WO2019103496A1 - 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019103496A1
WO2019103496A1 PCT/KR2018/014470 KR2018014470W WO2019103496A1 WO 2019103496 A1 WO2019103496 A1 WO 2019103496A1 KR 2018014470 W KR2018014470 W KR 2018014470W WO 2019103496 A1 WO2019103496 A1 WO 2019103496A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
formula
carbonate
lithium
Prior art date
Application number
PCT/KR2018/014470
Other languages
English (en)
French (fr)
Inventor
임영민
이경미
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020502321A priority Critical patent/JP7027629B2/ja
Priority to PL18881105.3T priority patent/PL3648232T3/pl
Priority to ES18881105T priority patent/ES2945471T3/es
Priority to US16/635,076 priority patent/US11431028B2/en
Priority to EP18881105.3A priority patent/EP3648232B1/en
Priority to CN201880049406.5A priority patent/CN110998956B/zh
Priority claimed from KR1020180145685A external-priority patent/KR102167592B1/ko
Publication of WO2019103496A1 publication Critical patent/WO2019103496A1/ko
Priority to US17/861,368 priority patent/US11799133B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a lithium secondary battery capable of suppressing gas generation and a lithium secondary battery comprising the same.
  • a lithium secondary battery specifically a lithium ion battery (LIB) is a battery that can best meet this demand, and has been adopted as a power source for many portable devices because of its high energy density and easy design.
  • LIB lithium ion battery
  • lithium secondary batteries Recently, the range of use of lithium secondary batteries has expanded from conventional small electronic devices to large electronic devices, automobiles, smart grids, etc., and lithium secondary batteries capable of maintaining excellent performance even in harsh external environments such as high temperature and low temperature environments are required have.
  • the lithium secondary battery currently applied is composed of a carbonaceous anode capable of intercalating and deintercalating lithium ions, a cathode made of a lithium-containing transition metal oxide, and a nonaqueous electrolyte solution in which an appropriate amount of a lithium salt is dissolved in a mixed carbonate nonaqueous organic solvent
  • Charging and discharging can be performed while repeating the phenomenon that lithium ions discharged from the anode by charging are inserted into the carbonaceous anode and desorbed again upon discharging.
  • Non-aqueous electrolyte solution for a lithium secondary battery which is capable of forming a stable ion conductive film on a surface of a negative electrode to effectively inhibit gas generation.
  • the present invention also provides a lithium secondary battery having less cell swelling by including the non-aqueous electrolyte for a lithium secondary battery as described above.
  • nonaqueous electrolyte for a secondary battery comprising a compound represented by the following general formula (1).
  • R 1 and R 2 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • the non-aqueous solvent may include the carbonate-based solvent and the propyl propionate in a weight ratio of 2: 8 to 4: 6.
  • the carbonate-based solvent may include ethylene carbonate.
  • non-aqueous solvent may further include ethyl propionate.
  • the compound represented by Formula 1 may be selected from the group consisting of compounds represented by Chemical Formulas 1a to 1c.
  • the compound represented by Formula 1 may be selected from the group consisting of compounds represented by Formula 1b and Formula 1c.
  • the compound represented by Formula 1 may be contained in an amount of 0.01 wt% to 11.5 wt%, specifically 0.1 wt% to 10 wt% based on the total weight of the nonaqueous electrolyte solution.
  • the present invention also provides a lithium secondary battery comprising the non-aqueous electrolyte for a lithium secondary battery according to the present invention.
  • the nonaqueous electrolyte solution for a lithium secondary battery uses propyl propionate as a non-aqueous solvent at 60 wt% to 80 wt% to reduce the amount of a carbonate-based solvent sensitive to side reaction, Gas generation and cell swelling can be suppressed at the time of storage.
  • the nonaqueous electrolyte solution for a lithium secondary battery of the present invention contains a compound containing both a propargyl group known to have metal ion adsorption capability and an imidazole group effective for SEI film formation as an additive, The conductive film can be formed. As a result, gas generation due to the side reaction between the anode and the electrolyte can be suppressed, and cell swelling can be remarkably reduced.
  • Example 1 is a graph showing the results of evaluation of cycle life characteristics of a lithium secondary battery according to Experimental Example 1 of the present invention.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention comprises
  • R 1 and R 2 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • the lithium salt can be used without limitation as those conventionally used in an electrolyte for a lithium secondary battery, and examples thereof include Li + as a cation and anion It is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, PF 6 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, SbF 6 -, AsF 6 -, B 10 Cl 10 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -,
  • the lithium salt may be at least one selected from the group consisting of LiCl, LiBr, LiClO 4 , LiPF 6 , LiBF 4 , LiB 10 Cl 10 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiAlCl 4 and LiAlO 4 , And mixtures thereof.
  • the lithium salt may be appropriately changed within a usable range, but it may be contained in the electrolyte at a concentration of 0.8 M to 2 M, specifically 1 M to 1.5 M, in order to obtain an optimum effect of forming an anti-corrosive film on the electrode surface . If the concentration of the electrolyte salt exceeds 2M, the viscosity of the electrolyte for a lithium secondary battery may excessively increase, thereby deteriorating the electrolyte wettability and the film forming effect may be reduced. When the concentration of the lithium salt is less than 0.8M, the mobility of the lithium ion may decrease and the capacity may be deteriorated.
  • the non-aqueous solvent may include a carbonate-based solvent and a propyl propionate.
  • the carbonate-based solvent may include at least one solvent selected from the group consisting of a linear carbonate-based solvent and a cyclic carbonate-based solvent. More specifically, the carbonate-based solvent may include a cyclic carbonate-based solvent.
  • the linear carbonate-based solvent is a solvent having a low viscosity and a low dielectric constant.
  • the solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate Ethyl propyl carbonate, and the like.
  • the cyclic carbonate solvent may be at least one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, Polyethylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 1,2-butylene carbonate
  • 2,3-butylene carbonate 1,2-butylene carbonate
  • Polyethylene carbonate 2,3-pentylene carbonate
  • vinylene carbonate vinylene carbonate
  • FEC fluoroethylene carbonate
  • the carbonate-based solvent may include ethylene carbonate having a high dielectric constant.
  • the carbonate-based solvent may include an additional mixed solvent of propylene carbonate having a relatively low melting point in ethylene carbonate relative to the ethylene carbonate.
  • the weight ratio of ethylene carbonate and propylene carbonate is 1: 0.2 to 1: 1, preferably 1: 0.2 to 1: 0.8, Can be from 1: 0.3 to 1: 0.6.
  • the weight ratio of ethylene carbonate to propylene carbonate may have a significant effect on improving both the output at a low temperature and the room temperature and the capacity characteristics after storage at a high temperature in the production of the secondary battery. And life characteristics can be sufficiently improved.
  • the weight ratio of propylene carbonate to the ethylene carbonate solvent is more than 1, the dissociation degree of the lithium salt may be lowered, resulting in poor ion conductivity, and the stability of the carbon anode may be deteriorated.
  • the weight ratio of propylene carbonate to ethylene carbonate solvent is less than 0.2, ionic conductivity may be relatively lowered.
  • the carbonate-based solvent has high reactivity at high voltage and is sensitive to side reactions, when it is used excessively with a nonaqueous solvent in application of a high voltage battery, gas generation increases, cell swelling increases, and high temperature storage stability deteriorates .
  • the non-aqueous solvent and the carbonate-based solvent together with the ester-based organic solvent, particularly propyl propionate having a low melting point and high stability at high temperature (viscosity of about 0.7 cP at room temperature) Swelling can be suppressed.
  • the high-pressure-stable propyl propionate comprises 60% by weight to 80% by weight, specifically 60% by weight to 70% by weight, based on the total weight of the non-aqueous solvent, and the content of the propyl propionate is in the range If satisfactory, gas generation and cell swelling can be suppressed at a high voltage of 4.35 V or higher and a high temperature of 60 deg. C or higher, and high temperature storage stability can be improved.
  • the content of the propyl propionate exceeds 80% by weight, the content of the carbonate-based solvent is lowered, so that the mobility of the lithium ion is lowered and the ion conductivity is lowered.
  • the film-forming effect by the film can be reduced and the safety of the cell may be deteriorated.
  • the carbonate-based solvent and propyl propionate may be contained in a weight ratio of 2: 8 to 4: 6, preferably 3: 7 to 4: 6.
  • the weight ratio of the carbonate-based solvent and propyl propionate is in the above range, a synergistic effect by mixing the two organic solvents can be exhibited. If the weight ratio of propyl propionate to the carbonate-based solvent is less than 6, the viscosity of the electrolyte is increased, electrolyte wettability is lowered, and the high temperature oxidation reaction of the carbonate system is increased to lower the cell stability and swelling performance at high voltage . If the weight ratio of propyl propionate is more than 8, it is difficult to form a stable SEI passivation film and safety of the cell may be deteriorated.
