WO2023029736A1 - 一种耐低温铅蓄电池用负极铅膏及其制备方法 - Google Patents

一种耐低温铅蓄电池用负极铅膏及其制备方法 Download PDF

Info

Publication number
WO2023029736A1
WO2023029736A1 PCT/CN2022/103776 CN2022103776W WO2023029736A1 WO 2023029736 A1 WO2023029736 A1 WO 2023029736A1 CN 2022103776 W CN2022103776 W CN 2022103776W WO 2023029736 A1 WO2023029736 A1 WO 2023029736A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
paste
preparation
negative electrode
temperature
Prior art date
Application number
PCT/CN2022/103776
Other languages
English (en)
French (fr)
Inventor
刘玉
张天任
张昊
孙权
李雪辉
孔鹤鹏
佘爱强
李桂发
邓成智
郭志刚
罗秋月
吴华海
Original Assignee
天能电池集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天能电池集团股份有限公司 filed Critical 天能电池集团股份有限公司
Publication of WO2023029736A1 publication Critical patent/WO2023029736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • H01M4/21Drying of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lead storage battery production, in particular to a negative electrode paste for a low temperature resistant lead storage battery and a preparation method thereof.
  • Low-temperature capacity is a key performance indicator of lead-acid batteries for electric vehicles.
  • the low-temperature capacity test is carried out in accordance with GB/T22199.1-2017 "Valve-regulated lead-acid batteries for electric bicycles", and the ambient temperature of the low-temperature box is set at -18°C ⁇ At 1°C, put the fully charged lead-acid battery in a low-temperature box for 12 hours. After the rest, discharge it at a rate of 2 hours, and make a qualified judgment based on the discharged capacity.
  • the active material structure of the negative electrode of the lead-acid battery is spongy lead, in which the active material is attached to the skeleton structure, and the skeleton structure mainly plays the role of current collection and conduction, and basically does not participate in the conversion reaction of the active material during the discharge process.
  • a good skeleton structure is the premise of excellent discharge performance, which depends on the negative electrode formulation and formation process.
  • the lignin in the formulation is introduced into the negative electrode lead paste during the paste mixing process, which can play a role in building a skeleton. More vividly, it is to maintain the "expansion" of the negative electrode.
  • the lead paste is alkaline, and lignin is not easy to precipitate in an alkaline environment, so it can be effectively stored in the negative lead paste.
  • the lead paste is neutralized with the acid and alkali.
  • the pH value gradually decreases, and due to the change of the environmental pH value, lignin slowly precipitates from the lead paste and flows into the electrolyte, resulting in a decrease in the effective content of lignin in the negative electrode, and the formation of the skeleton is affected.
  • the invention with the publication number CN109638225A discloses a maintenance-free lead-acid battery negative plate and a preparation method thereof.
  • the negative plate for storage battery includes the following raw materials in parts by weight: 80-120 parts of lead powder, 0.6-1.2 parts of barium sulfate, 0.5-1.0 parts of carbon black, and 0.2-0.5 parts of lignin.
  • the negative plate for the storage battery through a reasonable proportion, ensures the best performance of the negative plate in terms of low temperature performance, solves the problem of surface area shrinkage and passivation of the negative plate in a low temperature environment, and improves the performance of the battery in a low temperature environment. Excellent starting performance and extended battery life.
  • the invention whose publication number is CN102683708A discloses a negative electrode plate of a battery, its preparation method and a battery comprising it.
  • the negative plate is composed of a grid and a negative electrode material coated on the grid, and the negative electrode material includes a battery active material, a capacitor material, and a conductive steric hindrance agent, wherein the battery active material includes 100 parts by weight of lead powder, 0.6 ⁇ 2.0 parts by weight of barium sulfate, and 0.1 ⁇ 0.5 parts by weight of short fibers; the capacitor material includes 0.1 ⁇ 10 parts by weight of activated carbon; phase titanium suboxide and/or barium plumbate.
  • the negative plate material of the battery of the present invention delays the sulfation phenomenon of the negative plate due to the combination of the above three parts, significantly improves the low-temperature starting performance, and optimizes the high-current charging and discharging performance.
  • the low-temperature performance is generally improved by starting with the formulation of the negative plate.
  • the present invention provides a negative electrode lead paste for a low-temperature resistant lead-acid storage battery and a preparation method thereof.
  • a preparation method of negative electrode lead paste for low temperature resistant lead storage battery comprising the following steps:
  • the lead paste formula of the precursor plate includes lead powder, sulfuric acid solution and pure water, and by the mass of the lead powder, 0.2% to 0.3% lignin and 0.07% to 0.08% short fiber; the lead paste formula After mixing the components in the paste, it is coated on the negative electrode grid to prepare a precursor plate, which is then cured and dried.
  • the density of the sulfuric acid solution in the precursor plate is 1.4g/cm 3
  • the amount added is 9% to 10% of the mass of the lead powder
  • the amount of pure water added is 11% of the mass of the lead powder ⁇ 12%.
