WO2023040082A1 - 一种锂离子电池非水电解液及其应用 - Google Patents

一种锂离子电池非水电解液及其应用 Download PDF

Info

Publication number
WO2023040082A1
WO2023040082A1 PCT/CN2021/137032 CN2021137032W WO2023040082A1 WO 2023040082 A1 WO2023040082 A1 WO 2023040082A1 CN 2021137032 W CN2021137032 W CN 2021137032W WO 2023040082 A1 WO2023040082 A1 WO 2023040082A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aqueous electrolyte
ion batteries
ion battery
carbonate
Prior art date
Application number
PCT/CN2021/137032
Other languages
English (en)
French (fr)
Inventor
程梅笑
申海鹏
郭营军
李新丽
Original Assignee
湖州昆仑亿恩科电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州昆仑亿恩科电池材料有限公司 filed Critical 湖州昆仑亿恩科电池材料有限公司
Publication of WO2023040082A1 publication Critical patent/WO2023040082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of batteries, for example, to a non-aqueous electrolyte solution for lithium-ion batteries and applications thereof.
  • lithium-ion batteries With the wide application of lithium-ion batteries in the fields of life, production, energy storage and military industry, the safety performance of batteries is one of the important factors to promote its further development. Many lithium-ion batteries, especially soft pack batteries, are stored at high temperature or charged and discharged at high It is easy to short circuit during the process, which can cause a fire. One of the reasons why lithium-ion batteries are prone to fire during high-temperature storage and charging and discharging is that lithium dendrites puncture the diaphragm and cause an internal short circuit in the battery, which instantly accumulates a large amount of heat in a certain space and ignites the diaphragm.
  • SEI Solid Electrolyte Interphase
  • CN108598461A discloses an electrolyte containing a cyclic phosphate siloxane additive.
  • the cyclic phosphate siloxane additive can form a stable solid electrolyte film on the surface of a high-nickel positive electrode material, suppressing interface gas generation, thereby further improving the structure of the positive electrode material. stability.
  • the above content can further reduce the impedance of the solid electrolyte membrane, the high-temperature cycle performance and capacity retention of lithium-ion batteries still need to be further improved.
  • CN106030889A discloses a non-aqueous electrolyte for a secondary battery. By adding a cyclic carbonate additive with a specific structure, it not only reduces the initial irreversible capacity, improves the first cycle efficiency of the secondary battery, but also improves the battery life of the secondary battery. High temperature cycle characteristics, but not related to the rate performance.
  • CN103493280A discloses a non-aqueous electrolyte containing cyclic sulfonate, which can broaden the service temperature range of secondary batteries, but does not involve cycle performance and rate performance.
  • the embodiments of the present application provide a non-aqueous electrolyte solution for lithium-ion batteries and applications thereof.
  • This application uses the addition of alkenyl siloxane compounds in the electrolyte, and when used in combination with other additives, a stable SEI film can be formed on the surface of both the positive and negative electrode materials, and the SEI film has excellent ion conduction performance. It reduces the impedance and capacity fading speed of the lithium-ion battery, and can maintain a good capacity retention rate and recovery rate and a small battery volume expansion in a high-temperature storage environment.
  • the embodiment of the present application provides a nonaqueous electrolytic solution for lithium ion batteries, which includes lithium salts, nonaqueous solvents and additives, and the additives include formula (1) Ring-structured alkenyl siloxane compounds, impedance-lowering additives, and film-forming additives:
  • R is selected from hydrogen, halogen, cyano, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C6-C30 aryl, amido, phosphate, sulfonyl, siloxy or boron
  • An acid ester group, n is an integer of 2-10.
  • This application adopts the alkenyl siloxane compound with the ring structure shown in formula (1) and the film-forming additive to be used in combination.
  • the alkenyl double bond is broken, and a dense compound can be formed on the surface of the positive electrode and the negative electrode material.
  • the SEI film enhances the compactness and stability of the SEI film, so it is not easy to be damaged under high temperature conditions. On the one hand, it reduces the consumption of active lithium ions and ensures the capacity of lithium-ion batteries; on the other hand, it is complex with the impedance-reducing additive.
  • the ion conduction performance and ion transmission rate are improved, the battery impedance is reduced, the internal polarization of the battery and the formation of lithium dendrites are reduced, so that the increase in the internal resistance of the battery and the gas production caused by the consumption of the electrolyte can be improved. problem, and suppressed the expansion of the battery volume.
  • the -Si-O- bond can complex the metal ions leached from the positive electrode, further reducing the impact of the metal ions on the catalytic reaction of the electrolyte.
  • Si atoms are very easy to absorb fluorine ions, and can also inhibit the hydrolysis of fluorine-containing lithium salts.
  • the R is selected from hydrogen, halogen, cyano, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C6-C30 aryl, such as hydrogen, halogen, cyano , methyl, propyl, substituted butyl or phenyl, but not limited to the listed species, other unlisted species within the substituent range are also applicable.
  • R is cyano, methyl, ethyl, propyl, phenyl or Wherein the wavy line represents the connection site of the group, for example R can be cyano, methyl, ethyl, propyl, phenyl or
  • the alkenylsiloxane compound having a ring structure represented by formula (1) is any one of the following compounds:
  • the alkenyl siloxane compound having a ring structure represented by formula (1) is any one of the above compounds, for example, it can be any one of T01, T02, T03, T04, T05 or T06 kind.
  • the mass percentage of the alkenyl siloxane compound having a ring structure represented by formula (1) in the non-aqueous electrolyte of the lithium ion battery is 0.01-5.00%, for example, it can be 0.01%, 0.05% , 0.10%, 0.50%, 1.00%, 2.00%, 4.00% or 5.00%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the non-aqueous electrolyte of the lithium-ion battery also includes an impedance-reducing additive
  • the impedance-reducing additive includes any one or a combination of at least two of lithium difluorophosphate, vinyl sulfate or lithium difluorooxalate borate,
  • it may be lithium difluorophosphate, vinyl sulfate, lithium difluorooxalate borate, or a combination of vinyl sulfate and lithium difluorooxalate borate.
  • the ring-structure alkenyl siloxane compound additive when used in combination with one or more of lithium difluorophosphate, vinylene carbonate, and lithium difluorooxalate borate, it not only enhances the compactness and Stability improves the stability of high-temperature cycles; it also reduces battery impedance and inhibits gas production and battery volume expansion.
  • the mass percentage content of the impedance-reducing additive is 0.01-10.00%, for example, it can be 0.01%, 0.05%, 1.00%, 3.00%, 6.00%, 8.00% or 10.00% %, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the non-aqueous electrolyte of the lithium-ion battery also includes a film-forming additive
  • the film-forming additive includes propylene sulfate, 1,3-propane sultone, vinylene carbonate, ethylene carbonate, Fluoroethylene carbonate, propene sultone, 1,4-butane sultone, ethylene sulfite, lithium difluorobisoxalate phosphate lithium tetrafluoroborate, bisoxalate lithium borate, succinonitrile, hexamethylene Dinitrile, succinic anhydride, tris(trimethylsilyl) borate, tris(trimethylsilyl) phosphate, methylene disulfonate, ethylene glycol bispropionitrile ether, 1,3, Any one or at least two of 6-hexanetrinitrile, tripropargyl phosphate, fluorobenzene or 1,1,2,3-tetrafluoroethyl-2,2,2,
  • the mass percentage of the film-forming additive is 0.01-20.00%, for example, it can be 0.01%, 1.00%, 5.00%, 10.00%, 15.00% or 20.00%, but Not limited to the numerical values listed, other unlisted numerical values within the numerical range are also applicable.
  • the lithium salt includes any one or at least two of lithium hexafluorophosphate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium bisfluorosulfonyl imide, or lithium bistrifluoromethanesulfonyl imide
  • a combination may be a combination of lithium hexafluorophosphate, lithium perchlorate, lithium trifluoromethanesulfonate and lithium bisfluorosulfonyl imide or a combination of lithium bistrifluoromethanesulfonyl imide, lithium hexafluorophosphate and lithium perchlorate, But not limited to the listed species, other unlisted species within the scope of lithium salts are also applicable.
