WO2023068739A1 - 리튬 이차 전지용 양극 첨가제의 제조 방법 - Google Patents

리튬 이차 전지용 양극 첨가제의 제조 방법 Download PDF

Info

Publication number
WO2023068739A1
WO2023068739A1 PCT/KR2022/015836 KR2022015836W WO2023068739A1 WO 2023068739 A1 WO2023068739 A1 WO 2023068739A1 KR 2022015836 W KR2022015836 W KR 2022015836W WO 2023068739 A1 WO2023068739 A1 WO 2023068739A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
weight
iron oxide
positive electrode
secondary battery
Prior art date
Application number
PCT/KR2022/015836
Other languages
English (en)
French (fr)
Inventor
서동훈
윤석현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220133499A external-priority patent/KR20230055977A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22883962.7A priority Critical patent/EP4329013A1/en
Priority to CN202280033777.0A priority patent/CN117378060A/zh
Priority to JP2023569716A priority patent/JP2024517308A/ja
Priority to US18/565,620 priority patent/US20240145668A1/en
Publication of WO2023068739A1 publication Critical patent/WO2023068739A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for preparing a cathode additive for a lithium secondary battery.
  • a positive electrode active material of 80% or more Ni is applied as a positive electrode material to the positive electrode of a lithium secondary battery, and a metal or metal-based negative active material such as SiO, Si or SiC is applied to the negative electrode as a carbon-based negative active material such as natural graphite or artificial graphite.
  • a technique applied with has been proposed.
  • a negative electrode active material based on metal and metal oxide enables a higher capacity expression than a carbon-based negative electrode active material.
  • metals and metal oxides are added to the negative electrode, irreversible reactions occur during initial charging and discharging, resulting in greater loss of lithium than when a carbon-based negative electrode active material is used. Therefore, when a negative electrode active material based on metal or metal oxide is applied, the amount of lithium lost increases as the capacity of the battery increases, resulting in a greater decrease in initial capacity.
  • the lithiated negative electrode is very unstable in the air, and the electrochemical lithiation method has difficulty in scale-up the process.
  • Another example is a method of coating a negative electrode with lithium metal or lithium silicide (Li x Si) powder.
  • the powder since the powder has high reactivity and deteriorates atmospheric stability, it is difficult to establish a suitable solvent and process conditions when coating the negative electrode.
  • a material suitable for preliminary lithiation of a battery in the cathode must have irreversible characteristics in which lithium is desorbed at least twice as much as conventional cathode materials during the first charge and does not react with lithium during subsequent discharge. Additives satisfying these conditions are called sacrificial positive electrode materials.
  • a formation process of first charging/discharging is performed.
  • an SEI layer formation reaction occurs on the anode, and gas is generated due to decomposition of the electrolyte.
  • the sacrificial cathode material releases lithium and decomposes to react with the electrolyte, and gases such as N 2 , O 2 , and CO 2 generated in the process are recovered through a gas pocket removal process.
  • over-lithiated positive electrode materials which are metal oxides rich in lithium
  • over-lithiated positive electrode materials anti-fluorite structures such as Li 6 CoO 4 , Li 5 FeO 4 and Li 6 MnO 4 are well known. Their theoretical capacities are 977 mAh/g for Li 6 CoO 4 , 867 mAh/g for Li 5 FeO 4 , and 1001 mAh/g for Li 6 MnO 4 , which are enough to be used as sacrificial cathode materials.
  • Li 6 CoO 4 has the highest electrical conductivity and has good electrochemical properties for use as a sacrificial anode material.
  • the sacrificial cathode material of Li 5 FeO 4 has poor air stability, so when exposed to air, its performance deteriorates rapidly, and its electrical conductivity is low, so its irreversible capacity is insufficient.
  • a significant amount of Li 5 FeO 4 has to be added. This has become an obstacle to the recent direction of technology development to provide a lithium secondary battery with a lower weight and improved capacity characteristics. Accordingly, development of a Li 5 FeO 4 -based sacrificial cathode material having a higher irreversible capacity is continuously required.
  • the present invention is to provide a method for producing a cathode additive for a lithium secondary battery having excellent air stability while exhibiting high initial irreversible capacity.
  • a mixture of the lithium-iron oxide particles and lithium difluoro(oxalato)borate is heat-treated under an oxygen-containing gas atmosphere and a temperature of less than 300° C., and the lithium difluoro(oxalato)borate-containing layer is coated with a lithium- forming iron oxide
  • a method for producing a positive electrode additive for a lithium secondary battery comprising a.
  • cathode additive refers to a material having irreversible characteristics in which lithium is desorbed at least twice as much as conventional cathode materials during initial charging of a battery and does not react with lithium during subsequent discharging.
  • the positive electrode additive may also be referred to as sacrificial positive electrode materials. Since the positive electrode additive compensates for the loss of lithium, the capacity of the battery is increased by recovering the lost capacity of the battery as a result, and the life characteristics and safety of the battery are improved by suppressing gas generation and preventing the battery from exploding. can be improved
  • the present inventors have continued research to improve air stability while improving electrical conductivity and irreversible capacity of a Li 5 FeO 4 -based positive electrode additive (sacrificial positive electrode material) using a more simplified method.
  • Li 5 FeO 4 -based positive electrode additives As a result of such continuous research, in the process of manufacturing Li 5 FeO 4 -based positive electrode additives, a dispersion in which carbon nanotubes are dispersed is added in the presence of a water-soluble polymer dispersant, and a dispersion is added on Li 5 FeO 4 -based lithium transition metal oxide particles by firing. It was confirmed that the positive electrode additive in the form of a double coating layer in which a carbon coating layer derived from the water-soluble polymer dispersant and a carbon nanotube-containing layer were respectively formed can be obtained. Furthermore, a layer containing lithium difluoro(oxalato)borate is formed on the surface of the positive electrode additive in the form of a double coating layer in an oxygen-containing gas atmosphere.
  • a schematic cross-section of the positive electrode additive of this embodiment may have a structure as shown in FIG. 1 .
  • a carbon nanotube-containing layer having similar electrical conductivity is formed on the Li 5 FeO 4 -based lithium transition metal oxide particles, resulting in superior electrical conductivity and high irreversible capacity compared to previously known Li 5 FeO 4 -based cathode additives.
  • Anode additives may have higher electrical conductivity and irreversible capacity.
  • the surface of the positive electrode additive is coated with a layer containing lithium difluoro(oxalato)borate, it can exhibit excellent stability against moisture and carbon dioxide even when exposed to air.
  • the positive electrode additive in which only the carbon coating layer derived from the polymer dispersant is formed does not have sufficient irreversible capacity because it is difficult to improve electrical conductivity.
  • the positive electrode additive in which the carbon nanotubes are directly formed on the additive particles is difficult to bond the carbon nanotubes to the additive particles in a uniform and high ratio, the electrical conductivity, irreversible capacity, and/or charge/discharge capacity Improvements in properties are not sufficient.
  • the positive electrode additive for a lithium secondary battery can uniformly bind a high proportion of carbon nanotubes on lithium transition metal oxide particles due to the interaction of the carbon coating layer and the carbon nanotube-containing layer, so that battery conductivity, irreversible capacity, and charging/discharging can be improved.
  • the capacity characteristics of the city can be greatly improved.
  • the lithium difluoro (oxalato) borate-containing layer formed on the carbon nanotube-containing layer enables air stability to be improved, so that the battery conductivity, irreversible capacity, and charge/discharge capacity characteristics of the positive electrode additive are stable. can be expressed as
  • a mixture of the lithium-iron oxide particles and lithium difluoro(oxalato)borate is heat-treated under an oxygen-containing gas atmosphere and a temperature of less than 300° C., and the lithium difluoro(oxalato)borate-containing layer is coated with a lithium- forming iron oxide
  • a method for producing a positive electrode additive for a lithium secondary battery comprising a.
  • the forming of the iron oxide-carbon precursor may include forming a carbon nanotube dispersion in which the carbon nanotubes are dispersed in an aqueous medium in the presence of the water-soluble polymer dispersant; mixing the carbon nanotube dispersion and an iron (Fe) precursor in the presence of a base; reacting the carbon nanotube dispersion and the iron (Fe) precursor in the mixed solution at a temperature of 50° C. to 100° C.; and filtering and drying the reaction product solution, and heat-treating at a temperature of 200 °C to 300 °C.
  • the iron oxide-carbon precursor is mixed with a lithium precursor and calcined at a high temperature to form Li 5 FeO 4 -based lithium transition metal oxide particles (ie, the lithium-iron oxide particles).
  • the water-soluble polymer dispersant is calcined on the surface of the lithium-iron oxide particle to form a uniform carbon coating layer. Carbon nanotubes may be bonded to the carbon coating layer.
  • the lithium-iron oxide particles and lithium difluoro(oxalato)borate (LiDFOB) are mixed, and the mixture is calcined under an oxygen-containing gas atmosphere and a temperature of less than 300 ° C., and the lithium-iron oxide coated with the LiDFOB-containing layer. Particles Particles can be obtained.
  • a step of forming an iron oxide-carbon precursor by mixing and heat-treating the carbon nanotubes, the water-soluble polymer dispersant, and the iron (Fe) precursor is performed.
  • any water-soluble polymer may be used as long as it can uniformly disperse carbon nanotubes in an aqueous medium and form the carbon coating layer by firing.
  • the water-soluble polymer dispersant may include at least one compound selected from the group consisting of polyvinylpyrrolidone-based polymers, polyacrylic acid-based polymers, polyvinyl alcohol-based polymers, and hydroxyalkyl cellulose-based polymers.
  • the water-soluble polymer dispersing agent and the carbon nanotubes may be dispersed and mixed in an aqueous medium by, for example, ultrasonic spraying to form a carbon nanotube dispersion. Then, the carbon nanotube dispersion is mixed with an iron precursor or an aqueous solution thereof, and may be mixed with a base such as ammonium hydroxide.
  • the water-soluble polymer dispersant is 0.1 part by weight to 2 parts by weight, or 0.5 part by weight to 2 parts by weight, based on the total content of the iron oxide-carbon precursor, or It may be used in an amount of 0.5 parts by weight to 1.5 parts by weight.
  • the carbon nanotubes are used in an amount of 1 to 10 parts by weight, or 2 parts by weight, based on the total content of the iron oxide-carbon precursor. Part to 10 parts by weight, or 2 parts by weight to 7 parts by weight may be used.
  • the iron (Fe) precursor may include one or more compounds selected from the group consisting of nitr oxides, sulfur oxides, phosphorus oxides, oxides, halides, and hydrates of Fe(III).
  • the carbon nanotube dispersion and the iron precursor are stirred, and a base such as ammonium hydroxide (NH 4 OH) is added in an equivalent ratio of the iron precursor, 50
  • a base such as ammonium hydroxide (NH 4 OH)
  • NH 4 OH ammonium hydroxide
  • filtering and drying the reaction product solution 200 °C to 300 °C, or 220 °C to 280 °C for 2 hours
  • Impurities may be removed by additional heat treatment for 15 to 15 hours or 6 to 12 hours.
  • the drying step may be performed using a general oven or the like, and an iron oxide-carbon precursor may be formed through this process.
  • a step of forming lithium-iron oxide particles by mixing and calcining the lithium precursor and the iron oxide-carbon precursor at 500° C. or higher is performed.
  • the iron oxide-carbon precursor may be mixed with a lithium precursor and then calcined at a temperature of 500 °C or more, or 500 °C to 1000 °C, or 550 °C to 700 °C to form lithium-iron oxide.
  • the reaction of the iron oxide-carbon precursor and the lithium precursor may proceed as an equivalent reaction.
  • the lithium precursor is a lithium oxide such as Li 2 O
  • the iron oxide-carbon precursor:lithium precursor may be mixed in a molar ratio of 1:5, and high-temperature firing may be performed.
  • lithium precursor a lithium precursor well known in the art may be used in addition to the lithium oxide (Li 2 O).
  • the mixture of the lithium-iron oxide particles and lithium difluoro (oxalato) borate (hereinafter referred to as 'LiDFOB') is heat-treated under an oxygen-containing gas atmosphere and a temperature of less than 300 ° C., thereby coating the LiDFOB-containing layer.
  • a step of forming lithium-iron oxide is performed.
  • Mixing of the lithium-iron oxide particles and LiDFOB may be performed by solid state mixing using a conventional mixer.
  • heat treatment of the mixture may be performed under an oxygen-containing gas atmosphere and a temperature of less than 300 °C.
  • the oxygen-containing gas may be air.
  • Lithium-iron oxides such as Li 5 FeO 4 react with carbon dioxide (CO 2 ) and moisture (H 2 O) in the air when exposed to air, and have chemical properties that change into Li 2 CO 3 or LiOH. Therefore, it can be expected that it is not preferable to heat-treat the lithium-iron oxide particles in air, which is an oxygen-containing gas, in the above step. Contrary to the above expectation, however, a lithium-iron oxide coated with a LiDFOB-containing layer having excellent air stability can be obtained by heat-treating the mixture of the lithium-iron oxide particles and LiDFOB in an air atmosphere and at a temperature of less than 300 °C.
  • the step of forming the lithium-iron oxide coated with the LiDFOB-containing layer is performed by placing the mixture in an air atmosphere and at a temperature of less than 300 °C, or 260 °C to 295 °C, or 260 °C to 290 °C, or 265 °C to 285 °C. , or may be performed by heat treatment at a temperature of 270 ° C to 280 ° C.
  • a cathode additive for a lithium secondary battery having more improved air stability can be obtained compared to a case in which heat treatment is performed in a typical inert gas atmosphere.
  • heat treatment of the mixture may be performed by first heat-treating the mixture under an inert gas atmosphere, and then secondarily heat-treating the result of the first heat treatment under an oxygen-containing gas atmosphere.
  • the forming of the lithium-iron oxide coated with the LiDFOB-containing layer includes a step of first heat-treating the mixture of the lithium-iron oxide particles and LiDFOB under an inert gas atmosphere and a temperature of less than 300 ° C, and the It may be performed including a step of secondly heat-treating the result of the first heat treatment under an oxygen-containing gas atmosphere and a temperature of less than 300 °C.
  • the temperature of the first heat treatment step and the second heat treatment step are each independently less than 300 ° C, or 260 ° C to 295 ° C, or 260 ° C to 290 ° C, or 265 ° C to 285 ° C, or 270 ° C to 280 ° C can be controlled at a temperature of
  • the LiDFOB is 5.0 parts by weight to 20.0 parts by weight, or 5.5 parts by weight to 19.0 parts by weight, or 6.0 parts by weight to 18.5 parts by weight, or 6.5 parts by weight to 18.0 parts by weight, based on the total content of the lithium-iron oxide particles, or 7.0 parts to 17.5 parts by weight, or 7.5 parts to 17.0 parts by weight, or 8.0 parts to 16.5 parts by weight, or 8.0 parts to 16.0 parts by weight, or 8.0 parts to 15.5 parts by weight, or 8.0 parts to 15.0 parts by weight It can be used in an amount of parts by weight.
  • Additives such as lithium hexafluorophosphate, lithium triflate, and lithium difluorophosphate may be further mixed with the LiDFOB.
  • the LiDFOB-containing layer should contain at least 50 mol% or more, or 70 mol% or more, or 90 mol% or more of LiDFOB. desirable.
  • a step of cleaning and drying the lithium-iron oxide coated with the LiDFOB-containing layer may be performed.
  • the cleaning process may be performed by mixing and stirring the lithium-iron oxide particles and the cleaning liquid at a weight ratio of 1:2 to 1:10. Distilled water, ammonia water, etc. may be used as the cleaning solution.
  • the drying may be performed by heat treatment at a temperature of 100 °C to 200 °C or 100 °C to 180 °C for 1 hour to 10 hours.
  • the positive electrode additive for a lithium secondary battery obtained by the manufacturing method the lithium-iron oxide particles; a carbon coating layer formed on the lithium-iron oxide particles; a carbon nanotube-containing layer formed on the carbon coating layer; and a lithium difluoro(oxalato)borate-containing layer formed on the carbon nanotube-containing layer.
  • the positive electrode additive basically includes lithium-iron oxide particles including a compound of Li 5 FeO 4 .
  • Lithium transition metal oxide particles, such as Li 5 FeO 4 contain a higher proportion of lithium than the stoichiometric ratio. Excessive lithium ions may migrate to the negative electrode during the initial charge/discharge process to compensate for the irreversible capacity loss.
  • the positive electrode additive may further include a lithium transition metal oxide such as Li 2 NiO 2 and Li 6 CoO 4 known in the related art in addition to lithium-iron oxide such as Li 5 FeO 4 .
  • the cathode additive preferably contains at least 50 mol%, or 70 mol% or more, or 90 mol% or more of Li 5 FeO 4 as a lithium transition metal oxide. do.
  • the lithium-iron oxide particles are primary particles having a volume average particle diameter (D50) of 0.5 ⁇ m to 45 ⁇ m, 1 ⁇ m to 25 ⁇ m, or 5 ⁇ m to 15 ⁇ m, or secondary particles in which the primary particles are aggregated can have the form of Within the above particle size range, the lithium-iron oxide particles may be uniformly mixed with the positive electrode active material to exhibit appropriate characteristics in the positive electrode.
  • D50 volume average particle diameter
  • the lithium-iron oxide particles may be passed through using a standard sieve having an opening size corresponding to the desired particle size distribution. there is.
  • the particle size distribution and volume average particle diameter (D50) of the lithium-iron oxide particles may be measured and calculated using a well-known laser particle size analyzer or the like.
  • a carbon coating layer and a carbon nanotube-containing layer including carbon nanotubes physically or chemically bonded to the carbon coating layer may be formed on the lithium-iron oxide particle. Formation of the carbon coating layer and the carbon nanotube-containing layer may be confirmed by electron microscopy or XRD analysis of the positive electrode additive.
  • the sum of the contents of the carbon coating layer and the carbon nanotube-containing layer is 0.5 parts by weight to 6.0 parts by weight, or 1.0 parts by weight to 6.0 parts by weight, based on 100 parts by weight of the total content of the positive electrode additive.
  • it may be 1.0 parts by weight to 5.9 parts by weight, or 1.5 parts by weight to 5.9 parts by weight, or 1.5 parts by weight to 5.8 parts by weight.
  • the carbon coating layer has a ratio of 1:4 to 1:50, or 1:8 to 1:50, or 1:8 to 1:30, or 1:10 to 1:30, or 1: It may be included in a weight ratio of 10 to 1:20.
  • the carbon coating layer does not impair characteristics such as irreversible capacity of the lithium-iron oxide particles, Since a high proportion of carbon nanotubes are uniformly bonded to the carbon coating layer, electrical conductivity, irreversible capacity, and capacity characteristics during charging and discharging of the positive electrode additive may be further improved.
  • the carbon coating layer is included in an amount of 0.05 parts by weight to 2.0 parts by weight, 0.06 parts by weight to 2.0 parts by weight, or 0.06 parts by weight to 1.9 parts by weight based on 100 parts by weight of the total amount of the positive electrode additive.
  • the carbon nanotube-containing layer is present in an amount of 0.4 parts by weight to 4.0 parts by weight, or 0.8 parts by weight to 4.0 parts by weight, or 0.8 parts by weight to 3.95 parts by weight, or 1.0 parts by weight to 3.95 parts by weight, based on 100 parts by weight of the total content of the positive electrode additive. It may be included in an amount of 1.0 parts by weight to 3.90 parts by weight.
  • Each content range of the carbon coating layer and the carbon nanotube-containing layer or the total content range thereof is determined by analyzing the carbon content of the surface of the cathode additive through a well-known elemental analysis, or by analyzing the content of the water-soluble polymer dispersant and carbon nanotubes used as raw materials. Based on this, it can be measured and calculated.
  • the carbon coating layer may have a thickness of 10 nm to 300 nm. And, on the carbon coating layer, the carbon nanotubes of the carbon nanotube-containing layer may be physically and uniformly adsorbed or chemically bonded. Due to the thickness of the carbon coating layer and the bonding shape of the carbon nanotubes, the positive electrode additive of one embodiment may exhibit optimized irreversible capacity and capacity characteristics during charging and discharging.
  • the thickness of the carbon coating layer can be calculated based on the analysis results of the BET specific surface area of the positive electrode additive and the above-described carbon content, or measured by analyzing the positive electrode additive with a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • the positive electrode additive includes a LiDFOB-containing layer formed on the carbon nanotube-containing layer.
  • the positive electrode additive includes the carbon coating layer 20 formed on the lithium-iron oxide particles 10, the carbon nanotube-containing layer 30 formed on the carbon coating layer 20, and the carbon nanotubes. and the LiDFOB-containing layer 40 formed on the tube-containing layer 30.
  • the LiDFOB-containing layer 40 is included in a physically or chemically bonded state to the carbon nanotube-containing layer 30 formed on the carbon coating layer 20 .
  • the LiDFOB-containing layer may be made of only LiDFOB.
  • the LiDFOB-containing layer may include additives such as lithium hexafluorophosphate, lithium triflate, and lithium difluorophosphate known in the field of lithium arch batteries together with LiDFOB.
  • the LiDFOB-containing layer should contain at least 50 mol% or more, or 70 mol% or more, or 90 mol% or more of LiDFOB. desirable.
  • Formation of the LiDFOB-containing layer may be confirmed by electron microscopy or XRD analysis of the positive electrode additive.
  • the LiDFOB-containing layer is 5.0 parts by weight to 15.0 parts by weight, or 5.5 parts by weight to 15.0 parts by weight, or 5.5 parts by weight to 12.0 parts by weight, based on 100 parts by weight of the total content of the positive electrode additive. Alternatively, it may be included in an amount of 5.5 parts by weight to 10.0 parts by weight, or 6.0 parts by weight to 10.0 parts by weight, or 6.0 parts by weight to 9.0 parts by weight.
  • the content of the LiDFOB-containing layer is preferably 5.0 parts by weight or more based on 100 parts by weight of the total amount of the positive electrode additive.
  • the content of the LiDFOB-containing layer is preferably 15.0 parts by weight or less based on 100 parts by weight of the total content of the positive electrode additive.
  • the positive electrode additive described above may be mixed with a separate positive electrode active material to act as a sacrificial positive electrode material that compensates for the irreversible capacity of the negative electrode during the initial charge and discharge process of a lithium secondary battery, and the positive electrode active material may act after compensating for the irreversible capacity. .
  • the positive electrode additive since the positive electrode additive has improved capacity characteristics during charging and discharging, it can be preferably applied as an additional positive electrode active material.
  • a cathode for a lithium secondary battery is provided.
  • the cathode for a lithium secondary battery may include a cathode active material, a binder, a conductive material, and the cathode additive.
  • the positive electrode additive has a property of releasing lithium irreversibly during charging and discharging of the lithium secondary battery. Therefore, the positive electrode additive may be included in a positive electrode for a lithium secondary battery and serve as a sacrificial positive electrode material for prelithiation.