  • the lignin material is lignin without sulfonation treatment, wherein the mass percentage content of sulfonic acid groups is 13.87% to 14.98%, the mass percentage content of phenolic hydroxyl groups is 1.22% to 1.47%, and the total sulfur The mass percentage content is lower than 4.9%. More preferably, the mass percent content of total sulfur is 4.7%-4.9%. Lignin with the above characteristics has extremely low solubility in acid, which can effectively prevent the precipitation of lignin in the precursor plate and ensure that the effective content and addition amount of lignin in the precursor plate are close to each other, so that the prepared precursor The material meets the requirements.
  • the short fibers are made of polyester, the fiber length is 2 mm to 3 mm, and the diameter of the single fiber is 11 ⁇ m to 13 ⁇ m.
  • step (1.1) during the curing process of the precursor plate, the relative humidity is maintained within the range of 70% to 75%, the temperature is set at 60°C to 65°C, and the time is 12h; during the drying process, the temperature is set at 60°C ⁇ 65°C, the time is 6h.
  • step (1.2) the discharge current density is 1.6A/dm 2 .
  • step (1.3) when the charged and discharged precursor plate is dried, the temperature is 105° C. and the time is 30 minutes, and then it is cooled naturally, and a layer of lead oxide is formed on the surface layer of the additive seed crystal through drying;
  • step (1.3) the lead plaster removed after drying is ground and passed through an 80-mesh sieve; the boiled precipitate is ground and passed through a 200-mesh sieve.
  • step (1.3) the mass concentration of ammonium acetate solution is 25% ⁇ 30%;
  • the amount of the ammonium acetate solution added is 3.5-4.0kg/kg lead paste.
  • the bulk density of the negative electrode additive seed crystal is 2.1g/cm 3 to 2.9g/cm 3
  • the content of lead oxide is 31.1% to 44.2%.
  • the invention further provides the negative electrode lead paste for low temperature resistant lead storage battery prepared by the preparation method.
  • the present invention also provides a negative electrode plate for a low temperature resistant lead storage battery, using the negative electrode paste for a low temperature resistant lead storage battery.
  • the formation of the structure of the negative electrode active material is not limited to the influence of lignin, and can still grow along the seed crystal in the subsequent chemical formation process , keeping the "expansion" of the active material can significantly improve the low-temperature performance of the battery.
  • FIG. 1 is an SEM image of the precursor material in Example 1.
  • the invention provides a method for preparing a negative electrode crystal seed. After the seed crystal is prepared, take the 6-DZF-20 model battery as an example, introduce the seed crystal on the basis of the existing conventional negative electrode formula, and prepare a negative electrode plate, a positive electrode The plate adopts a conventional positive plate and is assembled into an experimental battery. For a comparison battery, the positive plate is the same as that in the example, and the negative plate is a conventional negative plate (without adding crystal seeds). Passing the low-temperature test at -18°C, the low-temperature performance of the battery can be significantly improved.
  • Short fiber 0.07%, the added amount is 70g.
  • the lignin material is lignin without sulfonation treatment. According to the analysis of the functional group structure, the sulfonic acid group content is 13.87% (mass percentage), the phenolic hydroxyl content is 1.22%, and the total sulfur content is 4.7%.
  • the amount of pure water and sulfuric acid used in the paste process is based on the mass percentage of lead powder:
  • Sulfuric acid 9%, the addition amount is 9.0kg, the sulfuric acid density is 1.4g/cm 3 (25°C);
  • the alloy material of the grid is a conventional negative lead-calcium alloy.
  • the precursor plate is connected to the negative pole of the power supply, and the positive pole is a conventional positive plate with an overall size of 100mm*200mm and a total area of 4dm 2 .
  • the current is 3A
  • the power is calculated according to the amount of 40Ah/100g dry paste
  • the required power is 72Ah
  • the continuous constant current charging time is 24h.
  • the discharge current is 6.4A, and stop the discharge until the voltage is lower than 1.6V;
  • the precursor plate Take out the precursor plate, rinse it with pure water, and then perform rapid drying.
  • the temperature is set at 105°C, and the drying time is 30 minutes.
  • the lead paste is knocked off and ground through an 80-mesh sieve;
  • the residual slag sample was rinsed with pure water and dried at 60°C. After the boiling, it was ground and passed through a 200-mesh sieve to complete the preparation of the precursor.
  • the bulk density of the prepared seed crystal is 2.1 g/cm 3 , and the content of lead oxide is 44.2%.
  • Fig. 1 is the SEM image of the precursor material in Example 1. It can be seen from the figure that the lead skeleton is connected as a whole to form a porous sponge-like structure.
  • a vacuum paste machine was used to prepare the lead paste, the weight of the lead powder was 1000kg, 86kg of sulfuric acid (density 1.4g/cm 3 ), and 95kg of pure water.
  • the positive plate is the matching corresponding plate, and its external dimension is the same as that of the negative electrode.