  • the mass percentage of lithium salt in the non-aqueous electrolyte of the lithium-ion battery is 2.0-25.0%, for example, it can be 2.0%, 5.0%, 8.0%, 10.0%, 15.0%, 20.0% or 25.0%, But not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the non-aqueous solvent is ethylene glycol diethyl ether, methyl propionate, methyl acetate, propyl propionate, methyl butyrate, ethyl butyrate, propyl acetate, butyl butyrate, acetonitrile, Propyl methyl carbonate, ethyl propionate, gamma-butyrolactone, sulfolane, dimethyl sulfoxide, tetrahydrofuran, propylene carbonate, ethyl acetate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate or carbonic acid Any one or a combination of at least two vinyl esters, such as ethylene glycol diethyl ether, methyl propionate, a combination of methyl acetate and propyl propionate or methyl butyrate, ethyl butyrate and propyl acetate Combinations of esters, but not limited to the listed ones,
  • the mass percentage of the non-aqueous solvent is 40.00-97.97%, for example, it can be 40.00%, 45.00%, 50.00%, 55.00%, 60.00%, 70.00%, 80.00% %, 95.00% or 97.97%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • an embodiment of the present application provides a lithium-ion battery, the lithium-ion battery includes the non-aqueous electrolyte solution for the lithium-ion battery described in the first aspect.
  • the lithium-ion battery further includes a battery casing and a cell, and the cell and the non-aqueous electrolyte of the lithium-ion battery are sealed in the battery casing.
  • the cell includes a positive electrode, a negative electrode, and a separator or a solid electrolyte layer disposed between the positive electrode and the negative electrode.
  • the material of the positive electrode is an active material capable of intercalating and deintercalating lithium
  • the material of the negative electrode is a metal or alloy capable of intercalating and deintercalating lithium or forming an alloy with lithium, or a metal oxide capable of intercalating/extracting lithium.
  • the active material capable of intercalating and deintercalating lithium is LiNi x Co y Mn z L (1-xyz) O 2 , LiCo x' L (1-x') O 2 , LiNi x” L' y' At least one of Mn (2-x"-y') O 4 or Li z' MPO 4 ; wherein L is at least one of Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2, L 'is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe; 0.5 ⁇ z' ⁇ 1, M is at least one of Fe, Mn or Co, such as the
  • the active materials that can intercalate and deintercalate lithium can be LiCoO 2 , LiNi
  • the negative electrode is made of crystalline carbon, lithium metal, LiMnO 2 , LiAl, Li 3 Sb, Li 3 Cd, LiZn, Li 3 Bi, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, LiC 6 , At least one of Li 3 FeN 2 , Li 2.6 CoN 0.4 , Li 2.6 CuN 0.4 or Li 4 Ti 5 O 12 , such as crystalline carbon, lithium metal, a combination of crystalline carbon and LiMnO 2 or Li 4.4 Pb and The combination of Li 4.4 Sn is not limited to the listed types, and other unlisted types within the material range of the negative electrode are also applicable.
  • the embodiment of the present application adopts alkenyl siloxane compound with a ring structure, which can form a dense SEI film on the surface of the positive electrode and negative electrode materials.
  • other additives added will also participate in the interface film formation process, which enhances the SEI film. Compactness and stability, so that it is not easy to be destroyed under high temperature conditions. On the one hand, it reduces the consumption of active lithium ions and ensures the capacity of lithium-ion batteries.
  • the non-aqueous electrolytic solution provided by the embodiment of the present application contains an alkenyl siloxane compound additive and one or more of lithium difluorophosphate, vinylene carbonate, and lithium difluorooxalate borate can improve SEI
  • the ion conduction performance and ion transmission rate of the membrane reduce the battery impedance, reduce the internal polarization of the battery and the formation of lithium dendrites, which can not only improve the battery internal resistance increase and gas production caused by the consumption of the electrolyte, but also inhibit The battery volume expands.
  • the -Si-O-bond of the alkenyl siloxane compound of ring structure added in the embodiment of the present application can complex the metal ions leached from the positive electrode, reducing the influence of metal ions on the catalytic reaction of the electrolyte, while the Si atom It is very easy to adsorb fluoride ions, and can also inhibit the hydrolysis of fluorine-containing lithium salts.
  • Fig. 1 is the capacity retention rate and recovery rate of the lithium-ion battery provided by Example 1 and Comparative Examples 1-4 stored at a high temperature of 60°C for 30 days;
  • Fig. 2 is the volume growth rate of the lithium-ion batteries provided in Example 1 and Comparative Examples 1-4 when stored at a high temperature of 60°C for 30 days;
  • FIG. 3 shows the capacity retention rates of the lithium-ion batteries provided in Example 1 and Comparative Examples 1-4 after cycling at a high temperature of 45° C. for 200 cycles.
  • This embodiment provides a non-aqueous electrolyte solution for lithium ion batteries. Based on the total mass of the non-aqueous electrolyte solution as 100%, the lithium ion non-aqueous electrolyte solution includes lithium hexafluorophosphate with a mass percentage of 13.5%, lithium hexafluorophosphate with a mass percentage of 21.0%.
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage is 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate battery-grade organic solvent, mix the After fully drying, lithium hexafluorophosphate with a mass percentage of 13.5% is added to the above non-aqueous solvent, and T01 alkenyl siloxane compound with a mass percentage of 2.50% is added, and then vinylene carbonate with a mass percentage of 10.00% is added Ester and 5.00% vinyl sulfate, formulated as a non-aqueous electrolyte for lithium-ion batteries.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium-ion non-aqueous electrolyte solution includes 2.0% by mass of lithium hexafluorophosphate, 12.0% of Ethylene carbonate, non-aqueous solvent of 4.0% diethyl carbonate and 24.0% vinyl methyl carbonate, 0.01% T03 alkenyl siloxane compound (purchased from Shanghai Tixiai Chemical Industry Development Co., Ltd.), 0.01% Additives of vinylene carbonate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 0.01% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Material Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the total mass of the non-aqueous electrolyte is 100%, after mixing 12.0% ethylene carbonate, 4.0% diethyl carbonate and 24.0% methyl vinyl carbonate battery-grade organic solvent with a mass percentage, the After fully drying, 2.0% by mass of lithium hexafluorophosphate is added to the above non-aqueous solvent, and 0.01% by mass of T03 alkenyl siloxane compound is added, and then 0.01% by mass of vinylene carbonate ester and 0.01% lithium difluorophosphate to prepare non-aqueous electrolyte solution for lithium ion battery.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium-ion non-aqueous electrolyte solution includes 25.0% by mass of lithium hexafluorophosphate, 28.5% of Ethylene carbonate, non-aqueous solvent of 9.5% diethyl carbonate and 57.0% vinyl methyl carbonate, 5.00% T05 alkenyl siloxane compound (purchased from Shanghai Tixiai Chemical Industry Development Co., Ltd.), 20.00% Additives of vinylene carbonate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 10.00% lithium difluorooxalate borate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage content is 28.5% ethylene carbonate, 9.5% diethyl carbonate and 57.0% methyl vinyl carbonate battery-grade organic solvent are mixed uniformly, the After fully drying, 25.0% by mass of lithium hexafluorophosphate is added to the above non-aqueous solvent, and 5.00% by mass of T05 alkenyl siloxane compound is added, and then 20.00% by mass of vinylene carbonate Esters and 10.00% lithium difluorooxalate borate are formulated into non-aqueous electrolytes for lithium-ion batteries.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium ion non-aqueous electrolyte solution includes 12.5% by mass of lithium hexafluorophosphate, 21.0% of Ethylene carbonate, non-aqueous solvent of 7.0% diethyl carbonate and 42.0% vinyl methyl carbonate, 0.01% T02 alkenyl siloxane compound (purchased from Shanghai McLean Biochemical Technology Co., Ltd.), 1.00% carbonic acid Additives of vinylene ester (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 1.00% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Material Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage is 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate battery-grade organic solvent, mix the After fully drying, lithium hexafluorophosphate with a mass percentage of 12.5% is added to the above non-aqueous solvent, and a T02 alkenylsiloxane compound with a mass percentage of 0.01% is added, and then vinylene carbonate with a mass percentage of 1.00% is added ester and 1.00% lithium difluorophosphate to prepare non-aqueous electrolyte solution for lithium ion battery.