  • the positive electrode for a lithium secondary battery includes a positive electrode material including a positive electrode active material, a conductive material, the positive electrode additive, and a binder; And, a current collector supporting the positive electrode material is included.
  • the design capacity of the battery can be determined by calculating the amount of lithium consumed in the SEI layer of the negative electrode and then inversely calculating the amount of the sacrificial positive electrode material to be applied to the positive electrode.
  • the positive electrode additive may be included in an amount greater than 0% by weight and less than or equal to 15% by weight based on the total weight of the positive electrode material.
  • the content of the positive electrode additive is preferably greater than 0% by weight based on the total weight of the positive electrode material.
  • the content of the positive electrode additive is preferably 15% by weight or less based on the total weight of the positive electrode material.
  • the content of the cathode additive is greater than 0 wt%, or 0.5 wt% or more, or 1 wt% or more, or 2 wt% or more, or 3 wt% or more based on the total weight of the cathode material; And, it may be 15% by weight or less, or 12% by weight or less, or 10% by weight or less.
  • the content of the positive electrode additive is 0.5% to 15% by weight, or 1% to 15% by weight, or 1% to 12% by weight, or 2% to 12% by weight based on the total weight of the positive electrode material. , or 2% to 10% by weight, or 3% to 10% by weight.
  • the cathode active material any material capable of reversibly intercalating and deintercalating lithium ions may be used without particular limitation.
  • the cathode active material may be a composite oxide or phosphorus oxide including cobalt, manganese, nickel, iron, or a combination thereof and lithium.
  • the cathode active material may be a compound represented by any one of the following formulas.
  • Li a A 1-b R b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a E 1-b R b O 2-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2-b R b O 4-c D c (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b R c D d (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ d ⁇ 2); Li a Ni 1-bc Co b R c O 2-d Z d (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ d ⁇ 2); Li a Ni 1-bc Co b R c O 2-d Z 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ d ⁇ 2); Li a Ni 1-bc Co b R c O 2-d Z 2 (0.90 ⁇ a ⁇ 1.8
  • A is Ni, Co, Mn or a combination thereof;
  • R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element or a combination thereof;
  • D is O, F, S, P or a combination thereof;
  • E is Co, Mn or a combination thereof;
  • Z is F, S, P or a combination thereof;
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or combinations thereof;
  • Q is Ti, Mo, Mn or a combination thereof;
  • T is Cr, V, Fe, Sc, Y or a combination thereof;
  • J is V, Cr, Mn, Co, Ni, Cu or a combination thereof.
  • one having a coating layer on the surface of the cathode active material may be used, or a mixture of the cathode active material and the cathode active material having a coating layer may be used.
  • the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or mixtures thereof may be used.
  • the positive electrode active material may be included in 80% to 95% by weight based on the total weight of the positive electrode material.
  • the content of the positive electrode active material is 80% by weight or more, or 82% by weight or more, or 85% by weight or more based on the total weight of the positive electrode material; And, it may be 95% by weight or less, or 93% by weight or less, or 90% by weight or less.
  • the content of the cathode active material is 82 wt% to 95 wt%, or 82 wt% to 93 wt%, or 85 wt% to 93 wt%, or 85 wt% to 90 wt%, based on the total weight of the cathode material.
  • the content of the cathode active material is 82 wt% to 95 wt%, or 82 wt% to 93 wt%, or 85 wt% to 93 wt%, or 85 wt% to 90 wt%, based on the total weight of the cathode material.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material any material having electronic conductivity without causing chemical change of the battery may be used without particular limitation.
  • the conductive material may include carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; graphite such as natural graphite and artificial graphite; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives.
  • the conductive material one or a mixture of two or more of the above examples may be used.
  • the content of the conductive material may be adjusted within a range that does not cause a decrease in capacity of the battery while exhibiting an appropriate level of conductivity.
  • the content of the conductive material may be 1% to 10% by weight or 1% to 5% by weight based on the total weight of the positive electrode material.
  • the binder is used to properly attach the positive electrode material to the current collector.
  • the binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, a polymer including ethylene oxide, poly vinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, and the like.
  • the binder one or a mixture of two or more of the above examples may be used.
  • the content of the binder may be adjusted within a range that does not cause a decrease in battery capacity while exhibiting an appropriate level of adhesiveness.
  • the content of the binder may be 1 wt% to 10 wt% or 1 wt% to 5 wt% based on the total weight of the positive electrode material.
  • a material known in the art to be applicable to a cathode of a lithium secondary battery may be used without particular limitation.
  • the current collector may include stainless steel; aluminum; nickel; titanium; calcined carbon; Alternatively, aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the current collector may have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the current collector may have fine irregularities formed on its surface.
  • the current collector may have various forms such as film, sheet, foil, net, porous material, foam, and non-woven fabric.
  • the cathode for a lithium secondary battery may be formed by stacking a cathode material including the cathode active material, the conductive material, the cathode additive, and a binder on the current collector.
  • the positive electrode for the lithium secondary battery cathode; separator; And, a lithium secondary battery including an electrolyte is provided.
  • the lithium secondary battery includes a positive electrode including the positive electrode additive. Accordingly, the lithium secondary battery may suppress generation of gas at the positive electrode of the charge/discharge battery, and may exhibit improved safety and lifespan characteristics. In addition, the lithium secondary battery may exhibit high discharge capacity, excellent output characteristics, and capacity retention rate.
  • the lithium secondary battery is used in portable electronic devices such as mobile phones, notebook computers, tablet computers, mobile batteries, and digital cameras; And it can be used as an energy supply source with improved performance and safety in the field of transportation means such as electric vehicles, electric motorcycles, and personal mobility devices.
  • the lithium secondary battery may include an electrode assembly wound with a separator interposed between a positive electrode and a negative electrode, and a case in which the electrode assembly is embedded.
  • the positive electrode, the negative electrode, and the separator may be impregnated with an electrolyte.
  • the lithium secondary battery may have various shapes such as a prismatic shape, a cylindrical shape, and a pouch shape.
  • the negative electrode includes a negative electrode material including a negative electrode active material, a conductive material, and a binder; And it may include a current collector supporting the negative electrode material.
  • the anode active material includes a material capable of reversibly intercalating and deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, and a transition metal oxide.
  • a material capable of reversibly intercalating and deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, and a transition metal oxide. can include
  • the material capable of reversibly intercalating and deintercalating the lithium ions may be exemplified as a carbonaceous material.
  • the carbonaceous material includes natural graphite, artificial graphite, Kish graphite, pyrolytic carbon, mesophase pitches, mesophase pitch based carbon fibers, meso-carbon microbeads, petroleum or coal tar pitch derived cokes, soft carbon, hard carbon, and the like.
  • the alloy of lithium metal is Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, Bi, Ga, and Cd It may be an alloy of a metal selected from the group consisting of and lithium.
  • the material capable of doping and undoping the lithium is Si, Si—C complex, SiOx (0 ⁇ x ⁇ 2), Si—Q alloy (Q is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a group 15 It is an element selected from the group consisting of elements, group 16 elements, transition metals, rare earth elements, and combinations thereof; excluding Si), Sn, SnO 2 , Sn-R alloy (wherein R is an alkali metal, an alkali An element selected from the group consisting of earth metals, group 13 elements, group 14 elements, group 15 elements, group 16 elements, transition metals, rare earth elements, and combinations thereof; except for Sn), and the like.
  • Q and R are Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe , Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S , Se, Te, Po, etc.
  • the transition metal oxide may be vanadium oxide, lithium vanadium oxide, or lithium titanium oxide.
  • the negative electrode may include at least one negative electrode active material selected from the group consisting of carbonaceous materials and silicon compounds.
  • the positive electrode for the lithium secondary battery a negative electrode including at least one negative electrode active material selected from the group consisting of carbonaceous materials and silicon compounds; separator; And, a lithium secondary battery including an electrolyte is provided.
  • the carbonaceous material is, as previously exemplified, natural graphite, artificial graphite, kish graphite, pyrolytic carbon, mesophase pitch, mesophase pitch-based carbon fiber, carbon microspheres, petroleum or coal-based coke, softened carbon, and hardened carbon. It is one or more substances selected from the group consisting of.
  • the silicon compound is a compound containing Si previously exemplified, that is, Si, a Si—C composite, SiOx (0 ⁇ x ⁇ 2), the Si—Q alloy, a mixture thereof, or at least one of these and SiO It can be a mixture of the 2 .
  • the negative electrode may include micro silicon.
  • the anode includes micro-silicon
  • superior capacity may be realized compared to a case where a carbonaceous material is used as an anode active material.
  • a specific micro silicon is used as the silicon compound
  • a residual capacity of 80% or more can be maintained even after charging and discharging 500 times or more, and significantly superior energy density can be realized compared to conventional lithium secondary batteries.
  • the negative electrode includes micro silicon, the charge/discharge life of a solid battery using a solid electrolyte can be greatly increased, and the charging speed at room temperature can be greatly improved.
  • the size of the micro-silicon is not particularly limited, for example, the micro-silicon may have a diameter of 100 ⁇ m or less, 1 to 100 ⁇ m, or 1 to 20 ⁇ m.
  • the negative active material may be included in 85% to 98% by weight based on the total weight of the negative electrode material.
  • the content of the negative electrode active material is 85% by weight or more, or 87% by weight or more, or 90% by weight or more based on the total weight of the negative electrode material; And, it may be 98% by weight or less, or 97% by weight or less, or 95% by weight or less.
  • the content of the negative electrode active material is 85% to 97% by weight, or 87% to 97% by weight, or 87% to 95% by weight, or 90% to 95% by weight based on the total weight of the negative electrode material.
  • the conductive material, the binder, and the current collector included in the negative electrode material are replaced with the description of the positive electrode for a lithium secondary battery.
  • the separator separates the positive electrode and the negative electrode and provides a passage for lithium ions to move.
  • any material known to be applicable to a separator of a lithium secondary battery in the art to which the present invention pertains may be used without particular limitation. It is preferable that the separator has excellent wettability to the electrolyte while having low resistance to the movement of ions in the electrolyte.
  • the separator may be a porous polymer film made of a polyolefin-based polymer such as polyethylene, polypropylene, ethylene-butene copolymer, ethylene-hexene copolymer, or ethylene-methacrylate copolymer.
  • the separator may be a multilayer film in which the porous polymer film is stacked in two or more layers.
  • the separator may be a non-woven fabric including glass fibers, polyethylene terephthalate fibers, and the like.
  • the separator may be coated with a ceramic component or a polymer material to secure heat resistance or mechanical strength.
  • the electrolyte any material known to be applicable to a lithium secondary battery in the art to which the present invention pertains may be used without particular limitation.
  • the electrolyte may be an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, or a molten inorganic electrolyte.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the non-aqueous organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; etheric solvents such as dibutyl ether and tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), and carbonate-based solvents such as propylene carbonate (PC); alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or cyclic hydrocarbon group, and may contain a double-bonded aromatic ring or an ether bond); amides such as dimethylform
  • a carbonate-based solvent may be preferably used as the non-aqueous organic solvent.
  • the non-aqueous organic solvent is a cyclic carbonate (eg, ethylene carbonate, propylene carbonate) having high ion conductivity and high dielectric constant and a low point
  • a cyclic carbonate eg, ethylene carbonate, propylene carbonate
  • a mixture of the above linear carbonates e.g., ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate
  • mixing and using the cyclic carbonate and the linear carbonate at a volume ratio of 1:1 to 1:9 may be advantageous for the expression of the above-described performance.
  • a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of 1 to 3:1 to 9:1 may be preferably used.
  • the lithium salt contained in the electrolyte is dissolved in the non-aqueous organic solvent and acts as a source of lithium ions in the battery to enable basic operation of the lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. play a role
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(SO 2 F) 2 (LiFSI, lithium bis(fluorosulfonyl)imide), LiCl, LiI, and LiB(C 2 O4) It can be 2nd .
  • the lithium salt may be LiPF 6 , LiFSI, and mixtures thereof.
  • the lithium salt may be included in the electrolyte at a concentration of 0.1 M to 2.0 M.
  • the lithium salt included in the concentration range provides excellent electrolyte performance by imparting appropriate conductivity and viscosity to the electrolyte.
  • the electrolyte may contain additives for the purpose of improving lifespan characteristics of a battery, suppressing battery capacity decrease, and improving battery discharge capacity.
  • the additive may be a haloalkylene carbonate-based compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, triamine hexaphosphate mead, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride, and the like.
  • the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • a method for producing a cathode additive for a lithium secondary battery having high initial irreversible capacity and excellent air stability is provided.
  • the positive electrode additive prepared by the above method can compensate for the irreversible capacity loss of the high-capacity lithium secondary battery, while effectively suppressing the generation of gas or fire and explosion caused by the battery.
  • FIG. 1 is a schematic diagram showing a simplified cross section of a positive electrode additive particle for a lithium secondary battery according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • Example 1 A 0.2 L reactor and a mechanical stirrer were used, and the positive electrode additive of Example 1 was prepared according to the following method.
  • aqueous dispersion of carbon nanotubes manufactured by LG Chem was used.
  • the aqueous dispersion is 5.83% by weight and 1.0% by weight of carbon nanotubes (CNT) and polyvinylpyrrolidone (Acros organics, Mw 50,000 g / mol), which is a water-soluble polymer dispersant, respectively, and they are mixed with 200 ml of DI water and mixed with an ultrasonic tip for 10 minutes.
  • CNT carbon nanotubes
  • polyvinylpyrrolidone Acros organics, Mw 50,000 g / mol
  • the mixture was allowed to stand for 30 minutes, the upper layer solution was discarded, and filtration was performed, and drying was performed in a convection oven at 120 ° C. for 12 hours.
  • the dried powder was heat-treated at 250 °C for 6 hours in an air atmosphere to remove impurities, and an iron oxide-carbon precursor (Fe 2 O 3 -CNT precursor) was obtained.
  • Li 2 O (Ganfeng Lithium Co.) and the Fe 2 O 3 -CNT precursor were uniformly mixed at a molar ratio of 5:1, and calcined at 600 °C (heating for 2 hours, maintaining for 6 hours) in an Ar atmosphere in a heat treatment furnace to obtain lithium - Obtained iron oxide particles.
  • a cathode material slurry was prepared by mixing the lithium transition metal oxide, carbon black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in an organic solvent (N-methylpyrrolidone) at a weight ratio of 90: 4: 6 did
  • the positive electrode material slurry was coated on one side of a current collector, which is an aluminum foil having a thickness of 15 ⁇ m, and rolled and dried to prepare a positive electrode (cutting size: ⁇ 14 mm).
  • a lithium secondary battery in the form of a coin cell was prepared by preparing the positive electrode, the negative electrode, the separator, and the electrolyte solution. At this time, 300 ⁇ m thick Li-metal (cutting size: ⁇ 14 mm) was used as the cathode.
  • As the electrolyte ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed in a volume ratio of 1: 2: 1 in a non-aqueous organic solvent, 1.0 M LiPF 6 and 2% by weight of vinylene A dissolved carbonate (VC) was used.
  • a PE resin separator manufactured by W-scope, WL20C, 20 ⁇ m
  • Example 2 The cathode additive of Example 2 and the same in the same manner as in Example 1, except that the content of the lithium difluoro(oxalato)borate was increased to 15.0 parts by weight based on 100 parts by weight of the lithium-iron oxide particles.
  • An additive and a lithium secondary battery including the same were prepared.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. 15.0 parts by weight of lithium difluoro(oxalato)borate (Sigma-Aldrich) was mixed with respect to 100 parts by weight of the lithium-iron oxide particles using a mixer.
  • the mixture was calcined for 1 hour in an air atmosphere and at 280° C. in a heat treatment furnace and then quenched to obtain the positive electrode additive of Example 4.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. 15.0 parts by weight of lithium difluoro(oxalato)borate (Sigma-Aldrich) was mixed with respect to 100 parts by weight of the lithium-iron oxide particles using a mixer.
  • the mixture was first calcined in an argon gas atmosphere and 270 ° C. for 1 hour in a heat treatment furnace, and the resulting product was secondarily calcined in an air atmosphere and 270 ° C. for 1 hour and then quenched to obtain a cathode additive of Example 5.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • a lithium secondary battery of Comparative Example 1 was prepared in the same manner as in Example 1, except that the positive electrode additive was used.
  • a lithium secondary battery of Comparative Example 2 was prepared in the same manner as in Example 1, except that the positive electrode additive was used.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. 15.0 parts by weight of lithium difluoro(oxalato)borate (Sigma-Aldrich) was mixed with respect to 100 parts by weight of the lithium-iron oxide particles using a mixer.
  • the mixture was calcined in a heat treatment furnace under an argon gas atmosphere at 270° C. for 1 hour and then quenched to obtain a cathode additive of Comparative Example 4.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. 15.0 parts by weight of lithium difluoro(oxalato)borate (Sigma-Aldrich) was mixed with respect to 100 parts by weight of the lithium-iron oxide particles using a mixer.
  • the mixture was calcined in an air atmosphere and 320 °C for 1 hour in a heat treatment furnace and then quenched to obtain a cathode additive of Comparative Example 5.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. Based on 100 parts by weight of the lithium-iron oxide particles, 6 parts by weight of oxalic acid, 4 parts by weight of boric acid, and 11 parts by weight of lithium bis(fluorosulfonyl)imide (Li-FSI, Nippon Shokubai company) were mixed using a mixer.
  • Li-FSI lithium bis(fluorosulfonyl)imide
  • the mixture was calcined in an air atmosphere and 270 °C for 1 hour in a heat treatment furnace and then quenched to obtain a cathode additive of Comparative Example 6.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • Lithium-iron oxide particles were obtained in the same manner as in Example 1. Based on 100 parts by weight of the lithium-iron oxide particles, 6 parts by weight of oxalic acid, 4 parts by weight of boric acid, and 6 parts by weight of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI, J&H Chemical Co.) was mixed using a mixer.
  • Li-TFSI lithium bis(trifluoromethanesulfonyl)imide
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the positive electrode additive.
  • Example 2 fired under an air atmosphere, almost no peak appeared in the range of 2Theta value of 26 to 28 degrees, but fired under an argon gas atmosphere.
  • Comparative Example 4 relatively strong and numerous peaks appeared in the range of the 2Theta value.
  • the lithium secondary battery prepared in the above Examples and Comparative Examples was charged to 4.25 V under a constant current of 60 mA/g and a constant voltage of 30 mA/g at 45 °C and discharged to 2.5 V under a constant current of 10 mA/g.
  • a charge/discharge experiment was conducted. The charge capacity and discharge capacity were calculated through the charge and discharge experiments, respectively.
  • the lithium secondary batteries prepared in Examples and Comparative Examples were stored in an air atmosphere chamber maintained at a temperature of 30 °C and a relative humidity (33 RH%) of 33% for 6 hours. Thereafter, the charge/discharge experiment was performed on the lithium secondary battery under the same conditions. Based on the charging capacity before storage in the chamber, the ratio of the charging capacity after storage in the chamber (capacity retention rate, %) was calculated.
  • the lithium secondary batteries of the examples exhibited a high charge capacity retention rate of 85% or more after aging while exhibiting a charge capacity of 550 mAh/g or more, and a color similar to that of the electrode film before time change. It was confirmed to have excellent air stability by maintaining.
  • the lithium secondary battery of Comparative Example 1 exhibited a relatively high charge capacity, but the charge capacity retention rate after change over time was remarkably low.
  • the lithium secondary battery of Comparative Example 2 exhibited poor charging capacity, and it was impossible to measure the charging capacity retention rate as the electrode film was distorted during the aging test.
  • the lithium secondary battery of Comparative Example 3 exhibited good charge capacity, but the electrode film was distorted to such an extent that performance measurement was impossible during the aging test.
  • the lithium secondary battery of Comparative Example 4 exhibited good charge capacity, it was confirmed that the charge capacity retention rate after change over time was relatively poor.
  • the lithium secondary battery of Comparative Example 5 included the cathode additive heat-treated at a relatively high temperature, the charging capacity was significantly reduced. It is confirmed that this is due to the disappearance of carbon components (carbon coating layer, carbon nanotube-containing layer) due to high temperature heat treatment. However, in the lithium secondary battery of Comparative Example 5, the charge capacity retention rate after change over time was slightly improved. This is expected to be due to the relatively improved coating efficiency of lithium difluoro(oxalato)borate due to the reduction in the specific surface area of the positive electrode additive due to the loss of the carbon component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 리튬 이차 전지용 양극 첨가제의 제조 방법에 관한 것이다. 본 발명에 따르면, 높은 초기 비가역 용량을 나타내면서도 우수한 공기 안정성을 가지는 리튬 이차 전지용 양극 첨가제의 제조 방법이 제공된다.

