WO2023038439A1 - 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2023038439A1
WO2023038439A1 PCT/KR2022/013468 KR2022013468W WO2023038439A1 WO 2023038439 A1 WO2023038439 A1 WO 2023038439A1 KR 2022013468 W KR2022013468 W KR 2022013468W WO 2023038439 A1 WO2023038439 A1 WO 2023038439A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
formula
aqueous electrolyte
lithium
Prior art date
Application number
PCT/KR2022/013468
Other languages
English (en)
French (fr)
Inventor
한준혁
안경호
신원경
오영호
이철행
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220113086A external-priority patent/KR102652852B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280059695.3A priority Critical patent/CN117916925A/zh
Priority to JP2023567025A priority patent/JP2024516270A/ja
Priority to CA3230432A priority patent/CA3230432A1/en
Priority to EP22867707.6A priority patent/EP4379889A1/en
Publication of WO2023038439A1 publication Critical patent/WO2023038439A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a lithium secondary battery containing an additive capable of suppressing the elution of a transition metal and stabilizing anions generated from a lithium salt, and a lithium secondary battery including the same.
  • Lithium secondary battery is the most suitable technology for various purposes. Compared to lead batteries or nickel cadmium batteries, it can be miniaturized enough to be applied to personal IT devices, has high energy density and operating voltage, and has high capacity. It is used not only as a power source for cell phones, etc., but also as an electric vehicle and a power storage device.
  • a lithium ion battery is largely composed of a positive electrode composed of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, a non-aqueous electrolyte and a separator serving as a medium for delivering lithium ions, among which lithium salts such as LiPF 6 are used.
  • a non-aqueous electrolyte using a dissolved non-aqueous organic solvent as a main component it is known as a factor that greatly affects the stability and safety of a battery.
  • LiPF 6 a lithium salt in the non-aqueous electrolyte
  • LiF and PF 5 are generated, and while reacting with the non-aqueous organic solvent, it accelerates the depletion of the non-aqueous organic solvent or generates a large amount of gas, resulting in high temperature This results in poor performance and safety.
  • the lithium ion battery has a problem in that side reactions such as elution of a transition metal and reduction of the eluted transition metal at a negative electrode are promoted as the deterioration of the positive electrode gradually intensifies due to battery driving.
  • the present invention is to solve the above problems, by including an oligomer obtained from a monomer based on an acrylate structure containing at least one functional group of a nitrile group (-CN) and an aromatic hydrocarbon group, thereby inhibiting transition metal elution and lithium It is intended to provide a non-aqueous electrolyte for a lithium secondary battery capable of stabilizing anions generated from salt.
  • a nitrile group -CN
  • the present invention is intended to provide a lithium secondary battery with improved cycle characteristics and high-temperature storage characteristics by including the non-aqueous electrolyte for a lithium secondary battery.
  • the present invention provides a plurality of the present invention.
  • a non-aqueous electrolyte for a lithium secondary battery comprising:
  • R' is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 1 is an alkylene group having 1 to 20 carbon atoms.
  • R" is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 2 is a direct bond or an alkylene group having 1 to 5 carbon atoms
  • A is an aromatic hydrocarbon group or a heteroaromatic hydrocarbon group.
  • the present invention provides a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; a separator interposed between the negative electrode and the positive electrode; and a lithium secondary battery comprising the non-aqueous electrolyte for a lithium secondary battery according to the present invention.
  • the non-aqueous electrolyte for a lithium secondary battery of the present invention includes an oligomer obtained from a monomer based on an acrylate structure including at least one functional group of a nitrile group (-CN) and an aromatic hydrocarbon group, thereby forming a stable film on the surface of the negative electrode and the positive electrode.
  • a nitrile group -CN
  • aromatic hydrocarbon group a functional group of a nitrile group (-CN) and an aromatic hydrocarbon group
  • a lithium secondary battery with improved high-temperature storage performance and cycle capacity retention rate can be implemented during high-voltage driving.
  • * means a site linked to a main chain in an oligomer or linked to a binding part such as another monomer, substituent, or terminal group in a chemical formula.
  • the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery.
  • the non-aqueous electrolyte for the lithium secondary battery is the non-aqueous electrolyte for the lithium secondary battery
  • An oligomer including a repeating unit derived from a monomer represented by Formula 1 below and a repeating unit derived from a monomer represented by Formula 2 below; may be included.
  • R' is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 1 is an alkylene group having 1 to 20 carbon atoms.
  • R" is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 2 is a direct bond or an alkylene group having 1 to 5 carbon atoms
  • A is an aromatic hydrocarbon group or a heteroaromatic hydrocarbon group.
  • the lithium salt is described as follows.
  • lithium salt those commonly used in electrolytes for lithium secondary batteries may be used without limitation, for example, including Li + as a cation and F - , Cl - , Br - , I - , NO 3 - as an anion, N(CN) 2 - , BF 4 - , ClO 4 - , B 10 Cl 10 - , AlCl 4 - , AlO 4 - , PF 6 - , CF 3 SO 3 - , CH 3 CO 2 - , CF 3 CO 2 - , AsF 6 - , SbF 6 - , CH 3 SO 3 - , (CF 3 CF 2 SO 2 ) 2 N - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , BF 2 C 2 O 4 - , BC 4 O 8 - , PF 4 C 2 O 4 - , PF 2 C 4 O 8 - , (CF 3 ) 2
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiN(SO 2 F) 2 (Lithium bis(fluorosulfonyl)imide, LiFSI), LiN(SO 2 CF 2 CF 3 ) 2 (lithium bis(pentafluoroethanesulfonyl) imide, LiBETI) and LiN( SO 2 CF 3 ) 2 (lithium bis (trifluoromethanesulfonyl) imide, LiTFSI) may include a single substance or a mixture of two or more selected from the group consisting of, and in addition to the above-described lithium salt, lithium salts commonly used in electrolyte solutions
  • the lithium salt may be appropriately changed within a generally usable range, but in order to obtain an optimum effect of forming a film for preventing corrosion on the electrode surface, it is included in the electrolyte at a concentration of 0.8 M to 3.0 M, specifically 1.0 M to 3.0 M. can When the concentration of the lithium salt satisfies the above range, it is possible to control the viscosity of the non-aqueous electrolyte so as to realize optimal impregnability, and improve the mobility of lithium ions to obtain an effect of improving capacity characteristics and cycle characteristics of a lithium secondary battery. there is.
  • non-aqueous organic solvent is as follows.
  • non-aqueous organic solvent various non-aqueous organic solvents commonly used in non-aqueous electrolytes can be used without limitation. Decomposition due to oxidation reactions in the charging and discharging process of a secondary battery can be minimized, and desired properties along with additives can be used. There is no limit to the type as long as it can exert.
  • the non-aqueous organic solvent may include at least one of a high-viscosity cyclic carbonate-based compound having a high permittivity and easily dissociating a lithium salt, and a linear carbonate-based compound having a low viscosity and low dielectric constant.
  • cyclic carbonate-based compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, and 2,3-pentylene carbonate And it may include at least one selected from the group consisting of vinylene carbonate, and among them, ethylene carbonate may be included.
  • the linear carbonate-based compound is selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate It may include at least one, and may specifically include ethylmethyl carbonate (EMC).
  • the cyclic carbonate-based compound and the linear carbonate-based compound may be mixed and used.
  • the mixing ratio of the cyclic carbonate-based compound and the linear carbonate-based compound is 10:90 to 80:20 by volume, specifically 30:70 to It may be a 50:50 volume ratio.
  • a non-aqueous electrolyte having higher electrical conductivity may be prepared.
  • a propionate compound may be further mixed with the non-aqueous organic solvent in order to improve the disadvantages of the carbonate-based compound and increase stability during high-temperature and high-voltage driving.
  • the propionate compound may include at least one selected from the group consisting of methyl propionate, ethyl propionate (EP), propyl propionate and butyl propionate, specifically ethyl propionate and propyl propionate. It may contain at least one of propionates.
  • non-aqueous electrolyte for a lithium secondary battery of the present invention all other components except for the non-aqueous organic solvent, such as lithium salts, oligomers, and optionally included additives, may be non-aqueous organic solvents unless otherwise specified. there is.
  • the non-aqueous electrolyte for a lithium secondary battery of the present invention includes an oligomer.
  • the oligomer may include a repeating unit derived from a monomer represented by Chemical Formula 1 below and a repeating unit derived from a monomer represented by Chemical Formula 2 below.
  • R' is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 1 is an alkylene group having 1 to 20 carbon atoms.
  • R" is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 2 is a direct bond or an alkylene group having 1 to 5 carbon atoms
  • A is an aromatic hydrocarbon group or a heteroaromatic hydrocarbon group.
  • the oligomer of the present invention includes a repeating unit structure derived from the monomer represented by Formula 1 including a terminal nitrile group based on an acrylate structure, thereby forming a stable film on the surface of the anode and at the same time showing strong bonding strength with metal ions. Elution of metal ions from the anode can be controlled by Accordingly, high-temperature durability, high-temperature storage characteristics, and high-temperature stability of the battery may be improved.
  • the oligomer of the present invention includes a repeating unit structure derived from the monomer represented by Formula 2 including an acrylate-based terminal aromatic hydrocarbon group or a heteroaromatic hydrocarbon group, and thus is a thermal decomposition product of a lithium salt such as LiPF 6 or
  • a lithium salt such as LiPF 6
  • non-aqueous electrolyte containing the oligomer of the present invention can suppress side reactions of the electrolyte and form a strong SEI film with low resistance, side reactions between the electrode and the electrolyte can be prevented and gas generation can be suppressed.
  • cycle characteristics of the lithium secondary battery may be improved by significantly lowering the failure rate by reducing the internal resistance of the battery.
  • the oligomer of the present invention may be an oligomer represented by Formula 3 below.
  • R' and R" are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R 1 is an alkylene group having 1 to 20 carbon atoms
  • R 2 is a direct bond or an alkylene group having 1 to 5 carbon atoms
  • A is an aromatic hydrocarbon group or a heteroaromatic hydrocarbon group
  • the molar ratio of m:n is from 1:99 to 99:1.