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium ion non-aqueous electrolyte solution includes 12.5% by mass of lithium hexafluorophosphate, 21.0% of Ethylene carbonate, non-aqueous solvent of 7.0% diethyl carbonate and 42.0% vinyl methyl carbonate, 3.00% T05 alkenyl siloxane compound (purchased from Shanghai Tixiai Chemical Industry Development Co., Ltd.), 1.00% Additives of vinylene carbonate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 0.01% lithium difluorooxalate borate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage is 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate battery-grade organic solvent, mix the After fully drying, 12.5% by mass of lithium hexafluorophosphate was added to the above non-aqueous solvent, and 3.00% by mass of T05 alkenyl siloxane compound was added, and then 1.00% by mass of vinylene carbonate Esters and 0.01% lithium difluorooxalate borate are prepared into non-aqueous electrolyte solution for lithium ion battery.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium ion non-aqueous electrolyte solution includes 12.5% by mass of lithium hexafluorophosphate, 21.0% of Ethylene carbonate, non-aqueous solvent of 7.0% diethyl carbonate and 42.0% vinyl methyl carbonate, 1.00% T03 alkenyl siloxane compound (purchased from Shanghai Tixiai Chemical Industry Development Co., Ltd.), 1.00% Additives of vinylene carbonate (purchased from Jiangsu Huasheng Material Technology Group Co., Ltd.) and 1.00% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Material Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage is 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate battery-grade organic solvent, mix the After fully drying, lithium hexafluorophosphate with a mass percentage of 12.5% is added to the above non-aqueous solvent, and T03 alkenylsiloxane compound with a mass percentage of 1.00% is added, and then vinylene carbonate with a mass percentage of 1.00% is added ester and 1.00% lithium difluorophosphate to prepare non-aqueous electrolyte solution for lithium ion battery.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • the lithium ion non-aqueous electrolyte solution includes 12.5% by mass of lithium hexafluorophosphate, 21.0% of Ethylene carbonate, non-aqueous solvent of 7.0% diethyl carbonate and 42.0% vinyl methyl carbonate, 4.00% T01 alkenyl siloxane compound (purchased from Shanghai Tixiai Chemical Industry Development Co., Ltd.), 2.00% Additives of fluoroethylene carbonate (purchased from Shaanxi Zhonglan Chemical Technology New Material Co., Ltd.) and 1.00% lithium difluorophosphate (purchased from Jiangsu Guotai Chaowei New Material Co., Ltd.).
  • the preparation method of the lithium-ion battery non-aqueous electrolyte is as follows:
  • the electrolyte solution is prepared in a glove box, the nitrogen content in the glove box is 99.999%, the actual oxygen content in the glove box is ⁇ 2ppm, and the moisture content is ⁇ 0.1ppm.
  • the mass percentage is 21.0% ethylene carbonate, 7.0% diethyl carbonate and 42.0% methyl vinyl carbonate battery-grade organic solvent, mix the After fully drying, 12.5% by mass of lithium hexafluorophosphate was added to the above non-aqueous solvent, and 4.00% by mass of T01 alkenyl siloxane compound was added, and then 2.00% by mass of fluorocarbonic acid Vinyl ester and 1.00% lithium difluorophosphate are prepared into non-aqueous electrolyte solution for lithium ion battery.
  • the preparation method of lithium ion battery is as follows:
  • Positive electrode preparation LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, binder polyvinylidene fluoride (PVDF), conductive agent acetylene black are mixed according to the weight ratio of 97.5:1.5:1.5, N-methylpyrrolidone (NMP) is added, Stir under the action of a vacuum mixer until the mixed system becomes a uniform fluid positive electrode slurry; evenly coat the positive electrode slurry on an aluminum foil with a thickness of 15 ⁇ m; On aluminum foil; after baking the above-mentioned coated aluminum foil in 5 ovens with different temperature gradients, dry it in an oven at 120°C for 8 hours, and then roll and cut to obtain the required positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Negative electrode preparation 95.7 wt% graphite negative electrode material, 1 wt% conductive carbon black (SP) conductive agent, 1.3 wt% sodium carboxymethyl cellulose (CMC) were dispersed
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber (SBR) binder that is 2wt% by mass is used to make negative electrode slurry by wet process; the negative electrode slurry is evenly coated on a copper foil with a thickness of 15 ⁇ m; the above-mentioned coated After the copper foil is baked in 5 ovens with different temperature gradients, it is dried in an oven at 85°C for 5 hours, and then rolled and cut to obtain the required graphite negative electrode sheet.
  • SBR styrene-butadiene rubber
  • Diaphragm preparation 7-9 mm thick polypropylene is used as the diaphragm.
  • Lithium-ion battery preparation Wind the above-prepared positive electrode sheet, separator, and negative electrode sheet to obtain a bare cell without liquid injection; place the bare cell in the outer packaging aluminum foil, and inject the above-prepared electrolyte into the dried In the bare cell, the required lithium-ion battery is obtained through vacuum packaging, standing, formation, shaping, sorting and other processes, and the discharge voltage range is set to 3.0-4.2V.
  • Example 1 The difference between this example and Example 1 is that no vinyl sulfate and vinylene carbonate are added during the preparation of the non-aqueous electrolyte for lithium-ion batteries, and the others are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that in the preparation process of the non-aqueous electrolyte solution for lithium-ion batteries, the total mass of the non-aqueous electrolyte solution is 100%, and the mass percentage of the alkenyl siloxane compound Be 10.00%, others are all identical with embodiment 1.
  • Example 1 The difference between this comparative example and Example 1 is that no alkenyl siloxane compound is added during the preparation of the lithium-ion battery non-aqueous electrolyte, and the others are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that during the preparation of the non-aqueous electrolyte solution for lithium-ion batteries, the alkenyl siloxane compound is replaced by siloxane compound A with the following structure (purchased from Shanghai Merrill Chemical Technology Co., Ltd.), others are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that during the preparation of the non-aqueous electrolyte solution for lithium-ion batteries, no alkenyl siloxane compound and vinyl sulfate are added, and 1,3-propane sultone and vinylene carbonate. Taking the total mass of the non-aqueous electrolytic solution as 100%, the mass percentage of 1,3-propane sultone is 7.50%, and the mass percentage of vinylene carbonate is 10.00%. Others are the same as in Example 1. same.
  • Example 1 The difference between this comparative example and Example 1 is that during the preparation of the non-aqueous electrolyte for lithium-ion batteries, no alkenyl siloxane compound, vinyl sulfate and vinylene carbonate were added, and 1,3-propane sultones. Based on the total mass of the non-aqueous electrolyte as 100%, the mass percentage of 1,3-propane sultone is 17.50%, and the others are the same as in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that during the preparation of the non-aqueous electrolyte solution for lithium-ion batteries, no alkenyl siloxane compound, vinyl sulfate and 1,3-propane sultone were added. vinylene carbonate. Based on the total mass of the non-aqueous electrolyte as 100%, the mass percentage of vinylene carbonate is 17.50%, and the others are the same as in Example 1.
  • the difference between this comparative example and Example 1 is that no alkenyl siloxane compound, vinyl sulfate, 1,3-propane sultone and carbonic acid Vinylene ester, the non-aqueous solvent comprises the non-aqueous solvent of the ethylene carbonate of 25.95% by mass percentage, the diethyl carbonate of 8.65% and the vinyl methyl carbonate of 51.9%, and others are identical with embodiment 1.
  • the lithium-ion batteries prepared in Examples 1-9 and Comparative Examples 1-6 were tested for high-temperature cycle, high-temperature storage performance and ion conductivity performance respectively.