  • non-aqueous solvent may further include a linear ester compound in addition to the carbonate solvent and the propyl propionate solvent.
  • Such a linear ester compound may include at least one member selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and butyl propionate, and specifically, ethyl propionate . ≪ / RTI >
  • the propyl propionate: linear ester compound may be contained in a weight ratio of 6: 4 to 9: 1.
  • the electrolyte of the present invention includes a compound represented by the following formula (1).
  • R 1 and R 2 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • the electrolyte is decomposed before the lithium ions discharged from the anode are inserted into the negative electrode (graphite), and an SEI film is formed on the negative electrode (graphite) surface to affect the battery reaction.
  • an SEI film not only has the property of passing lithium ions and blocking the movement of electrons, but also acts as a protective film to prevent the electrolyte from being decomposed continuously. Therefore, when the SEI film is formed on the surface of the negative electrode, decomposition of the electrolyte due to electron movement between the electrode and the electrolyte is suppressed, and only insertion and desorption of lithium ions can be selectively performed.
  • the produced SEI film is difficult to maintain its performance continuously, is destroyed by shrinkage and expansion due to repeated charge / discharge cycles, and is destroyed by external heat or shock.
  • This destroyed SEI film is restored by a continuous charge / discharge process, resulting in the consumption of additional or irreversible charge, resulting in a reduction of the continuous reversible capacity.
  • the thickness of the solid film formed by the decomposition of the electrolytic solution is increased, the interfacial resistance increases and the performance of the cell deteriorates.
  • lithium ions are excessively released from the positive electrode during overcharging or high-temperature storage at a high voltage of 4.35 V or more, resulting in structural breakdown of the positive electrode active material and elution of metal foreign matters such as Co, Mn and Ni from the positive electrode active material And the metal particles thus eluted migrate to the cathode and precipitate from the cathode surface to the dendrite, resulting in a microscopic short circuit between the anode and the cathode.
  • Such a short circuit causes a low voltage phenomenon in which the voltage of the battery is lowered, thereby lowering the overall performance of the secondary battery.
  • the low voltage phenomenon is also caused by metallic impurities contained in the raw material of the lithium battery or incorporated in the process.
  • the electrolytic solution is decomposed in a high voltage battery of 4.35 V or more, and when the dissolution of the metal due to the structural collapse of the positive electrode is electrodeposited to the negative electrode, A lithium secondary battery having improved high-voltage life characteristics and high-temperature storage performance can be manufactured.
  • the compound represented by the formula (1) contains a propargyl group having a triple bond and an oxygen atom, which are known to have a metal ion adsorbing ability, and the nitrogen (N) atom and the carbon
  • a metal foreign object such as Fe, Co, Mn, or Ni eluted from the anode at the time of high-voltage charging, the deterioration of the cathode caused by electro- .
  • the compound represented by the formula (1) reacts with an alkyl carbonate which is a decomposition product of ethylene carbonate (EC) in which a lone pair of nitrogen (N) atoms of an imidazole group is used as an organic solvent, A stable ion conductive film can be formed on the surface of the negative electrode. Therefore, it is possible not only to suppress additional electrolyte decomposition reaction during charging and discharging, but also to facilitate the absorption and release of lithium ions from the negative electrode during overcharge or high temperature storage, thereby improving cycle life characteristics and high temperature storage performance of the secondary battery .
  • EC ethylene carbonate
  • N nitrogen
  • the compound represented by the formula (1) may be selected from the group consisting of compounds represented by the following formulas (1a) to (1c).
  • the compound represented by the formula (1) is a compound represented by the formula (1b) and the compound represented by the formula (1c) in which an electron donating group such as a methyl group is substituted by the compound represented by the formula And the like.
  • the compound represented by Formula 1 may be contained in an amount of 0.01 to 11.5% by weight, specifically 0.1 to 10% by weight, more specifically 1 to 7% by weight, based on the total weight of the non-aqueous electrolyte.
  • a secondary battery having improved performance can be manufactured.
  • the content of the additive is 0.01 wt% or more, the stabilization effect of the SEI film and the effect of inhibiting the metal dissolution can be improved.
  • the content of the additive is 10 wt% or less, Effect can be realized.
  • the electrolyte for a lithium secondary battery of the present invention is capable of forming a more stable ion conductive film on the surface of the electrode, if necessary, in order to further improve low temperature high rate discharge characteristics, high temperature stability, overcharge prevention, Additional additives may also be included.
  • examples of the additive additive include a sulfone compound, a sulfate compound, a sulfite compound, a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a sulfone compound, a phosphate compound, and a borate compound And at least one SEI-forming additive selected from the group consisting of compounds.
  • the sul- tonic compound may be selected from the group consisting of 1,3-propane sultone (PS), 1,4-butane sul- thone, ethene sul- thone, 1,3-propene sul- thone (PRS), 1,4- 3-propenesultone, which may be contained in an amount of 0.3% by weight to 5% by weight, specifically 1% by weight to 5% by weight, based on the total weight of the electrolyte.
  • PS 1,3-propane sultone
  • PRS 1,3-propene sul- thone
  • 1,4- 3-propenesultone 1,4- 3-propenesultone
  • the sulfate compound may include ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS), and may contain 3 wt% ≪ / RTI >
  • the sulfite compound examples include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethylethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5- At least one compound selected from the group consisting of fumarate, fumarate, 4,5-diethylpropylene sulfite, 4,6-dimethylpropylene sulfite, 4,6-diethylpropylene sulfite, and 1,3-butylene glycol sulfite And may be contained in an amount of 3% by weight or less based on the total weight of the electrolyte.
  • the halogen-substituted carbonate compound may be fluoroethylene carbonate (FEC), and may be contained in an amount of 5 wt% or less based on the total weight of the electrolyte.
  • FEC fluoroethylene carbonate
  • the halogen-substituted carbonate compound in the electrolyte exceeds 5% by weight, the cell swelling performance may deteriorate.
  • the nitrile compound may be at least one selected from the group consisting of succinonitrile (NA), adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentanecarbonitrile, Fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile. And at least one compound selected from the group consisting of
  • the total weight of the nitrile compound may be 5 wt% to 8 wt%, specifically 6 wt% to 8 wt% based on the total weight of the electrolyte. If the total content of the nitrile compound in the electrolyte is more than 8% by weight, resistance increases due to an increase in the film formed on the electrode surface, and battery performance may be deteriorated.
  • the cyclic carbonate compound may be vinylene carbonate (VC) or vinylethylene carbonate.
  • the cyclic carbonate compound may include not more than 3% by weight based on the total weight of the electrolyte. When the content of the cyclic carbonate compound in the electrolyte exceeds 3% by weight, the cell swelling inhibition performance may be deteriorated.
  • sulfone compound examples include at least one compound selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone. ≪ / RTI >
  • the phosphate compound may be at least one selected from the group consisting of lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tetramethyltrimethylsilyl phosphate (TMSPa), trimethylsilyl phosphite (TMSPi), tris (2,2,2- (Trifluoromethyl) phosphate (TFEPa) and tris (trifluoroethyl) phosphite (TFEPi), and may be contained in an amount of 3 wt% or less based on the total weight of the electrolyte.
  • TMSPa tetramethyltrimethylsilyl phosphate
  • TMSPi trimethylsilyl phosphite
  • TFEPa 2,2,2- (Trifluoromethyl) phosphate
  • TFEPi tris (trifluoroethyl) phosphite
  • the borate compound is lithium oxalyl difluoroborate, and may be contained in an amount of 3% by weight or less based on the total weight of the electrolyte.
  • the SEI-forming additive may be a mixture of two or more kinds, and the total content of the additives may be 20 wt% or less based on the total weight of the electrolyte. If the content of the additive is more than 20% by weight, not only the side reaction in the electrolyte may occur excessively in the charge and discharge of the battery, but also the electrolyte may not be decomposed sufficiently at a high temperature, So that the lifetime or resistance characteristics of the secondary battery may be deteriorated.
  • the present invention also provides a lithium secondary battery comprising the nonaqueous electrolyte solution for a lithium secondary battery according to the present invention.
  • the lithium secondary battery may be a high voltage lithium secondary battery driven at a high voltage of 4.45 V or more.
  • the lithium secondary battery including the non-aqueous electrolyte according to the present invention can suppress gas generation and cell swelling when stored at high temperature after being charged at a high voltage of 4.35 V or higher, and can exhibit excellent thermal stability.
  • the electrolyte for a lithium secondary battery of the present invention can be usefully used in the production of a lithium secondary battery.
  • the lithium secondary battery according to the present invention can be manufactured by preparing an electrode assembly comprising a cathode, a cathode, and a separator interposed between the anode and the cathode, storing the electrode assembly in a battery case, and injecting an electrolyte for a lithium secondary battery.