  • R 1 may be an alkylene group having 1 to 10 carbon atoms, preferably an alkylene group having 1 to 5 carbon atoms.
  • R 2 may be an alkylene group having 1 to 3 carbon atoms.
  • the aromatic hydrocarbon group may be at least one of benzene, naphthalene, and anthracene, and specifically may be benzene.
  • the heteroaromatic hydrocarbon group is at least one of furan, pyrrole, imidazole, pyridine, pyrazine, pyrimidine, pyridazine, 1,2,3-triazine, 1,2,4-triazine and 1,3,5-triazine It may be one, and specifically, it may be at least one of pyrrole, imidazole, pyridine, pyrazine, pyrimidine, and pyridazine containing nitrogen as a hetero element.
  • the oligomer may be at least one selected from the group consisting of oligomers represented by Formula 3-1 and Formula 3-2 below.
  • the molar ratio of m1:n1 is 1:99 to 99:1.
  • the molar ratio of m2:n2 is from 1:99 to 99:1.
  • the weight average molecular weight (Mw) of the oligomer of the present invention may be controlled by the number of repeating units, and may be about 3,000 g/mol to 300,000 g/mol, specifically 10,000 g/mol to 100,000 g/mol.
  • Mw weight average molecular weight
  • the physical properties of the oligomer itself are prevented from being rigid, and the affinity with the non-aqueous electrolyte solvent is increased so that it can be easily dissolved, so that a uniform and excellent non-aqueous electrolyte can be formed. there is.
  • the weight average molecular weight may be measured using a gel permeation chromatography (GPC) apparatus, and unless otherwise specified, molecular weight may mean a weight average molecular weight.
  • GPC gel permeation chromatography
  • the measurement is performed using Agilent's 1200 series under GPC conditions.
  • an Agilent's PL mixed B column can be used as the column used, and THF or DMF can be used as the solvent.
  • the molar ratio of m:n may be 1:99 to 99:1, specifically 1:99 to 30:70.
  • the oligomer may be included in an amount of 0.1% to 25% by weight based on the total weight of the non-aqueous electrolyte for a lithium secondary battery.
  • the oligomer is included in the content range, anion stabilization improvement effect and stable film formation effect can be implemented.
  • the content of the oligomer When the content of the oligomer is 0.1% by weight or more, stabilization of anions can be maintained more stably due to the formation of complexes with anions during battery operating time, and film formation and complex formation with metal ions due to adsorption on the surface of the anode prevent metal ion elution. can be suppressed
  • the content of the oligomer when the content of the oligomer is 25% by weight or less, it is possible to prevent an increase in the viscosity of the electrolyte solution due to an excess compound, improve the mobility of ions in the battery, and greatly improve the effect of inhibiting cell swelling, Since an increase in battery resistance can be effectively prevented by suppressing excessive film formation, deterioration in capacity and cycle characteristics can be prevented.
  • the oligomer may be included in an amount of 0.5% to 20% by weight, preferably 0.5% to 15% by weight, based on the total weight of the non-aqueous electrolyte for a lithium secondary battery.
  • the non-aqueous electrolyte for lithium secondary batteries of the present invention prevents the collapse of the negative electrode due to the decomposition of the non-aqueous electrolyte in a high-output environment, or has low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and the effect of suppressing battery expansion at high temperatures.
  • other additives other than the above two types of nitrile-based additives may be further included as needed.
  • Such other additives include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, sultone-based compounds, sulfate-based compounds, phosphate-based or phosphite-based compounds, borate-based compounds, nitrile-based compounds, benzene-based compounds, amine-based compounds, and at least one selected from the group consisting of silane-based compounds and lithium salt-based compounds.
  • cyclic carbonate-based compound examples include vinylene carbonate (hereinafter, abbreviated as "VC"), vinyl ethylene carbonate (VEC), and the like.
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • halogen-substituted carbonate-based compound examples include fluoroethylene carbonate (FEC) and the like.
  • the sultone-based compound for example, 1,3-propane sultone (hereinafter abbreviated as "1,3-PS"), 1,4-butane sultone, ethensultone, 1,3-propene sultone (PRS) , It may be at least one compound selected from the group consisting of 1,4-butene sultone and 1-methyl-1,3-propene sultone.
  • 1,3-PS 1,3-propane sultone
  • PRS 1,3-propene sultone
  • the sulfate-based compound may be, for example, ethylene sulfate (hereinafter, abbreviated as "Esa”), trimethylene sulfate (TMS), methyl trimethylene sulfate (MTMS), and the like. .
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the phosphate-based or phosphite-based compound for example, lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tris (trimethylsilyl) phosphate, tris (trimethylsilyl) phosphite, tris (2 It may be at least one selected from the group consisting of ,2,2,-trifluoroethyl) phosphate and tris(trifluoroethyl) phosphite.
  • the borate-based compound may be, for example, tetraphenyl borate, lithium oxalyl difluoroborate (LiODFB) capable of forming a film on the surface of an anode, lithium bisoxalate borate (LiB(C 2 O 4 ) 2 , LiBOB ) and the like.
  • LiODFB lithium oxalyl difluoroborate
  • LiB(C 2 O 4 ) 2 lithium bisoxalate borate
  • LiBOB lithium bisoxalate borate
  • the nitrile-based compound is a compound other than 1,4-dicyano-2-butene and 1,3,5-cyclohexanetricarbonitrile, for example, succinonitrile, pimelonitrile, adiponitrile, acetonitrile, Pionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluoro It may include at least one compound selected from the group consisting of robenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile.
  • the benzene-based compound may be fluorobenzene or the like.
  • the amine-based compound may be triethanolamine or ethylenediamine, and the silane-based compound may be tetravinylsilane.
  • lithium salt-based compound examples include LiPO 2 F 2 and LiBF 4 as compounds different from the lithium salt contained in the non-aqueous electrolyte.
  • additives in order to form a more durable SEI film on the surface of the cathode, other additives with excellent film formation effect on the surface of the cathode, specifically VC, 1,3-PS, Esa, vinyl ethylene carbonate, fluoroethylene carbonate (FEC) , lithium oxalyldifluoroborate (LiODFB), 1,4-dicyano-2-butene, and 1,3,5-cyclohexanetricarbonitrile.
  • VC VC
  • 1,3-PS Esa
  • vinyl ethylene carbonate vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • LiODFB lithium oxalyldifluoroborate
  • 1,4-dicyano-2-butene 1,3,5-cyclohexanetricarbonitrile
  • the other additives may be used in combination of two or more compounds, and may be included in an amount of 0.01 to 50% by weight, specifically 0.01 to 10% by weight, and preferably 0.05 to 5% by weight in the non-aqueous electrolyte. When it is within the above range, it is preferable to prevent the remaining unreacted substances of other additives and excessive side reactions due to excessive addition while sufficiently implementing the effect of improving cycle characteristics by other additives.
  • the present invention provides a lithium secondary battery including the non-aqueous electrolyte for a lithium secondary battery of the present invention.
  • the lithium secondary battery may include a positive electrode, a negative electrode, and the aforementioned non-aqueous electrolyte for a lithium secondary battery.
  • the lithium secondary battery of the present invention can be manufactured by forming an electrode assembly in which a positive electrode, a negative electrode, and a separator are sequentially stacked between the positive electrode and the negative electrode are stored in a battery case, and then the non-aqueous electrolyte of the present invention is introduced.
  • the method for manufacturing the lithium secondary battery of the present invention may be manufactured and applied according to a conventional method known in the art, and is described in detail below.
  • the positive electrode according to the present invention may include a positive electrode active material layer including a positive electrode active material, and if necessary, the positive electrode active material layer may further include a conductive material and/or a binder.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and is specifically composed of nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe) and aluminum (Al). It may include a lithium composite metal oxide represented by Formula 4 including at least one metal selected from the group and lithium.
  • M 1 is Mn, Al or a combination thereof
  • M 2 is at least one selected from the group consisting of Al, Zr, W, Ti, Mg, Ca and Sr, 0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1.
  • 1+a represents the atomic fraction of lithium in the lithium transition metal oxide, and may be 0 ⁇ a ⁇ 0.5, preferably 0 ⁇ a ⁇ 0.2, more preferably 0 ⁇ a ⁇ 0.1.
  • the x represents the atomic fraction of nickel among all transition metal elements in the lithium transition metal oxide, and is 0 ⁇ x ⁇ 1.0, specifically 0.55 ⁇ x ⁇ 1.0, more specifically 0.6 ⁇ x ⁇ 0.98, and more specifically 0.6 ⁇ x ⁇ 0.95.
  • y represents the atomic fraction of cobalt among all transition metal elements in the lithium transition metal oxide, it may be 0 ⁇ y ⁇ 0.4, specifically 0 ⁇ y ⁇ 0.3, more specifically 0.05 ⁇ y ⁇ 0.3.
  • the z represents the atomic fraction of element M 1 among all transition metal elements in the lithium transition metal oxide, and may be 0 ⁇ z ⁇ 0.4, preferably 0 ⁇ z ⁇ 0.3, and more preferably 0.01 ⁇ z ⁇ 0.3.
  • the w represents the atomic fraction of the M 2 element among all transition metal elements in the lithium transition metal oxide, and is 0 ⁇ w ⁇ 0.1, preferably 0 ⁇ w ⁇ 0.05, and more preferably 0 ⁇ w ⁇ 0.02.
  • the cathode active material is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 having a Ni content of 0.55 atm% or more to implement a high-capacity battery, Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 , Li(Ni 0.7 Mn 0.2 Co 0.1 )O 2 , Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 , Li( A lithium composite transition metal oxide such as Ni 0.86 Mn 0.07 Co 0.05 Al 0.02 ) O 2 or Li ( Ni 0.90 Mn 0.05 Co 0.05 ) O 2 may be included .