  • the test methods are as follows:
  • the 200th cycle capacity retention rate (%) (200th cycle discharge capacity / first cycle discharge capacity) * 100%
  • Battery capacity retention rate (%) retention capacity / initial capacity * 100%
  • Battery capacity recovery rate (%) recovery capacity / initial capacity * 100%
  • the present application uses a non-aqueous electrolyte containing alkenyl siloxane to test the high-temperature cycle and high-temperature storage performance of the lithium-ion battery prepared in the above examples, as shown in Figure 1 Compared with Comparative Examples 1-4, the lithium-ion batteries provided in Example 1 and Comparative Examples 1-4 have a higher capacity retention rate and recovery rate at 60°C for high temperature storage for 30 days, indicating that the lithium-ion batteries provided in Example 1 have a higher High capacity retention rate and capacity recovery rate further illustrate that the lithium-ion battery prepared by the electrolyte of the present application has the advantages of high cycle retention rate, storage capacity retention rate and high recovery rate; Fig.
  • the volume growth rate of the 60 °C high-temperature storage of the lithium-ion battery provided in -4 for 30 days shows that the thickness growth of the lithium-ion battery in Example 1 is much smaller than that of the lithium-ion battery in Comparative Example 1-4, and then reflects the use of the electrolytic solution provided by the application. Liquid can alleviate the battery volume expansion. Further, when the alkenyl siloxane compound is used in combination with lithium difluorophosphate, vinylene carbonate, and lithium difluorooxalate borate, it shows better battery performance than when the alkenyl siloxane compound additive is used alone, and The volume expansion rate of the battery after high-temperature storage is much smaller than that of the comparative example. Therefore, the electrolyte of the present application is applied to lithium-ion batteries, and has excellent high-temperature long-term cycle stability, high-temperature storage stability, and good safety performance.
  • Figure 3 shows the capacity retention rates of the lithium-ion batteries provided in Example 1 and Comparative Examples 1-4 at a high temperature of 45°C after 200 cycles of cycling, indicating that the lithium-ion batteries in Example 1 have the highest capacity retention rates after 200 cycles of cycling.
  • Comparative Example 2 even the additive containing a cyclic siloxane compound but not containing an alkenyl double bond showed that the capacity retention rate was below 80% after 200 cycles at 45°C, and the capacity retention rate and recovery rate were both low after 60°C high-temperature storage.
  • the thickness growth rate is far higher than that of Example; the effect of other comparative examples without siloxane compound additives is lower than this comparative example 2, indicating that when there is no alkenyl siloxane compound additive in the electrolyte, Lithium batteries have high impedance, poor conductivity of lithium ions, and high temperature leads to the dissolution of positive transition metal ions, which induces the continuous decomposition of catalytic solvents, thereby excessively consuming lithium ions, resulting in low capacity retention and recovery rates under high temperature conditions.
  • the application illustrates the non-aqueous electrolyte of the application and its application through the above examples, but the application is not limited to the above examples, that is, it does not mean that the application must rely on the above examples to implement .
  • Those skilled in the art should understand that any improvement to the present application, the equivalent replacement of each raw material of the product of the present application, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本文公布一种锂离子电池非水电解液及其应用。所述锂离子电池非水电解液包括锂盐、非水溶剂和添加剂,所述添加剂包含环状结构的烯基硅氧烷化合物、降低阻抗添加剂和成膜添加剂。本申请利用在电解液中添加烯基硅氧烷化合物,并与其他添加剂复配使用时,能够在正极和负极电极材料表面均形成稳固的SEI膜,同时SEI膜具有优良的离子导通性能,降低了锂离子电池的阻抗和容量衰减的速度,并能够在高温存储环境下保持良好的容量保持率和恢复率以及较小的电池体积膨胀。

Description

一种锂离子电池非水电解液及其应用 技术领域
本申请实施例涉及电池领域,例如涉及一种锂离子电池非水电解液及其应用。
背景技术
随着锂离子电池在生活,生产,储能及军工领域的广泛应用,电池的安全性能是推进其进一步发展的重要因素之一,很多锂离子电池尤其是软包电池在高温存储或高温充放电过程中容易短路,从而导致起火。锂离子电池在高温存储及充放电过程中容易起火的原因之一是锂枝晶刺破隔膜导致电池内部短路,瞬间在一定空间内积聚大量热量进而引燃隔膜。另一个原因是电池在高温环境下内部副反应增多,电解液分解产生气体,造成电池外壳破裂,导致金属锂与氧或水蒸汽反应,也能够引发火灾。此外,高温环境下由于固体电解质膜(Solid Electrolyte Interphase,SEI)易分解,因此过多锂离子参与到SEI膜的形成过程中,使得负极中脱嵌的锂离子减少,进而导致容量降低。
为了提高锂离子电池的电化学性能,许多研究人员利用在电解液中添加不同种类的添加剂来提升锂离子电池的性能,例如碳酸亚乙烯酯(Vinylene Carbonate,VC)和氟代碳酸乙烯酯(4-Fluoro-1,3-dioxolan-2-one,FEC)。然而,添加剂的加入会衍生新的问题,例如添加FEC后,在高温充放电过程中电池容易产生气体,导致电池发生鼓胀,因此需要平衡添加剂和电池电化学性能的关系。
CN108598461A公开了一种含有环磷酸硅氧烷添加剂的电解液,在充电过程中环磷酸硅氧烷添加剂能够在高镍正极材料表面形成稳定的固体电解质膜,抑制界面产气,从而进一步提高正极材料结构的稳定性。然而,虽然上述内容能够进一步降低固体电解质膜的阻抗,但锂离子电池的高温循环性能和容量保持率仍需进一步提高。