  • the lithium secondary battery can be manufactured according to a conventional secondary battery manufacturing method, except that the electrolyte for a lithium secondary battery according to the present invention is used.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector.
  • the positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode active material is a compound capable of reversibly intercalating and deintercalating lithium, and may specifically include a lithium composite metal oxide including lithium and at least one metal such as cobalt, manganese, nickel, or aluminum have. More specifically, the lithium composite metal oxide may be at least one selected from the group consisting of lithium-manganese-based oxides (for example, LiMnO 2 and LiMn 2 O 4 ), lithium-cobalt oxides (for example, LiCoO 2 ), lithium- (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.
  • LiMnO 2 and LiMn 2 O 4 lithium-cobalt oxides
  • LiCoO 2 lithium-
  • lithium-manganese-cobalt oxide e. g., (in which LiCo 1-Y2 Mn Y2 O 2 , 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 ( here, 0 ⁇ z1 ⁇ 2) and the like
  • the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1 / 3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0.7 Mn 0.15 Co 0.15) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ), or lithium nickel cobalt aluminum oxide (e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.) and the like.
  • lithium nickel cobalt aluminum oxide e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.
  • the positive electrode active material may include 80 wt% to 99.5 wt%, specifically 85 wt% to 95 wt%, based on the total weight of the solid content in the positive electrode slurry. At this time, when the content of the cathode active material is 80 wt% or less, the energy density is lowered and the capacity may be lowered.
  • the binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM tetrafluoroethylene
  • EPDM tetrafluoroethylene
  • EPDM sulfonated EPDM
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery.
  • Conductive fibers such as carbon fiber and metal fiber;
  • Metal powders such as carbon fluoride, aluminum, and nickel powder;
  • Conductive whiskey such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the average particle diameter (D 50 ) of the conductive material may be 10 ⁇ m or less, specifically 0.01 ⁇ m to 10 ⁇ m, more specifically 0.01 ⁇ m to 1 ⁇ m.
  • the conductive material is usually added in an amount of 1% by weight to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the cathode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content in the slurry containing the cathode active material, and optionally the binder and the conductive material may be 10 wt% to 60 wt%, preferably 20 wt% to 50 wt%.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector.
  • the negative electrode material mixture layer may be formed by coating an anode current collector with a negative electrode slurry including a negative electrode active material, a binder, a conductive material, and a solvent, followed by drying and rolling.
  • the anode current collector generally has a thickness of 3 to 500 mu m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, lithium capable of doping and dedoping lithium Materials, and transition metal oxide transition metal oxides.
  • the carbonaceous material capable of reversibly intercalating / deintercalating lithium ions is not particularly limited as long as it is a carbonaceous anode active material generally used in a lithium ion secondary battery.
  • the carbonaceous material include crystalline carbon, Amorphous carbon or any combination thereof.
  • the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fiber, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, fired coke, and the like.
  • the metal or an alloy of these metals and lithium may be selected from the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, And Sn, or an alloy of these metals and lithium may be used.
  • metal composite oxide is PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), and Sn x Me 1-x Me y y z , Pb, Ge, Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen: 0 ⁇ x? 1; 1? Y? May be used.
  • Si As the material capable of doping and dedoping lithium, Si, SiO x (0 ⁇ x? 2), Si-Y alloy (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them may be mixed with SiO 2 .
  • Si-Y alloy Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si
  • Sn, SnO 2 Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element
  • the element Y may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
  • the negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry.
  • the conductive material may be the same as the conductive material included in the cathode active material, provided that the conductive material does not cause a chemical change in the battery and is conductive.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity.
  • the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained to have a solid concentration of 50 wt% to 80 wt%, preferably 50 wt% to 75 wt%.
  • the separation membrane blocks the internal short circuit of both electrodes and impregnates the electrolyte.
  • the separation membrane composition is prepared by mixing a polymer resin, a filler and a solvent, and then the separation membrane composition is directly coated on the electrode and dried Or may be formed by casting and drying the separation membrane composition on a support, and then laminating the separation membrane film peeled off from the support on the electrode.
  • the separator may be a porous polymer film commonly used, such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer
  • the polymer film may be used alone or as a laminate thereof, or may be a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber or the like, but is not limited thereto.
  • the pore diameter of the porous separation membrane is generally 0.01 to 50 ⁇ m, and the porosity may be 5 to 95%. Also, the thickness of the porous separation membrane may be generally in the range of 5 to 300 mu m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but can be variously applied, such as a cylindrical shape, a square shape, a pouch shape, or a coin shape, depending on the purpose to be performed.
  • the lithium secondary battery according to an embodiment of the present invention may be a pouch type secondary battery.
  • LiCoO 2 LiCoO 2
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • a cathode active material slurry solid content 45 wt%.
  • the positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 m, dried, and roll pressed to produce a positive electrode.
  • An electrode assembly was prepared by sequentially laminating the prepared positive electrode and negative electrode with a polyethylene porous film, and then housed in a case, and the nonaqueous electrolyte prepared above was injected to prepare a lithium secondary battery.
  • a nonaqueous electrolytic solution for a secondary battery and a lithium secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of Formula 1b was used instead of the compound of Formula 1a as an additive in the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolyte for a secondary battery and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1c was used instead of the compound of Formula 1a as an additive in the preparation of the nonaqueous electrolyte.
  • EC ethylene carbonate
  • PP propyl propionate
  • EC ethylene carbonate
  • PP propyl propionate
  • a non-aqueous electrolyte for a secondary battery and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1a was not added as an additive in the preparation of the non-aqueous electrolyte.
  • a nonaqueous electrolytic solution for a secondary battery and a lithium secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound represented by the following formula (2) was used instead of the compound represented by the formula (1a) as an additive in the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution for a secondary battery and a lithium secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound represented by the following formula (3) was added instead of the compound represented by the formula (1a) as an additive in the preparation of the nonaqueous electrolyte.
  • the lithium secondary batteries prepared in Examples 1 to 11 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were respectively charged at 45 ° C. and at a constant current / constant voltage (CC / CV) of 1.04 C / Charged to 112 mA, and discharged to 3.0 V at 1.0 C.
  • CC / CV constant current / constant voltage
  • the charge and discharge were performed as one cycle, and the charge and discharge were performed for 200 cycles.
  • Capacity retention rate (%) (capacity after 200 cycles / capacity after one cycle) x 100
  • the lithium secondary batteries prepared in Examples 1 to 11 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were charged at a constant current / constant voltage of 4.45 V and a cut off charge of 0.05 C at a rate of 0.7 C, respectively And discharged at 0.5C 3.0V. After confirming the initial capacity, the battery was charged at a constant current / constant voltage of 4.45V at a rate of 0.7C and charged at a rate of 0.05C cut off, and discharged at a rate of 0.5V at a rate of 3V.
  • the initial thickness of each lithium secondary battery was measured using a plate thickness gauge equipped with 600 g. Also, the AC resistance was measured through a VMP3 model of Bio-logic Science Instruments.
  • the lithium secondary batteries were stored at 85 DEG C for 8 hours, respectively. Then, the temperature of the lithium secondary batteries was cooled, and the increased thicknesses and the thicknesses of the lithium secondary batteries prepared in Examples 1 to 11 and Comparative Examples 1 and 4 Resistances of the lithium secondary batteries of Examples 1 to 11 and the lithium secondary batteries of Comparative Examples 1 to 4 were measured, respectively, and the results are shown in Table 2 below.
  • the thickness increase rate (%) of the battery was calculated using the following equation (2).
  • the rate of increase (%) of the resistance of the battery was calculated using the following equation (3).
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness) / initial thickness ⁇ x 100
  • Non-aqueous organic solvent additive Thickness increase rate after high temperature storage (%) Resistance increase rate after high temperature storage (%) Organic solvent (volume ratio)
  • Addition amount (g) The Addition amount (g)
  • Example 1 EC: PP 30: 70 98 1a 2 3.41 42.1
  • Example 2 EC: PP 30: 70 98 1b 2 3.49 49.4
  • Example 4 EC: PP 30: 70 99.9 1a 0.1 3.57 50.4
  • Example 5 EC: PP 30: 70 90 1a 10 4.60 51.1
  • Example 7 EC: PC: PP 20: 10: 70 93 1b 7 3.70 47.6
  • Example 9 EC: PP 40: 60 93 1a 7 4.81 52.7
  • the secondary battery of Example 10 having the non-aqueous electrolyte containing an excessive amount of the additive had a thickness increase rate of 4.63%, which was equivalent to that of the lithium secondary batteries of Examples 1 to 9, It was found that the resistance increase rate after storage at a high temperature was 53.0% due to the occurrence of the lifetime capacitive phenomenon, and that the lithium secondary batteries of Examples 1 to 9 were heated more than those of Examples 1 to 9.