  • the nickel transition metal having a d orbital in an environment such as a high temperature should have a regular octahedral structure when coordinated, but the order of energy levels is reversed by external energy supply, As a distorted octahedron is formed by a disproportionation reaction in which the oxidation number is fluctuated, the crystal structure of the positive electrode active material is transformed and collapsed.
  • transition metal particularly nickel metal
  • the overall performance of the secondary battery is deteriorated due to the depletion of the electrolyte and the structural collapse of the cathode active material. do.
  • this problem can be improved by using a non-aqueous electrolyte containing a specific composition of additives and a cathode containing a high content of nickel (Hi-Ni) transition metal oxide as a cathode active material together. That is, by the non-aqueous electrolyte of the present invention, a solid ion conductive film is formed on the surface of the anode, suppressing the cation mixing phenomenon of Li +1 ions and Ni +2 ions, and effectively suppressing side reactions between the anode and the electrolyte, metal elution, etc. Thus, the structural instability of the high-capacity electrode can be alleviated. Accordingly, since a sufficient amount of nickel transition metal for securing capacity of a lithium secondary battery may be secured, energy density may be increased and output characteristics may be improved.
  • the cathode active material of the present invention is a lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 etc.), lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese-based oxide (eg, LiNi 1 - Y Mn Y O 2 (0 ⁇ Y ⁇ 1), LiMn 2 - z Ni z O 4 (0 ⁇ Z ⁇ 2), lithium-nickel-cobalt-based oxide (eg, LiNi 1 - Y1 Co Y1 O 2 (0 ⁇ Y1 ⁇ 1), lithium-manganese-cobalt-based oxides (eg, LiCo 1 - Y2 Mn Y2 O 2 (0 ⁇ Y2 ⁇ 1), LiMn 2 - z1 Co z1 O 4 (0 ⁇ Z1 ⁇ 2), or Li(Ni -
  • the positive electrode active material may be included in an amount of 80 to 98% by weight, more specifically, 85 to 98% by weight based on the total weight of the positive electrode active material layer. When the cathode active material is included within the above range, excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and any material having electronic conductivity without causing chemical change in the battery may be used without particular limitation.
  • Specific examples include carbon powder such as carbon black, acetylene black (or Denka black), Ketjen black, channel black, furnace black, lamp black, or thermal black; graphite powder such as natural graphite, artificial graphite, or graphite having a highly developed crystal structure; conductive fibers such as carbon fibers and metal fibers; conductive powders such as fluorocarbon powder, aluminum powder, or nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 to 10% by weight, preferably 0.1 to 5% by weight, based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between particles of the positive active material and adhesion between the positive active material and the current collector.
  • binder examples include a fluororesin-based binder including polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; A polyalcohol-based binder containing polyvinyl alcohol; polyolefin binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binder; And silane-based binders may be used alone or in a mixture of two or more.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • CMC carboxyl methyl cellulose
  • the binder may be included in an amount of 0.1 to 15% by weight, preferably 0.1 to 10% by weight, based on the total weight of the positive electrode active material layer.
  • the positive electrode of the present invention may be manufactured according to a positive electrode manufacturing method known in the art.
  • a positive electrode slurry prepared by dissolving or dispersing a positive electrode active material, a binder, and/or a conductive material in a solvent is coated on a positive electrode current collector, followed by drying and rolling to form an active material layer, or It may be manufactured through a method of casting the positive electrode active material layer on a separate support and then laminating a film obtained by peeling the support on a positive electrode current collector.
  • the positive current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , those surface-treated with silver, etc. may be used.
  • the cathode current collector may have a thickness of typically 3 to 500 ⁇ m, and adhesion of the cathode material may be increased by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the solvent may be a solvent commonly used in the art, and dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or water and the like, and among these, one type alone or a mixture of two or more types may be used.
  • the amount of the solvent used may be adjusted so that the cathode composite material has an appropriate viscosity in consideration of the coating thickness, production yield, and workability of the cathode composite material, and is not particularly limited.
  • the negative electrode according to the present invention includes a negative electrode active material layer including a negative electrode active material, and the negative electrode active material layer may further include a conductive material and/or a binder, if necessary.
  • anode active material various anode active materials used in the art, for example, a carbon-based anode active material, a silicon-based anode active material, or a mixture thereof may be used.
  • the negative active material may include a carbon-based negative active material
  • the carbon-based negative active material includes various carbon-based negative active materials used in the art, such as natural graphite, artificial graphite, and kish.
  • graphite-based materials such as graphite (Kish graphite); Pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes High-temperature calcined carbon, soft carbon, hard carbon, and the like may be used.
  • the shape of the carbon-based negative electrode active material is not particularly limited, and materials having various shapes such as amorphous, plate-like, scale-like, spherical or fibrous shapes may be used.
  • the negative electrode active material may use at least one carbon-based negative active material selected from natural graphite and artificial graphite, and both natural graphite and artificial graphite may be used together to increase adhesion to the current collector and suppress active material detachment.
  • the negative active material may include a silicon-based negative active material together with the carbon-based negative active material.
  • the silicon-based negative electrode active material is, for example, metal silicon (Si), silicon oxide (SiO x , where 0 ⁇ x ⁇ 2), silicon carbide (SiC), and a Si—Y alloy (wherein Y is an alkali metal, an alkaline earth metal, group 13 It is an element selected from the group consisting of elements, group 14 elements, transition metals, rare earth elements, and combinations thereof, and may include one or more selected from the group consisting of Si).
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi , S, Se, Te, Po, and combinations thereof.
  • the silicon-based negative active material exhibits higher capacity characteristics than the carbon-based negative active material, better capacity characteristics can be obtained when the silicon-based negative active material is additionally included.
  • anode containing a silicon-based anode active material more oxygen (O)-rich components are contained in the SEI film than a graphite anode, and the SEI film containing O-rich components is an electrolyte solution.
  • a Lewis acid such as HF or PF 5
  • the nonaqueous electrolyte according to the present invention forms stable films on the positive electrode and the negative electrode and includes an electrolyte solution additive having excellent Lewis acid removal effect, decomposition of the SEI film can be effectively suppressed when using a negative electrode containing a silicon-based active material.
  • the mixing ratio of the silicon-based negative active material and the carbon-based negative active material may be 3:97 to 99:1, preferably 5:95 to 15:85 in weight ratio.
  • excellent cycle performance can be secured by suppressing volume expansion of the silicon-based negative electrode active material while improving capacity characteristics.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative active material layer.
  • excellent capacity characteristics and electrochemical characteristics may be obtained.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10% by weight or less, preferably 5% by weight or less, based on the total weight of the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change to the battery, and examples thereof include carbon black, acetylene black (or Denka black), Ketjen black, channel black, furnace black, lamp black, or carbon powders such as thermal black; graphite powder such as natural graphite, artificial graphite, or graphite having a highly developed crystal structure; conductive fibers such as carbon fibers and metal fibers; Conductive powders, such as fluorocarbon powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1% to 10% by weight based on the total weight of the negative electrode active material layer.
  • the binder include a fluororesin-based binder including polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; A polyalcohol-based binder containing polyvinyl alcohol; polyolefin binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binder; and silane-based binders.
  • PVDF polyvinyliden
  • the binder may be included in an amount of 0.1 to 15% by weight, preferably 0.1 to 10% by weight, based on the total weight of the negative electrode active material layer.
  • the negative electrode may be manufactured according to a negative electrode manufacturing method known in the art.
  • the negative electrode is a method of forming an active material layer by applying a negative electrode slurry prepared by dissolving or dispersing a negative electrode active material, optionally a binder and a conductive material in a solvent on a negative electrode current collector, and then rolling and drying the negative electrode active material. It can be produced by casting the layer on a separate support and then laminating the film obtained by peeling off the support on the negative electrode current collector.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • it is formed on the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the negative electrode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the solvent may be a solvent commonly used in the art, and dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or water and the like, and among these, one type alone or a mixture of two or more types may be used.
  • the amount of the solvent used may be adjusted so that the negative electrode slurry has an appropriate viscosity in consideration of the coating thickness of the negative electrode composite, production yield, workability, and the like, and is not particularly limited.
  • the lithium secondary battery according to the present invention includes a separator between the positive electrode and the negative electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions.
  • Any separator used as a separator in a lithium secondary battery can be used without particular limitation. In particular, it has low resistance to the movement of lithium salt ions and absorbs electrolyte It is desirable to have excellent ability.
  • a porous polymer film as a separator for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • a laminated structure of two or more layers thereof may be used.
  • conventional porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single layer or multilayer structure.
  • the lithium secondary battery according to the present invention as described above can be usefully used in portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • the appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape.
  • the lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium-large battery module including a plurality of battery cells.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • Cathode active material Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2
  • conductive material carbon black
  • binder polyvinylidene fluoride
  • NMP solvent N-methyl-2-pyrrolidone
  • binder SBR-CMC
  • conductive material carbon black
  • the negative electrode slurry was coated on a copper (Cu) thin film, which is a negative electrode current collector, with a thickness of 6 ⁇ m, and dried and roll pressed to prepare a negative electrode.
  • an electrode assembly is prepared by interposing a polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ) between the prepared positive electrode and the negative electrode, and then the assembled electrode assembly is stored in a pouch-type battery case,
  • a pouch-type lithium secondary battery was prepared by injecting the non-aqueous electrolyte for a lithium secondary battery.
  • Dissolving LiPF 6 in a non-aqueous organic solvent to a concentration of 1.0 M, and then adding 3.0% by weight of other additives (VC:1,3-PS:Esa 1.5:0.5:1 weight ratio) to prepare a non-aqueous electrolyte for a lithium secondary battery.
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery including the same were prepared in the same manner as in Example 1 except for (see Table 1 below).
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte for a lithium secondary battery was prepared by adding the same (see Table 1 below).
  • the lithium secondary batteries prepared in Examples 1 to 3 and the lithium secondary batteries prepared in Comparative Examples 1 to 3 were each charged up to 4.2V at 45° C. under constant current/constant voltage conditions at a rate of 0.33C, and then charged at a constant current condition at a rate of 0.33C. Discharging to 3V under 1 cycle was performed, and then the discharge capacity and resistance after 1 cycle were measured.