  • the amount of pure water and sulfuric acid used in the paste preparation process is based on the mass percentage of lead powder, sulfuric acid, 9.5%, sulfuric acid density is 1.4g/cm 3 (25°C), pure water, 10.5%.
  • Adopt vacuum paste machine to carry out lead plaster preparation lead powder weight is 1000kg, 86kg sulfuric acid (density is 1.4g/cm3), 95kg pure water.
  • the plate was coated, cured and split according to the conventional method to complete the preparation of the negative raw plate.
  • the positive plate and the positive plate of the experimental battery were the same batch of plates and assembled into a 6-DZF-20 battery.
  • Short fiber 0.08%, the added amount is 80g.
  • the lignin material is lignin without sulfonation treatment. According to the analysis of the functional group structure, the content of sulfonic acid group is 14.98% (mass percentage), the content of phenolic hydroxyl group is 1.47%, and the total sulfur content is 4.9%.
  • the amount of pure water and sulfuric acid used in the paste process is based on the mass percentage of lead powder:
  • Sulfuric acid 10%, the addition amount is 10kg, the sulfuric acid density is 1.4g/cm 3 (25°C);
  • the alloy material of the grid is a conventional negative lead-calcium alloy.
  • the precursor plate is connected to the negative pole of the power supply, and the positive pole is a conventional positive plate with an overall size of 100mm*200mm and a total area of 4dm 2 .
  • the current is 3A
  • the power is calculated according to the amount of 45Ah/100g dry paste
  • the required power is 81Ah
  • the continuous constant current charging time is 27h.
  • the discharge current is 6.4A, and stop the discharge until the voltage is lower than 1.6V;
  • the precursor plate Take out the precursor plate, rinse it with pure water, and then perform rapid drying.
  • the temperature is set at 105°C, and the drying time is 30 minutes.
  • the lead paste is knocked off and ground through an 80-mesh sieve;
  • the residual slag sample was rinsed with pure water and dried at 60°C. After the boiling, it was ground and passed through a 200-mesh sieve to complete the preparation of the precursor.
  • the bulk density of the prepared seed crystal is 2.9 g/cm 3
  • the content of lead oxide is 31.1%.
  • a vacuum paste machine was used to prepare the lead paste, the weight of the lead powder was 1000kg, 86kg of sulfuric acid (density 1.4g/cm 3 ), and 95kg of pure water.
  • the positive plate is the matching corresponding plate, and its external dimension is the same as that of the negative electrode.
  • the amount of pure water and sulfuric acid used in the paste preparation process is based on the mass percentage of lead powder, sulfuric acid, 9.5%, sulfuric acid density is 1.4g/cm 3 (25°C), pure water, 10.5%.
  • the proportion of lignin is added to 0.3% when preparing the negative electrode seed crystal, the amount of water should be increased, that is, pure water: 12%, and the added amount is 12kg.
  • the amount of lignin added increases, more seeds are formed. Therefore, when preparing the experimental battery, the amount of seed crystals added was reduced, that is, 1 kg of the precursor material prepared in step (1) was added.
  • Adopt vacuum paste machine to carry out lead plaster preparation lead powder weight is 1000kg, 86kg sulfuric acid (density is 1.4g/cm3), 95kg pure water.
  • the plate was coated, cured and split according to the conventional method to complete the preparation of the negative raw plate.
  • the positive plate and the positive plate of the experimental battery were the same batch of plates and assembled into a 6-DZF-20 battery.
  • Short fiber 0.07%, the added amount is 70g.
  • the lignin material is lignin without sulfonation treatment, the functional group structure is analyzed, and the sulfonic acid group content is 13.68% (mass percentage), the phenolic hydroxyl content is 1.19%, and the total sulfur content is 7.7%.
  • the sulfur content in lignin the more sulfur there is, the greater the solubility.
  • the amount of pure water and sulfuric acid used in the paste process is based on the mass percentage of lead powder:
  • Sulfuric acid 9%, the addition amount is 9.0kg, the sulfuric acid density is 1.4g/cm 3 (25°C);
  • the alloy material of the grid is a conventional negative lead-calcium alloy.
  • the precursor plate is connected to the negative pole of the power supply, and the positive pole is a conventional positive plate with an overall size of 100mm*200mm and a total area of 4dm 2 .
  • the current is 3A
  • the power is calculated according to the amount of 40Ah/100g dry paste
  • the required power is 72Ah
  • the continuous constant current charging time is 24h.
  • the discharge current is 6.4A, and stop the discharge until the voltage is lower than 1.6V;
  • the residual slag sample was rinsed with pure water and dried at 60°C. After the boiling, it was ground and passed through a 200-mesh sieve to complete the preparation of the precursor.
  • a vacuum paste machine was used to prepare the lead paste, the weight of the lead powder was 1000kg, 86kg of sulfuric acid (density 1.4g/cm 3 ), and 95kg of pure water.
  • the positive plate is the matching corresponding plate, and its external dimension is the same as that of the negative electrode.