  • the secondary battery of Example 11 having a non-aqueous electrolyte containing a small amount of additive had a small increase in the thickness increase rate due to the small effect of additives in the electrolyte, while the resistance increase rate after high temperature storage was 53.7% It can be seen that the secondary battery is heated.
  • the secondary battery of Comparative Example 1 having the non-aqueous electrolyte solution containing no additive of the present invention had a thickness increase rate of 4.82% after storage at a high temperature and a rate of increase of resistance after storage at a high temperature of 61.1% It can be seen that it is remarkably open.
  • the secondary batteries of Comparative Examples 2 and 3 having the non-aqueous electrolyte containing the additives of the formulas (2) and (3) instead of the additives of the present invention had resistance increase rates of 58.3% and 55.0% It can be seen that it is significantly heat-proof compared to the secondary battery.
  • the secondary batteries of Examples 1, 4, 5, 10 and 11 and the secondary batteries of Comparative Examples 1 to 3 were charged at a constant current / constant voltage (CC / CV) condition of 0.33 C / , And then discharged at 2.5 V at 3 C for 10 seconds under a constant current (CC) condition at an SOC of 50%.
  • CC constant current
  • the charge and discharge were performed as one cycle, and 500 cycles of charge and discharge were performed.
  • the concentration of total metal eluted into the electrolyte solution was measured using an inductively coupled plasma optical emission spectrometer (ICP-OES).
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • each secondary battery was stored at 60 ° C under SOC 50% for 2 weeks, and then the concentration of the total metal eluted into the electrolyte after high temperature storage was measured using an inductively coupled plasma emission spectrometer.
  • the amounts of metals measured using ICP analysis are shown in Table 3 below.
  • Non-aqueous organic solvent additive Amount of metal elution after high temperature storage (ppm) Amount of metal eluted after 500 cycles (ppm) Organic solvent (volume ratio) Content (g) The Content (g)
  • Example 1 EC: PP 30: 70 98 1a 2 1510 1310
  • Example 4 EC: PP 30: 70 99.9 1a 0.1 1560 1450
  • Example 5 EC: PP 30: 70 90g 1a 10 1310 1210
  • Example 10 EC: PP 30: 70 87 1a 13 1320 1200
  • Example 11 EC: PP 30: 70 99.991 1a 0.009 1750 1650
  • the metal elution amount after 500 cycles was 1450 ppm or less
  • the amount of metal elution after storage at high temperature was suppressed to 1560 ppm or less.
  • the secondary battery of Example 11 having a non-aqueous electrolyte containing a small amount of additive had a small effect of the additive in the electrolyte, so that the amount of metal eluted after 500 cycles was 1,650 ppm and the amount of metal eluted after high temperature storage was 1,750 ppm, 4, 5, and 10 secondary batteries were greatly increased.
  • the secondary battery of Comparative Example 2 having the non-aqueous electrolyte containing the compound represented by Chemical Formula 2 as an additive contains the metal dissolution inhibiting functional group, so that the metal elution amount of the secondary battery of Comparative Example 1 having the non-aqueous electrolyte containing no additive It was found that the amount of metal elution compared to the secondary batteries of Examples 1, 4, 5, and 10 was remarkably deteriorated.
  • the secondary battery of Comparative Example 3 having the non-aqueous electrolyte containing the compound represented by Formula 3 as an additive has a similar effect to the secondary battery of Comparative Example 1 because the effect of inhibiting the dissolution of metal is minimal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 카보네이트계 용매 및 프로필 프로피오네이트를 포함하는 비수계 용매 및 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액 및 이를 구비한 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2017년 11월 22일자 한국 특허 출원 제2017-0156345호 및 2018년 11월 22일자 한국 특허 출원 제2018-0145685호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가스 발생을 억제할 수 있는 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
정보 통신 산업의 발전에 따라 전자 기기의 소형화, 경량화, 박형화 및 휴대화가 요구됨에 따라, 이러한 전자 기기의 전원으로 사용되는 리튬 이차전지의 고에너지 밀도화에 대한 요구가 높아지고 있다.
리튬 이차전지, 구체적으로 리튬 이온 전지(lithium ion battery: LIB)는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 에너지 밀도가 높고 설계가 용이하여 많은 휴대용 기기의 전원으로 채택되어 왔다.
최근 리튬 이차전지의 사용 범위가 종래 소형 전자 기기에서 대형 전자 기기, 자동차, 스마트 그리드 등으로 확대되면서 상온에서뿐만 아니라 고온이나 저온 환경 등 보다 가혹한 외부 환경에서도 우수한 성능을 유지할 수 있는 리튬 이차전지가 요구되고 있다.
현재 적용되고 있는 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 카본계 음극과, 리튬 함유 전이금속 산화물로 이루어진 양극, 및 혼합 카보네이트계 비수성 유기용매에 리튬염이 적당량 용해된 비수전해액으로 구성되며, 충전에 의해 양극으로부터 나온 리튬 이온이 카본계 음극에 삽입되고 방전시 다시 탈리되는 현상을 반복하면서 충방전이 가능하게 된다.
한편, 고용량 및 고출력의 리튬 이차전지를 구현하기 위한 방법 중에서도 리튬 이차전지의 구동 전압을 높이는 것은 가장 효율적이고 용이한 방법이다.
하지만 구동 전압이 증가하면 전극 활물질과 전해질의 반응이 증가하기 때문에, 고온에서 열적 내구성이 저감되고, 다량의 가스가 발생하여 셀 팽윤 현상이 나타난다는 문제점이 있다. 이러한 현상은 전지의 구동 전압이 4.35V 이상의 고전압인 경우에 특히 심하게 나타난다.
따라서, 고용량 및 고출력의 리튬 이차전지를 개발하기 위하여, 높은 구동 전압에서도 전해액과 전극의 계면 반응을 효과적으로 제어할 수 있는 기술 개발이 요구되고 있다.
선행기술문헌
일본 등록특허공보 제3911870호
본 발명은 음극 표면에 안정적인 이온전도성 피막을 형성하여 가스 발생을 효과적으로 억제할 수 있는 리튬 이차전지용 비수전해액을 제공하고자 한다.
또한, 본 발명은 상기와 같은 리튬 이차전지용 비수전해액을 포함함으로써 셀 팽윤이 적은 리튬 이차전지를 제공하고자 한다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에서는
리튬염,
카보네이트계 용매 및 프로필 프로피오네이트를 포함하는 비수계 용매 및
하기 화학식 1로 표시되는 화합물을 포함하는 이차전지용 비수전해액을 제공한다.
[화학식 1]
Figure PCTKR2018014470-appb-I000001
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이다.
상기 비수계 용매는 상기 카보네이트계 용매와 프로필 프로피오네이트를 2:8 내지 4:6의 중량비율로 포함할 수 있다.
상기 카보네이트계 용매는 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 비수계 용매는 에틸 프로피오네이트를 추가로 포함할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것일 수 있다.
[화학식 1a]
Figure PCTKR2018014470-appb-I000002
[화학식 1b]
Figure PCTKR2018014470-appb-I000003
[화학식 1c]
Figure PCTKR2018014470-appb-I000004
구체적으로, 상기 화학식 1로 표시되는 화합물은 화학식 1b 및 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것일 수 있다.
상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.01 중량% 내지 11.5 중량%, 구체적으로 0.1 중량% 내지 10 중량%로 포함될 수 있다.
또한, 본 발명은 상기 본 밤령의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 리튬 이차전지용 비수전해액은 비수계 용매로 프로필 프로피오네이트를 60중량% 내지 80중량%로 사용하여 부반응에 민감한 카보네이트계 용매의 사용량을 줄임으로써, 4.35V 이상의 고전압 구동 시 및 고온저장 시에 가스 발생 및 셀 팽윤을 억제할 수 있다. 또한, 본 발명의 리튬 이차전지용 비수전해액은 금속 이온 흡착 성능을 가지고 있는 것으로 알려진 프로파질(propargyl)기와 SEI 막 형성에 효과적인 이미다졸기를 모두 함유한 화합물을 첨가제로 포함함으로써, 음극 표면에 안정한 이온전도성 피막을 형성할 수 있으므로, 이로 인해 양극과 전해질 간의 부반응에 의한 가스 발생이 억제되어, 셀 팽윤을 현저하게 감소시킬 수 있다.
본 명세서에 첨부되는 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.
도 1은 본 발명의 실험예 1에 따른 리튬 이차전지의 사이클 수명 특성 평가 결과를 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
리튬 이차전지용 전해질
먼저, 본 발명에 따른 리튬 이차전지용 비수전해액에 대해 설명한다.
본 발명의 리튬 이차전지용 비수전해액은
리튬염,
카보네이트계 용매 및 프로필 프로피오네이트를 포함하는 비수계 용매 및
하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2018014470-appb-I000005
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이다.