  • Capacity retention rate (%) (discharge capacity after 100 cycles/discharge capacity after 1 cycle) ⁇ 100
  • Resistance increase rate (%) ⁇ (resistance after 100 cycles - resistance after 1 cycle) / resistance after 1 cycle ⁇ 100
  • the lithium secondary batteries prepared in Examples 1 to 3 and the lithium secondary batteries prepared in Comparative Examples 1 to 3 were each charged up to 4.2V at 45° C. under constant current/constant voltage conditions at a rate of 0.33C, and then charged at a constant current condition at a rate of 0.33C. Discharging to 3V under 1 cycle was performed, and then the initial thickness was measured. Then, after 100 cycles of charging and discharging under the above 1 cycle condition, the thickness was measured to calculate the volume increase rate, and the results are shown in Table 2 below.
  • the lithium secondary batteries prepared in Examples 1 to 3 and the lithium secondary batteries prepared in Comparative Examples 1 to 3 were charged up to 4.2V under constant current/constant voltage conditions at room temperature (25 ° C) at a rate of 0.33 C, respectively, and DOD (depth of discharge) after adjusting the SOC to 50% by discharging to 50%, discharging for 10 seconds under the condition of 2.5C rate, and then measuring the initial volume.
  • the lithium secondary batteries prepared in Examples 1 to 4 and the lithium secondary batteries manufactured in Comparative Examples 1 to 3 were fully charged to SOC of 100% (4356mAh) under a voltage condition of 4.45 V, respectively. Thereafter, at 25 ° C, the temperature was raised to 60 ° C at a heating rate of 0.7 ° C / min, stored at 60 ° C for 8 weeks, charged at 0.33 C and discharged at 0.33 C, decomposed in a fully discharged state, and deposited on the negative electrode
  • the amounts of precipitated Ni, Co, and Mn were analyzed (ICP-OES, Perkin Elmer, AVIO 500), and the results are shown in Table 4 below.
  • the lithium secondary batteries prepared in Examples 1 to 4 and the lithium secondary batteries prepared in Comparative Examples 1 to 3 were fully charged to SOC of 100% (4356 mAh) under a voltage condition of 4.45 V, respectively. Thereafter, at 25 ° C, the temperature was raised to 60 ° C at a heating temperature of 0.7 ° C / min, stored at 60 ° C for 8 weeks, then charged at 0.33 C and discharged at 0.33 C to measure the recovery capacity, and the results It is shown in Table 5 below.
  • the anion stabilization concentration (ppm) is lower than that of the secondary batteries of Comparative Examples 1 to 3. That is, as the oligomer used as an additive in the present invention forms a complex with the thermal decomposition product of lithium salt or an anion dissociated from the lithium salt, the thermal decomposition product of lithium salt or the anion dissociated from the lithium salt stabilizes, thereby reducing the HF concentration in the electrolyte. seems to bring

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제공한다. 구체적으로, 본 발명의 리튬 이차전지용 비수전해액은 리튬염; 비수성 유기용매; 및 화학식 1로 표시되는 단량체로부터 유도된 반복단위 및 하기 화학식 2로 표시되는 단량체로부터 유도된 반복단위를 포함하는 올리고머;를 포함할 수 있다. 또한, 본 발명의 리튬 이차전지는 상기 리튬 이차전지용 비수전해액을 포함함으로써 사이클 특성 및 고온 저장 특성을 개선할 수 있다.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2021년 09월 09일자 한국 특허 출원 제10-2021-0120379호 및 2022년 09월 06일자 한국 특허 출원 제10-2022-0113086호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전이금속 용출 억제 및 리튬염으로부터 발생한 음이온의 안정화를 구현할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액과 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
리튬 이차전지는 여러 용도에 가장 적합한 기술로서, 납 전지나 니켈 카드뮴 전지와 비교하여 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하고, 에너지 밀도 및 사용 전압이 높으며, 고용량화가 가능하다는 점에서 노트북 컴퓨터, 휴대전화 등의 전원뿐만 아니라, 전기자동차, 전력 저장 장치로도 이용되고 있다.
리튬 이온 전지는 크게 리튬을 함유하고 있는 전이금속 산화물로 구성된 양극과, 리튬을 저장할 수 있는 음극, 리튬 이온을 전달하는 매개체가 되는 비수전해액 및 세퍼레이터로 구성되어 있으며, 이중 LiPF6 등의 리튬염이 용해된 비수성 유기용매를 주 성분으로 사용하는 비수전해액의 경우 전지의 안정성(stability, safety) 등에 큰 영향을 주는 요인으로 알려져 있다.
한편, 전지 구동 시 비수전해액 내 리튬염인 LiPF6가 분해되면 LiF 와 PF5를 생성하고, 비수성 유기용매와 반응하면서 비수성 유기용매의 고갈을 촉진하거나 다량의 가스를 발생시킴에 따라, 고온 성능 열화 및 안전성에 취약한 결과를 초래하고 있다. 게다가, 리튬 이온 전지는 전지 구동에 의해 양극 퇴화가 점차 심화됨에 따라, 전이금속이 용출되고, 용출된 전이금속이 음극에서 환원되는 등 부반응이 촉진되는 문제가 있다.
따라서, 전극 표면에 안정한 피막을 형성하여, 비수전해액과 전극의 부반응을 방지하는 동시에, 전이금속의 용출을 억제할 수 있는 비수전해액의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 니트릴기 (-CN) 및 방향족 탄화수소기 중 적어도 하나의 작용기를 포함하는 아크릴레이트 구조에 기반한 단량체로부터 얻어진 올리고머를 포함함으로써, 전이금속 용출 억제 및 리튬염으로부터 발생한 음이온의 안정화를 구현할 수 있는 리튬 이차전지용 비수전해액을 제공하고자 한다.
또한, 본 발명에서는 상기 리튬 이차전지용 비수전해액을 포함함으로써, 사이클 특성 및 고온 저장 특성이 향상된 리튬 이차전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은
리튬염;
비수성 유기용매; 및
하기 화학식 1로 표시되는 단량체로부터 유도된 반복단위 및 하기 화학식 2로 표시되는 단량체로부터 유도된 반복단위를 포함하는 올리고머;를 포함하는 리튬 이차전지용 비수전해액을 제공한다:
[화학식 1]
Figure PCTKR2022013468-appb-img-000001
상기 화학식 1에서,
R'은 수소 또는 탄소수 1 내지 3의 알킬기이고,
R1는 탄소수 1 내지 20의 알킬렌기이다.
[화학식 2]
Figure PCTKR2022013468-appb-img-000002
상기 화학식 2에서,
R"는 수소 또는 탄소수 1 내지 3의 알킬기이고,
R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이며,
A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이다.
다른 구현예에 따르면, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 음극 및 양극 사이에 개재되는 세퍼레이터; 및 본 발명에 따른 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지용 비수전해액은 니트릴기 (-CN) 및 방향족 탄화수소기 중 적어도 하나의 작용기를 포함하는 아크릴레이트 구조에 기반한 단량체로부터 얻어진 올리고머를 포함함으로써, 음극 및 양극 표면에 안정적인 피막을 형성하는 동시에, 용출된 금속 이온을 킬레이팅할 수 있고, 리튬염으로부터 해리된 음이온과 복합체를 형성하여 음이온에 의한 부반응을 억제할 수 있다.
따라서, 본 발명의 리튬 이차전지용 비수전해액을 사용하면, 고전압 구동 시에 고온 저장 성능 및 사이클 용량 유지율이 향상된 리튬 이차전지를 구현할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서 "*"는 올리고머 내 주쇄에 연결되거나, 화학식 내 다른 단량체, 치환기, 말단기 등의 결합부에 연결되는 부위를 의미한다.
리튬 이차전지용 비수전해액
일 구현예에 따르면, 본 발명은 리튬 이차전지용 비수전해액을 제공한다.
상기 리튬 이차전지용 비수전해액은
리튬염;
비수성 유기용매; 및
하기 화학식 1로 표시되는 단량체로부터 유도된 반복단위 및 하기 화학식 2로 표시되는 단량체로부터 유도된 반복단위를 포함하는 올리고머;를 포함할 수 있다.
[화학식 1]
Figure PCTKR2022013468-appb-img-000003
상기 화학식 1에서,
R'은 수소 또는 탄소수 1 내지 3의 알킬기이고,
R1는 탄소수 1 내지 20의 알킬렌기이다.
[화학식 2]
Figure PCTKR2022013468-appb-img-000004
상기 화학식 2에서,
R"는 수소 또는 탄소수 1 내지 3의 알킬기이고,
R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이며,
A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이다.
(1) 리튬염
먼저, 리튬염에 대하여 설명하면 다음과 같다.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO4 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 - 및 SCN-로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiN(SO2F)2 (Lithium bis(fluorosulfonyl)imide, LiFSI), LiN(SO2CF2CF3)2 (lithium bis(pentafluoroethanesulfonyl) imide, LiBETI) 및 LiN(SO2CF3)2 (lithium bis(trifluoromethanesulfonyl) imide, LiTFSI)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있으며, 상술한 리튬염 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬염이 제한 없이 사용할 수 있다. 구체적으로 상기 리튬염은 LiPF6를 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다. 상기 리튬염의 농도가 상기 범위를 만족할 경우, 최적의 함침성을 구현할 수 있도록 비수전해액의 점도를 제어할 수 있고, 리튬 이온의 이동성을 향상시켜 리튬 이차전지의 용량 특성 및 사이클 특성 개선 효과를 얻을 수 있다.
(2) 비수성 유기용매
또한, 비수성 유기용매에 대한 설명은 다음과 같다.
상기 비수성 유기용매로는 비수전해액에 통상적으로 사용되는 다양한 비수성 유기용매들이 제한 없이 사용될 수 있는데, 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 그 종류에 제한이 없다.
구체적으로, 상기 비수성 유기용매로는 유전율이 높아 리튬염을 잘 해리시키는 고점도의 환형 카보네이트계 화합물 및 저점도 및 저유전율을 가지는 선형 카보네이트계 화합물 중 적어도 하나가 포함될 수 있다.