Description

리튬 이차 전지용 양극 첨가제의 제조 방법
관련 출원과의 상호 인용
본 출원은 2021년 10월 19일자 대한민국 특허 출원 제10-2021-0139619호 및 2022년 10월 17일자 대한민국 특허 출원 제10-2022-0133499호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차 전지용 양극 첨가제의 제조 방법에 관한 것이다.
전자 기기의 다기능화와 함께 소비 전력이 증가함에 따라, 리튬 이차 전지의 용량을 늘리고 이의 충방전 효율을 개선하려는 많은 시도들이 있다.
일 예로, 리튬 이차 전지의 양극에 Ni 80 % 이상의 양극 활물질을 양극재로 적용하고, 음극에 SiO, Si 또는 SiC와 같은 금속 또는 금속 기반의 음극 활물질을 천연 흑연 또는 인조 흑연 등의 탄소계 음극 활물질과 함께 적용하는 기술이 제안된 바 있다.
금속 및 금속 산화물 기반의 음극 활물질은 탄소계 음극 활물질보다 고용량의 발현을 가능하게 한다. 하지만, 금속 및 금속 산화물 기반의 음극 활물질은 충방전시 부피 변화가 흑연에 비해 훨씬 크기 때문에 음극 내 금속 및 금속 산화물의 함량을 15 % 이상으로 증가시키기가 어렵다. 또한, 금속 및 금속 산화물을 음극 내에 추가할 경우 초기 충방전에서 비가역적인 반응이 일어나 리튬의 손실이 탄소계 음극 활물질을 적용한 경우에 비하여 크다. 때문에 금속 및 금속 산화물 기반의 음극 활물질을 적용한 경우 전지의 용량이 커질수록 손실되는 리튬의 양이 늘어나게 되며, 이로 인한 초기 용량의 감소 폭도 커지게 된다.
이에 리튬 이차 전지의 용량을 늘리거나 비가역 용량을 줄이기 위한 다양한 방안들이 연구되어 왔다. 그 중 하나가 초기 상태에서 SEI 층(solid electrolyte interphase layer)의 형성에 소모되는 리튬을 배터리 내에서 보충해 주는 개념인 예비 리튬화(prelithiation)이다.
배터리 내에서 예비 리튬화를 하기 위한 다양한 방법들이 제안되어 왔다.
일 예로, 배터리 구동 전에 음극을 미리 전기화학적으로 리튬화(lithiation)하는 방법이다. 그런데, 리튬화된 음극은 대기 중에서 매우 불안정하고, 전기화학적 리튬화 방법은 공정을 scale-up 하기에 어려움이 있다.
다른 일 예로, 음극에 리튬 금속 또는 리튬 실리사이드(lithium silicide, LixSi) 분말을 코팅하는 방법이다. 그런데, 상기 분말은 반응성이 높아 대기 안정성이 저하되므로, 음극에 코팅시 적합한 용매 및 공정 조건을 확립하기 어려운 문제가 있다.
양극에서 예비 리튬화하는 방법으로는, 음극에서 소모되는 리튬의 양 만큼 양극재를 더 많이 코팅하는 방법이 있다. 그러나, 양극재 자체의 낮은 용량으로 인하여, 추가되는 양극재의 양이 증가하며, 증가하는 양극재의 양 만큼 최종 배터리의 에너지 밀도 및 무게당 용량이 감소하게 된다.
이에, 양극에서 배터리의 예비 리튬화에 적합한 소재는 첫 충전시 리튬이 기존 양극재보다 적어도 두 배 이상 많이 탈리되면서, 이후 방전시에는 리튬과 반응하지 않는 비가역적인 특성을 지녀야 한다. 이러한 조건을 만족시키는 첨가제를 희생 양극재(sacrificial positive electrode materials)라고 한다.
상용 배터리의 경우, 적층된 양극, 분리막 및 음극을 포함하는 케이스에 전해질을 주입한 후, 맨 처음으로 충/방전 동작을 실행하는 포메이션(formation) 공정을 거치게 된다. 이 과정에서 음극 상에 SEI 층 형성 반응이 일어나며, 전해질의 분해로 인해 가스가 발생한다. 상기 포메이션 공정에서 희생 양극재는 리튬을 내놓고 분해되면서 전해질과 반응하고, 그 과정에서 발생한 N2, O2, CO2 등의 가스는 가스 포켓 제거 공정을 통해 회수된다.
상기 희생 양극재로는 리튬이 풍부한 금속 산화물인 over-lithiated positive electrode materials가 많이 사용되고 있다. 상기 over-lithiated positive electrode materials로는 anti-fluorite 구조인 Li6CoO4, Li5FeO4 및 Li6MnO4 등이 잘 알려져 있다. 이들의 이론 용량은 Li6CoO4가 977 mAh/g, Li5FeO4가 867 mAh/g, 그리고 Li6MnO4가 1001 mAh/g로서, 희생 양극재로 사용하기에 충분한 용량을 가지고 있다. 그 중에서 Li6CoO4의 전기전도도가 가장 뛰어나 희생 양극재로 사용하기에 좋은 전기화학적 특성을 가지고 있다.
그러나, 상기 Li5FeO4의 희생 양극재는 공기 안정성(air stability)이 열악하여 공기 중에 노출될 경우 성능이 급격히 열악해지고, 전기 전도도가 낮아 비가역 용량이 충분히 못한 단점이 있다. 그 결과, 고용량의 리튬 이차 전지에서 큰 비가역 용량을 보상하기 위해서는, 상당한 양의 Li5FeO4가 부가되어야 하는 문제점이 있다. 이는 보다 낮은 중량 및 보다 향상된 용량 특성의 리튬 이차 전지를 제공하고자 하는 최근의 기술 개발 방향에 저해 요소가 되고 있다. 그에 따라, 보다 큰 비가역 용량을 갖는 Li5FeO4계 희생 양극재의 개발이 계속적으로 요구되고 있다.
본 발명은, 높은 초기 비가역 용량을 나타내면서도 우수한 공기 안정성을 가지는 리튬 이차 전지용 양극 첨가제의 제조 방법을 제공하기 위한 것이다.
발명의 일 구현 예에 따르면,
탄소 나노튜브, 수용성 고분자 분산제 및 철(Fe) 전구체를 혼합 및 열처리하여, 철 산화물-탄소 전구체를 형성하는 단계;
리튬 전구체 및 상기 철 산화물-탄소 전구체를 혼합 및 500 ℃ 이상으로 소성하여, 리튬-철 산화물 입자를 형성하는 단계; 및
상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트의 혼합물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 열처리하여, 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계
를 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법이 제공된다.
이하, 발명의 구현 예에 따른 상기 리튬 이차 전지용 양극 첨가제의 제조 방법에 대하여 보다 상세히 설명하기로 한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 통상의 기술자들에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서, 예를 들어 '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
본 명세서에서, 예를 들어 '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
본 명세서에서 '적어도 하나'의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다.
본 명세서에서 사용된 용어 “양극 첨가제”는 전지의 초기 충전시 리튬이 기존 양극재보다 적어도 두 배 이상 많이 탈리되면서 이후 방전시에는 리튬과 반응하지 않는 비가역적인 특성을 지니는 물질을 의미한다. 상기 양극 첨가제는 희생 양극재(sacrificial positive electrode materials)라고 할 수도 있다. 상기 양극 첨가제는 리튬 손실을 보상해 주기 때문에, 결과적으로 전지의 손실되는 용량을 복구하여 전지의 용량이 증가하게 되며, 가스 발생을 억제함으로써, 전지가 폭발하는 것을 방지하여 전지의 수명 특성 및 안전성을 개선할 수 있다.
본 발명자들은 보다 단순화된 방법으로 Li5FeO4계 양극 첨가제(희생 양극재)의 전기 전도도 및 비가역 용량을 향상시키면서 공기 안정성을 개선하기 위한 연구를 계속하였다.
이러한 계속적인 연구 결과, Li5FeO4계 양극 첨가제의 제조 과정에서, 수용성 고분자 분산제의 존재 하에 탄소 나노튜브가 분산된 분산액을 첨가하고, 소성에 의해 Li5FeO4계 리튬 전이 금속 산화물 입자 상에 상기 수용성 고분자 분산제에서 유래한 탄소 코팅층 및 탄소 나노튜브 함유층이 각각 형성된 이중 코팅층 형태의 양극 첨가제가 얻어질 수 있음을 확인하였다. 나아가, 상기 이중 코팅층 형태의 양극 첨가제의 표면에 산소 함유 기체 분위기 하에서 리튬 디플루오로(옥살라토)보레이트 함유층을 형성한다. 이러한 일 구현 예의 양극 첨가제의 개략적인 단면은 도 1과 같은 구조를 가질 수 있다.
상기 양극 첨가제는 Li5FeO4계 리튬 전이 금속 산화물 입자 상에 이와 유사한 전기 전도도를 갖는 탄소 나노튜브 함유층이 형성되어, 이전에 알려진 Li5FeO4계 양극 첨가제에 비해 우수한 전기 전도도 및 높은 비가역 용량을 가질 수 있다.
또한, 상기 리튬 전이 금속 산화물 입자의 표면에 상기 수용성 고분자 분산제로부터 유래한 균일한 탄소 코팅층이 형성되고, 이러한 탄소 코팅층 상에 탄소 나노튜브가 균일하고 비교적 높은 비율로 결합될 수 있으므로, 상기 일 구현 예의 양극 첨가제는 더욱 높은 전기 전도도 및 비가역 용량을 가질 수 있다.
아울러, 상기 양극 첨가제는 그 표면이 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅됨에 따라, 공기 중에 노출되더라도 수분 및 이산화탄소 등에 대한 우수한 안정성을 나타낼 수 있다.
이와 달리, 상기 고분자 분산제에서 유래한 탄소 코팅층만이 형성된 양극 첨가제는 전기 전도도를 향상시키기 어렵기 때문에 충분한 비가역 용량을 가지기 어렵다. 또한, 상기 탄소 나노튜브가 첨가제 입자 상에 직접 형성된 양극 첨가제 역시, 이러한 탄소 나노튜브가 첨가제 입자 상에 균일하고 높은 비율로 결합되기 어렵기 때문에, 전기 전도도, 비가역 용량 및/또는 충방전시의 용량 특성의 향상이 충분치 못하게 된다.
상기 리튬 이차 전지용 양극 첨가제는 상기 탄소 코팅층과 상기 탄소 나노튜브 함유층의 상호 작용으로, 리튬 전이 금속 산화물 입자 상에 높은 비율의 탄소 나노튜브가 균일하게 결합될 수 있으므로, 전지 전도도, 비가역 용량 및 충방전시의 용량 특성이 크게 향상될 수 있다. 그리고, 상기 탄소 나노튜브 함유층 상에 형성된 상기 리튬 디플루오로(옥살라토)보레이트 함유층은 공기 안정성의 향상을 가능케 하여, 상기 양극 첨가제가 갖는 전지 전도도, 비가역 용량 및 충방전시의 용량 특성이 안정적으로 발현될 수 있다.
발명의 일 구현 예에 따르면,
탄소 나노튜브, 수용성 고분자 분산제 및 철(Fe) 전구체를 혼합 및 열처리하여, 철 산화물-탄소 전구체를 형성하는 단계;
리튬 전구체 및 상기 철 산화물-탄소 전구체를 혼합 및 500 ℃ 이상으로 소성하여, 리튬-철 산화물 입자를 형성하는 단계; 및
상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트의 혼합물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 열처리하여, 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계
를 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법이 제공된다.
구체적인 일 예에서, 상기 철 산화물-탄소 전구체를 형성하는 단계는, 상기 탄소 나노튜브가 상기 수용성 고분자 분산제의 존재 하에 수용매에 분산된 탄소 나노튜브 분산액을 형성하는 단계; 염기의 존재 하에, 상기 탄소 나노튜브 분산액 및 철(Fe) 전구체를 혼합하는 단계; 상기 혼합액 내에서, 상기 탄소 나노튜브 분산액 및 철(Fe) 전구체를 50 ℃ 내지 100 ℃의 온도에서 반응시키는 단계; 및 상기 반응 결과물 용액을 여과 및 건조하고, 200 ℃ 내지 300 ℃의 온도에서 열처리하는 단계를 포함하여 수행될 수 있다.
상기 철 산화물-탄소 전구체를 리튬 전구체와 혼합 및 고온 소성하여 Li5FeO4계 리튬 전이 금속 산화물 입자(즉, 상기 리튬-철 산화물 입자)가 형성된다. 그와 동시에, 상기 리튬-철 산화물 입자의 표면에서 상기 수용성 고분자 분산제가 소성되어 균일한 탄소 코팅층이 형성된다. 상기 탄소 코팅층 상에는 탄소 나노튜브가 결합될 수 있다. 그리고, 상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트(LiDFOB)를 혼합하고, 이를 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 소성하여, LiDFOB 함유층으로 코팅된 리튬-철 산화물 입자입자가 얻어질 수 있다.
이하, 상기 일 구현 예의 리튬 이차 전지용 양극 첨가제의 제조 방법을 각 단계별로 설명한다.
탄소 나노튜브, 수용성 고분자 분산제 및 철(Fe) 전구체를 혼합 및 열처리하여, 철 산화물-탄소 전구체를 형성하는 단계가 수행된다.
상기 수용성 고분자 분산제로는 탄소 나노튜브를 수용매 내에서 균일하게 분산시킬 수 있고, 소성에 의해 상기 탄소 코팅층을 형성할 수 있는 것이라면 어떠한 수용성 고분자도 사용될 수 있다. 바람직하게는, 상기 수용성 고분자 분산제는, 폴리비닐피롤리돈계 고분자, 폴리아크릴산계 고분자, 폴리비닐알코올계 고분자, 및 히드록시 알킬셀룰로오스계 고분자로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 수용성 고분자 분산제 및 탄소 나노튜브는, 예를 들어, 초음파 분사 등의 방법으로 수용매 내에서 분산 및 혼합되어, 탄소 나노튜브 분산액을 형성할 수 있다. 이후, 상기 탄소 나노튜브 분산액은 철 전구체 또는 이의 수용액과 혼합되며, 수산화 암모늄 등의 염기와 함께 혼합될 수 있다.
적절한 두께 및 함량의 탄소 코팅층이 형성될 수 있도록 하기 위하여, 상기 수용성 고분자 분산제는 상기 철 산화물-탄소 전구체의 총 함량에 대해, 0.1 중량부 내지 2 중량부, 혹은 0.5 중량부 내지 2 중량부, 혹은 0.5 중량부 내지 1.5 중량부의 함량으로 사용될 수 있다.
그리고, 상기 탄소 코팅층 상에 적절한 함량의 탄소 나노튜브 함유층이 형성될 수 있도록 하기 위하여, 상기 탄소 나노튜브는 상기 철 산화물-탄소 전구체의 총 함량에 대해, 1 중량부 내지 10 중량부, 혹은 2 중량부 내지 10 중량부, 혹은 2 중량부 내지 7 중량부의 함량으로 사용될 수 있다.
상기 철(Fe) 전구체는 Fe(III)의 질산화물, 황산화물, 인산화물, 산화물, 할로겐화물, 및 이들의 수화물로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.
상술한 바와 같이, 탄소 나노튜브 분산액 및 철 전구체를 혼합한 후에는, 상기 탄소 나노튜브 분산액 및 철 전구체를 교반하고 수산화 암모늄(NH4OH) 등의 염기를 상기 철 전구체의 당량 비만큼 넣고, 50 ℃ 내지 100 ℃, 혹은 70 ℃ 내지 90 ℃의 온도에서 1 시간 내지 10 시간 동안 반응시키고, 상기 반응 결과물 용액을 여과 및 건조한 후, 200 ℃ 내지 300 ℃, 혹은 220 ℃ 내지 280 ℃의 온도에서 2 시간 내지 15 시간 혹은 6 시간 내지 12 시간 동안 추가 열처리하여 불순물을 제거할 수 있다. 이때, 상기 건조 단계는 일반적인 오븐 등을 사용하여 진행될 수 있고, 이러한 공정에 의해 철 산화물-탄소 전구체가 형성될 수 있다.
이어서, 리튬 전구체 및 상기 철 산화물-탄소 전구체를 혼합 및 500 ℃ 이상으로 소성하여, 리튬-철 산화물 입자를 형성하는 단계가 수행된다.
상기 철 산화물-탄소 전구체는 리튬 전구체와 혼합된 후, 500 ℃ 이상, 혹은 500 ℃ 내지 1000 ℃, 혹은 550 ℃ 내지 700 ℃의 온도에서 소성되어 리튬-철 산화물을 형성할 수 있다.
이때, 상기 철 산화물-탄소 전구체 및 리튬 전구체의 반응은 당량 반응으로 진행될 수 있다. 예를 들어, 상기 리튬 전구체가 Li2O와 같은 리튬 산화물로 될 경우, 상기 철 산화물-탄소 전구체 : 리튬 전구체가 1 : 5의 몰비로 되도록 혼합되어 고온 소성이 진행될 수 있다.
상기 리튬 전구체로는, 상기 리튬 산화물(Li2O) 외에 본 발명이 속하는 기술분야에서 잘 알려진 리튬 전구체가 사용될 수 있다.