CN106030889A公开了一种二次电池的非水电解液,通过加入具有特定结构的环状碳酸酯添加剂,其不仅降低了初期不可逆容量,提高了二次电池的首次循环效率,还改善了二次电池的高温循环特性,但未涉及倍率性能。 CN103493280A公开了一种含有环状磺酸酯的非水电解液,其能拓宽二次电池的使用温度范围,但是未涉及循环性能和倍率性能。
因此,在本领域中,期望开发一种针对锂离子电池具有良好的循环性能、高温存储性能和循环性能的非水电解液及综合性能优异的含有该非水电解液的锂离子电池。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对相关技术的不足,本申请实施例提供了一种锂离子电池非水电解液及其应用。本申请利用在电解液中添加烯基硅氧烷化合物,并与其他添加剂复配使用时,能够在正极和负极电极材料表面均形成稳固的SEI膜,同时SEI膜具有优良的离子导通性能,降低了锂离子电池的阻抗和容量衰减的速度,并能够在高温存储环境下保持良好的容量保持率和恢复率以及较小的电池体积膨胀。
第一方面,本申请实施例提供一种锂离子电池非水电解液,所述锂离子电池非水电解液包括锂盐、非水溶剂和添加剂,所述添加剂包含具有式(1)所示的环状结构的烯基硅氧烷化合物、降低阻抗添加剂和成膜添加剂:
Figure PCTCN2021137032-appb-000001
其中R选自氢、卤素、氰基、取代或未取代的C1-C5的烷基、取代或未取代的C6-C30的芳基、酰胺基、磷酸酯基、磺酰基、硅氧基或硼酸酯基,n为2~10的整数。
本申请采用具有式(1)所示的环状结构的烯基硅氧烷化合物与成膜添加剂复配使用,在电化学反应过程初期烯基双键断裂,能够在正极和负极材料表面形成致密的SEI膜,增强了SEI膜的致密性和稳定性,从而在高温条件下不易被破坏,一方面降低了消耗的活性锂离子,保证了锂离子电池的容量;另一方面与降低阻抗添加剂复配使用提高了SEI膜的离子导通性能和离子传输速率, 降低了电池阻抗,减少电池内部极化和锂枝晶的形成,从而既可以改善电解液的消耗引起的电池内阻增加和产气问题,又抑制了电池体积膨胀。此外,-Si-O-键可以络合正极溶出的金属离子,进一步降低了金属离子对电解液的催化反应影响,同时Si原子极易吸附氟离子,也能抑制含氟锂盐的水解。
在本申请中,所述R选自氢、卤素、氰基、取代或未取代的C1-C5的烷基、取代或未取代的C6-C30的芳基,例如可以为氢、卤素、氰基、甲基、丙基、取代丁基或苯基,但不限于所列举的种类,取代基范围内其它未列举的种类同样适用。
优选地,R为氰基、甲基、乙基、丙基、苯基或
Figure PCTCN2021137032-appb-000002
其中波浪线代表基团的连接位点,例如R可以为氰基、甲基、乙基、丙基、苯基或
Figure PCTCN2021137032-appb-000003
优选地,所述具有式(1)所示的环状结构的烯基硅氧烷化合物为如下化合物中的任意一种:
Figure PCTCN2021137032-appb-000004
优选地,所述具有式(1)所示的环状结构的烯基硅氧烷化合物为如上化合物中的任意一种,例如可以为T01,T02,T03,T04,T05或T06中的任意一种。
优选地,所述锂离子电池非水电解液中具有式(1)所示的环状结构的烯基 硅氧烷化合物的质量百分含量为0.01~5.00%,例如可以为0.01%,0.05%,0.10%,0.50%,1.00%,2.00%,4.00%或5.00%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述锂离子电池非水电解液中还包括降低阻抗添加剂,所述降低阻抗添加剂包括二氟磷酸锂、硫酸乙烯酯或二氟草酸硼酸锂中任意一种或至少两种的组合,例如可以为二氟磷酸锂、硫酸乙烯酯、二氟草酸硼酸锂或硫酸乙烯酯和二氟草酸硼酸锂的组合。
本申请中环状结构的烯基硅氧烷化合物添加剂与二氟磷酸锂、碳酸亚乙烯酯、二氟草酸硼酸锂中的一种或几种搭配使用时,不仅增强了SEI膜的致密性和稳定性,提高了高温循环的稳定性;还降低了电池阻抗和抑制产气及电池体积膨胀问题。
优选地,所述锂离子电池非水电解液中,降低阻抗添加剂的质量百分含量为0.01~10.00%,例如可以为0.01%,0.05%,1.00%,3.00%,6.00%,8.00%或10.00%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述锂离子电池非水电解液中还包括成膜添加剂,所述成膜添加剂包括硫酸丙烯酯、1,3-丙烷磺酸内酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯、丙烯磺酸内酯、1,4-丁烷磺酸内酯、亚硫酸亚乙酯、二氟双草酸磷酸锂四氟硼酸锂、双草酸硼酸锂、丁二腈、己二腈、丁二酸酐、三(三甲基硅基)硼酸酯、三(三甲基硅基)磷酸酯、甲烷二磺酸亚甲酯、乙二醇双丙腈醚、1,3,6-己烷三腈、磷酸三炔丙酯、氟苯或1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚中的任意一种或至少两种的组合,例如可以为硫酸丙烯酯、1,3-丙烷磺酸内酯、碳酸亚乙烯酯和碳酸乙烯亚乙酯的组合或氟代碳酸乙烯酯、丙烯磺酸内酯和甲烷二磺酸亚甲酯的组合。
优选地,所述锂离子电池非水电解液中,成膜添加剂的质量百分含量为0.01~20.00%,例如可以为0.01%,1.00%,5.00%,10.00%,15.00%或20.00%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述锂盐包括六氟磷酸锂、高氯酸锂、三氟甲基磺酸锂、双氟磺酰亚胺锂或双三氟甲基磺酰亚胺锂中任意一种或至少两种的组合,例如可以为六氟磷酸锂、高氯酸锂、三氟甲基磺酸锂和双氟磺酰亚胺锂的组合或双三氟甲基磺酰亚胺锂、六氟磷酸锂和高氯酸锂的组合,但不限于所列举的种类,锂盐 范围内其它未列举的种类同样适用。
优选地,所述锂离子电池非水电解液中锂盐的质量百分含量为2.0~25.0%,例如可以为2.0%,5.0%,8.0%,10.0%,15.0%,20.0%或25.0%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述非水溶剂为乙二醇二乙醚、丙酸甲酯、乙酸甲酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、乙酸丙酯、丁酸丁酯、乙腈、碳酸甲丙酯、丙酸乙酯、γ-丁内酯、环丁砜、二甲基亚砜、四氢呋喃、碳酸丙烯酯、乙酸乙酯、碳酸二乙酯、碳酸甲乙酯、碳酸二甲酯或碳酸乙烯酯中任意一种或至少两种的组合,例如可以为乙二醇二乙醚、丙酸甲酯、乙酸甲酯和丙酸丙酯的组合或丁酸甲酯、丁酸乙酯和乙酸丙酯的组合,但不限于所列举的种类,非水溶剂范围内其它未列举的种类同样适用。
优选地,所述锂离子电池非水电解液中,非水溶剂的质量百分含量为40.00~97.97%,例如可以为40.00%,45.00%,50.00%,55.00%,60.00%,70.00%,80.00%,95.00%或97.97%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
第二方面,本申请实施例提供了一种锂离子电池,所述锂离子电池包括第一方面所述的锂离子电池非水电解液。
优选地,所述锂离子电池还包括电池壳体和电芯,所述电芯和所述锂离子电池非水电解液密封在电池壳体内。
优选地,所述电芯包括正极、负极以及设置在所述正极和负极之间的隔膜或固态电解质层。
优选地,所述正极的材料为可嵌入及脱嵌锂的活性物质;所述负极的材料为脱嵌锂或能与锂形成合金的金属、合金,或者能插入/脱出锂的金属氧化物。
优选地,所述可嵌入及脱嵌锂的活性物质为LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x'L (1-x')O 2、LiNi x”L' y'Mn (2-x”-y')O 4或Li z'MPO 4中的至少一种;其中L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x'≤1,0.3<x”≤0.6,0.01≤y'≤0.2,L'为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0.5≤z'≤1,M为Fe、Mn或Co中的至少一种,例如所述可嵌入及脱嵌锂的活性物质可以为LiCoO 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.4Al 0.1Mn 1.5O 4、LiNi 0.4Mg 0.1Mn 1.5O 4、 Li 0.5MnPO 4或LiFePO 4,但不限于所列举的种类,可嵌入及脱嵌锂的活性物质范围内其它未列举的种类同样适用。
优选地,所述负极的材料由结晶型碳、锂金属、LiMnO 2、LiAl、Li 3Sb、Li 3Cd、LiZn、Li 3Bi、Li 4Si、Li 4.4Pb、Li 4.4Sn、LiC 6、Li 3FeN 2、Li 2.6CoN 0.4、Li 2.6CuN 0.4或Li 4Ti 5O 12中的至少一种,例如可以为结晶型碳、锂金属、结晶型碳和LiMnO 2的组合或Li 4.4Pb和Li 4.4Sn的组合,但不限于所列举的种类,负极的材料范围内其它未列举的种类同样适用。
相对于相关技术,本申请具有以下有益效果:
(1)本申请实施例采用环状结构的烯基硅氧烷化合物,能够在正极和负极材料表面形成致密的SEI膜,同时添加的其他添加剂也会参与界面成膜过程,增强了SEI膜的致密性和稳定性,从而在高温条件下不易被破坏,一方面降低了消耗的活性锂离子,保证了锂离子电池的容量。
(2)本申请实施例提供的非水电解液包含烯基硅氧烷化合物添加剂与二氟磷酸锂、碳酸亚乙烯酯、二氟草酸硼酸锂中的一种或几种搭配使用时提高了SEI膜的离子导通性能和离子传输速率,降低了电池阻抗,减少电池内部极化和锂枝晶的形成,从而既可以改善电解液的消耗引起的电池内阻增加和产气问题,又抑制了电池体积膨胀。
(3)本申请实施例添加的环状结构的烯基硅氧烷化合物的-Si-O-键可以络合正极溶出的金属离子,降低了金属离子对电解液的催化反应影响,同时Si原子极易吸附氟离子,也能抑制含氟锂盐的水解。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例1和对比例1-4提供的锂离子电池的60℃高温储存30天的容量保持率和恢复率;
图2为实施例1和对比例1-4提供的锂离子电池的60℃高温储存30天的体积增长率;
图3为实施例1和对比例1-4提供的锂离子电池的45℃高温下循环200周容量保持率。
具体实施方式
下面通过结合附图和具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为13.5%的六氟磷酸锂、21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯的非水溶剂、2.50%的T01烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、10.00%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和5.00%的硫酸乙烯酯(购自石家庄圣泰化工有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为13.5%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为2.50%的T01烯基硅氧烷化合物,再加入质量百分含量为10.00%的碳酸亚乙烯酯和5.00%的硫酸乙烯酯,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导 电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例2