(1) 리튬염
먼저, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해질에 있어서, 상기 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, PF6 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiClO4, LiPF6, LiBF4, LiB10Cl10, LiCF3CO2, LiCH3SO3, LiAlCl4 및 LiAlO4로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해질 내에 0.8 M 내지 2M의 농도, 구체적으로 1M 내지 1.5M로 포함할 수 있다. 만약, 상기 전해질염의 농도가 2M을 초과하는 경우 리튬 이차전지용 전해질의 점도가 과도하게 증가하여 전해질 젖음성이 저하될 수 있고, 피막 형성 효과가 감소할 수 있다. 상기 리튬염의 농도가 0.8M 미만인 경우에는 리튬 이온의 이동성이 감소하여 용량이 특성이 저하될 수 있다.
(2) 비수계 용매
한편, 상기 비수계 용매는 카보네이트계 용매와 프로필 프로피오네이트를 포함할 수 있다.
구체적으로, 상기 카보네이트계 용매는 선형 카보네이트계 용매 및 환형 카보네이트계 용매로 이루어진 군으로부터 선택된 적어도 하나 이상의 용매를 포함할 수 있으며, 보다 구체적으로 환형 카보네이트계 용매를 포함할 수 있다.
상기 선형 카보네이트계 용매는 저점도 및 저유전율을 가지는 용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.
또한, 상기 환형 카보네이트계 용매는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.
구체적으로 상기 카보네이트계 용매는 고유전율을 가지는 에틸렌 카보네이트를 포함할 수 있다. 또는, 상기 카보네이트계 용매는 에틸렌 카보네이트에 상기 에틸렌 카보네이트에 비하여 상대적으로 저융점을 가지는 프로필렌 카보네이트의 추가한 혼합 용매를 포함할 수 있다.
이때, 상기 카보네이트계 용매로 에틸렌 카보네이트 및 프로필렌 카보네이트의 혼합 용매를 사용하는 경우, 에틸렌 카보네이트 및 프로필렌 카보네이트의 중량비는 1:0.2 내지 1:1, 바람직하게는 1:0.2 내지 1:0.8, 더 바람직하게는 1:0.3 내지 1:0.6일 수 있다.
상기 에틸렌 카보네이트와 프로필렌 카보네이트의 중량비는 이차전지 제조 시에 저온 및 상온 출력, 및 고온 저장 후 용량 특성을 모두 향상시키는데 중요한 영향을 미칠 수 있으며, 상기 범위로 포함되는 경우 이차전지의 충방전 용량 향상 효과 및 수명 특성을 충분히 개선시킬 수 있다.
만약, 상기 에틸렌 카보네이트계 용매에 대한 프로필렌 카보네이트의 중량비가 1을 초과하는 경우, 리튬염의 해리도가 떨어져 이온전도성이 불량해지고, 카본 음극의 안정성이 저하될 수 있다. 또한, 에틸렌 카보네이트 용매에 대한 프로필렌 카보네이트의 중량비가 0.2 미만인 경우, 이온전도도가 상대적으로 낮아질 수 있다.
한편, 상기 카보네이트계 용매는 고전압에서 반응성이 높아 부반응에 민감하기 때문에, 고전압 전지 적용 시에 비수계 용매로 이를 과량 사용하는 경우 가스 발생이 증가하여, 셀 팽윤이 증가하고, 고온 저장 안정성이 열화될 수 있다.
이에, 본 발명에서는 비수계 용매로 상기 카보네이트계 용매와 함께 에스테르계 유기용매, 특히 융점이 낮고, 고온에서 안정성이 높은 프로필 프로피오네이트 (상온에서 점도 약 0.7 cP)를 포함함으로써, 가스 발생 및 셀 팽윤을 억제할 수 있다.
상기 고전압 안전성이 높은 프로필 프로피오네이트는 비수계 용매 전체 중량을 기준으로 60중량% 내지 80중량%, 구체적으로 60중량% 내지 70중량%를 포함하며, 상기 프로필 프로피오네이트의 함량이 상기 범위를 만족할 경우, 4.35V 이상의 고전압 및 60℃ 이상의 고온 저장 시에 가스 발생 및 셀 팽윤을 억제하여, 고온 저장 안정성을 향상시킬 수 있다.
만약, 상기 프로필 프로피오네이트의 함량이 80 중량%를 초과하는 경우에는 상대적으로 카보네이트계 용매의 함량이 저하되기 때문에, 리튬 이온의 유동성(mobility)가 저하되어 이온전도도가 낮아지고, 또한 카보네이트계 용매에 의한 피막 형성 효과가 저감되어 셀의 안전성이 저하될 수 있다.
따라서, 상기 카보네이트계 용매와 프로필 프로피오네이트는 2:8 내지 4:6, 바람직하게는 3:7 내지 4:6의 중량비율로 포함될 수 있다.
상기 카보네이트계 용매와 프로필 프로피오네이트의 중량비율이 상기의 범위를 만족하는 경우 두 유기 용매의 혼용에 의한 시너지 효과가 발현될 수 있다. 만약, 상기 카보네이트계 용매에 대한 프로필 프로피오네이트 중량비가 6 미만이면 전해질의 점도가 상승하여, 전해질 젖음성이 저하되고, 카보네이트계의 고온 산화 반응이 증가하여 고전압에서의 셀 안정성과 팽윤성능이 저하될 수 있다. 또한, 상기 프로필 프로피오네이트 중량비가 8을 초과하면, 안정한 SEI 부동태 막을 형성하기 어려워, 셀의 안전성이 저하될 수 있다.
또한, 상기 비수계 용매는 상기 카보네이트계 용매와 프로필 프로피오네이트 용매 외에 선형 에스테르계 화합물을 더 포함할 수 있다.
이러한 선형 에스테르계 화합물은 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 구체적으로 에틸 프로피오네이트를 포함할 수 있다.
상기 선형 에스테르계 화합물을 추가로 포함하는 경우, 상기 프로필 프로피오네이트:선형 에스테르계 화합물은 6:4 내지 9:1의 중량비율로 포함될 수 있다.
이때, 상기 프로필 프로피오네이트에 대한 선형 에스테르계 화합물의 중량비가 4를 초과하는 경우, 이온전도도는 증가하는 반면에, 고온에서 용매 분해에 따른 가스 발생률 증가로 안정성이 저하되는 단점이 있다.
(3) 화학식 1로 표시되는 화합물
한편, 본 발명의 전해질은 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2018014470-appb-I000006
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이다.
일반적으로, 이차전지의 초기 충전 과정에서, 양극으로부터 배출된 리튬 이온이 음극 (흑연)에 삽입되기에 전에 전해액이 분해되면서, 음극 (흑연) 표면에 전지 반응에 영향을 주는 SEI 막이 형성된다. 이러한 SEI 막은 리튬 이온은 통과시키고, 전자의 이동은 차단시키는 성질을 가질 뿐만 아니라, 전해액이 계속 분해되지 않도록 하는 보호 피막으로서의 역할을 수행한다. 따라서, 음극 표면에 SEI 막이 형성되면 전극과 전해액 사이에서 전자 이동에 의한 전해액 분해가 억제되고, 선택적으로 리튬 이온의 삽입, 탈리만 가능하게 된다.
하지만, 생성된 SEI 막은 지속적인 성능 유지가 어렵고, 반복되는 충방전 사이클에 따른 수축·팽창에 의해 파괴되거나, 외부로부터의 열, 충격에 의해 파괴된다. 이렇게 파괴된 SEI 막은 계속 되는 충방전 과정에 의해 수복되면서, 부가적으로 또는 비가역적으로 전하가 소비되어 지속적인 가역 용량의 감소를 가져온다. 특히, 전해액의 분해로 생성된 고체 피막의 두께가 증가할수록 계면 저항이 증가하여 전지 성능이 퇴화된다.
더욱이, 4.35V 이상의 고전압 과충전 시 또는 고온 저장 시에 양극으로부터의 리튬 이온이 과량으로 방출되면서 양극활물질의 구조적 붕괴, 및 전해액과의 부반응에 의해 양극 활물질로부터 Co, Mn, Ni 등의 금속 이물의 용출이 증가하고, 이렇게 용출된 금속 이물들은 음극으로 이동하여 음극 표면에서 덴드라이트(dendrite)로 석출되면서 양극과 음극 사이에 미세한 단락을 발생시킨다. 이러한 단락으로 전지의 전압이 저하되는 저전압 현상이 발생되어 이차전지의 제반 성능이 저하된다. 상기 저전압 현상은 리튬 전지의 원료 물질에 포함되어 있거나 공정상에서 혼입되는 금속 이물들에 의해서도 발생된다.
하지만, 본 발명에서는 양극 및 음극 표면 상에 안정한 피막을 형성할 수 있는 첨가제를 포함함으로써, 4.35V 이상의 고전압 전지에서 전해액이 분해되고 양극의 구조적 붕괴에 따른 금속 용출이 음극으로 전착될 때 효과적으로 이를 억제하여 고전압 수명 특성 및 고온저장 성능이 개선된 리튬 이차 전지를 제조할 수 있다.