이어서, 상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트(이하, 'LiDFOB'라 함)의 혼합물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 열처리하여, LiDFOB 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계가 수행된다.
상기 리튬-철 산화물 입자 및 LiDFOB의 혼합은 통상적인 믹서를 이용한 고상 혼합으로 수행될 수 있다.
특히, 상기 혼합물에 대한 열처리는 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 수행될 수 있다.
바람직하게는, 상기 산소 함유 기체는 공기일 수 있다.
Li5FeO4와 같은 리튬-철 산화물은 공기 중에 노출될 경우 공기 중의 이산화탄소(CO2) 및 수분(H2O)과 반응하여 Li2CO3 또는 LiOH 등으로 변화하는 화학적 특성을 가진다. 때문에, 상기 단계에서 상기 리튬-철 산화물 입자를 산소 함유 기체인 공기 중에서 열처리하는 것이 바람직하지 않을 것으로 예상할 수 있다. 그러나 상기 예상과 달리, 상기 리튬-철 산화물 입자와 LiDFOB의 혼합물을 공기 분위기 및 300 ℃ 미만의 온도 하에서 열처리함으로써, 공기 안정성이 우수한 LiDFOB 함유층으로 코팅된 리튬-철 산화물이 얻어질 수 있다.
바람직하게는, 상기 LiDFOB 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계는, 상기 혼합물을 공기 분위기 및 300 ℃ 미만, 혹은 260 ℃ 내지 295 ℃, 혹은 260 ℃ 내지 290 ℃, 혹은 265 ℃ 내지 285 ℃, 혹은 270 ℃ 내지 280 ℃의 온도 하에서 열처리하여 수행될 수 있다.
상기 혼합물에 대한 열처리가 산소 함유 기체 분위기 하에서 수행됨으로써, 통상적인 비활성 기체 분위기 하에서 수행되는 경우에 비하여 보다 향상된 공기 안정성을 갖는 리튬 이차 전지용 양극 첨가제가 얻어질 수 있다.
선택적으로, 상기 혼합물에 대한 열처리는 상기 혼합물을 비활성 기체 분위기 하에서 1차 열처리하고, 이어서 상기 1차 열처리된 결과물을 산소 함유 기체 분위기 하에서 2차 열처리하는 방법으로 수행될 수 있다.
구체적인 일 예에서, 상기 LiDFOB 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계는, 상기 리튬-철 산화물 입자 및 LiDFOB의 혼합물을 비활성 기체 분위기 및 300 ℃ 미만의 온도 하에서 1차 열처리하는 공정, 및 상기 1차 열처리된 결과물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 2차 열처리하는 공정을 포함하여 수행될 수 있다.
여기서, 상기 1차 열처리 공정 및 상기 2차 열처리 공정의 온도는 각각 독립적으로 300 ℃ 미만, 혹은 260 ℃ 내지 295 ℃, 혹은 260 ℃ 내지 290 ℃, 혹은 265 ℃ 내지 285 ℃, 혹은 270 ℃ 내지 280 ℃의 온도 하에서 조절될 수 있다.
상기 LiDFOB는 상기 리튬-철 산화물 입자의 총 함량에 대해 5.0 중량부 내지 20.0 중량부, 혹은 5.5 중량부 내지 19.0 중량부, 혹은 6.0 중량부 내지 18.5 중량부, 혹은 6.5 중량부 내지 18.0 중량부, 혹은 7.0 중량부 내지 17.5 중량부, 혹은 7.5 중량부 내지 17.0 중량부, 혹은 8.0 중량부 내지 16.5 중량부, 혹은 8.0 중량부 내지 16.0 중량부, 혹은 8.0 중량부 내지 15.5 중량부, 혹은 8.0 중량부 내지 15.0 중량부의 함량으로 사용될 수 있다.
상기 LiDFOB와 함께 리튬 헥사플루오로포스페이트(lithium hexafluorophosphate), 리튬 트리플레이트(lithium triflate), 및 리튬 디플루오로포스페이트(lithium difluorophosphate)와 같은 첨가제가 추가로 혼합될 수 있다. 다만, 상기 LiDFOB 함유층의 도입에 따른 공기 안정성의 향상 효과가 충분히 발현될 수 있도록 하기 위하여, 상기 LiDFOB 함유층은 LiDFOB를 적어도 50 몰% 이상, 혹은 70 몰% 이상, 혹은 90 몰% 이상으로 포함하는 것이 바람직하다.
필요에 따라, 상기 LiDFOB 함유층으로 코팅된 리튬-철 산화물을 세정하고 건조 하는 단계가 수행될 수 있다.
비제한적인 예로, 상기 세정 공정은 상기 리튬-철 산화물 입자및 세정액을 1: 2 내지 1: 10의 중량비로 혼합하고 교반하는 방법으로 수행될 수 있다. 상기 세정액으로는 증류수, 암모니아수 등이 사용될 수 있다. 상기 건조는 100 ℃ 내지 200 ℃ 혹은 100 ℃ 내지 180 ℃의 온도에서 1 시간 내지 10 시간 동안 열처리하는 방법으로 수행될 수 있다.
한편, 상기 제조 방법으로 얻어지는 리튬 이차 전지용 양극 첨가제는, 상기 리튬-철 산화물 입자; 상기 리튬-철 산화물 입자 상에 형성된 탄소 코팅층; 상기 탄소 코팅층 상에 형성된 탄소 나노튜브 함유층; 및 상기 탄소 나노튜브 함유층 상에 형성된 리튬 디플루오로(옥살라토)보레이트 함유층을 포함한다.
상기 양극 첨가제는 기본적으로 Li5FeO4인 화합물을 포함하는 리튬-철 산화물 입자를 포함한다. Li5FeO4와 같은 리튬 전이 금속 산화물 입자는 화학 양론비보다 높은 비율의 리튬이 포함된 것이다. 과량의 리튬 이온이 초기 충방전 과정에서 음극으로 이동하여 비가역 용량 손실을 보상할 수 있다.
상기 양극 첨가제는 Li5FeO4인 리튬-철 산화물 이외에 기존에 알려진 Li2NiO2 및 Li6CoO4와 같은 리튬 전이 금속 산화물을 더 포함할 수도 있다. 다만, 양극 첨가제의 제조 비용이나 물성 등을 고려하여, 상기 양극 첨가제는 리튬 전이 금속 산화물로 Li5FeO4를 적어도 50 몰% 이상, 혹은 70 몰% 이상, 혹은 90 몰% 이상으로 포함하는 것이 바람직하다.
상기 리튬-철 산화물 입자는 0.5 ㎛ 내지 45 ㎛, 혹은 1 ㎛ 내지 25 ㎛, 혹은 5 ㎛ 내지 15 ㎛의 체적 평균 입경(D50)을 갖는 1차 입자, 또는 상기 1차 입자들이 응집된 2차 입자의 형태를 가질 수 있다. 상기 입경 범위에서 상기 리튬-철 산화물 입자는 양극 활물질과 균일하게 혼합되어 양극 내에서 적절한 특성을 나타낼 수 있다.
적절한 입도 분포 및 체적 평균 입경을 갖도록 하기 위해, 상기 리튬 -철 산화물 입자를 합성한 후, 원하는 입도 분포에 대응하는 눈의 크기를 갖는 표준 체를 이용하여, 상기 리튬-철 산화물 입자를 통과시킬 수 있다. 상기 리튬-철 산화물 입자의 입도 분포 및 체적 평균 입경(D50)은 잘 알려진 레이저 입도 분석기 등을 이용해 측정 및 산출될 수 있다.
상기 양극 첨가제에서, 상기 리튬-철 산화물 입자 상에는 탄소 코팅층과, 상기 탄소 코팅층 상에 물리적 또는 화학적으로 결합된 탄소 나노튜브를 포함한 탄소 나노튜브 함유층이 형성될 수 있다. 상기 탄소 코팅층 및 상기 탄소 나노튜브 함유층의 형성은 상기 양극 첨가제를 전자 현미경 또는 XRD 분석하여 확인될 수 있다.
발명의 구현 예에 따르면, 상기 탄소 코팅층 및 상기 탄소 나노튜브 함유층의 함량의 합은 상기 양극 첨가제의 총 함량 100 중량부를 기준으로, 0.5 중량부 내지 6.0 중량부, 혹은 1.0 중량부 내지 6.0 중량부, 혹은 1.0 중량부 내지 5.9 중량부, 혹은 1.5 중량부 내지 5.9 중량부, 혹은 1.5 중량부 내지 5.8 중량부일 수 있다.
그리고, 상기 탄소 코팅층 : 상기 탄소 나노튜브 함유층은 1:4 내지 1:50, 혹은 1:8 내지 1:50, 혹은 1:8 내지 1:30, 혹은 1:10 내지 1:30, 혹은 1:10 내지 1:20의 중량 비로 포함될 수 있다.
상기 탄소 코팅층 및 상기 탄소 나노튜브 함유층의 전체 함량 및 이들의 중량 비가 상기 범위 내에서 제어됨에 따라, 상기 탄소 코팅층에 의해 상기 리튬-철 산화물 입자가 갖는 비가역 용량 등의 특성이 저해되지 않으면서도, 상기 탄소 코팅층 상에 높은 비율의 탄소 나노튜브가 균일하게 결합하여 양극 첨가제의 전기 전도도, 비가역 용량, 충방전시의 용량 특성이 더욱 향상될 수 있다.
구체적인 일 실시예에서, 상기 탄소 코팅층은 상기 양극 첨가제의 총 함량 100 중량부를 기준으로, 0.05 중량부 내지 2.0 중량부, 혹은 0.06 중량부 내지 2.0 중량부, 혹은 0.06 중량부 내지 1.9 중량부의 함량으로 포함될 수 있고; 상기 탄소 나노튜브 함유층은 상기 양극 첨가제의 총 함량 100 중량부를 기준으로, 0.4 중량부 내지 4.0 중량부, 혹은 0.8 중량부 내지 4.0 중량부, 혹은 0.8 중량부 내지 3.95 중량부, 혹은 1.0 중량부 내지 3.95 중량부, 혹은 1.0 중량부 내지 3.90 중량부의 함량으로 포함될 수 있다.
상기 탄소 코팅층 및 상기 탄소 나노튜브 함유층의 각 함량 범위나 이들의 총 함량 범위는 잘 알려진 원소 분석을 통해 양극 첨가제 표면의 탄소 함량을 분석하거나, 원료로써 사용된 수용성 고분자 분산제 및 탄소 나노튜브의 함량을 기초로 하여 측정 및 산출할 수 있다.
상기 양극 첨가제에서, 상기 탄소 코팅층은 10 nm 내지 300 nm의 두께를 가질 수 있다. 그리고, 상기 탄소 코팅층 상에, 상기 탄소 나노튜브 함유층의 탄소 나노튜브가 물리적으로 균일하게 흡착되거나, 화학적으로 결합될 수 있다. 이러한 탄소 코팅층의 두께 및 탄소 나노튜브의 결합 형태로 인해, 일 구현 예의 양극 첨가제가 최적화된 비가역 용량 및 충방전시의 용량 특성을 나타낼 수 있다.
상기 탄소 코팅층의 두께는 상기 양극 첨가제의 BET 비표면적 및 상술한 탄소 함량의 분석 결과에 근거하여 산출하거나, 상기 양극 첨가제를 투과 전자 현미경(TEM)이나 주사 투과 전자 현미경(STEM)으로 분석하여 측정할 수 있다.
한편, 상기 양극 첨가제는 상기 탄소 나노튜브 함유층 상에 형성된 LiDFOB 함유층을 포함한다.
상기 양극 첨가제는 그 표면이 상기 LiDFOB 함유층으로 코팅되어 있다. 도 1을 참고하면, 상기 양극 첨가제는 상기 리튬-철 산화물 입자(10) 상에 형성된 상기 탄소 코팅층(20), 상기 탄소 코팅층(20) 상에 형성된 탄소 나노튜브 함유층(30), 및 상기 탄소 나노튜브 함유층(30) 상에 형성된 상기 LiDFOB 함유층(40)을 포함한다. 상기 LiDFOB 함유층(40)은 상기 탄소 코팅층(20) 상에 형성된 상기 탄소 나노튜브 함유층(30)에 물리적 또는 화학적으로 결합된 상태로 포함된다.
발명의 구현 예에 따르면, 상기 LiDFOB 함유층은 LiDFOB만으로 이루어질 수 있다. 또한, 상기 LiDFOB 함유층에는 리튬 아치전지 분야에 알려진 리튬 헥사플루오로포스페이트(lithium hexafluorophosphate), 리튬 트리플레이트(lithium triflate), 및 리튬 디플루오로포스페이트(lithium difluorophosphate)와 같은 첨가제가 LiDFOB와 함께 포함될 수 있다. 다만, 상기 LiDFOB 함유층의 도입에 따른 공기 안정성의 향상 효과가 충분히 발현될 수 있도록 하기 위하여, 상기 LiDFOB 함유층은 LiDFOB를 적어도 50 몰% 이상, 혹은 70 몰% 이상, 혹은 90 몰% 이상으로 포함하는 것이 바람직하다.
상기 LiDFOB 함유층의 형성은 상기 양극 첨가제를 전자 현미경 또는 XRD 분석하여 확인될 수 있다.
발명의 구현 예에 따르면, 상기 LiDFOB 함유층은, 상기 양극 첨가제의 총 함량 100 중량부를 기준으로, 5.0 중량부 내지 15.0 중량부, 혹은 5.5 중량부 내지 15.0 중량부, 혹은 5.5 중량부 내지 12.0 중량부, 혹은 5.5 중량부 내지 10.0 중량부, 혹은 6.0 중량부 내지 10.0 중량부, 혹은 6.0 중량부 내지 9.0 중량부의 함량으로 포함될 수 있다.
상기 양극 첨가제의 공기 안정성 향상 효과가 충분히 발현될 수 있도록 하기 위하여, 상기 LiDFOB 함유층의 함량은 상기 양극 첨가제의 총 함량 100 중량부를 기준으로 5.0 중량부 이상인 것이 바람직하다. 다만, 상기 LiDFOB 함유층의 함량이 과도하게 높을 경우 상기 양극 첨가제의 비가역 용량 및 충방전시의 용량 특성이 저하할 수 있다. 그러므로, 상기 LiDFOB 함유층의 함량은 상기 양극 첨가제의 총 함량 100 중량부를 기준으로 15.0 중량부 이하인 것이 바람직하다.
상술한 양극 첨가제는 별도의 양극 활물질과 혼합되어, 리튬 이차 전지의 초기 충방전 과정에서 음극의 비가역 용량을 보상하는 희생 양극재로 작용할 수 있으며, 이러한 비가역 용량 보상 이후에는 상기 양극 활물질이 작용할 수 있다. 아울러, 상기 양극 첨가제는 충방전시의 용량 특성 역시 향상된 특성을 가지므로, 추가적인 양극 활물질로도 바람직하게 적용될 수 있다.
발명의 또 다른 일 구현 예에 따르면, 리튬 이차 전지용 양극이 제공된다.
상기 리튬 이차 전지용 양극은 양극 활물질, 바인더, 도전재, 및 상기 양극 첨가제를 포함할 수 있다.
상기 양극 첨가제는 리튬 이차 전지의 충방전시 비가역적으로 리튬을 내놓는 특성을 가진다. 그러므로, 상기 양극 첨가제는 리튬 이차 전지용 양극에 포함되어 예비 리튬화(prelithiation)를 위한 희생 양극재(sacrificial positive electrode materials)의 역할을 수행할 수 있다.
바람직하게는, 상기 리튬 이차 전지용 양극은 양극 활물질, 도전재, 상기 양극 첨가제, 및 바인더를 포함하는 양극재; 그리고, 상기 양극재를 지지하는 전류 집전체를 포함한다.
고용량 전지로 갈수록 전지의 용량을 늘리기 위해 음극 내 음극 활물질의 비율을 더 높여야 하고, 이에 따라 SEI 층에 소모되는 리튬의 양도 따라 증가한다. 때문에 음극의 SEI 층에 소모되는 리튬의 양을 계산한 다음, 양극 쪽에 적용되어야 할 희생 양극재의 양을 역산하여 전지의 설계 용량을 정할 수 있다.
일 실시 예에 따르면, 상기 양극 첨가제는 상기 양극재의 총 중량 대비 0 중량% 초과 15 중량% 이하로 포함될 수 있다.
상기 SEI 층의 형성에 소모되는 비가역 리튬을 보상하기 위하여, 상기 양극 첨가제의 함량은 상기 양극재의 총 중량 대비 0 중량% 초과인 것이 바람직하다.
다만, 상기 양극 첨가제가 과량으로 포함될 경우, 가역적인 충방전 용량을 나타내는 상기 양극 활물질의 함량이 줄어들어 배터리의 용량이 감소하게 되고, 전지 내에 잔여 리튬이 음극에 플레이팅되어 전지의 쇼트를 유발하거나 안전성을 저해할 수 있다. 그러므로, 상기 양극 첨가제의 함량은 상기 양극재의 총 중량 대비 15 중량% 이하인 것이 바람직하다.
구체적으로, 상기 양극 첨가제의 함량은 상기 양극재의 총 중량 대비 0 중량% 초과, 혹은 0.5 중량% 이상, 혹은 1 중량% 이상, 혹은 2 중량% 이상, 혹은 3 중량% 이상; 그리고, 15 중량% 이하, 혹은 12 중량% 이하, 혹은 10 중량% 이하일 수 있다.
바람직하게는, 상기 양극 첨가제의 함량은 상기 양극재의 총 중량 대비 0.5 중량% 내지 15 중량%, 혹은 1 중량% 내지 15 중량%, 혹은 1 중량% 내지 12 중량%, 혹은 2 중량% 내지 12 중량%, 혹은 2 중량% 내지 10 중량%, 혹은 3 중량% 내지 10 중량%일 수 있다.
상기 양극 활물질로는 리튬 이온의 가역적인 삽입 및 탈리가 가능한 물질이라면 특별한 제한 없이 사용될 수 있다. 예를 들어, 상기 양극 활물질은 코발트, 망간, 니켈, 철, 또는 이들 조합의 금속과 리튬을 포함한 복합 산화물 또는 인산화물일 수 있다.
비제한적인 예로, 상기 양극 활물질은 하기 화학식 중 어느 하나로 표시되는 화합물일 수 있다.