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为2.0%的六氟磷酸锂、12.0%的碳酸乙烯酯、4.0%的碳酸二乙酯和24.0%的碳酸甲乙烯酯的非水溶剂、0.01%的T03烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、0.01%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和0.01%的二氟磷酸锂(购自江苏国泰超威新材料有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为12.0%的碳酸乙烯酯、4.0%的碳酸二乙酯和24.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为2.0%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为0.01%的T03烯基硅氧烷化合物,再加入质量百分含量为0.01%的碳酸亚乙烯酯和0.01%的二氟磷酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料 均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例3
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为25.0%的六氟磷酸锂、28.5%的碳酸乙烯酯、9.5%的碳酸二乙酯和57.0%的碳酸甲乙烯酯的非水溶剂、5.00%的T05烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、20.00%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和10.00%的二氟草酸硼酸锂(购自江苏华盛材料科技集团有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为28.5%的碳酸乙烯酯、9.5%的碳酸二乙酯和57.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为25.0%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为5.00%的T05烯基硅氧烷化合物,再加入质量百分含量为20.00%的碳酸亚乙烯酯和10.00%的二氟草酸硼酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例4
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为12.5%的六氟磷酸锂、21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯的非水溶剂、0.01%的T02烯基硅氧烷化合物(购自上海麦克林生化科技有限公司)、1.00%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和1.00%的二氟磷酸锂(购自江苏国泰超威新材料有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯 酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为12.5%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为0.01%的T02烯基硅氧烷化合物,再加入质量百分含量为1.00%的碳酸亚乙烯酯和1.00%的二氟磷酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例5
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为12.5%的六氟磷酸锂、21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯的非水溶剂、3.00%的T05烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、1.00%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和0.01%的二氟草酸硼酸锂(购自江苏华盛材料科技集团有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为12.5%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为3.00%的T05烯基硅氧烷化合物,再加入质量百分含量为1.00%的碳酸亚乙烯酯和0.01%的二氟草酸硼酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例6
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为12.5%的六氟磷酸锂、21.0%的 碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯的非水溶剂、1.00%的T03烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、1.00%的碳酸亚乙烯酯(购自江苏华盛材料科技集团有限公司)和1.00%的二氟磷酸锂(购自江苏国泰超威新材料有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为12.5%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为1.00%的T03烯基硅氧烷化合物,再加入质量百分含量为1.00%的碳酸亚乙烯酯和1.00%的二氟磷酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的 锂离子电池,放电电压区间设置为3.0~4.2V。
实施例7
本实施例提供了一种锂离子电池非水电解液,以非水电解液的总质量为100%计,所述锂离子非水电解液包括质量百分含量为12.5%的六氟磷酸锂、21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯的非水溶剂、4.00%的T01烯基硅氧烷化合物(购自上海梯希爱化成工业发展有限公司)、2.00%的氟代碳酸乙烯酯(购自陕西中蓝化工科技新材料有限公司)和1.00%的二氟磷酸锂(购自江苏国泰超威新材料有限公司)的添加剂。
所述锂离子电池非水电解液制备方法如下:
电解液在手套箱中配制,在手套箱中氮气含量为99.999%,手套箱中的实际氧含量<2ppm,水分含量<0.1ppm。以非水电解液的总质量为100%计,将质量百分含量为21.0%的碳酸乙烯酯、7.0%的碳酸二乙酯和42.0%的碳酸甲乙烯酯电池级有机溶剂混合均匀后,将充分干燥后的质量百分含量为12.5%的六氟磷酸锂加入上述非水溶剂,并加入质量百分含量为4.00%的T01烯基硅氧烷化合物,再加入质量百分含量为2.00%的氟代碳酸乙烯酯和1.00%的二氟磷酸锂,配制成锂离子电池非水电解液。
锂离子电池的制备方法如下:
正极制备:将LiNi 0.8Co 0.1Mn 0.1O 2粉末、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比97.5:1.5:1.5进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆将正极浆料均匀涂覆于厚度为15μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
负极制备:将质量占比为95.7wt%的石墨负极材料,质量占比为1wt%的导电炭黑(SP)导电剂、质量占比为1.3wt%的羧甲基纤维素钠(CMC)分散剂及质量占比为2wt%的丁苯橡胶(SBR)粘结剂以湿法工艺制成负极浆料;将负极浆料均匀涂覆于厚度为15μm的铜箔上;将上述涂覆好的铜箔在5段不同温度梯度的烘箱烘烤后,再将其在85℃的烘箱干燥5h,然后经过辊压、分切得到所需的石墨负极片。
隔膜制备:以7~9mm厚的聚丙烯作为隔膜。
锂离子电池制备:将上述准备的正极片、隔膜、负极片通过卷绕得到未注液的裸电芯;将裸电芯置于外包装铝箔中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、分选等工序,获得所需的锂离子电池,放电电压区间设置为3.0~4.2V。
实施例8
本实施例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加硫酸乙烯酯和碳酸亚乙烯酯,其他均与实施例1相同。
实施例9
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,以非水电解液的总质量为100%计,烯基硅氧烷化合物的质量百分含量为10.00%,其他均与实施例1相同。
对比例1
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加烯基硅氧烷化合物,其他均与实施例1相同。
对比例2
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,将烯基硅氧烷化合物替换成具有如下结构的硅氧烷化合物A(购自上海迈瑞尔化学技术有限公司),其他均与实施例1相同。
Figure PCTCN2021137032-appb-000005
对比例3
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加烯基硅氧烷化合物和硫酸乙烯酯,添加1,3-丙烷磺酸内酯和碳酸亚乙烯酯。以非水电解液的总质量为100%计,1,3-丙烷磺酸内酯的质量百分含量为7.50%,碳酸亚乙烯酯的质量百分含量为10.00%,其他均与实施例1相同。
对比例4
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加烯基硅氧烷化合物、硫酸乙烯酯和碳酸亚乙烯酯,添加1,3-丙烷磺酸内酯。以非水电解液的总质量为100%计,1,3-丙烷磺酸内酯的质量百分含量为17.50%,其他均与实施例1相同。
对比例5
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加烯基硅氧烷化合物、硫酸乙烯酯和1,3-丙烷磺酸内酯,添加碳酸亚乙烯酯。以非水电解液的总质量为100%计,碳酸亚乙烯酯的质量百分含量为17.50%,其他均与实施例1相同。