  • the amount of pure water and sulfuric acid used in the paste preparation process is based on the mass percentage of lead powder, sulfuric acid, 9.5%, sulfuric acid density is 1.4g/cm 3 (25°C), pure water, 10.5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种耐低温铅蓄电池用负极铅膏及其制备方法。所述制备方法先制备负极添加剂晶种,再将制备的负极添加剂晶种添加到负极铅膏配方中,添加量为铅粉质量的0.1%~0.2%。本发明通过制备骨架结构的晶种,通过在负极中引入骨架晶种,在化成过程中,负极活性物质结构的生成不局限于木素的影响,在后续的化成过程仍然能够沿着晶种生长,保持活性物质的"膨胀",可以明显提升电池的低温性能。

Description

一种耐低温铅蓄电池用负极铅膏及其制备方法 技术领域
本发明涉及铅蓄电池生产技术领域,特别是涉及一种耐低温铅蓄电池用负极铅膏及其制备方法。
背景技术
低温容量是电动车用铅蓄电池的一项关键性能指标,按照GB/T22199.1~2017《电动助力车用阀控式铅酸蓄电池》进行低温容量检测,低温箱环境温度设定为-18℃±1℃,将充满电的铅蓄电池在低温箱中静置12h,静置结束后,以2小时率电流进行放电,根据放电的容量进行合格判定。
铅酸电池负极活性物质结构是海绵状的铅,其中活性物质是附着在骨架结构上面,骨架结构主要起集流传导的作用,在放电过程中基本不参与活性物质转换的反应。良好的骨架结构是优异放电性能的前提,这取决于负极配方料和化成过程。配方料中的木素,通过在和膏过程中引入到负极铅膏中,能够起到造骨架的作用,更为形象的说法是保持负极的“膨胀”。铅膏为碱性,木素在碱性的环境中不容易析出,能够有效的储存在负极铅膏中,而化成过程中,通过在电池内部加入稀硫酸,随着酸碱中和,铅膏pH值慢慢降低,木素由于受到环境pH值的变化,慢慢从铅膏中析出流入到电解液中,造成了负极中木素的有效含量降低,骨架的形成受到影响。
公开号为CN109638225A的发明公开了一种免维护铅酸蓄电池负极板及其制备方法。所述蓄电池用负极板包括以下重量份的原料:铅粉80-120份、硫酸钡0.6-1.2份、碳黑0.5-1.0份、木素0.2-0.5份。该发明中蓄电池用负极板,通过合理的配比,确保了负极板在低温性能方面发挥出最佳性能,解决了负极板在低温环境下的表面积收缩、钝化问题,提高了蓄电池在低温环境下的起动性能,延长了蓄电池使用寿命。
公开号为CN102683708A的发明公开了一种电池的负极板、其制备方 法及包含其的电池。其中,该负极板由板栅和填涂在板栅上的负极材料组成,负极材料包括电池活性物质、电容材料、以及导电位阻剂,其中,电池活性物质包括100重量份的铅粉、0.6~2.0重量份的硫酸钡、以及0.1~0.5重量份的短纤维;电容材料包括0.1~10重量份的活性炭;以及导电位阻剂的添加量为0.1~5.0重量份,导电位阻剂包括Magneli相亚氧化钛和/或铅酸钡。本发明的电池的负极板原料由于上述三部分的结合延缓了负板硫酸盐化现象、显著提高低温起动性能、优化了大电流充放电性能。
上述现有技术中,一般都是从负极板的配方入手来提高低温性能。
发明内容
针对现有技术中存在的上述步骤,本发明提供了一种耐低温铅蓄电池用负极铅膏及其制备方法。
一种耐低温铅蓄电池用负极铅膏的制备方法,包括以下步骤:
(1)制备负极添加剂晶种
(1.1)前驱体极板的铅膏配方包括铅粉、硫酸溶液和纯水,以及按铅粉质量计,0.2%~0.3%的木素、0.07%~0.08%的短纤维;将铅膏配方中各组分合膏后涂覆在负极板栅上,制备成前驱体极板,并进行固化、干燥,
(1.2)然后将所得前驱体极板浸泡在1.04~1.05g/cm 3的稀硫酸溶液中,与一块正极板配对,分别接入电源形成回路,进行恒流充电,电流密度不超过0.8A/dm 2,充入电量Q为40~45Ah/100g干膏量,干膏量=涂膏量×0.9,涂膏量为前驱体极板涂覆铅膏量,恒流充电的目的是将前驱体极板完成转换,由碱式硫酸铅转变成铅;充电结束后,前驱体极板为活性物质铅,对应的正极板为二氧化铅,进行恒流放电,直到电压低于1.6V后停止放电,此时前驱体极板变成硫酸铅和铅的混合体。
(1.3)将前驱体极板取出并用纯水冲洗后干燥,干燥后将铅膏取下,研磨后,加入到醋酸铵溶液中进行煮沸处理,通过醋酸铵将硫酸铅溶解,只剩余添加剂晶种铅,煮沸结束后将沉淀进行纯水冲洗和烘干,研磨后制得所述负极添加剂晶种;
(2)将步骤(1)制备的负极添加剂晶种添加到负极铅膏配方中,添加量为铅粉质量的0.1%~0.2%。