LiaA1-bRbD2 (0.90≤a≤1.8, 0≤b≤0.5); LiaE1-bRbO2-cDc (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); LiE2-bRbO4-cDc (0≤b≤0.5, 0≤c≤0.05); LiaNi1-b-cCobRcDd (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d≤2); LiaNi1-b-cCobRcO2-dZd (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d<2); LiaNi1-b-cCobRcO2-dZ2 (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d<2); LiaNi1-b-cMnbRcDd (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d≤2); LiaNi1-b-cMnbRcO2-dZd (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d<2); LiaNi1-b-cMnbRcO2-dZ2 (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<d<2); LiaNibEcGdO2 (0.90≤a≤1.8, 0≤b≤0.9, 0≤c≤0.5, 0.001≤d≤0.1.); LiaNibCocMndGeO2 (0.90≤a≤1.8, 0≤b≤0.9, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1); LiaNiGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaCoGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaMnGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaMn2GbO4 (0.90≤a≤1.8, 0.001≤b≤0.1); QO2; QS2; LiQS2; V2O5; LiV2O5; LiTO2; LiNiVO4; Li(3-f)J2(PO4)3 (0≤f≤2); Li(3-f)Fe2(PO4)3 (0≤f≤2); 및 LiFePO4.
상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.
물론 상기 양극 활물질의 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 양극 활물질과 코팅층을 갖는 양극 활물질을 혼합하여 사용할 수도 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다.
일 실시 예에 따르면, 상기 양극 활물질은 상기 양극재의 총 중량 대비 80 중량% 내지 95 중량%로 포함될 수 있다.
구체적으로, 상기 양극 활물질의 함량은 상기 양극재의 총 중량 대비 80 중량% 이상, 혹은 82 중량% 이상, 혹은 85 중량% 이상; 그리고, 95 중량% 이하, 혹은 93 중량% 이하, 혹은 90 중량% 이하일 수 있다.
바람직하게는, 상기 양극 활물질의 함량은 상기 양극재의 총 중량 대비 82 중량% 내지 95 중량%, 혹은 82 중량% 내지 93 중량%, 혹은 85 중량% 내지 93 중량%, 혹은 85 중량% 내지 90 중량%일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것이다.
상기 도전재로는 전지의 화학 변화를 야기하지 않으면서 전자 전도성을 가지는 것이라면 특별한 제한 없이 사용될 수 있다. 비제한적인 예로, 상기 도전재는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 천연 흑연이나 인조 흑연 등의 흑연; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등일 수 있다. 상기 도전재로는 상술한 예들 중 1종 혹은 2종 이상의 혼합물이 사용될 수 있다.
상기 도전재의 함량은 적절한 수준의 도전성을 발현하면서도 배터리의 용량 감소를 유발하지 않는 범위에서 조절될 수 있다. 바람직하게는, 상기 도전재의 함량은 상기 양극재의 총 중량 대비 1 중량% 내지 10 중량% 혹은 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 상기 양극재를 상기 전류 집전체에 잘 부착시키기 위해 사용되는 것이다.
비제한적인 예로, 상기 바인더는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등일 수 있다. 상기 바인더로는 상술한 예들 중 1종 혹은 2종 이상의 혼합물이 사용될 수 있다.
상기 바인더의 함량은 적절한 수준의 접착성을 발현하면서도 배터리의 용량 감소를 유발하지 않는 범위에서 조절될 수 있다. 바람직하게는, 상기 바인더의 함량은 상기 양극재의 총 중량 대비 1 중량% 내지 10 중량% 혹은 1 중량% 내지 5 중량%일 수 있다.
상기 전류 집전체로는 본 발명이 속하는 기술분야에서 리튬 이차 전지의 양극에 적용 가능한 것으로 알려진 소재가 특별한 제한 없이 사용될 수 있다.
비제한적인 예로, 상기 전류 집전체로는 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다
바람직하게는, 상기 전류 집전체는 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있다. 상기 양극재의 접착력을 높이기 위하여, 상기 전류 집전체는 그 표면에 미세한 요철이 형성된 것일 수 있다. 상기 전류 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 가질 수 있다.
상기 리튬 이차 전지용 양극은 상기 양극 활물질, 상기 도전재, 상기 양극 첨가제, 및 바인더를 포함하는 양극재를 상기 전류 집전체 상에 적층하여 형성될 수 있다.
발명의 또 다른 일 구현 예에 따르면, 상기 리튬 이차 전지용 양극; 음극; 분리막; 및 전해질을 포함하는, 리튬 이차 전지가 제공된다.
상기 리튬 이차 전지는 상기 양극 첨가제를 포함한 양극을 구비한다. 그에 따라, 상기 리튬 이차 전지는 충방전지 양극에서의 가스 발생이 억제될 수 있고, 향상된 안전성과 수명 특성을 나타낼 수 있다. 그리고, 상기 리튬 이차 전지는 높은 방전 용량, 우수한 출력 특성 및 용량 유지율을 나타낼 수 있다.
그에 따라, 상기 리튬 이차 전지는 휴대 전화, 노트북 컴퓨터, 태블릿 컴퓨터, 모바일 배터리, 디지털 카메라와 같은 휴대용 전자 기기 분야; 및 전기 자동차, 전기 오토바이, 퍼스널 모빌리티 디바이스와 같은 이동 수단 분야에서 향상된 성능과 안전성을 갖는 에너지 공급원으로 이용될 수 있다.
상기 리튬 이차 전지는 양극과 음극 사이에 분리막을 개재하여 권취된 전극 조립체와, 상기 전극 조립체가 내장되는 케이스를 포함할 수 있다. 그리고, 상기 양극, 상기 음극 및 상기 분리막은 전해질에 함침되어 있을 수 있다.
상기 리튬 이차 전지는 각형, 원통형, 파우치형 등 다양한 형태를 가질 수 있다.
상기 양극에 관한 사항은 앞서 설명된 내용으로 갈음한다.
상기 음극은 음극 활물질, 도전재 및 바인더를 포함하는 음극재; 그리고 상기 음극재를 지지하는 전류 집전체를 포함할 수 있다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질, 및 전이 금속 산화물을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소질 물질로서 결정질 탄소, 비정질 탄소 또는 이들의 혼합물을 예로 들 수 있다. 구체적으로, 상기 탄소질 물질은 천연 흑연, 인조 흑연, 키쉬 흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 메조페이스 피치(mesophase pitches), 메조페이스 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 석유 또는 석탄계 코크스(petroleum or coal tar pitch derived cokes), 연화 탄소(soft carbon), 및 경화 탄소(hard carbon) 등일 수 있다.
상기 리튬 금속의 합금은 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, Bi, Ga, 및 Cd로 이루어진 군에서 선택되는 금속과 리튬의 합금일 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질은 Si, Si-C 복합체, SiOx (0<x<2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이 금속, 희토류 원소, 및 이들의 조합으로 이루어진 군에서 선택되는 원소이다; 단, Si는 제외한다), Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이 금속, 희토류 원소, 및 이들의 조합으로 이루어진 군에서 선택되는 원소이다; 단, Sn은 제외한다.) 등일 수 있다. 그리고, 상기 리튬에 도프 및 탈도프 가능한 물질로는 상기 예들 중 적어도 하나와 SiO2를 혼합하여 사용할 수 있다. 상기 Q 및 R은 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 등일 수 있다.
그리고, 상기 전이 금속 산화물은 바나듐 산화물, 리튬 바나듐 산화물, 리튬 티타늄 산화물 등일 수 있다.
바람직하게는, 상기 음극은 탄소질 물질 및 규소 화합물로 이루어진 군에서 선택된 1종 이상의 음극 활물질을 포함할 수 있다.
즉, 발명의 다른 일 구현 예에 따르면, 상기 리튬 이차 전지용 양극; 탄소질 물질 및 규소 화합물로 이루어진 군에서 선택된 1종 이상의 음극 활물질을 포함하는 음극; 분리막; 및 전해질을 포함하는, 리튬 이차 전지가 제공된다.
여기서, 상기 탄소질 물질은, 앞서 예시된, 천연 흑연, 인조 흑연, 키쉬 흑연, 열분해 탄소, 메조페이스 피치, 메조페이스 피치계 탄소섬유, 탄소 미소구체, 석유 또는 석탄계 코크스, 연화 탄소, 및 경화 탄소로 이루어진 군에서 선택된 1종 이상의 물질이다. 그리고, 상기 규소 화합물은, 앞서 예시된 Si를 포함하는 화합물, 즉 Si, Si-C 복합체, SiOx (0<x<2), 상기 Si-Q 합금, 이들의 혼합물, 또는 이들 중 적어도 하나와 SiO2의 혼합물일 수 있다.
또한, 상기 음극은 마이크로 실리콘을 포함할 수 있다. 상기 음극은 마이크로 실리콘을 포함하는 경우 탄소질 물질을 음극 활물질로 사용하는 경우에 비하여 우수한 용량을 구현할 수 있다. 구체적으로, 상기 규소 화합물에 있어 특정 마이크로 실리콘을 사용할 경우, 500번 이상의 충전과 방전 이후에도 80% 이상의 잔존 용량을 유지할 수 있고, 종래의 리튬 이차 전지와 비교하여 현저히 우수한 에너지 밀도를 구현할 수 있다. 또한, 상기 음극이 마이크로 실리콘을 포함하는 경우, 고체 전해질을 사용하는 고체 배터리의 충방전 수명을 크게 높일 수 있고, 상온에서 충전 속도도 크게 향상시킬 수 있다.
상기 마이크로 실리콘의 크기가 크게 한정되는 것은 아니나, 예를 들어 상기 마이크로 실리콘은 100 ㎛ 이하의 직경, 또는 1 내지 100 ㎛의 직경, 또는 1 내지 20 ㎛의 직경을 가질 수 있다.
일 실시 예에 따르면, 상기 음극 활물질은 상기 음극재의 총 중량 대비 85 중량% 내지 98 중량%로 포함될 수 있다.
구체적으로, 상기 음극 활물질의 함량은 상기 음극재의 총 중량 대비 85 중량% 이상, 혹은 87 중량% 이상, 혹은 90 중량% 이상; 그리고, 98 중량% 이하, 혹은 97 중량% 이하, 혹은 95 중량% 이하일 수 있다.
바람직하게는, 상기 음극 활물질의 함량은 상기 음극재의 총 중량 대비 85 중량% 내지 97 중량%, 혹은 87 중량% 내지 97 중량%, 혹은 87 중량% 내지 95 중량%, 혹은 90 중량% 내지 95 중량%일 수 있다.
상기 음극재에 포함되는 상기 도전재와 상기 바인더, 그리고 상기 전류 집전체에 대해서는 상기 리튬 이차 전지용 양극에 대해 설명된 내용으로 갈음한다.
상기 분리막은 양극과 음극을 분리하고 리튬 이온의 이동 통로를 제공한다. 상기 분리막으로는 본 발명이 속하는 기술분야에서 리튬 이차 전지의 세퍼레이터에 적용 가능한 것으로 알려진 것이라면 특별한 제한 없이 사용될 수 있다. 상기 분리막은 전해질의 이온 이동에 대해 낮은 저항을 가지면서 전해질에 대한 젖음성이 우수한 것이 바람직하다.
구체적으로는 상기 분리막은 폴리에틸렌, 폴리프로필렌, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조된 다공성 고분자 필름일 수 있다. 상기 분리막은 상기 다공성 고분자 필름이 2 층 이상으로 적층된 다층막일 수 있다. 상기 분리막은 유리 섬유, 폴리에틸렌 테레프탈레이트 섬유 등을 포함하는 부직포일 수 있다. 그리고, 상기 분리막은 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 코팅된 것일 수 있다.
한편, 상기 전해질로는 본 발명이 속하는 기술분야에서 리튬 이차 전지에 적용 가능한 것으로 알려진 것이라면 특별한 제한 없이 사용될 수 있다. 예를 들어, 상기 전해질은 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등일 수 있다.
구체적으로, 상기 전해질은 비수성 유기 용매 및 리튬염을 포함할 수 있다.
상기 비수성 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다.
구체적으로, 상기 비수성 유기 용매는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), 및 ε-카프로락톤(ε-caprolactone)과 같은 에스테르계 용매; 디부틸 에테르(dibutyl ether) 및 테트라히드로퓨란(tetrahydrofuran)과 같은 에테르계 용매; 시클로헥사논(cyclohexanone)과 같은 케톤계 용매; 벤젠(benzene), 및 플루오로벤젠(fluorobenzene)과 같은 방향족 탄화수소계 용매; 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 메틸 에틸 카보네이트(methyl ethyl carbonate, MEC), 에틸 메틸 카보네이트(ethyl methyl carbonate, EMC), 에틸렌 카보네이트(ethylene carbonate, EC), 및 프로필렌 카보네이트(propylene carbonate, PC)와 같은 카보네이트계 용매; 에틸알코올 및 이소프로필 알코올과 같은 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다)과 같은 니트릴류; 디메틸포름아미드와 같은 아미드류; 1,3-디옥솔란과 같은 디옥솔란류; 및 설포란(sulfolane) 등일 수 있다.
상기 예들 중에서도 상기 비수성 유기 용매로 카보네이트계 용매가 바람직하게 사용될 수 있다.
특히, 전지의 충방전 성능 및 상기 희생 양극재와의 상용성을 고려하여, 상기 비수성 유기 용매로는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들어, 에틸렌 카보네이트, 프로필렌 카보네이트) 및 저점도의 선형 카보네이트(예를 들어, 에틸 메틸 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트)의 혼합물이 바람직하게 사용될 수 있다. 이 경우 상기 환형 카보네이트와 상기 선형 카보네이트를 1:1 내지 1:9의 부피 비로 혼합하여 사용하는 것이 상술한 성능의 발현에 유리할 수 있다.
또한, 상기 비수성 유기 용매로는 에틸렌 카보네이트(EC)와 에틸 메틸 카보네이트(EMC)를 1:2 내지 1:10의 부피 비로 혼합한 것; 또는 에틸렌 카보네이트(EC), 에틸 메틸 카보네이트(EMC) 및 디메틸 카보네이트(DMC)를 1~3 : 1~9 : 1의 부피 비로 혼합한 것이 바람직하게 사용될 수 있다.
상기 전해질에 포함되는 상기 리튬염은 상기 비수성 유기 용매에 용해되어 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 한다.
구체적으로, 상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiN(SO2F)2 (LiFSI, lithium bis(fluorosulfonyl)imide), LiCl, LiI, 및 LiB(C2O4)2 등일 수 있다. 바람직하게는, 상기 리튬염은 LiPF6, LiFSI, 및 이들의 혼합물일 수 있다.
상기 리튬염은 상기 전해질에 0.1 M 내지 2.0 M의 농도로 포함될 수 있다. 상기 농도 범위로 포함되는 리튬염은, 상기 전해질에 적절한 전도도와 점도를 부여함으로써 우수한 전해질 성능을 나타낼 수 있게 한다.
선택적으로, 상기 전해질에는 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 한 첨가제들이 포함될 수 있다.