상기 환형 카보네이트계 화합물로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있고, 이 중에서도 에틸렌 카보네이트를 포함할 수 있다.
상기 선형 카보네이트계 화합물로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으며, 구체적으로 에틸메틸 카보네이트(EMC)를 포함할 수 있다.
본 발명에서는 상기 환형 카보네이트계 화합물과 선형 카보네이트계 화합물을 혼합하여 사용할 수 있으며, 이 경우 상기 환형 카보네이트계 화합물 및 선형 카보네이트계 화합물의 혼합비는 10:90 내지 80:20 부피비, 구체적으로 30:70 내지 50:50 부피비일 수 있다.
상기 환형 카보네이트계 화합물과 선형 카보네이트계 화합물의 혼합비가 상기 범위를 만족하는 경우, 더욱 높은 전기 전도율을 갖는 비수전해액을 제조할 수 있다.
한편, 본 발명에서는 상기 카보네이트계 화합물의 단점을 개선하는 동시에 고온 및 고전압 구동 시의 안정성을 높이기 위하여, 상기 비수성 유기용매로 프로피오네이트 화합물을 더 혼합할 수 있다.
상기 프로피오네이트 화합물은 메틸 프로피오네이트, 에틸 프로피오네이트(EP), 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으며, 구체적으로 에틸 프로피오네이트 및 프로필 프로피오네이트 중 적어도 하나를 포함할 수 있다.
한편, 상기 본 발명의 리튬 이차전지용 비수전해액에서 비수성 유기용매를 제외한 타 구성성분, 예컨대 리튬염, 올리고머 및 선택적으로 포함되는 첨가제들을 제외한 잔부는 별도의 언급이 없는 한 모두 비수성 유기용매일 수 있다.
(C) 올리고머
본 발명의 리튬 이차전지용 비수전해액은 올리고머를 포함한다.
상기 올리고머는 하기 화학식 1로 표시되는 단량체로부터 유도된 반복단위 및 하기 화학식 2로 표시되는 단량체로부터 유도된 반복단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2022013468-appb-img-000005
상기 화학식 1에서,
R'은 수소 또는 탄소수 1 내지 3의 알킬기이고,
R1는 탄소수 1 내지 20의 알킬렌기이다.
[화학식 2]
Figure PCTKR2022013468-appb-img-000006
상기 화학식 2에서,
R"는 수소 또는 탄소수 1 내지 3의 알킬기이고,
R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이며,
A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이다.
본 발명의 올리고머는 아크릴레이트계 구조 기반의 말단 니트릴기를 포함하는 상기 화학식 1로 표시되는 단량체로부터 유도된 반복단위 구조를 포함함으로써, 양극 표면에 안정적인 피막을 형성하는 동시에, 금속 이온과의 강한 결합력을 의해 양극으로부터의 금속 이온 용출을 제어할 수 있다. 따라서, 전지의 고온 내구성, 고온 저장 특성 및 고온 안정성을 향상시킬 수 있다.
또한, 본 발명의 올리고머는 아크릴레이트계 구조 기반의 말단 방향족 탄화수소기 또는 헤테로방향족 탄화수소기를 포함하는 상기 화학식 2로 표시되는 단량체로부터 유도된 반복단위 구조를 포함함으로써, LiPF6와 같은 리튬염의 열분해산물 또는 리튬염으로부터 해리된 음이온과 배위하여 복합체를 형성하고, 이에 따라 리튬염의 열분해물 또는 리튬염으로부터 해리된 음이온이 안정화됨에 의해, 이들과 리튬 이차전지용 전해질의 부반응이 억제될 수 있다.
이러한 본 발명의 올리고머를 포함하는 비수전해액은 전해액의 부반응을 억제하고, 저항이 낮은 견고한 SEI막을 형성할 수 있으므로, 전극과 전해액의 부반응을 방지하여 가스 발생을 억제할 수 있다. 또한, 전지 내부 저항을 감소시켜 불량 발생률을 현저히 낮춤으로써, 리튬 이차전지의 사이클 특성을 향상시킬 수 있다.
이러한 본 발명의 올리고머는 하기 화학식 3으로 표시되는 올리고머일 수 있다.
[화학식 3]
Figure PCTKR2022013468-appb-img-000007
상기 화학식 3에서,
R' 및 R"는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
R1는 탄소수 1 내지 20의 알킬렌기이며,
R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이고,
A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이며,
m:n의 몰비는 1:99 내지 99:1 이다.
구체적으로, 상기 화학식 3에서, R1는 탄소수 1 내지 10의 알킬렌기일 수 있고, 바람직하게는 탄소수 1 내지 5의 알킬렌기일 수 있다.
또한, 상기 화학식 3에서, R2는 탄소수 1 내지 3의 알킬렌기일 수 있다.
또한, 상기 방향족 탄화수소기는 벤젠, 나프탈렌 및 안트라센 중 적어도 하나일 수 있으며, 구체적으로 벤젠일 수 있다.
상기 헤테로방향족 탄화수소기는 푸란, 피롤, 이미다졸, 피리딘, 피라진, 피리미딘, 피리다진, 1,2,3-트라이아진, 1,2,4-트라이아진 및 1,3,5-트라이아진 중 적어도 하나일 수 있으며, 구체적으로 헤테로 원소로 질소를 포함하는 피롤, 이미다졸, 피리딘, 피라진, 피리미딘 및 피리다진 중 적어도 하나일 수 있다.
바람직하게, 상기 올리고머는 하기 화학식 3-1 및 화학식 3-2로 표시되는 올리고머로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
[화학식 3-1]
Figure PCTKR2022013468-appb-img-000008
상기 화학식 3-1에서,
m1:n1의 몰비는 1:99 내지 99:1이다.
[화학식 3-2]
Figure PCTKR2022013468-appb-img-000009
상기 화학식 3-2에서,
m2:n2의 몰비는 1:99 내지 99:1이다.
본 발명의 올리고머의 중량평균분자량(Mw)은 반복 단위의 개수에 의해 조절될 수 있으며, 약 3,000 g/mol 내지 300,000 g/mol, 구체적으로 10,000 g/mol 내지 100,000 g/mol일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위를 만족하면, 올리고머 물성 자체가 경직(rigid)되는 것을 방지하여, 비수전해액 용매와 친화성이 높아져 용이하게 용해될 수 있으므로, 균일하고 우수한 비수전해액 형성을 기대할 수 있다.
상기 중량평균분자량은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC) 장치를 이용하여 측정할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서는 GPC 조건으로 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF 혹은 DMF를 사용할 수 있다.
한편, 상기 올리고머의 중량 평균분자량을 만족하기 위하여, m:n의 몰비는 1:99 내지 99:1이고, 구체적으로 1:99 내지 30:70일 수 있다.
또한, 상기 올리고머는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 25 중량%로 포함될 수 있다. 상기 올리고머가 상기 함량 범위로 포함되면, 음이온 안정화 개선 효과와, 안정한 피막 형성 효과를 구현할 수 있다.
상기 올리고머 함량이 0.1 중량% 이상인 경우 전지 구동 시간 동안 음이온과의 복합체 형성으로 인해 음이온 안정화를 보다 안정적으로 유지할 수 있으며, 양극 표면 흡착으로 인한 피막 형성 및 금속 이온과의 착물 형성으로, 금속 이온 용출을 억제할 수 있다. 또한, 상기 올리고머의 함량이 25 중량% 이하인 경우, 잉여의 화합물에 의한 전해액의 점도 증가를 방지하는 동시에, 전지 내 이온의 이동도를 개선할 수 있고, 셀 팽윤 억제 효과를 크게 개선할 수 있으며, 과도한 피막 형성을 억제하여 전지 저항 증가를 효과적으로 방지할 수 있으므로, 용량 및 사이클 특성 저하를 방지할 수 있다.
구체적으로 상기 올리고머는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.5 중량% 내지 20 중량%, 바람직하게는 0.5 내지 15 중량%로 포함될 수 있다.
(4) 기타 첨가제
또한, 본 발명의 리튬 이차전지용 비수전해액은 고출력의 환경에서 비수전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 상기 2종의 니트릴계 첨가제 외에 이외에 다른 부가적인 기타 첨가제들을 추가로 포함할 수 있다.
이러한 기타 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나를 들 수 있다.
상기 환형 카보네이트계 화합물로는 비닐렌카보네이트(이하, "VC"라 약칭함), 비닐에틸렌 카보네이트(VEC) 등을 들 수 있다.
상기 할로겐 치환된 카보네이트계 화합물로는 플루오로에틸렌 카보네이트(FEC) 등을 들 수 있다.
상기 설톤계 화합물은, 예를 들면, 1,3-프로판 설톤(이하 "1,3-PS"이라 약칭함), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나의 화합물일 수 있다.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; 이하, "Esa"라 약칭함) 또는 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다.
상기 포스페이트계 또는 포스파이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 트리스(트리메틸실릴)포스페이트, 트리스(트리메틸실릴) 포스파이트, 트리스(2,2,2,-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
상기 보레이트계 화합물은, 예를 들면, 테트라페닐보레이트, 음극 표면에 피막을 형성할 수 있는 리튬 옥살릴디플루오로보레이트 (LiODFB), 리튬 비스옥살레이토보레이트 (LiB(C2O4)2, LiBOB) 등을 들 수 있다.
상기 니트릴계 화합물은 1,4-디시아노-2-부텐 및 1,3,5-시클로헥산트리카보니트릴 이외의 화합물, 예를 들면 숙시노니트릴, 피멜로니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나의 화합물을 포함할 수 있다.
상기 벤젠계 화합물은 플루오로벤젠 등일 수 있다.
상기 아민계 화합물은 트리에탄올아민, 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다.
상기 리튬염계 화합물로는 상기 비수전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiBF4 등을 들 수 있다.