优选的,步骤(1.1)中,前驱体极板中硫酸溶液的密度为1.4g/cm 3,添加量为铅粉质量的9%~10%;纯水的添加量为铅粉质量的11%~12%。
优选的,步骤(1.1)中,木素材料为未经过磺化处理的木质素,其中磺酸基质量百分比含量为13.87%~14.98%,酚羟基质量百分比含量为1.22%~1.47%,总硫质量百分比含量低于4.9%。更优选为总硫质量百分比含量为4.7%~4.9%。具备上述特征的木质素,在酸中的溶解度极低,能够有效防止前驱体极板中木质素的析出,确保前驱体极板中木质素的有效含量和添加量接近,从而实现制备的前驱体材料符合要求。
步骤(1.1)中,短纤维为涤纶材质,纤维长度为2mm~3mm,单纤细度直径为11μm~13μm,通过添加短纤维,可以增强前驱体极板的强度,在涂覆和充电过程中不易从集流体上脱落,对前驱体极板的性质不产生影响。
优选的,步骤(1.1)中,前驱体极板固化过程中,相对湿度保持70%~75%范围内,温度设定为60℃~65℃,时间为12h;干燥过程中,温度设定为60℃~65℃,时间为6h。优选的,步骤(1.2)中,放电电流密度为1.6A/dm 2
优选的,步骤(1.3)中,充放电后的前驱体极板干燥时,温度为105℃,时间为30min,然后自然冷却,通过干燥,添加剂晶种表层生成一层氧化铅;
步骤(1.3)中,干燥后取下的铅膏研磨后过80目的目筛;煮沸后的沉淀研磨后过200目的目筛。
更优选的,步骤(1.3)中,醋酸铵溶液的质量浓度为25%~30%;
铅膏加入到醋酸铵溶液中进行煮沸处理时,醋酸铵溶液加入量按3.5~4.0kg/kg铅膏。
优选的,所述负极添加剂晶种的堆积密度为2.1g/cm 3~2.9g/cm 3,氧化铅含量为31.1%~44.2%。
本发明又提供了所述制备方法制备的耐低温铅蓄电池用负极铅膏。
本发明还提供了一种耐低温铅蓄电池用负极板,使用所述耐低温铅蓄电池用负极铅膏。
本发明通过制备骨架结构的晶种,通过在负极中引入骨架晶种,在化成过程中,负极活性物质结构的生成不局限于木素的影响,在后续的 化成过程仍然能够沿着晶种生长,保持活性物质的“膨胀”,可以明显提升电池的低温性能。
附图说明
图1为实施例1中前驱体材料SEM图。
具体实施方式
本发明提供了一种负极晶种的制备方法,晶种制备完成后,以6-DZF-20型号电池为例,在现有常规负极配方的基础上引入该晶种,制备成负极板,正极板采用常规正极板,组装成实验电池,对比电池,正极板同实施例相同,负极为常规类负极板(未添加晶种),通过-18℃低温测试,可以明显提升电池的低温性能。
实施例1
(1)制备负极晶种
按照常压和膏的生产方式制备铅膏,铅粉重量为100kg,配方料中添加木素和短纤维,添加量按铅粉质量百分比计:
木素:0.2%,添加量200g;
短纤维:0.07%,添加量70g。
木素材料为未经过磺化处理的木质素,对官能团结构进行分析,其中磺酸基含量为13.87%(质量百分比),酚羟基含量为1.22%,总硫含量为4.7%。
和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计:
硫酸:9%,添加量9.0kg,硫酸密度为1.4g/cm 3(25℃);
纯水:11%,添加量11kg。
铅膏制备结束后涂覆在集流体板栅上,板栅采用合金材料为常规负极铅钙合金,板栅外形尺寸为100mm×200mm,湿膏量为200g。
涂覆结束后,进行固化和干燥。固化过程中,相对湿度保持75%范围内,温度设定为65℃,时间为12h;干燥过程中,温度设定为65℃,时间为6h;结束后将整个前驱体极板置入1.04g/cm 3(25℃)的稀硫酸溶液中,每片极板的的干膏量,按照涂膏量的90%进行计算,180g。硫酸的体积量 按2.5L/kg干膏量计算,加入稀硫酸0.45L;
前驱体极板接入电源负极,正极为常规类正极板,外形尺寸为100mm*200mm,总面积为4dm 2
开始恒流充电,电流3A,电量按照40Ah/100g干膏量计,需充入电量为72Ah,持续恒流充电时间为24h。
结束后进行恒流放电,放电电流6.4A,直到电压低于1.6V后停止放电;
取出前驱体极板,用纯水冲洗,然后进行快速干燥,温度设定为105℃,干燥时间为30min,极板干燥自然冷却后将铅膏敲下,研磨过80目的目筛;
将过目筛后的前驱体材料,加入到质量分数为25%的醋酸铵溶液中,进行煮沸处理,醋酸铵溶液加入量按3.5kg/kg前驱体;
煮沸结束后将残留的渣样进行纯水冲洗和烘干,烘干温度为60℃,结束后进行研磨过200目的目筛,前驱体制备完成。
经检测,所制备的晶种的堆积密度为2.1g/cm 3,氧化铅含量为44.2%。
图1为实施例1中前驱体材料SEM图,从图上可以看到,铅骨架连接成整体,形成多孔海绵状结构。