예를 들어, 상기 첨가제는 디플루오로 에틸렌카보네이트와 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(n-glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등일 수 있다. 상기 첨가제는 상기 전해질의 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.
본 발명에 따르면, 높은 초기 비가역 용량을 나타내면서도 우수한 공기 안정성을 가지는 리튬 이차 전지용 양극 첨가제의 제조 방법이 제공된다. 상기 방법으로 제조된 양극 첨가제는 고용량 리튬 이차 전지의 비가역 용량 손실을 보상할 수 있으면서도, 전지의 가스 발생이나 이에 의한 화재 및 폭발 등을 효과적으로 억제할 수 있다.
도 1은 발명의 일 구현 예에 따른 리튬 이차 전지용 양극 첨가제 입자의 단면을 간략화하여 나타낸 모식도이다.
도 2 및 도 3은 실시예 1 및 비교예 3에서 제조된 양극 첨가제에 대한 주사전자현미경(SEM) 이미지이다.
도 4 내지 도 11은 실시예 및 비교예에서 제조된 양극 첨가제에 대한 X-선 회절(XRD) 분석 결과이다.
<부호의 설명>
10: 리튬-철 산화물 입자
20: 탄소 코팅층
30: 탄소 나노튜브 함유층
40: 리튬 디플루오로(옥살라토)보레이트 함유층
이하 발명의 구체적인 실시예들을 통해 발명의 작용과 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 이해를 돕기 위한 예시로서 제시되는 것이다. 이하의 실시예들을 통해 발명의 권리범위가 어떠한 의미로든 한정되는 것을 의도하지 않으며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백할 것이다.
실시예 1
(1) 양극 첨가제의 제조
0.2 L 반응기 및 mechanical stirrer를 사용하였고, 하기 방법에 따라 실시예 1의 양극 첨가제를 제조하였다.
엘지화학社 제조의 탄소 나노튜브 수분산액을 사용하였다. 상기 수분산액은 탄소 나노튜브(CNT) 및 수용성 고분자 분산제인 폴리비닐피롤리돈(Acros organics社, Mw 50,000 g/mol)의 함량을 각각 5.83 중량% 및 1.0 중량%로 하여, 이들을 DI water 200 ml에 넣고 초음파 tip으로 10 분간 혼합하여 제조한 것이다.
Iron(III) nitrate nonahydrate 0.6 mol (대정화금社, 242.328 g)을 DI water 600 ml에 녹이고, 이것을 28 g의 상기 CNT 수분산액(이후 공정에서 형성될 철 산화물-탄소 전구체(Fe2O3-CNT 전구체) 대비 CNT 함량 = 3.3 중량%)이 담겨 있는 flask에 천천히 넣고 30 분 동안 교반하였다. 계속해서, NH4OH 1.8 mol (252.36 g)을 상기 flask에 천천히 부어 넣고 30 분 동안 교반하였고, 80 ℃에서 6 시간 동안 반응시켰다.
반응 종료 후 30 분 동안 정치하여 상층 용액을 버리고 여과를 진행하였고, 120 ℃의 convection oven에서 12 시간 동안 건조를 진행하였다. 건조된 파우더를 공기 분위기 하에서 250 ℃로 6 시간 동안 열처리하여 불순물 제거하고, 철 산화물-탄소 전구체(Fe2O3-CNT 전구체)를 얻었다.
Li2O (Ganfeng Lithium社) 및 상기 Fe2O3-CNT 전구체를 5 : 1의 몰비로 균일하게 혼합하고, 열처리로에서 Ar 분위기 하에 600 ℃ (2 시간 승온, 6 시간 유지)로 소성하여 리튬-철 산화물 입자를 얻었다.
상기 리튬-철 산화물 입자 100 중량부에 대하여 8.0 중량부의 리튬 디플루오로(옥살라토)보레이트(Sigma-Aldrich社)를 믹서를 이용하여 혼합하였다. 상기 혼합물을 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 실시예 1의 양극 첨가제를 얻었다.
(2) 리튬 이차 전지의 제조
상기 리튬 전이 금속 산화물, 도전재로 카본블랙, 및 바인더로 폴리비닐리덴플로라이드(PVdF)를 90 : 4 : 6의 중량비로 유기용매(N-메틸피롤리돈)에 혼합하여 양극재 슬러리를 제조하였다. 두께 15 ㎛의 알루미늄 호일인 전류 집전체의 일면에 상기 양극재 슬러리를 도포하고, 압연 및 건조하여 양극을 제조하였다(타발 사이즈: Φ14mm).
상기 양극, 음극, 분리막, 및 전해액을 준비하여 코인셀 형태의 리튬 이차 전지를 제조하였다. 이때, 상기 음극으로는 300 ㎛ 두께의 Li-metal(타발 사이즈: Φ14mm)이 사용되었다. 상기 전해액으로는 에틸렌 카보네이트(EC), 디메틸 카보네이트(DMC) 및 디에틸 카보네이트(DEC)를 1 : 2 : 1의 부피비로 혼합한 비수성 유기 용매에 1.0 M의 LiPF6 및 2 중량%의 비닐렌 카보네이트(VC)를 용해시킨 것이 사용되었다. 그리고, 상기 분리막으로는 PE 수지제 분리막(W-scope사 제조, WL20C, 20 ㎛)이 사용되었다.
실시예 2
상기 리튬 디플루오로(옥살라토)보레이트의 함량을 상기 리튬-철 산화물 입자 100 중량부에 대하여 15.0 중량부로 증량한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시예 2의 양극 첨가제 및 이를 포함한 리튬 이차 전지를 제조하였다.
실시예 3
상기 CNT 수분산액의 함량을 34 g으로 증량(이후 공정에서 형성될 Fe2O3-CNT 전구체 대비 CNT 함량 = 4.0 중량%)한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시예 3의 양극 첨가제 및 이를 포함한 리튬 이차 전지를 제조하였다.
실시예 4
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 15.0 중량부의 리튬 디플루오로(옥살라토)보레이트(Sigma-Aldrich社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 공기 분위기 및 280 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 실시예 4의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실시예 5
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 15.0 중량부의 리튬 디플루오로(옥살라토)보레이트(Sigma-Aldrich社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 아르곤 가스 분위기 및 270 ℃ 하에서 1 시간동안 1차 소성하고, 그 결과물을 공기 분위기 및 270 ℃ 하에서 1 시간동안 2차 소성한 후 quenching하여, 실시예 5의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 1
1.494 g의 Li2O (Ganfeng Lithium社) 및 1.597 g의 Fe2O3 (Sigma-aldrich)를 고상 혼합하였다(몰비 Li2O:Fe2O3 = 5:1). 상기 혼합물을 프레스를 이용하여 펠렛 형태로 제조하고, 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성하여 비교예 1의 양극 첨가제를 제조하였다.
상기 양극 첨가제를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 비교예 1의 리튬 이차 전지를 제조하였다.
비교예 2
1.494 g의 Li2O (Ganfeng Lithium社) 및 1.597 g의 Fe2O3 (Sigma-aldrich)를 고상 혼합하였다(몰비 Li2O:Fe2O3 = 5:1). 상기 혼합물에 폴리비닐피롤리돈(Acros organics社, Mw 50,000 g/mol) 0.4 g을 넣고 혼합하였다 (생성될 양극 첨가제 (Li5FeO4) 0.1 mol 기준 폴리비닐피롤리돈 4 g 첨가). 상기 혼합물을 프레스를 이용하여 펠렛 형태로 제조하고, 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성하여 비교예 2의 양극 첨가제를 제조하였다.
상기 양극 첨가제를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 비교예 2의 리튬 이차 전지를 제조하였다.
비교예 3
1.494 g의 Li2O (Ganfeng Lithium社) 및 1.597 g의 Fe2O3 (Sigma-aldrich)를 고상 혼합하였다(몰비 Li2O:Fe2O3 = 5:1). 상기 혼합물에 상기 혼합물 대비 탄소 나노튜브(CNT) 10 중량%를 넣고 혼합하였다. 상기 혼합물을 프레스를 이용하여 펠렛 형태로 제조하고, 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성하여 비교예 3의 양극 첨가제를 제조하였다. 상기 양극 첨가제를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 비교예 3의 리튬 이차 전지를 제조하였다.
비교예 4
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 15.0 중량부의 리튬 디플루오로(옥살라토)보레이트(Sigma-Aldrich社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 아르곤 가스 분위기 및 270 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 비교예 4의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 5
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 15.0 중량부의 리튬 디플루오로(옥살라토)보레이트(Sigma-Aldrich社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 공기 분위기 및 320 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 비교예 5의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 6
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 6 중량부의 옥살산(oxalic acid), 4 중량부의 붕산(boric acid), 및 11 중량부의 리튬 비스(플루오로술포닐)이미드(Li-FSI, Nippon Shokubai 社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 비교예 6의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 7
상기 실시예 1과 동일한 방법으로 리튬-철 산화물 입자를 얻었다. 상기 리튬-철 산화물 입자 100 중량부에 대하여 6 중량부의 옥살산(oxalic acid), 4 중량부의 붕산(boric acid), 및 6 중량부의 리튬 비스(트리플루오로메탄술포닐)이미드(Li-TFSI, J&H Chemical 社)를 믹서를 이용하여 혼합하였다.
상기 혼합물을 열처리로에서 공기 분위기 및 270 ℃ 하에서 1 시간동안 소성한 후 quenching하여, 비교예 7의 양극 첨가제를 얻었다.
상기 양극 첨가제를 사용하여 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실험예 1
실시예 1 및 비교예 3에서 제조된 양극 첨가제에 대한 주사전자현미경(SEM) 이미지를 도 2(실시예 1) 및 도 3(비교예 3)에 나타내었다.
실시예 및 비교예에서 제조된 양극 첨가제에 대한 X-선 회절 분석(D8 Endeavor, Bruker) 결과를 도 4(실시예 1), 도 5(실시예 2), 도 6(실시예 3), 도 7(실시예 5), 도 8(비교예 1), 도 9(비교예 2), 도 10(비교예 3), 및 도 11(비교예 4)에 나타내었다.
상기 주사투과현미경 및 XRD의 분석 결과로부터, 실시예들의 양극 첨가제에서 Li5FeO4의 리튬 전이 금속 산화물이 형성되었음이 확인되었고, 상기 리튬 전이 금속 산화물 입자 상에 폴리비닐피롤리돈(PVP)에서 유래한 탄소 코팅층 및 탄소 나노튜브 함유층의 이중 코팅층이 10 내지 300 nm 범위 내의 두께로 형성되었음이 확인되었다. 그리고, 상기 리튬 전이 금속 산화물의 표면에는 리튬 디플루오로(옥살라토)보레이트 함유층이 형성되었음이 확인되었다.
그리고, 도 5(실시예 2) 및 도 11(비교예 4)를 참고하면, 공기 분위기 하에서 소성된 실시예 2에서는 2Theta 값이 26 내지 28 도인 범위에서 피크가 거의 나타나지 않았으나, 아르곤 가스 분위기 하에서 소성된 비교예 4에서는 상기 2Theta 값의 범위에서 상대적으로 강하고 많은 피크들이 나타났다. 이러한 결과를 통해, 공기 분위기 하에서 열처리할 경우 불순물이 거의 없는 보다 양호한 LiDFOB 코팅 효과를 얻을 수 있음이 확인되었다.
실험예 2
(1) 충방전 용량
상기 실시예 및 비교예에서 제조된 리튬 이차 전지를 45 ℃ 하의 constant current 60 mA/g 및 constant voltage 30 mA/g 하에서 4.25 V가 될 때까지 충전하고 constant current 10 mA/g 하에서 2.5 V까지 방전하여 충방전 실험을 진행하였다. 상기 충방전 실험을 통해 충전 용량 및 방전 용량을 각각 산출하였다.
(2) 경시 변화 후 충전 용량 유지율
상기 실시예 및 비교예에서 제조된 리튬 이차 전지를 30 ℃의 온도 및 33 %의 상대습도(33 RH%)로 유지되는 공기 분위기의 챔버에 6 시간 동안 보관하였다. 그 후, 상기 리튬 이차 전지에 대해 상기 충방전 실험을 동일한 조건 하에서 수행하였다. 상기 챔버에 보관하기 전의 충전 용량을 기준으로, 상기 챔버에 보관한 후의 충전 용량의 비율(용량 유지율, %)을 계산하였다.
충전 용량
(mAh/g)
방전 용량
(mAh/g)
경시 변화 후
충전 용량 유지율 (%)
실시예 1 639.59 66.82 85.5
실시예 2 598.08 63.52 92.2
실시예 3 551.58 45.60 85.5
실시예 4 598.08 63.52 92.2
실시예 5 573.74 65.47 85.6
비교예 1 733.68 68.55 26.9
비교예 2 21.97 3.64 측정 불가
비교예 3 595.63 38.55 측정 불가
비교예 4 578.73 60.24 81.5
비교예 5 502.49 46.03 97.8
비교예 6 492.83 44.89 46.4
비교예 7 520.83 45.64 58.4
상기 표 1을 참고하면, 실시예들의 리튬 이차 전지는 550 mAh/g 이상의 충전 용량을 나타내면서도, 경시 변화 후 85 % 이상의 높은 충전 용량 유지율을 나타내었고 경시 변화 전 전극막의 색상과 유사한 수준의 색상을 유지하여 우수한 공기 안정성을 갖는 것으로 확인되었다.
이에 비해 비교예 1의 리튬 이차 전지는 상대적으로 높은 충전 용량을 나타내었으나, 경시 변화 후 충전 용량 유지율이 현저히 낮았다. 비교예 2의 리튬 이차 전지는 열악한 충전 용량을 나타내었고, 경시 변화 실험 과정에서 전극막이 찌그러짐에 따라 충전 용량 유지율의 측정이 불가능하였다. 비교예 3의 리튬 이차 전지는 양호한 충전 용량을 나타내었으나, 경시 변화 실험 과정에서 성능 측정이 불가능할 정도로 전극막이 찌그러졌다. 비교예 4의 리튬 이차 전지는 양호한 충전 용량을 나타내었으나, 경시 변화 후 충전 용량 유지율이 상대적으로 떨어지는 것으로 확인되었다.
비교예 5의 리튬 이차 전지는 상대적으로 높은 온도로 열처리된 양극 첨가제를 포함함에 따라 충전 용량이 현저히 감소하였다. 이는 높은 온도의 열처리로 인해 탄소 성분(탄소 코팅층, 탄소 나노튜브 함유층)이 소실됨에 따른 것으로 확인된다. 다만, 비교예 5의 리튬 이차 전지에서는 경시 변화 후 충전 용량 유지율이 소폭 향상되었다. 이는 상기 탄소 성분의 소실로 인해 양극 첨가제의 비표면적이 감소하여 상대적으로 리튬 디플루오로(옥살라토)보레이트의 코팅 효율이 좋아짐에 따른 것으로 예측된다.
비교예 6 및 7의 리튬 이차 전지에는 리튬 디플루오로(옥살라토)보레이트 대신 이와 유사한 대응 구조를 갖는 화합물들의 조합이 첨가되었으나, 충전 용량이 상대적으로 낮았고, 경시 변화 후 충전 용량 유지율 또한 현저히 낮은 것으로 확인되었다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (10)