이러한 기타 첨가제 중에서도 음극 표면에 보다 견고한 SEI 피막을 형성하기 위하여, 음극 표면에 피막 형성 효과가 우수한 기타 첨가제, 구체적으로 VC, 1,3-PS, Esa, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트(FEC), 리튬 옥살릴디플루오로보레이트 (LiODFB), 1,4-디시아노-2-부텐 및 1,3,5-시클로헥산트리카보니트릴로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.
상기 기타 첨가제는 2 종 이상의 화합물을 혼용하여 사용할 수 있으며, 상기 비수전해액에 0.01 내지 50 중량%, 구체적으로 0.01 내지 10 중량%로 포함될 수 있고, 바람직하게는 0.05 내지 5 중량%로 포함될 수 있다. 상기 범위에 있을 때, 기타 첨가제에 의한 사이클 특성 개선 효과를 충분히 구현하면서, 과량 첨가로 인한 기타 첨가제의 미반응물의 잔존, 과도한 부반응 발생을 방지할 수 있어 바람직하다.
리튬 이차전지
또한, 본 발명의 또 다른 일 실시예에서는 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다. 구체적으로, 상기 리튬 이차전지는 양극, 음극 및 전술한 리튬 이차전지용 비수전해액을 포함할 수 있다.
한편, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 세퍼레이터가 순차적으로 적층되어 있는 전극 조립체를 형성하여 전지 케이스에 수납한 다음, 본 발명의 비수전해액을 투입하여 제조할 수 있다.
이러한 본 발명의 리튬 이차전지를 제조하는 방법은 당 기술 분야에 알려진 통상적인 방법에 따라 제조되어 적용될 수 있으며, 구체적으로 후술하는 바와 같다.
(1) 양극
본 발명에 따른 양극은, 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있으며, 필요에 따라, 상기 양극 활물질층은 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 니켈(Ni), 코발트(Co), 망간(Mn), 철 (Fe) 및 알루미늄(Al)으로 이루어진 군으로부터 선택된 적어도 하나의 금속과 리튬을 포함하는 하기 화학식 4로 표시되는 리튬 복합금속 산화물을 포함할 수 있다.
[화학식 4]
Li1+aNixCoyM1 zM2 wO2
상기 화학식 4에서,
M1은 Mn, Al 또는 이들의 조합이고,
M2는 Al, Zr, W, Ti, Mg, Ca 및 Sr로 이루어진 군에서 선택된 적어도 하나이며, 0≤a≤0.5, 0<x≤1.0, 0<y≤0.4, 0<z≤0.4, 0≤w≤0.1 이다.
상기 1+a는 리튬 전이금속 산화물 내 리튬의 원자 분율을 나타내며, 0≤a≤0.5, 바람직하게는 0≤a≤0.2, 더 바람직하게는 0≤a≤0.1일 수 있다.
상기 x는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 니켈의 원자 분율을 나타내며, 0<x≤1.0, 구체적으로 0.55<x<1.0, 더욱 구체적으로는 0.6≤x≤0.98, 보다 더 구체적으로는 0.6≤x≤0.95일 수 있다.
상기 y는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 코발트의 원자 분율을 나타내며, 0<y≤0.4, 구체적으로 0<y≤0.3, 더욱 구체적으로는 0.05≤y≤0.3일 수 있다.
상기 z는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 M1 원소의 원자 분율을 나타내며, 0<z≤0.4, 바람직하게는 0<z≤0.3, 더 바람직하게는 0.01≤z≤0.3일 수 있다.
상기 w는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 M2 원소의 원자 분율을 나타내며, 0<w≤0.1, 바람직하게는 0<w≤0.05, 더 바람직하게는 0<w≤0.02이다.
구체적으로, 상기 양극 활물질은 고용량의 전지를 구현하기 위하여, Ni 함량이 0.55 atm% 이상인 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, Li(Ni0.7Mn0.2Co0.1)O2, Li(Ni0.8Mn0.1Co0.1)O2, Li(Ni0.8Co0.15Al0.05)O2, Li(Ni0 . 86Mn0 . 07Co0 . 05Al0 . 02)O2 또는 Li(Ni0.90Mn0.05Co0.05)O2 등의 리튬 복합 전이금속 산화물을 포함할 수 있다.
한편, 리튬 전이금속 산화물로 Ni 함량이 0.55를 초과하는 고함량 니켈(Hi-Ni)을 적용하는 경우, Li+1 이온과 Ni+2 이온의 크기가 유사하기 때문에 충방전 과정에서 상기 양극활물질의 층상 구조내에서 Li+1 이온과 Ni+2 이온의 자리가 바뀌는 양이온 혼합 (cation mixing) 현상이 발생한다. 즉, 양극 활물질 내에 포함된 Ni의 산화수 변동에 따라 고온 등의 환경에서 d 궤도를 가지는 니켈 전이금속이 배위 결합시 정팔면체 구조를 가져야 하나 외부의 에너지 공급에 의하여, 에너지 레벨의 순서가 뒤바뀌거나, 산화수가 변동되는 불균일화 반응에 의하여 뒤틀어진 팔면체를 형성하게 되면서, 양극 활물질의 결정 구조의 변형 및 붕괴를 가져온다. 더욱이, 고온 저장 시 양극활물질과 전해액의 부반응에 의해 양극 활물질로부터 전이금속, 특히 니켈 금속이 용출되는 또 다른 부반응이 야기됨에 따라, 전해액 고갈과 함께 양극활물질의 구조 붕괴로 인한 이차전지의 제반 성능 저하된다.
본 발명에서는 특정 구성의 첨가제를 포함하는 비수전해액과 양극활물질로 고함량 니켈(Hi-Ni) 전이금속 산화물을 포함하는 양극을 함께 사용함으로써, 이러한 문제점을 개선할 수 있다. 즉, 본 발명의 비수전해액에 의해 양극 표면에 견고한 이온전도성 피막이 형성되어, Li+1 이온과 Ni+2 이온의 양이온 혼합 현상을 억제하고, 양극과 전해액과의 부반응, 금속 용출 현상 등을 효과적으로 억제하여 고용량 전극의 구조적 불안전성을 완화시킬 수 있다. 따라서, 리튬 이차전지의 용량 확보를 위한 충분한 니켈 전이금속량을 확보할 수 있으므로, 에너지 밀도를 높여 출력 특성을 향상시킬 수 있다.
한편, 본 발명의 양극 활물질은 이차전지 용도에 따라 상기 화학식 4로 표시되는 리튬 복합금속 산화물과 함께 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(0<Y<1), LiMn2 - zNizO4(0<Z<2), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(0<Y1<1), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - Y2MnY2O2(0<Y2<1), LiMn2 - z1Coz1O4(0<Z1<2), 또는 Li(Nip1Coq1Mnr2)O4(0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등을 병용하여 사용할 수도 있다.
상기 양극 활물질은 양극 활물질층 전체 중량을 기준으로 80 내지 98중량%, 보다 구체적으로는 85 내지 98중량%의 함량으로 포함될 수 있다. 양극 활물질이 상기 범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
다음으로, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말 또는 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 도전재는 양극 활물질층 전체 중량을 기준으로 0.1 내지 10중량%, 바람직하게는 0.1 내지 5중량%로 포함될 수 있다.
다음으로, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다.
이러한 바인더의 예로는, 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부타디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리비닐알코올을 포함하는 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌을 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 바인더는 양극 활물질층 전체 중량을 기준으로 0.1 내지 15 중량%, 바람직하게는 0.1 내지 10중량%로 포함될 수 있다.
이러한 본 발명의 양극은 당해 기술 분야에 알려져 있는 양극 제조 방법에 따라 제조될 수 있다. 예를 들면, 상기 양극은, 양극 활물질, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 슬러리를 양극 집전체 상에 도포한 후, 건조 및 압연하여 활물질층을 형성하는 방법, 또는 상기 양극 활물질층을 별도의 지지체 상에 캐스팅한 다음, 지지체를 박리하여 얻은 필름을 양극 집전체 상에 라미네이션하는 방법 등을 통해 제조될 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인리스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극재의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 양극 합재의 도포 두께, 제조 수율, 작업성 등을 고려하여 양극 합재가 적절한 점도를 갖도록 조절될 수 있는 정도이면 되고, 특별히 한정되지 않는다.
(2) 음극
다음으로, 음극에 대해 설명한다.
본 발명에 따른 음극은 음극 활물질을 포함하는 음극 활물질층을 포함하며, 상기 음극 활물질층은 필요에 따라, 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 음극 활물질로는 당 업계에서 사용되는 다양한 음극 활물질, 예를 들면, 탄소계 음극 활물질, 실리콘계 음극 활물질 또는 이들의 혼합물 등이 사용될 수 있다.
일 구현예에 따르면, 상기 음극 활물질은 탄소계 음극 활물질을 포함할 수 있으며, 상기 탄소계 음극 활물질로는, 당 업계에서 사용되는 다양한 탄소계 음극 활물질, 예를 들면, 천연 흑연, 인조 흑연, 키시흑연 (Kish graphite)과 같은 그라파이트계 물질; 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등이 사용될 수 있다. 상기 탄소계 음극 활물질의 형상은 특별히 제한되지 않으며, 무정형, 판상, 인편상, 구형 또는 섬유형 등과 같은 다양한 형상의 물질들이 사용될 수 있다.
바람직하게는 상기 음극 활물질은 천연 흑연 및 인조 흑연 중 적어도 하나의 탄소계 음극 활물질을 사용할 수 있으며, 집전체와의 접착력을 높여 활물질 탈리를 억제할 수 있도록 천연 흑연과 인조 흑연을 함께 사용할 수 있다.
다른 구현예에 따르면, 상기 음극 활물질은 상기 탄소계 음극 활물질과 함께 실리콘계 음극 활물질을 포함하여 사용할 수 있다.