즉, 상기 화학식 1로 표시되는 화합물은 금속 이온 흡착 성능을 가지고 있는 것으로 알려진 삼중 결합을 갖는 프로파질기와 산소 원자를 포함하고 있어, 이미다졸기의 질소(N) 원자와 탄소(C) 원자의 결합 분열 (cleavage)에 의하여 떨어진 프로파질기가 고전압 충전 시 양극으로부터 용출된 Fe, Co, Mn, Ni 등의 금속 이물과 흡착하여, 이들 금속 이물이 음극 표면에 전착되어 발생하는 음극 열화 현상을 효과적으로 억제할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 이미다졸기의 질소(N) 원자의 고립 전자쌍(lone pair)이 유기용매로 사용된 에틸렌 카보네이트(EC)의 분해 산물인 알킬 카보네이트와 반응하여 음극 표면에서 환원되므로, 음극 표면에 안정한 이온전도성 피막을 형성할 수 있다. 따라서, 충방전 과정에서 추가적인 전해액 분해 반응을 억제할 수 있을 뿐만 아니라, 과충전시 또는 고온 저장 시에서도 음극으로부터 리튬 이온의 흡장 및 방출을 원활하게 하여 이차전지의 사이클 수명 특성 및 고온 저장 성능을 향상시킬 수 있다.
이러한 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것일 수 있다.
[화학식 1a]
Figure PCTKR2018014470-appb-I000007
[화학식 1b]
Figure PCTKR2018014470-appb-I000008
[화학식 1c]
Figure PCTKR2018014470-appb-I000009
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 화학식 1a로 표시되는 화합물보다 메틸기와 같이 전자 주게 그룹(electron donating group)이 치환되어 있어 보다 안정하게 반응할 수 있는 화학식 1b 및 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것일 수 있다.
상기 화학식 1로 표시되는 화합물은 비수전해액 전체 함량을 기준으로 0.01 내지 11.5 중량%, 구체적으로 0.1 중량% 내지 10 중량%, 더욱 구체적으로 1 중량% 내지 7 중량%의 범위로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물이 상기 범위로 포함되는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 첨가제의 함량이 0.01 중량% 이상이면 SEI 막의 안정화 효과나 금속 용출 억제 효과를 향상시킬 수 있고, 첨가제의 함량이 10 중량% 이하이면 수용할 수 있는 저항 증가 범위 내에서 최대의 금속 용출 억제 효과를 구현할 수 있다.
(4) 첨가제
한편, 본 발명의 리튬 이차전지용 전해질은 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 저장 시 팽윤 개선 효과 등을 더욱 향상시키기 위하여, 필요에 따라 전극 표면에 보다 안정한 이온전도성 피막을 형성할 수 있는 부가적 첨가제를 추가로 포함할 수 있다.
구체적으로, 상기 부가적 첨가제는 그 대표적인 예로 설톤계 화합물, 설페이트계 화합물, 설파이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 설폰계 화합물, 포스페이트계 화합물 및 보레이트계 화합물로 이루어진 군으로부터 선택된 1종 이상의 SEI 형성용 첨가제를 들 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있으며, 이는 전해질 전체 중량을 기준으로 0.3중량% 내지 5중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 전해질 중에 설톤계 화합물의 함량이 5중량%를 초과하는 경우, 전극 표면에 지나치게 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있고, 전해질 중 과량의 첨가제의 의한 저항이 증가되어, 출력 특성이 열화될 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 및 1,3-부틸렌 글리콜 설파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
또한, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 전해질 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 전해질 중에 할로겐 치환된 카보네이트계 화합물의 함량이 5중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴(NA), 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 니트릴계 화합물의 전체 중량은 전해질 전체 중량을 기준으로 5중량% 내지 8중량%, 구체적으로 6중량% 내지 8중량%일 수 있다. 상기 전해질 중에 니트릴계 화합물의 전체 함량이 8중량%를 초과하는 경우, 전극 표면에 형성되는 피막 증가로 저항이 커져, 전지 성능이 열화될 수 있다.
또한, 상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다. 상기 전해질 중에 환형 카보네이트계 화합물의 함량이 3중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
상기 상기 설폰계 화합물로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 및 메틸비닐 설폰으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 포스페이트계 화합물은 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트(TMSPa), 트리메틸 실릴 포스파이트 (TMSPi), 트리스(2,2,2-트리플루오로에틸)포스페이트 (TFEPa) 및 트리스(트리플루오로에틸) 포스파이트(TFEPi)로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 보레이트계 화합물은 리튬 옥살릴디플루오로보레이트를 들 수 있으며, 전해질 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 SEI 형성용 첨가제는 2 종 이상이 혼합되어 포함될 수 있으며, 첨가제들의 전체 함량은 전해질 전체 중량을 기준으로 20중량% 이하로 포함될 수 있다. 상기 첨가제들의 함량이 20중량%를 초과하면 전지의 충방전시 전해질 내의 부반응이 과도하게 발생할 가능성이 있을 뿐만 아니라, 고온에서 충분히 분해되지 못하여, 상온에서 전해질 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있으며, 이에 따라 이차전지의 수명 또는 저항특성이 저하될 수 있다.
리튬 이차전지
또한, 본 발명에서는 상기 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
이때, 상기 리튬 이차전지는 4.45V 이상의 고전압에서 구동되는 고전압 리튬 이차전지일 수 있다.
본 발명에 따른 비수전해액을 포함하는 리튬 이차 전지는 4.35V 이상의 고전압으로 충전한 후 고온에서 보관하였을 때 가스 발생 및 셀 팽윤이 억제되어, 우수한 열 안정성을 낼 수 있다.
한편, 본 발명의 리튬 이차전지용 전해질은 리튬 이차전지 제조 시에 유용하게 사용될 수 있다.
구체적으로, 본 발명에 따른 리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막으로 이루어진 전극조립체를 제조하고, 이를 전지 케이스에 수납한 후, 리튬 이차전지용 전해질을 주입하여 제조할 수 있다. 이때, 상기 리튬 이차전지는 본 발명에 따른 리튬 이차전지용 전해질을 사용하는 것을 제외하고는 통상의 이차전지 제조 방법에 따라 제조될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99.5 중량%, 구체적으로 85 중량% 내지 95 중량%로 포함될 수 있다. 이때, 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
또한, 상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
이때, 상기 도전재의 평균입경(D50)은 10 ㎛이하, 구체적으로 0.01㎛ 내지 10 ㎛, 보다 구체적으로 0.01㎛ 내지 1 ㎛ 일 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다.
또한, 상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 60 중량%, 바람직하게 20 중량% 내지 50 중량%가 되도록 포함될 수 있다.
(2) 음극
한편, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 상기 양극활물질에 포함되는 도전재와 동일한 것이 사용될 수 있다. 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 80 중량%, 바람직하게 50 중량% 내지 75 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한, 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 수행되는 목적에 따라 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등 다양하게 적용할 수 있다. 본 발명의 일 실시예에 따른 리튬 이차전지는 파우치형 이차전지일 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(비수전해액 제조)
1.2M LiPF6가 용해된 비수계 유기용매 (에틸렌 카보네이트(EC) 및 프로필 프로피오네이트(PP)=30:70 부피비) 98g에 첨가제인 상기 화학식 1a로 표시되는 화합물 2g을 첨가하여 본 발명의 비수전해액을 제조하였다.
(이차전지 제조)
양극 활물질 입자로 리튬 코발트 복합산화물 (LiCoO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플루오라이드 (PVDF)를 90:5:5 중량 비율로 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극 활물질 슬러리(고형분 함량 45 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
그 다음으로, 음극 활물질로 천연 흑연, 바인더로 PVDF, 도전재로 카본 블랙을 95:2:3 중량 비율로 용제인 NMP에 첨가하여 음극 활물질 슬러리(고형분 함량 75 중량%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 90㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 제조된 양극과 음극을 폴리에틸렌 다공성 필름과 순차적으로 적층하는 통상적인 방법으로 전극조립체를 제조한 다음 케이스에 수납하고, 앞서 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2.
비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1b의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 3.