  1. 탄소 나노튜브, 수용성 고분자 분산제 및 철(Fe) 전구체를 혼합 및 열처리하여, 철 산화물-탄소 전구체를 형성하는 단계;
    리튬 전구체 및 상기 철 산화물-탄소 전구체를 혼합 및 500 ℃ 이상으로 소성하여, 리튬-철 산화물 입자를 형성하는 단계; 및
    상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트의 혼합물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 열처리하여, 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계
    를 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  2. 제 1 항에 있어서,
    상기 리튬 디플루오로(옥살라토)보레이트는 상기 리튬-철 산화물 입자에 대해 5.0 중량부 내지 20.0 중량부의 함량으로 혼합되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  3. 제 1 항에 있어서,
    상기 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계는, 상기 혼합물을 공기 분위기 및 260 ℃ 내지 280 ℃의 온도 하에서 열처리하여 수행되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  4. 제 1 항에 있어서,
    상기 리튬 디플루오로(옥살라토)보레이트 함유층으로 코팅된 리튬-철 산화물을 형성하는 단계는,
    상기 리튬-철 산화물 입자 및 리튬 디플루오로(옥살라토)보레이트의 혼합물을 비활성 기체 분위기 및 300 ℃ 미만의 온도 하에서 1차 열처리하는 공정, 및
    상기 1차 열처리된 결과물을 산소 함유 기체 분위기 및 300 ℃ 미만의 온도 하에서 2차 열처리하는 공정
    을 포함하여 수행되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  5. 제 1 항에 있어서,
    상기 수용성 고분자 분산제는 폴리비닐피롤리돈계 고분자, 폴리아크릴산계 고분자, 폴리비닐알코올계 고분자 및 히드록시 알킬셀룰로오스계 고분자로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  6. 제 1 항에 있어서,
    상기 수용성 고분자 분산제는 상기 철 산화물-탄소 전구체의 총 함량에 대해 0.1 중량부 내지 2 중량부의 함량으로 사용되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  7. 제 1 항에 있어서,
    상기 탄소 나노튜브는 상기 철 산화물-탄소 전구체의 총 함량에 대해 1 중량부 내지 10 중량부의 함량으로 사용되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  8. 제 1 항에 있어서,
    상기 철(Fe) 전구체는 Fe(III)의 질산화물, 황산화물, 인산화물, 산화물, 할로겐화물, 및 이들의 수화물로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  9. 제 1 항에 있어서,
    상기 철 산화물-탄소 전구체의 형성 단계는
    상기 탄소 나노튜브가 상기 수용성 고분자 분산제의 존재 하에 수용매에 분산된 탄소 나노튜브 분산액을 형성하는 단계;
    염기의 존재 하에, 상기 탄소 나노튜브 분산액 및 철(Fe) 전구체를 혼합하는 단계;
    상기 혼합액 내에서, 상기 탄소 나노튜브 분산액 및 철(Fe) 전구체를 50 ℃ 내지 100 ℃의 온도에서 반응시키는 단계; 및
    상기 반응 결과물 용액을 여과 및 건조하고, 200 ℃ 내지 300 ℃의 온도에서 열처리하는 단계
    를 포함하여 수행되는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
  10. 제 1 항에 있어서,
    상기 리튬 이차 전지용 양극 첨가제는,
    상기 리튬-철 산화물 입자;
    상기 리튬-철 산화물 입자 상에 형성된 탄소 코팅층;
    상기 탄소 코팅층 상에 형성된 탄소 나노튜브 함유층; 및
    상기 탄소 나노튜브 함유층 상에 형성된 리튬 디플루오로(옥살라토)보레이트 함유층
    을 포함하는, 리튬 이차 전지용 양극 첨가제의 제조 방법.
PCT/KR2022/015836 2021-10-19 2022-10-18 리튬 이차 전지용 양극 첨가제의 제조 방법 WO2023068739A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22883962.7A EP4329013A1 (en) 2021-10-19 2022-10-18 Method for preparing cathode additive for lithium secondary battery
CN202280033777.0A CN117378060A (zh) 2021-10-19 2022-10-18 制造锂二次电池用正极添加剂的方法
JP2023569716A JP2024517308A (ja) 2021-10-19 2022-10-18 リチウム二次電池用正極添加剤の製造方法
US18/565,620 US20240145668A1 (en) 2021-10-19 2022-10-18 Manufacturing Method of Cathode Additives for Lithium Secondary Battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0139619 2021-10-19
KR20210139619 2021-10-19
KR10-2022-0133499 2022-10-17
KR1020220133499A KR20230055977A (ko) 2021-10-19 2022-10-17 리튬 이차 전지용 양극 첨가제의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023068739A1 true WO2023068739A1 (ko) 2023-04-27