상기 실리콘계 음극 활물질은, 예를 들면 금속 실리콘(Si), 실리콘 산화물(SiOx, 여기서 0<x<2) 실리콘 탄화물(SiC) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 실리콘계 음극 활물질은 탄소계 음극 활물질에 비해 높은 용량 특성을 나타내므로, 실리콘계 음극 활물질을 추가로 포함할 경우, 더 우수한 용량 특성을 얻을 수 있다. 다만, 실리콘계 음극 활물질을 함유한 음극의 경우, 흑연 음극에 비해 SEI 막 내에 산소(O)-리치(O-rich)한 성분을 더 많이 함유하고 있으며, O-리치한 성분들을 포함하는 SEI막은 전해액 내에 HF 또는 PF5와 같은 루이스 산이 존재할 경우, 더 쉽게 분해되는 경향을 보인다. 따라서, 실리콘계 음극 활물질을 함유한 음극의 경우, 안정적인 SEI 막 유지를 위해 전해액 내 HF 및 PF5와 같은 루이스 산의 생성을 억제하거나, 생성된 루이스 산을 제거(혹은 scavenging)할 필요가 있다. 본 발명에 따른 비수전해액은 양극 및 음극에 안정한 피막을 형성하는 동시에 루이스산 제거 효과가 우수한 전해액 첨가제를 포함하기 때문에, 실리콘계 활물질을 함유한 음극 사용 시에 SEI 피막 분해를 효과적으로 억제할 수 있다.
한편, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질의 혼합 비율은 중량비율로 3:97 내지 99:1, 바람직하게 5:95 내지 15:85 일 수 있다. 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합 비율이 상기 범위를 만족하는 경우, 용량 특성을 향상시키면서도 실리콘계 음극 활물질의 부피 팽창이 억제되어 우수한 사이클 성능을 확보할 수 있다.
상기 음극 활물질은 음극 활물질층 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다. 음극 활물질의 함량이 상기 범위를 만족할 경우, 우수한 용량 특성 및 전기화학적 특성을 얻을 수 있다.
다음으로, 상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다.  바인더의 예로는, 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부타디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리비닐알코올을 포함하는 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌을 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더 등을 들 수 있다.
상기 바인더는 음극 활물질층 전체 중량을 기준으로 0.1 내지 15 중량%, 바람직하게는 0.1 내지 10중량%로 포함될 수 있다.
상기 음극은 당해 기술 분야에 알려져 있는 음극 제조 방법에 따라 제조될 수 있다. 예를 들면, 상기 음극은 음극 집전체 상에 음극 활물질과, 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 슬러리를 도포하고 압연, 건조하여 활물질층을 형성하는 방법 또는 상기 음극 활물질층을 별도의 지지체 상에 캐스팅한 다음, 지지체를 박리시켜 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 음극 합재의 도포 두께, 제조 수율, 작업성 등을 고려하여 음극 슬러리가 적절한 점도를 갖도록 조절될 수 있는 정도이면 되고, 특별히 한정되지 않는다.
(3) 세퍼레이터
본 발명에 따른 리튬 이차전지는, 상기 양극 및 음극 사이에 세퍼레이터를 포함한다.
상기 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 리튬염의 이온 이동에 대하여 낮은 저항성을 가지면서 전해액 함습 능력이 우수한 것이 바람직하다.
구체적으로는 세퍼레이터로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(리튬 이차전지용 비수전해액 제조)
에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC)를 30:70 부피비로 혼합한 비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 화학식 3-1로 표시되는 올리고머 (m1:n1의 몰비: 20:80, 중량평균분자량: 100,000 g/mol) 0.5 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하였다 (하기 표 1 참조).
(리튬 이차전지 제조)
양극 활물질 (Li(Ni0.8Mn0.1Co0.1)O2), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5 중량비로 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 양극 슬러리를 12㎛ 두께의 양극 집전체 (알루미늄(Al) 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (인조흑연:SiO=90:10 중량비), 바인더(SBR-CMC) 및 도전재(카본 블랙)를 95:3.5:1.5 중량비로 용제인 물에 첨가하여 음극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조 및 롤 프레스를 실시하여 음극을 제조하였다.
드라이 룸에서 상기 제조된 양극과 음극 사이에 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 세퍼레이터를 개재하여 전극조립체를 제조한 다음, 파우치형 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 리튬 이차전지용 비수전해액을 주액하여 파우치형 리튬 이차전지를 제조하였다.
실시예 2.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 화학식 3-1로 표시되는 올리고머 (m1:n1의 몰비: 20:80, 중량평균분자량: 100,000 g/mol) 5.0 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%을 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 3.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 화학식 3-1로 표시되는 올리고머 (m1:n1의 몰비: 20:80, 중량평균분자량: 100,000 g/mol) 10.0 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
실시예 4.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 화학식 3-1로 표시되는 올리고머 (m1:n1의 몰비: 20:80, 중량평균분자량: 100,000 g/mol) 30.0 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 1.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
비교예 2.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 하기 화학식 5로 표시되는 올리고머 (a:b의 몰비: 20:80, 중량평균분자량: 100,000 g/mol) 0.5 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
[화학식 5]
Figure PCTKR2022013468-appb-img-000010
비교예 3.
비수성 유기용매에 LiPF6가 1.0M이 되도록 용해한 다음, 상기 화학식 5로 표시되는 올리고머 5.0 중량% 및 기타 첨가제 (VC:1,3-PS:Esa = 1.5:0.5:1 중량비) 3.0 중량%를 첨가하여 리튬 이차전지용 비수전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다 (하기 표 1 참조).
리튬염 올리고머 기타 첨가제
화학식 함량 (중량%) 종류 함량 (중량%)
실시예 1 1.0M LiPF6 3-1 0.5 VC:1,3-PS:Esa
= 1.5:0.5:1 중량비
3
실시예 2 5.0
실시예 3 10.0
실시예 4 30.0
비교예 1 - -
비교예 2 5 0.5
비교예 3 5.0
실험예
실험예 1. 고온 사이클 특성 평가 (1)
실시예 1 내지 3에서 제조된 리튬 이차전지와 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 45℃에서 0.33C rate로 정전류/정전압 조건하에서 4.2V까지 충전한 다음, 0.33C rate로 정전류 조건하에서 3V까지 방전하는 것을 1 사이클을 진행한 다음, 1사이클 후의 방전 용량 및 저항을 측정하였다.
그런 다음, 상기 1 사이클 조건으로 100 사이클 충방전을 실시한 후 용량 유지율(%) 및 저항 증가율(%)을 측정하였다. 용량 유지율(%)은 하기 [식 1]에 따라 계산하였으며, 저항 증가율(%)은 하기 [식 2]에 따라 계산하였다. 측정 결과는 하기 표 2에 기재하였다.
[식 1]
용량 유지율(%) = (100 사이클 후 방전 용량/1 사이클 후 방전용량)×100
[식 2]
저항 증가율(%) = {(100 사이클 후 저항 - 1 사이클 후 저항) / 1 사이클 후 저항}×100
실험예 2. 고온 사이클 특성 평가 (2)
실시예 1 내지 3에서 제조된 리튬 이차전지와 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 45℃에서 0.33C rate로 정전류/정전압 조건하에서 4.2V까지 충전한 다음, 0.33C rate로 정전류 조건하에서 3V까지 방전하는 것을 1 사이클을 진행한 다음, 초기 두께를 측정하였다. 그런 다음, 상기 1 사이클 조건으로 100 사이클 충방전을 실시한 후 두께를 측정하여, 부피 증가율을 산출한 다음, 그 결과를 하기 표 2에 기재하였다.
100 사이클 후
용량 유지율 (%)
100 사이클 후
저항 증가율 (%)
100 사이클 후
부피 증가율 (%)
실시예 1 97.4 2.2 3.5
실시예 2 98.1 1.9 3.1
실시예 3 96.8 2.5 3.7
비교예 1 88.9 6.2 8.7
비교예 2 91.7 4.5 5.4
비교예 3 92.4 3.9 5.0
상기 표 2를 살펴보면, 본 발명의 실시예 1 내지 3의 이차전지의 경우, 고온 (45℃)에서 100 사이클 후 용량 유지율(%), 저항 증가율(%) 및 부피 증가율(%)이 비교예 1 내지 3의 이차전지에 비해 개선된 것을 알 수 있다.
실험예 3. 고온 저장 후 부피 증가율 평가
실시예 1 내지 3에서 제조된 리튬 이차전지와 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 상온(25℃)에서 0.33C rate로 정전류/정전압 조건으로 4.2V까지 충전한 다음, DOD (depth of discharge) 50%까지 방전하여 SOC 50%를 맞춰준 후, 2.5C rate 조건으로 10초간 방전한 다음, 초기 부피를 측정하였다.
그런 다음, 60℃에서 8 주간 저장한 후에 각각의 리튬 이차전지에 대한 고온 저장 후 부피를 측정하여 부피 증가율을 확인하고, 그 결과를 하기 표 3에 기재하였다.
고온 저장 후 부피 증가율 (%)
실시예 1 1.7
실시예 2 1.1
실시예 3 1.9
비교예 1 3.5
비교예 2 2.8
비교예 3 2.4
상기 표 3을 살펴보면, 본 발명의 실시예 1 내지 3의 이차전지의 경우, 고온 저장 후 부피 증가율(%)이 비교예 1 내지 3의 이차전지에 비해 억제된 것을 확인할 수 있다.
실험예 4. 금속 용출량 평가
실시예 1 내지 4에서 제조된 리튬 이차전지와 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 4.45 V 전압 조건하에서, SOC 100% (4356mAh) 까지 만충전을 실시하였다. 이후, 25℃에서, 0.7 ℃/min의 승온 온도로 60℃까지 온도를 상승하고, 60℃에서 8 주간 저장한 다음, 0.33 C로 충전 및 0.33 C로 방전하고, 만방전 상태에서 분해하여 음극에 석출된 Ni, Co, Mn의 양을 분석 (ICP-OES, Perkin Elmer, AVIO 500) 하고, 그 결과를 하기 표 4에 나타내었다.