비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1c의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 4.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (에틸렌 카보네이트(EC) 및 프로필 프로피오네이트(PP)=30:70 부피비) 99.9g에 상기 화학식 1a의 화합물을 0.1g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 5.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (에틸렌 카보네이트(EC) 및 프로필 프로피오네이트(PP)=30:70 부피비) 90g에 상기 화학식 1a의 화합물을 10g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 6.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (에틸렌 카보네이트(EC) 및 프로필 프로피오네이트(PP)=30:70 부피비) 99.99g에 상기 화학식 1b의 화합물을 0.01g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 7.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (EC:프로필렌 카보네이트 (PC):PP=20:10:70 부피비) 93g에 화학식 1b의 화합물을 7g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 8.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (EC:PP=20:80 부피비) 93g에 화학식 1a의 화합물을 7g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 9.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (EC:PP=40:60 부피비) 93g에 화학식 1a의 화합물을 7g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 10.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (에틸렌 카보네이트(EC) 및 프로필 프로피오네이트(PP)=30:70 부피비) 87g에 상기 화학식 1a의 화합물을 13g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 11.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (EC:PC:PP= 20:10:70 부피비) 99.991g에 상기 화학식 1a로 표시되는 화합물 0.009g을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 1.
비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물을 첨가하지 않는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 2.
비수전해액 제조 시에, 첨가제로 화학식 1a의 화합물 대신 하기 화학식 2의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
[화학식 2]
Figure PCTKR2018014470-appb-I000010
비교예 3.
비수전해액 제조 시에, 첨가제로 화학식 1a의 화합물 대신 하기 화학식 3의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
[화학식 3]
Figure PCTKR2018014470-appb-I000011
비교예 4.
비수전해액 제조 시에, 1.2M LiPF6가 용해된 비수계 유기용매 (EC:EMC=30:70 부피비) 98g에 화학식 1a의 화합물 2g을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
실험예
실험예 1: 사이클 수명 특성 평가
상기 실시예 1 내지 실시예 11에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 4에서 제조된 리튬 이차전지를 각각 45℃에서 1.0C/4.45V 정전류/정전압(CC/CV) 조건으로 4.45V 112mA까지 충전하고, 1.0C로 3.0V까지 방전시켰다.
상기 충방전을 1 사이클로 하여 200 사이클 충방전을 실시하였다.
이때, 첫 번째 사이클후의 용량과 200 번째 사이클 후의 용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정하고, 용량을 하기 식 (1)에 대입하여 용량 유지율(capacity retention)을 측정하였다. 그 결과를 하기 표 1에 나타내었다. 아울러, 실시예 1 내지 5, 10 및 11에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 3에서 제조된 이차전지에 대한 사이클 수명 특성 결과를 하기 도 1에 도시하였다.
식 (1): 용량 유지율(%) = (200회 사이클 후 용량/1회 사이클 후 용량)×100
비수계유기용매 첨가제 200 사이클 후 용량 유지율 (%)
유기용매(부피비) 첨가량(g) 화학식 첨가량(g)
실시예 1 EC: PP= 30:70 98 1a 2 89
실시예 2 EC: PP= 30:70 98 1b 2 83
실시예 3 EC: PP= 30:70 98 1c 2 84
실시예 4 EC: PP= 30:70 99.9 1a 0.1 81
실시예 5 EC: PP= 30:70 90g 1a 10 82
실시예 6 EC: PP= 30:70 99.99 1b 0.01 80
실시예 7 EC:PC:PP=20:10:70 93 1b 7 82
실시예 8 EC: PP= 20:80 93 1a 7 85
실시예 9 EC: PP= 40:60 93 1a 7 86
실시예 10 EC: PP= 30:70 87 1a 13 80
실시예 11 EC:PC:PP=20:10:70 99.991 1a 0.009 79
비교예 1 EC: PP= 30:70 100 - - 70
비교예 2 EC: PP= 30:70 98 2 2 72
비교예 3 EC: PP= 30:70 98 3 2 76
비교예 4 EC:EMC=30:70 98 1a 2 81
상기 표 1 및 도 1에 나타낸 바와 같이, 본 발명의 화학식 1로 표시되는 화합물을 첨가제로 포함하는 비수전해액을 구비한 실시예 1 내지 11의 리튬 이차전지의 경우, 사이클 수명 특성이 79 % 이상인 반면에, 비교예 1 내지 3의 리튬 이차전지는 경우 76% 이하로 열위한 것을 알 수 있다.
한편, 상기 표 1을 살펴보면, 비수계 용매로 프로필 프로피오네이트 대신 에틸 메틸 카보네이트를 포함하는 비수전해액을 구비한 비교예 4의 리튬 이차전지의 경우, 사이클 수명 특성이 본 발명의 리튬 이차전지와 동등 수준인 것을 알 수 있다.
실험예 2. 두께 및 저항 증가율 평가
상기 실시예 1 내지 실시예 11에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 4에서 제조된 리튬 이차전지를 각각 0.7C rate로 4.45V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다. 초기 용량 확인 후, 0.7C rate로 4.45V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C rate로 3V 방전하였다.
이어서, 각각의 리튬 이차전지의 초기 두께를 600g 추가 장착된 평판 두께 측정기를 사용하여 측정하였다. 또한, Bio-logic Science Instruments社의 VMP3 모델을 통하여 AC 저항을 측정하였다.
그 다음, 상기 리튬 이차전지를 각각 85℃에서 8시간을 보관한 다음, 온도를 식히고 실시예 1 내지 실시예 11에서 제조된 리튬 이차전지와 비교예 1 및 4의 리튬 이차전지의 증가된 두께 및 실시예 1 내지 실시예 11의 리튬 이차전지와 비교예 1 내지 4의 리튬 이차전지의 저항을 각각 측정하고, 그 결과를 하기 표 2에 나타내었다.
이때 전지의 두께 증가율(%)은 하기 식 (2)를 이용하여 계산하였다.
또한 전지의 저항 증가율(%)은 하기 식 (3)를 이용하여 계산하였다.
식 (2): 두께 증가율(%) = {(고온 저장 후의 두께-초기 두께)/초기 두께}×100
식 (3): 저항 증가율(%)= {(고온 저장 후 저항 / 초기 저항)×100}-100
비수계유기용매 첨가제 고온저장 후 두께 증가율(%) 고온저장 후 저항 증가율(%)
유기용매(부피비) 첨가량(g) 화학식 첨가량(g)
실시예 1 EC: PP= 30:70 98 1a 2 3.41 42.1
실시예 2 EC: PP= 30:70 98 1b 2 3.49 49.4
실시예 3 EC: PP= 30:70 98 1c 2 4.25 44.3
실시예 4 EC: PP= 30:70 99.9 1a 0.1 3.57 50.4
실시예 5 EC: PP= 30:70 90 1a 10 4.60 51.1
실시예 6 EC: PP= 30:70 99.99 1b 0.01 3.63 51.8
실시예 7 EC:PC:PP=20:10:70 93 1b 7 3.70 47.6
실시예 8 EC: PP= 20:80 93 1a 7 3.78 43.4
실시예 9 EC: PP= 40:60 93 1a 7 4.81 52.7
실시예 10 EC: PP= 30:70 87 1a 13 4.63 53.0
실시예 11 EC:PC:PP=20:10:70 99.991 1a 0.009 4.45 53.7
비교예 1 EC: PP= 30:70 100 - - 4.82 61.1
비교예 2 EC: PP= 30:70 98 2 2 - 58.3
비교예 3 EC: PP= 30:70 98 3 2 - 55.0
비교예 4 EC:EMC=30:70 98 1a 2 5.08 58.3
상기 표 2를 살펴보면, 본 발명의 화학식 1로 표시되는 화합물을 첨가제로 포함하는 비수전해액을 구비한 실시예 1 내지 9의 리튬 이차전지의 경우, 고온 저장 후 두께 증가율이 대부분 4.81% 이하이고, 고온 저장 후 저항 증가율이 대부분 52.7% 이하인 것을 알 수 있다.
한편, 첨가제가 과량 포함된 비수전해액을 구비한 실시예 10의 이차전지는 두께 증가율은 4.63%로 실시예 1 내지 9의 리튬 이차전지와 동등 수준인 반면에, 과량의 첨가제에 의한 저항 증가로 인한 수명 용량 열위 현상이 발생하여 고온 저장 후 저항 증가율이 53.0%로 실시예 1 내지 9의 리튬 이차전지 대비 열위한 것을 알 수 있다.
한편, 첨가제가 소량 포함된 비수전해액을 구비한 실시예 11의 이차전지는 전해액 내의 첨가제의 효과가 미미하여 두께 증가율은 동등 수준인 반면에, 고온 저장 후 저항 증가율이 53.7%로 실시예 1 내지 9의 이차전지 대비 열위한 것을 알 수 있다.
한편, 비수계 용매로 프로필 프로피오네이트를 포함하는 않는 비수전해액을 구비한 비교예 4의 리튬 이차전지의 경우, 고온 저장 후 저항 증가율은 51.3%로 크게 증가하지 않은 반면에, 가스 발생량이 증가하여 고온 저장 후 두께 증가율이 5.08%로 본 발명의 실시예 1 내지 9의 리튬 이차전지 대비 증가한 것을 알 수 있다.