(2)制备实验电池
采用真空和膏机进行铅膏制备,铅粉重量为1000kg,86kg硫酸(密度为1.4g/cm 3),95kg纯水。
在上述现有配方的基础上,按照铅粉的重量计,添加2kg步骤(1)制备的前驱体材料,按照常规的方式涂板、固化和分片,完成负生极板制备。正极板为配套对应的极板,外形尺寸和负极相同,正极配方中,按照铅粉质量百分比计,添加0.5%硫酸亚锡,添加0.5%三氧化二锑,添加0.07%短纤维,通过真空和膏制备铅膏,和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计,硫酸,9.5%,硫酸密度为1.4g/cm 3(25℃),纯水,10.5%。涂板、固化和分片结束后,完成正生极板制备,两种极板组装成6-DZF-20电池。
(3)制备对比电池
采用真空和膏机进行铅膏制备,铅粉重量为1000kg,86kg硫酸(密度为1.4g/cm3),95kg纯水。
采用实验电池相同的配方,按照常规的方式涂板、固化和分片,完成负生极板制备,正极板和实验电池正极板为同一批次极板,组装成6-DZF-20电池。
实验电池和对比电池装配后,采用相同的化成工艺进行化成。
(4)电池性能检测
对实施例和对比例化成结束后的铅蓄电池分别取样,各抽取10只,按照GB/T22199.1-2017《电动助力车用阀控式铅酸蓄电池》进行常规的性能测试和-18℃条件下的低温容量测试,10只铅蓄电池的性能检测的平均值如表1所示:
表1 性能测试对比
Figure PCTCN2022103776-appb-000001
从表1可以看出,在常温条件下放电,两类电池的容量没有明显差异,在-18℃条件下放电,实验电池的平均值要比对比电池的平均值高10min,本发明方法对铅蓄电池的低温容量提升效果明显。
实施例2
(1)制备负极晶种
按照常压和膏的生产方式制备铅膏,铅粉重量为100kg,配方料中添加木素和短纤维,添加量按铅粉质量百分比计:
木素:0.3%,添加量300g;
短纤维:0.08%,添加量80g。
木素材料为未经过磺化处理的木质素,对官能团结构进行分析,其中磺酸基含量为14.98%(质量百分比),酚羟基含量为1.47%,总硫含量为 4.9%。
和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计:
硫酸:10%,添加量10kg,硫酸密度为1.4g/cm 3(25℃);
纯水:12%,添加量12kg。
铅膏制备结束后涂覆在集流体板栅上,板栅采用合金材料为常规负极铅钙合金,板栅外形尺寸为100mm×200mm,湿膏量为200g。
涂覆结束后,进行固化和干燥。固化过程中,相对湿度保持70%范围内,温度设定为60℃,时间为12h;干燥过程中,温度设定为60℃,时间为6h;结束后将整个前驱体极板置入1.05g/cm 3(25℃)的稀硫酸溶液中,每片极板的的干膏量,按照涂膏量的90%进行计算,180g。硫酸的体积量按2.5L/kg干膏量计算,加入稀硫酸0.45L;
前驱体极板接入电源负极,正极为常规类正极板,外形尺寸为100mm*200mm,总面积为4dm 2
开始恒流充电,电流3A,电量按照45Ah/100g干膏量计,需充入电量为81Ah,持续恒流充电时间为27h。
结束后进行恒流放电,放电电流6.4A,直到电压低于1.6V后停止放电;
取出前驱体极板,用纯水冲洗,然后进行快速干燥,温度设定为105℃,干燥时间为30min,极板干燥自然冷却后将铅膏敲下,研磨过80目的目筛;
将过目筛后的前驱体材料,加入到质量分数为30%的醋酸铵溶液中,进行煮沸处理,醋酸铵溶液加入量按4.0kg/kg前驱体;
煮沸结束后将残留的渣样进行纯水冲洗和烘干,烘干温度为60℃,结束后进行研磨过200目的目筛,前驱体制备完成。
经检测,所制备的晶种的堆积密度为2.9g/cm 3,氧化铅含量为31.1%。
(2)制备实验电池
采用真空和膏机进行铅膏制备,铅粉重量为1000kg,86kg硫酸(密度为1.4g/cm 3),95kg纯水。
在上述现有配方的基础上,按照铅粉的重量计,添加1kg步骤(1)制备的前驱体材料,按照常规的方式涂板、固化和分片,完成负生极板制 备。正极板为配套对应的极板,外形尺寸和负极相同,正极配方中,按照铅粉质量百分比计,添加0.5%硫酸亚锡,添加0.5%三氧化二锑,添加0.07%短纤维,通过真空和膏制备铅膏,和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计,硫酸,9.5%,硫酸密度为1.4g/cm 3(25℃),纯水,10.5%。涂板、固化和分片结束后,完成正生极板制备,两种极板组装成6-DZF-20电池。