对比例6
本对比例与实施例1的区别之处在于,在锂离子电池非水电解液的制备过程中,不添加烯基硅氧烷化合物、硫酸乙烯酯、1,3-丙烷磺酸内酯和碳酸亚乙烯酯,非水溶剂包括质量百分含量为25.95%的碳酸乙烯酯、8.65%的碳酸二乙酯和51.9%的碳酸甲乙烯酯的非水溶剂,其他均与实施例1相同。
表1:
Figure PCTCN2021137032-appb-000006
Figure PCTCN2021137032-appb-000007
测试条件
将实施例1-9与对比例1-6制备得到的锂离子电池分别进行高温循环、高温存储性能和离子电导率性能测试,测试方法如下:
(1)高温循环测试:将电池置于45℃环境下,将化成后的电池,正极材料采用LiNi 0.8Co 0.1Mn 0.1O 2,负极材料采用人造石墨,用1C恒流恒压充电至4.2V,截止电流为0.02C,然后用1C恒流放电至3.0V。如此充/放电循环后,计算第200周的循环后容量的保持率,以评估其循环性能。
45℃循环200次后容量保持率计算公式如下:
第200次循环容量保持率(%)=(第200次循环放电容量/首次循环放电容量)*100%
(2)高温存储测试:将化成后的电池在25℃下用1C恒流恒压充电至4.2V正极材料采用LiNi 0.8Co 0.1Mn 0.1O 2,负极材料采用人造石墨,截止电流为0.02C,再用1C恒流放电至3.0V,测量电池的初始放电容量,再用1C恒流恒压充电至4.2V,截止电流为0.01C,测量电池的初始厚度,然后将电池在60℃储存30天后,测量电池60℃存储后的厚度,再以1C恒流放电至3.0V,测量电池的保持容量,再用1C恒流恒压充电至3.0V,截止电池为0.02C,然后用1C恒流放电至3.0V,测量恢复容量。
容量保持率,容量恢复率,体积膨胀的计算公式如下:
电池容量保持率(%)=保持容量/初始容量*100%
电池容量恢复率(%)=恢复容量/初始容量*100%
电池体积膨胀率(%)=(30天后的体积-初始体积)/初始体积*100%
测试的结果如表2所示:
表2:
Figure PCTCN2021137032-appb-000008
Figure PCTCN2021137032-appb-000009
由表1和表2的数据可以看出,本申请采用含烯基硅氧烷的非水电解液,通过对上述实施例制备出的锂离子电池进行高温循环和高温存储性能的测试,图1为实施例1和对比例1-4提供的锂离子电池的60℃高温储存30天的容量保持率和恢复率,与对比例1-4相比,表明实施例1提供的锂离子电池具有较高的容量保持率和容量恢复率,进一步说明采用本申请电解液所制备的锂离子电池具有循环保持率高、存储容量保持率及恢复率高的优点;图2为实施例1和对比例1-4提供的锂离子电池的60℃高温储存30天的体积增长率,说明实施例1中锂离子电池的厚度增长远小于对比例1-4的锂离子电池,进而体现采用本申请提供的电解液能够缓解电池体积膨胀。进一步的,当含有烯基硅氧烷化合物与二氟磷酸锂、碳酸亚乙烯酯、二氟草酸硼酸锂复配使用比烯基硅氧烷化合物添加剂单独使用时表现出更优异的电池性能,并且高温存储后电池体积膨胀率要远远小于对比例,因此本申请的电解液应用于锂离子电池中,具有优良的高温长循环稳定性及高温存储稳定性以及良好的安全性能。
图3为实施例1和对比例1-4提供的锂离子电池的45℃高温下循环200周容量保持率,说明实施例1中的锂离子电池循环200周后的容量保持率最高。对比例2中即使包含环状硅氧烷化合物但不含烯基双键的添加剂也表现出45℃循环200周后容量保持率在80%以下,60℃高温存储后容量保持率及恢复率均低于90%,厚度增长率却远远高于实施例;其他无硅氧烷化合物添加剂的对比例效果低于此对比例2,说明当电解液中不存在烯基硅氧烷化合物添加剂时,锂电池阻抗大,锂离子导通性差且由高温导致正极过渡金属离子溶出,诱导催化溶剂持续分解,从而过渡消耗锂离子,导致电池导致高温条件下容量保持率及恢复率低。并且由于溶剂持续分解,一方面产生气体,另一方面导致SEI膜进而持续修补,SEI膜不断增厚,导致极片增厚,两方面均会导致电池体积增大。
申请人声明,本申请通过上述实施例来说明本申请的锂离子电池非水电解液及其应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (16)

  1. 一种锂离子电池非水电解液,其中,所述锂离子电池非水电解液包括锂盐、非水溶剂和添加剂,所述添加剂包含具有式(1)所示的环状结构的烯基硅氧烷化合物、降低阻抗添加剂和成膜添加剂:
    Figure PCTCN2021137032-appb-100001
    其中R选自氢、卤素、氰基、取代或未取代的C1-C5的烷基、取代或未取代的C6-C30的芳基、酰胺基、磷酸酯基、磺酰基、硅氧基或硼酸酯基,n为2~10的整数。
  2. 根据权利要求1所述的锂离子电池非水电解液,其中,R为氰基、甲基、乙基、丙基、苯基或
    Figure PCTCN2021137032-appb-100002
    其中波浪线代表基团的连接位点。
  3. 根据权利要求1或2所述的锂离子电池非水电解液,其中,所述具有式(1)所示的环状结构的烯基硅氧烷化合物为如下化合物中的任意一种:
    Figure PCTCN2021137032-appb-100003
  4. 根据权利要求1-3中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中具有式(1)所示的环状结构的烯基硅氧烷化合物的质 量百分含量为0.01~5.00%。
  5. 根据权利要求1-4中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中还包括降低阻抗添加剂,所述降低阻抗添加剂包括二氟磷酸锂、硫酸乙烯酯或二氟草酸硼酸锂中任意一种或至少两种的组合。
  6. 根据权利要求1-5中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中,降低阻抗添加剂的质量百分含量为0.01~10.00%。
  7. 根据权利要求1-6中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中还包括成膜添加剂,所述成膜添加剂包括硫酸丙烯酯、1,3-丙烷磺酸内酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯、丙烯磺酸内酯、1,4-丁烷磺酸内酯、亚硫酸亚乙酯、二氟双草酸磷酸锂四氟硼酸锂、双草酸硼酸锂、丁二腈、己二腈、丁二酸酐、三(三甲基硅基)硼酸酯、三(三甲基硅基)磷酸酯、甲烷二磺酸亚甲酯、乙二醇双丙腈醚、1,3,6-己烷三腈、磷酸三炔丙酯、氟苯或1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚中的任意一种或至少两种的组合。
  8. 根据权利要求1-7中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中,成膜添加剂的质量百分含量为0.01~20.00%。
  9. 根据权利要求1-8中任一项所述的锂离子电池非水电解液,其中,所述锂盐包括六氟磷酸锂、高氯酸锂、三氟甲基磺酸锂、双氟磺酰亚胺锂或双三氟甲基磺酰亚胺锂中任意一种或至少两种的组合。
  10. 根据权利要求1-9中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中锂盐的质量百分含量为2.0~25.0%。
  11. 根据权利要求1-10中任一项所述的锂离子电池非水电解液,其中,所述非水溶剂为乙二醇二乙醚、丙酸甲酯、乙酸甲酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、乙酸丙酯、丁酸丁酯、乙腈、碳酸甲丙酯、丙酸乙酯、γ-丁内酯、环丁砜、二甲基亚砜、四氢呋喃、碳酸丙烯酯、乙酸乙酯、碳酸二乙酯、碳酸甲乙酯、碳酸二甲酯或碳酸乙烯酯中任意一种或至少两种的组合。
  12. 根据权利要求1-11中任一项所述的锂离子电池非水电解液,其中,所述锂离子电池非水电解液中,非水溶剂的质量百分含量为40.00~97.97%。
  13. 一种锂离子电池,其中,所述锂离子电池包括如权利要求1-12中任一项所述的锂离子电池非水电解液。
  14. 根据权利要求13所述的锂离子电池,其中,所述锂离子电池还包括电池壳体和电芯,所述电芯和所述锂离子电池非水电解液密封在电池壳体内。
  15. 根据权利要求14所述的锂离子电池,其中,所述电芯包括正极、负极以及设置在所述正极和负极之间的隔膜或固态电解质层。
  16. 根据权利要求15所述的锂离子电池,其中,所述正极的材料为可嵌入及脱嵌锂的活性物质;所述负极的材料为脱嵌锂或能与锂形成合金的金属、合金,或者能插入/脱出锂的金属氧化物;
    优选地,所述可嵌入及脱嵌锂的活性物质为LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x'L (1-x')O 2、LiNi x”L' y'Mn (2-x”-y')O 4或Li z'MPO 4中的至少一种;其中L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x'≤1,0.3<x”≤0.6,0.01≤y'≤0.2,L'为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0.5≤z'≤1,M为Fe、Mn或Co中的至少一种;
    优选地,所述负极的材料由结晶型碳、锂金属、LiMnO 2、LiAl、Li 3Sb、Li 3Cd、LiZn、Li 3Bi、Li 4Si、Li 4.4Pb、Li 4.4Sn、LiC 6、Li 3FeN 2、Li 2.6CoN 0.4、Li 2.6CuN 0.4或Li 4Ti 5O 12中的至少一种。
PCT/CN2021/137032 2021-09-16 2021-12-10 一种锂离子电池非水电解液及其应用 WO2023040082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111085331.6A CN113839093A (zh) 2021-09-16 2021-09-16 一种锂离子电池非水电解液及其应用
CN202111085331.6 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023040082A1 true WO2023040082A1 (zh) 2023-03-23

Family

ID=78959405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137032 WO2023040082A1 (zh) 2021-09-16 2021-12-10 一种锂离子电池非水电解液及其应用

Country Status (3)

Country Link
JP (1) JP7455105B2 (zh)
CN (1) CN113839093A (zh)
WO (1) WO2023040082A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154214A (zh) * 2023-10-30 2023-12-01 宁德时代新能源科技股份有限公司 电解液、二次电池及用电装置