또한, 본 발명의 첨가제를 포함하지 않은 비수전해액을 구비한 비교예 1의 이차전지의 고온 저장 후 두께 증가율은 4.82%이고, 고온 저장 후 저항 증가율은 61.1%으로 실시예 1 내지 9의 이차전지 대비 현저히 열위한 것을 알 수 있다.
한편, 본 발명의 첨가제 대신 화학식 2 및 화학식 3의 첨가제를 포함하는 비수전해액을 구비한 비교예 2 및 3의 이차전지는 고온 저장 후 저항 증가율이 각각 58.3% 및 55.0%로 실시예 1 내지 9의 이차전지 대비 현저히 열위한 것을 알 수 있다.
실험예 3. 금속 용출 분석
실시예 1, 4, 5, 10 및 11의 이차전지와 비교예 1 내지 3의 이차전지를 각각 25℃에서 0.33C/4.25V 정전류/정전압(CC/CV) 조건으로 4.2 V/38 mA까지 1C으로 충전한 다음, SOC 50%에서 정전류(CC) 조건으로 2.5 V까지 3C로 10초간 방전하였다.
상기 충방전을 1 사이클로 하여 500 사이클 충방전을 실시하였다.
유도결합 플라즈마 방출분광기(ICP-OES, inductively coupled plasma optical emission spectrophotometer)를 이용하여 전해액에 용출된 전체 금속의 농도를 측정하였다. ICP 분석을 이용하여 측정된 금속의 양을 하기 표 3에 나타내었다.
그 다음, 각각의 이차전지를 60℃ 조건하에서 SOC 50%로 2 주간 저장한 다음, 유도결합 플라즈마 방출분광기를 이용하여 고온 저장 후 전해액에 용출된 전체 금속의 농도를 측정하였다. ICP분석을 이용하여 측정된 금속의 양을 하기 표 3에 나타내었다.
비수계유기용매 첨가제 고온 저장 후 금속 용출량(ppm) 500 사이클 후 금속 용출량(ppm)
유기용매 (부피비) 함량(g) 화학식 함량(g)
실시예 1 EC: PP= 30:70 98 1a 2 1510 1310
실시예 4 EC: PP= 30:70 99.9 1a 0.1 1560 1450
실시예 5 EC: PP= 30:70 90g 1a 10 1310 1210
실시예 10 EC: PP= 30:70 87 1a 13 1320 1200
실시예 11 EC: PP= 30:70 99.991 1a 0.009 1750 1650
비교예 1 EC: PP= 30:70 100 - - 3510 4980
비교예 2 EC: PP= 30:70 98 2 2 2850 3300
비교예 3 EC: PP= 30:70 98 3 2 3160 4410
상기 표 3에 나타낸 바와 같이, 본원발명의 화학식 1로 표시되는 화합물을 첨가제로 포함하는 비수전해액을 구비한 실시예 1, 4, 5 및 10의 이차전지의 경우 500 사이클 후 금속 용출량은 1450 ppm 이하이고, 고온저장 후 금속 용출량은 1560 ppm 이하로 억제된 것을 알 수 있다.
한편, 첨가제가 소량 포함된 비수전해액을 구비한 실시예 11의 이차전지는 전해액 내의 첨가제의 효과가 미미하여 500 사이클 후 금속 용출량은 1650 ppm이고, 고온저장 후 금속 용출량은 1750 ppm으로, 실시예 1, 4, 5 및 10의 이차전지 크게 증가한 것을 알 수 있다.
또한, 화학식 1로 표시되는 화합물을 첨가제로 포함하지 않은 비수전해액을 구비한 비교예 1의 이차전지는 실시예 1, 4, 5, 및 10의 이차전지 대비 금속 용출량이 현저히 증가한 것을 확인할 수 있다.
또한, 첨가제로 화학식 2로 표시되는 화합물을 함유한 비수전해액을 구비한 비교예 2의 이차전지는 금속 용출 억제 관능기를 포함하므로 금속 용출량이 첨가제를 포함하지 않은 비수전해액을 구비한 비교예 1의 이차전지 대비 소폭 감소하였으나, 실시예 1, 4, 5 및 10의 이차전지 대비 금속 용출량이 현저히 열화된 것을 알 수 있다.
또한, 첨가제로 화학식 3으로 표시되는 화합물을 함유한 비수전해액을 구비한 비교예 3의 이차전지는 금속 용출 억제 효과가 미미하여 비교예 1의 이차전지와 유사 수준임을 확인할 수 있다.

Claims (9)

  1. 리튬염,
    카보네이트계 용매 및 프로필 프로피오네이트를 포함하는 비수계 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것인 리튬 이차전지용 비수전해액:
    [화학식 1]
    Figure PCTKR2018014470-appb-I000012
    상기 화학식 1에서,
    R1 및 R2는 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이다.
  2. 제1항에 있어서,
    상기 비수계 용매는 상기 카보네이트계 용매와 프로필 프로피오네이트를 2:8 내지 4:6의 중량비율로 포함하는 것인 리튬 이차전지용 비수전해액.
  3. 제1항에 있어서,
    상기 카보네이트계 용매는 에틸렌 카보네이트인 것인 리튬 이차전지용 비수전해액.
  4. 제1항에 있어서,
    상기 비수계 용매는 에틸 프로피오네이트를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것인 리튬 이차전지용 비수전해액.
    [화학식 1a]
    Figure PCTKR2018014470-appb-I000013
    [화학식 1b]
    Figure PCTKR2018014470-appb-I000014
    [화학식 1c]
    Figure PCTKR2018014470-appb-I000015
  6. 청구항 5에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 화학식 1b 및 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 것인 리튬 이차전지용 비수전해액.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.01 중량% 내지 11.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  8. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  9. 청구항 1의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지.
PCT/KR2018/014470 2017-11-22 2018-11-22 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 WO2019103496A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020502321A JP7027629B2 (ja) 2017-11-22 2018-11-22 リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
PL18881105.3T PL3648232T3 (pl) 2017-11-22 2018-11-22 Niewodny roztwór elektrolitu dla akumulatora litowego i zawierający go akumulator litowy
ES18881105T ES2945471T3 (es) 2017-11-22 2018-11-22 Disolución no acuosa electrolítica para una batería secundaria de litio, y batería secundaria de litio que comprende la misma
US16/635,076 US11431028B2 (en) 2017-11-22 2018-11-22 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP18881105.3A EP3648232B1 (en) 2017-11-22 2018-11-22 Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
CN201880049406.5A CN110998956B (zh) 2017-11-22 2018-11-22 锂二次电池用非水性电解质溶液和包含其的锂二次电池
US17/861,368 US11799133B2 (en) 2017-11-22 2022-07-11 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0156345 2017-11-22
KR20170156345 2017-11-22
KR10-2018-0145685 2018-11-22
KR1020180145685A KR102167592B1 (ko) 2017-11-22 2018-11-22 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/635,076 A-371-Of-International US11431028B2 (en) 2017-11-22 2018-11-22 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
US17/861,368 Continuation US11799133B2 (en) 2017-11-22 2022-07-11 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2019103496A1 true WO2019103496A1 (ko) 2019-05-31

Family

ID=66631084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014470 WO2019103496A1 (ko) 2017-11-22 2018-11-22 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2019103496A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131192A1 (en) * 2019-01-17 2022-04-28 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Including The Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911870B2 (ja) 1998-09-29 2007-05-09 宇部興産株式会社 リチウム二次電池用電解液及びそれを用いたリチウム二次電池
KR20090080868A (ko) * 2008-01-22 2009-07-27 주식회사 엘지화학 공융혼합물을 포함하는 전해질 및 이를 구비한전기화학소자
KR20100015432A (ko) * 2007-03-09 2010-02-12 바스프 에스이 리튬-이온 전지용 니트록시드
WO2015111612A1 (ja) * 2014-01-24 2015-07-30 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
JP2016139567A (ja) * 2015-01-29 2016-08-04 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液
WO2016158986A1 (ja) * 2015-03-31 2016-10-06 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911870B2 (ja) 1998-09-29 2007-05-09 宇部興産株式会社 リチウム二次電池用電解液及びそれを用いたリチウム二次電池
KR20100015432A (ko) * 2007-03-09 2010-02-12 바스프 에스이 리튬-이온 전지용 니트록시드
KR20090080868A (ko) * 2008-01-22 2009-07-27 주식회사 엘지화학 공융혼합물을 포함하는 전해질 및 이를 구비한전기화학소자
WO2015111612A1 (ja) * 2014-01-24 2015-07-30 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
JP2016139567A (ja) * 2015-01-29 2016-08-04 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液
WO2016158986A1 (ja) * 2015-03-31 2016-10-06 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648232A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131192A1 (en) * 2019-01-17 2022-04-28 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Including The Same

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019107838A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502321

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881105

Country of ref document: EP

Effective date: 20200128

NENP Non-entry into the national phase

Ref country code: DE