Family

ID=86059322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015836 WO2023068739A1 (ko) 2021-10-19 2022-10-18 리튬 이차 전지용 양극 첨가제의 제조 방법

Country Status (4)

Country Link
US (1) US20240145668A1 (ko)
EP (1) EP4329013A1 (ko)
JP (1) JP2024517308A (ko)
WO (1) WO2023068739A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190062254A (ko) * 2017-11-27 2019-06-05 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
JP2019085314A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
JP2020513145A (ja) * 2017-11-30 2020-04-30 エルジー・ケム・リミテッド 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
KR20210064360A (ko) * 2018-09-28 2021-06-02 닝보 질량 뉴 에너지 컴퍼니 리미티드 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
JP2019085314A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
KR20190062254A (ko) * 2017-11-27 2019-06-05 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
JP2020513145A (ja) * 2017-11-30 2020-04-30 エルジー・ケム・リミテッド 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
KR20210064360A (ko) * 2018-09-28 2021-06-02 닝보 질량 뉴 에너지 컴퍼니 리미티드 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지

Also Published As

Publication number Publication date
JP2024517308A (ja) 2024-04-19
EP4329013A1 (en) 2024-02-28
US20240145668A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2019216694A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2022031116A1 (ko) 양극 활물질 전구체 및 그 제조 방법
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2023048550A1 (ko) 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2022119158A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2023068739A1 (ko) 리튬 이차 전지용 양극 첨가제의 제조 방법
WO2019098612A1 (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지
WO2022015072A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2024049200A1 (ko) 양극 활물질 전구체, 이의 제조 방법, 이를 이용한 양극 활물질의 제조 방법 및 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033777.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023569716

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022883962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18565620

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022883962

Country of ref document: EP

Effective date: 20231123