本实施例中,由于制备负极晶种时,木素的比例添加到了0.3%,所以水量要增加,即纯水:12%,添加量12kg。木素的添加量增多,形成的晶种更多,所以在制备实验电池的时候,把晶种添加量降低了,即添加1kg步骤(1)制备的前驱体材料。
(3)制备对比电池(对比电池和实施例1中相同)
采用真空和膏机进行铅膏制备,铅粉重量为1000kg,86kg硫酸(密度为1.4g/cm3),95kg纯水。
采用实验电池相同的配方,按照常规的方式涂板、固化和分片,完成负生极板制备,正极板和实验电池正极板为同一批次极板,组装成6-DZF-20电池。
实验电池和对比电池装配后,采用相同的化成工艺进行化成。
(4)电池性能检测
对实施例和对比例化成结束后的铅蓄电池分别取样,各抽取10只,按照GB/T22199.1-2017《电动助力车用阀控式铅酸蓄电池》进行常规的性能测试和-18℃条件下的低温容量测试,10只铅蓄电池的性能检测的平均值如表2所示:
表2 性能测试对比
Figure PCTCN2022103776-appb-000002
从表2可以看出,在常温条件下放电,两类电池的容量没有明显差异,在-18℃条件下放电,实验电池的平均值要比对比电池的平均值高9min,本发明方法对铅蓄电池的低温容量提升效果明显。
实施例3
(1)制备负极晶种
按照常压和膏的生产方式制备铅膏,铅粉重量为100kg,配方料中添加木素和短纤维,添加量按铅粉质量百分比计:
木素:0.2%,添加量200g;
短纤维:0.07%,添加量70g。
木素材料为未经过磺化处理的木质素,对官能团结构进行分析,其中磺酸基含量为13.68%(质量百分比),酚羟基含量为1.19%,总硫含量为7.7%。木素中关于硫的含量,硫含量越多,溶解性越大。
和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计:
硫酸:9%,添加量9.0kg,硫酸密度为1.4g/cm 3(25℃);
纯水:11%,添加量11kg。
铅膏制备结束后涂覆在集流体板栅上,板栅采用合金材料为常规负极铅钙合金,板栅外形尺寸为100mm×200mm,湿膏量为200g。
涂覆结束后,进行固化和干燥。固化过程中,相对湿度保持75%范围内,温度设定为65℃,时间为12h;干燥过程中,温度设定为65℃,时间为6h;结束后将整个前驱体极板置入1.04g/cm 3(25℃)的稀硫酸溶液中,每片极板的的干膏量,按照涂膏量的90%进行计算,180g。硫酸的体积量按2.5L/kg干膏量计算,加入稀硫酸0.45L;
前驱体极板接入电源负极,正极为常规类正极板,外形尺寸为100mm*200mm,总面积为4dm 2
开始恒流充电,电流3A,电量按照40Ah/100g干膏量计,需充入电量为72Ah,持续恒流充电时间为24h。
结束后进行恒流放电,放电电流6.4A,直到电压低于1.6V后停止放电;
取出前驱体极板,用纯水冲洗,然后进行快速干燥,温度设定为105℃,干燥时间为30min,极板干燥自然冷却后将铅膏敲下,研磨过80目的目 筛;
将过目筛后的前驱体材料,加入到质量分数为25%的醋酸铵溶液中,进行煮沸处理,醋酸铵溶液加入量按3.5kg/kg前驱体;
煮沸结束后将残留的渣样进行纯水冲洗和烘干,烘干温度为60℃,结束后进行研磨过200目的目筛,前驱体制备完成。
(2)制备实验电池
采用真空和膏机进行铅膏制备,铅粉重量为1000kg,86kg硫酸(密度为1.4g/cm 3),95kg纯水。
在上述现有配方的基础上,按照铅粉的重量计,添加2kg步骤(1)制备的前驱体材料,按照常规的方式涂板、固化和分片,完成负生极板制备。正极板为配套对应的极板,外形尺寸和负极相同,正极配方中,按照铅粉质量百分比计,添加0.5%硫酸亚锡,添加0.5%三氧化二锑,添加0.07%短纤维,通过真空和膏制备铅膏,和膏过程用的纯水和硫酸,添加量按铅粉质量百分比计,硫酸,9.5%,硫酸密度为1.4g/cm 3(25℃),纯水,10.5%。涂板、固化和分片结束后,完成正生极板制备,两种极板组装成6-DZF-20电池。
(3)电池性能检测
对实施例和对比例化成结束后的铅蓄电池分别取样,各抽取10只,按照GB/T22199.1-2017《电动助力车用阀控式铅酸蓄电池》进行常规的性能测试和-18℃条件下的低温容量测试,10只铅蓄电池的性能检测的平均值如表3所示:
表3 性能测试对比
Figure PCTCN2022103776-appb-000003
从表3可以看出,在常温条件下放电,两类电池的容量没有明显差异,实验电池3的晶种制备所用的木素材料,总硫含量超过5%,达到了7.7%, 磺酸基和酚羟基含量同实验电池1所用的木素材料接近,在-18℃条件下放电,实验电池3的平均值要比实验电池1的平均值低8min,说明总硫含量增加,这类木素材料制备的晶种效果不理想。

Claims (10)