CN117219867A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置
CN117254112A (zh) * 2023-11-14 2023-12-19 蓝固(湖州)新能源科技有限公司 一种二次电池
CN117613384A (zh) * 2023-11-28 2024-02-27 珠海钠壹新能源科技有限公司 一种钠离子电池电解液及其制备方法
CN118117171A (zh) * 2024-04-28 2024-05-31 河北省科学院能源研究所 一种高压电解液及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464886A (zh) * 2022-02-16 2022-05-10 香河昆仑新能源材料股份有限公司 一种锂离子电池非水电解液和锂离子电池
CN114512721B (zh) * 2022-02-18 2024-01-19 香河昆仑新能源材料股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN114520370B (zh) * 2022-02-18 2024-05-14 香河昆仑新能源材料股份有限公司 一种锂离子电池电解液及锂离子电池
CN114784374A (zh) * 2022-04-01 2022-07-22 惠州锂威新能源科技有限公司 一种锂离子电池电解液用添加剂、电解液及锂离子电池
CN114709480B (zh) * 2022-04-02 2023-09-26 远景动力技术(河北)有限公司 一种非水电解液及其锂离子电池
CN117501501A (zh) * 2022-05-09 2024-02-02 宁德时代新能源科技股份有限公司 一种含有环状硅氧烷的二次电池及用电装置
CN118352630A (zh) * 2023-01-16 2024-07-16 宁德时代新能源科技股份有限公司 钠二次电池用电解质、钠二次电池及用电装置
CN115863768B (zh) * 2023-02-22 2023-04-25 安徽盟维新能源科技有限公司 一种电解液及包含该电解液的锂金属电池
CN116864811B (zh) * 2023-08-30 2023-11-28 香河昆仑新能源材料股份有限公司 一种高温性能优异的电池电解液及锂离子电池
CN117712487B (zh) * 2024-02-02 2024-04-16 深圳海辰储能科技有限公司 电解液、电池及用电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071458A (ja) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp 非水電解液二次電池
CN109659614A (zh) * 2018-12-19 2019-04-19 珠海光宇电池有限公司 一种锂离子电池电解液及使用该电解液的高能量密度锂离子电池
CN110148784A (zh) * 2019-05-29 2019-08-20 珠海冠宇电池有限公司 一种电解液及使用该电解液的锂离子电池
CN110767939A (zh) * 2019-10-18 2020-02-07 宁德时代新能源科技股份有限公司 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
CN110808412A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN110808411A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN111883831A (zh) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 一种锂离子电池电解液以及电池负极和电化学储能器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082220A (ja) 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6032504B2 (ja) * 2012-07-17 2016-11-30 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
JP6747312B2 (ja) 2017-01-24 2020-08-26 株式会社Gsユアサ 非水電解質、蓄電素子及び蓄電素子の製造方法
CN107508000A (zh) * 2017-08-31 2017-12-22 广州鹏辉能源科技股份有限公司 锂离子电池电解液和锂离子电池
US11165099B2 (en) * 2018-12-21 2021-11-02 Enevate Corporation Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives
CN109802180B (zh) * 2019-01-25 2021-08-03 宁德新能源科技有限公司 电解液及电化学装置
CN110707361B (zh) * 2019-10-29 2021-10-26 珠海冠宇电池股份有限公司 一种适用于高倍率充放电的高电压软包锂离子电池用电解液
CN111640985A (zh) * 2020-05-18 2020-09-08 珠海冠宇电池股份有限公司 一种非水电解液及含有该非水电解液的高电压锂离子电池
CN113346140A (zh) * 2021-06-01 2021-09-03 昆山宝创新能源科技有限公司 一种电解液及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071458A (ja) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp 非水電解液二次電池
CN110808412A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN110808411A (zh) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN109659614A (zh) * 2018-12-19 2019-04-19 珠海光宇电池有限公司 一种锂离子电池电解液及使用该电解液的高能量密度锂离子电池
CN110148784A (zh) * 2019-05-29 2019-08-20 珠海冠宇电池有限公司 一种电解液及使用该电解液的锂离子电池
CN110767939A (zh) * 2019-10-18 2020-02-07 宁德时代新能源科技股份有限公司 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
CN111883831A (zh) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 一种锂离子电池电解液以及电池负极和电化学储能器件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154214A (zh) * 2023-10-30 2023-12-01 宁德时代新能源科技股份有限公司 电解液、二次电池及用电装置
CN117219867A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置
CN117254112A (zh) * 2023-11-14 2023-12-19 蓝固(湖州)新能源科技有限公司 一种二次电池
CN117254112B (zh) * 2023-11-14 2024-03-05 蓝固(湖州)新能源科技有限公司 一种二次电池
CN117613384A (zh) * 2023-11-28 2024-02-27 珠海钠壹新能源科技有限公司 一种钠离子电池电解液及其制备方法
CN117613384B (zh) * 2023-11-28 2024-07-26 珠海钠壹新能源科技有限公司 一种钠离子电池电解液及其制备方法
CN118117171A (zh) * 2024-04-28 2024-05-31 河北省科学院能源研究所 一种高压电解液及其制备方法和应用

Also Published As

Publication number Publication date
JP2023043812A (ja) 2023-03-29
JP7455105B2 (ja) 2024-03-25
CN113839093A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023040082A1 (zh) 一种锂离子电池非水电解液及其应用
US12107228B2 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN107871889B (zh) 电解液及二次电池
WO2012037805A1 (zh) 一种改善锂离子电池高温电化学性能的非水电解液及其应用
CN108808087B (zh) 一种含有磷酰亚胺锂的电解液及使用该电解液的电池
KR102612376B1 (ko) 전해액, 전기화학장치 및 전자장치
CN111525190B (zh) 电解液及锂离子电池
CN110752406B (zh) 电解液及其应用
CN114520371B (zh) 一种非水电解液及包含其的锂离子电池
CN114512721B (zh) 一种锂离子电池非水电解液及锂离子电池
CN113130992A (zh) 一种非水电解液及锂离子电池
JP7559253B2 (ja) スルホンアミド構造基を含有するイソシアネート系電解液添加剤及びその使用
CN109119599B (zh) 一种二次电池及其制备方法
CN110797573B (zh) 锂二次电池
CN112072179A (zh) 电解液及锂离子电池和车辆
CN109994768A (zh) 电解液及二次电池
CN114520370A (zh) 一种锂离子电池电解液及锂离子电池
CN113948775A (zh) 一种电解液及包括该电解液的电池
CN113851720B (zh) 一种锂离子电池非水电解液及其应用
CN112117493B (zh) 一种锂离子电池用电解液及包括该电解液的锂离子电池
WO2023216027A1 (zh) 一种含有硅酸酯的二次电池及用电装置
CN110970658B (zh) 锂离子电池
CN116207347A (zh) 一种锂离子二次电池用电解液以及该锂离子二次电池
CN114142087A (zh) 一种改善锂离子电池高温性能的电解液及锂离子电池
CN118173892A (zh) 一种电解液及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957346

Country of ref document: EP

Kind code of ref document: A1