금속 (Ni, Co, Mn) 총 용출량 (ppm)
실시예 1 135
실시예 2 108
실시예 3 90
실시예 4 89
비교예 1 273
비교예 2 115
비교예 3 101
상기 표 4를 살펴보면, 본 발명의 실시예 1 내지 4의 이차전지의 경우, 고온 저장 후 금속 이온 용출량이 부피 증가율(%)이 비교예 1 내지 3의 이차전지에 비해 감소한 것을 확인할 수 있다. 이러한 결과로, 본 발명의 비수전해액을 사용한 리튬 이차전지는 금속 용출 억제 효과가 향상된 것을 알 수 있다.
실험예 5. 회복 용량 평가
실시예 1 내지 4에서 제조된 리튬 이차전지와 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 4.45 V 전압 조건하에서, SOC 100% (4356mAh) 까지 만충전을 실시하였다. 이후, 25℃에서, 0.7 ℃/min의 승온 온도로 60℃까지 온도를 상승한 후, 60℃에서 8 주간 저장한 다음, 0.33 C로 충전 및 0.33 C로 방전하여 회복 용량을 측정하고, 그 결과를 하기 표 5에 나타내었다.
회복 용량 (%)
실시예 1 96.0
실시예 2 96.4
실시예 3 95.5
실시예 4 84.2
비교예 1 86.3
비교예 2 90.9
비교예 3 92.9
상기 표 5를 살펴보면, 본 발명의 실시예 1 내지 4의 이차전지의 경우, 회복 용량(%)이 비교예 1 내지 4의 이차전지에 비해 향상된 것을 알 수 있다.
한편, 첨가제가 다소 많이 포함된 실시예 4의 이차전지의 경우, 전지 내부 저항 증가로 회복 용량(%)이 실시예 1 내지 3의 이차전지에 비해 저하된 것을 알 수 있다.
실험예 6. 음이온 안정화 평가
실시예 1 내지 4에서 제조된 비수전해액과 비교예 1 내지 3에서 제조된 비수전해액을 45℃ 에서 1 주간 보관 한 다음, Metrohm (785 DMP Titrino)을 이용하여 HF 양을 측정하여 음이온 안정화 효과를 비교하고, 그 결과를 하기 표 6에 나타내었다.
음이온 안정화 (HF ppm)
실시예 1 31
실시예 2 24
실시예 3 21
실시예 4 16
비교예 1 106
비교예 2 101
비교예 3 105
상기 표 6을 살펴보면, 본 발명의 실시예 1 내지 4의 이차전지의 경우, 음이온 안정화 농도(ppm)가 비교예 1 내지 3의 이차전지에 비해 낮은 것을 알 수 있다. 즉, 본 발명에서 첨가제로 사용되는 올리고머는 리튬염의 열분해물 또는 리튬염으로부터 해리된 음이온과 복합체를 형성함에 따라, 리튬염의 열분해물 또는 리튬염으로부터 해리된 음이온이 안정화시켜, 전해액 내에 HF 농도 저하를 가져오는 것으로 보인다.

Claims (10)

  1. 리튬염;
    비수성 유기용매; 및
    하기 화학식 1로 표시되는 단량체로부터 유도된 반복단위 및 하기 화학식 2로 표시되는 단량체로부터 유도된 반복단위를 포함하는 올리고머;를 포함하는 리튬 이차전지용 비수전해액:
    [화학식 1]
    Figure PCTKR2022013468-appb-img-000011
    (상기 화학식 1에서,
    R'은 수소 또는 탄소수 1 내지 3의 알킬기이고,
    R1는 탄소수 1 내지 20의 알킬렌기이다);
    [화학식 2]
    Figure PCTKR2022013468-appb-img-000012
    (상기 화학식 2에서,
    R"는 수소 또는 탄소수 1 내지 3의 알킬기이고,
    R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이며,
    A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이다).
  2. 청구항 1에 있어서.
    상기 올리고머는 하기 화학식 3으로 표시되는 올리고머인 것인 리튬 이차전지용 비수전해액:
    [화학식 3]
    Figure PCTKR2022013468-appb-img-000013
    (상기 화학식 3에서,
    R' 및 R"는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
    R1는 탄소수 1 내지 20의 알킬렌기이며,
    R2는 직접 결합 또는 탄소수 1 내지 5의 알킬렌기이고,
    A는 방향족 탄화수소기 또는 헤테로방향족 탄화수소기이며,
    m:n의 몰비는 1:99 내지 99:1 이다).
  3. 청구항 2에 있어서,
    상기 R1는 탄소수 1 내지 10의 알킬렌기이고,
    상기 R2는 탄소수 1 내지 3의 알킬렌기이고,
    상기 방향족 탄화수소기는 벤젠, 나프탈렌 및 안트라센 중 적어도 하나이고,
    상기 헤테로방향족 탄화수소기는 피롤, 이미다졸, 피리딘, 피라진, 피리미딘, 피리다진, 1,2,3-트라이아진, 1,2,4-트라이아진 및 1,3,5-트라이아진 중 적어도 하나인 것인 리튬 이차전지용 비수전해액.
  4. 청구항 2에 있어서,
    상기 R1는 탄소수 1 내지 5의 알킬렌기이고,
    상기 방향족 탄화수소기는 벤젠이고,
    상기 헤테로방향족 탄화수소기는 피롤, 이미다졸, 피리딘, 피라진, 피리미딘 및 피리다진 중 적어도 하나인 것인 리튬 이차전지용 비수전해액.
  5. 청구항 2에 있어서.
    상기 올리고머는 하기 화학식 3-1 및 화학식 3-2로 표시되는 올리고머로 이루어진 군으로부터 선택된 적어도 하나인 것인 리튬 이차전지용 비수전해액:
    [화학식 3-1]
    Figure PCTKR2022013468-appb-img-000014
    (상기 화학식 3-1에서,
    m1:n1의 몰비는 1:99 내지 99:1이다);
    [화학식 3-2]
    Figure PCTKR2022013468-appb-img-000015
    (상기 화학식 3-2에서,
    m2:n2의 몰비는 1:99 내지 99:1이다).
  6. 청구항 1에 있어서,
    상기 올리고머는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 25 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  7. 청구항 1에 있어서,
    상기 올리고머는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  8. 청구항 1에 있어서,
    상기 리튬 이차전지용 비수전해액은 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나의 기타 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.
  9. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극;
    상기 음극 및 양극 사이에 개재되는 세퍼레이터; 및
    청구항 1의 리튬 이차전지용 비수전해액;을 포함하는 것인 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 양극 활물질은 하기 화학식 4로 표시되는 리튬 복합금속 산화물을 포함하는 것인 리튬 이차전지:
    [화학식 4]
    Li1 + aNixCoyM1 zM2 wO2
    (상기 화학식 4에서,
    M1은 Mn, Al 또는 이들의 조합이고,
    M2는 Al, Zr, W, Ti, Mg, Ca 및 Sr로 이루어진 군에서 선택된 적어도 하나이며, 0≤a≤0.5, 0<x≤1.0, 0<y≤0.4, 0<z≤0.4, 0≤w≤0.1 이다).
PCT/KR2022/013468 2021-09-09 2022-09-07 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 WO2023038439A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280059695.3A CN117916925A (zh) 2021-09-09 2022-09-07 用于锂二次电池的非水电解质溶液和包括其的锂二次电池
JP2023567025A JP2024516270A (ja) 2021-09-09 2022-09-07 リチウム二次電池用非水電解液およびそれを含むリチウム二次電池
CA3230432A CA3230432A1 (en) 2021-09-09 2022-09-07 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP22867707.6A EP4379889A1 (en) 2021-09-09 2022-09-07 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0120379 2021-09-09
KR20210120379 2021-09-09
KR1020220113086A KR102652852B1 (ko) 2021-09-09 2022-09-06 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR10-2022-0113086 2022-09-06

Publications (1)

Publication Number Publication Date
WO2023038439A1 true WO2023038439A1 (ko) 2023-03-16

Family

ID=85506771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013468 WO2023038439A1 (ko) 2021-09-09 2022-09-07 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Country Status (4)

Country Link
EP (1) EP4379889A1 (ko)
JP (1) JP2024516270A (ko)
CA (1) CA3230432A1 (ko)
WO (1) WO2023038439A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035793A (ko) * 2012-09-14 2014-03-24 국립대학법인 울산과학기술대학교 산학협력단 고온안정성 및 성능이 우수한 전해액 조성물 및 이를 포함하는 전기화학소자
KR101884568B1 (ko) * 2017-06-02 2018-08-02 울산과학기술원 전이금속 이온을 킬레이팅하는 작용기를 포함하고 열적 겔화가 가능한 전이금속 킬레이팅 작용기 중합체
KR20190065157A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 리튬 이차전지용 전해질 조성물 및 이를 포함하는 리튬 이차전지
KR20200074902A (ko) * 2018-12-17 2020-06-25 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20200203763A1 (en) * 2018-12-20 2020-06-25 Robert Bosch Gmbh High-voltage stable copolymer for constituting a polymer electrolyte for a lithium or sodium cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035793A (ko) * 2012-09-14 2014-03-24 국립대학법인 울산과학기술대학교 산학협력단 고온안정성 및 성능이 우수한 전해액 조성물 및 이를 포함하는 전기화학소자
KR101884568B1 (ko) * 2017-06-02 2018-08-02 울산과학기술원 전이금속 이온을 킬레이팅하는 작용기를 포함하고 열적 겔화가 가능한 전이금속 킬레이팅 작용기 중합체
KR20190065157A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 리튬 이차전지용 전해질 조성물 및 이를 포함하는 리튬 이차전지
KR20200074902A (ko) * 2018-12-17 2020-06-25 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20200203763A1 (en) * 2018-12-20 2020-06-25 Robert Bosch Gmbh High-voltage stable copolymer for constituting a polymer electrolyte for a lithium or sodium cell

Also Published As

Publication number Publication date
EP4379889A1 (en) 2024-06-05
JP2024516270A (ja) 2024-04-12
CA3230432A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021091215A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023038439A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023038442A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2022015072A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023200238A1 (ko) 리튬 이차전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2023172044A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2023068739A1 (ko) 리튬 이차 전지용 양극 첨가제의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567025

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3230432

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280059695.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022867707

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE