
JP6698221B1 (ja) 2020-05-27
TWI705222B (zh) 2020-09-21
CN111279133B (zh) 2022-01-25
FR3086999B1 (fr) 2021-05-14
FR3086999A1 (fr) 2020-04-10

Similar Documents

Publication Publication Date Title
JP6486586B1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
CN109154444B (zh) 空调机
JP6498374B1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
JP6225776B2 (ja) マルチタイプ空気調和機
US10197317B2 (en) Air conditioner with outdoor unit compressor driven at controllable activation rotational speed
JP6667232B2 (ja) 空気調和機
TWI721754B (zh) 空調機
JP6786019B1 (ja) 空気調和機
JP2019215149A (ja) 空気調和機
CN111033152B (zh) 制冷机
JP2018189351A (ja) 空気調和機
JP2013148304A (ja) 空気調和機
JP2012122674A (ja) 多室型空気調和機
JP2021008989A (ja) 空気調和機および制御方法
WO2020070890A1 (ja) 空気調和機
TWI709714B (zh) 空調機
JP6721060B2 (ja) 空気調和機
JP2005016884A (ja) 空気調和機
CN113614458B (zh) 空调机
JP2000320876A (ja) 空気調和機
JPH0921556A (ja) 空気調和機
JP7082306B1 (ja) 空気調和機
WO2021095423A1 (ja) 空気調和装置
JP2022041713A (ja) 空気調和装置
CN113614457A (zh) 空调机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521841

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936047

Country of ref document: EP

Kind code of ref document: A1