  1. 一种耐低温铅蓄电池用负极铅膏的制备方法,其特征在于,包括以下步骤:
    (1)制备负极添加剂晶种
    (1.1)前驱体极板的铅膏配方包括铅粉、硫酸溶液和纯水,以及按铅粉质量计,0.2%~0.3%的木素、0.07%~0.08%的短纤维;将铅膏配方中各组分合膏后涂覆在负极板栅上,制备成前驱体极板,并进行固化、干燥,
    (1.2)然后将所得前驱体极板浸泡在1.04~1.05g/cm 3的稀硫酸溶液中,与一块正极板配对,分别接入电源形成回路,进行恒流充电,电流密度不超过0.8A/dm 2,充入电量Q为40~45Ah/100g干膏量,干膏量=涂膏量×0.9,涂膏量为前驱体极板涂覆铅膏量;充电结束后进行恒流放电,直到电压低于1.6V后停止放电,
    (1.3)将前驱体极板取出并用纯水冲洗后干燥,干燥后将铅膏取下,研磨后,加入到醋酸铵溶液中进行煮沸处理,煮沸结束后将沉淀进行纯水冲洗和烘干,研磨后制得所述负极添加剂晶种;
    (2)将步骤(1)制备的负极添加剂晶种添加到负极铅膏配方中,添加量为铅粉质量的0.1%~0.2%。
  2. 如权利要求1所述的制备方法,其特征在于,步骤(1.1)中,前驱体极板中硫酸溶液的密度为1.4g/cm 3,添加量为铅粉质量的9%~10%;纯水的添加量为铅粉质量的11%~12%。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(1.1)中,木素材料为未经过磺化处理的木质素,其中磺酸基质量百分比含量为13.87%~14.98%,酚羟基质量百分比含量为1.22%~1.47%,总硫质量百分比含量低于4.9%。
  4. 如权利要求1所述的制备方法,其特征在于,步骤(1.1)中,前驱体极板固化过程中,相对湿度保持70%~75%范围内,温度设定为60℃~65℃,时间为12h;干燥过程中,温度设定为60℃~65℃,时间为6h。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(1.2)中,放电电流密度为1.6A/dm 2
  6. 如权利要求1所述的制备方法,其特征在于,步骤(1.3)中,充 放电后的前驱体极板干燥时,温度为105℃,时间为30min,然后自然冷却;
    步骤(1.3)中,干燥后取下的铅膏研磨后过80目的目筛;煮沸后的沉淀研磨后过200目的目筛。
  7. 如权利要求6所述的制备方法,其特征在于,步骤(1.3)中,醋酸铵溶液的质量浓度为25%~30%;
    铅膏加入到醋酸铵溶液中进行煮沸处理时,醋酸铵溶液加入量按3.5~4.0kg/kg铅膏。
  8. 如权利要求1所述的制备方法,其特征在于,所述负极添加剂晶种的堆积密度为2.1g/cm 3~2.9g/cm 3,氧化铅含量为31.1%~44.2%。
  9. 如权利要求1~8任一所述制备方法制备的耐低温铅蓄电池用负极铅膏。
  10. 一种耐低温铅蓄电池用负极板,使用如权利要求9所述耐低温铅蓄电池用负极铅膏。
PCT/CN2022/103776 2021-08-30 2022-07-05 一种耐低温铅蓄电池用负极铅膏及其制备方法 WO2023029736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111002273.6 2021-08-30
CN202111002273.6A CN113839011B (zh) 2021-08-30 2021-08-30 一种耐低温铅蓄电池用负极铅膏及其制备方法

Publications (1)

Publication Number Publication Date
WO2023029736A1 true WO2023029736A1 (zh) 2023-03-09

Family

ID=78961466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103776 WO2023029736A1 (zh) 2021-08-30 2022-07-05 一种耐低温铅蓄电池用负极铅膏及其制备方法

Country Status (2)

Country Link
CN (1) CN113839011B (zh)
WO (1) WO2023029736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839011B (zh) * 2021-08-30 2022-09-16 天能电池集团股份有限公司 一种耐低温铅蓄电池用负极铅膏及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957491A (zh) * 2004-03-23 2007-05-02 哈蒙德集团公司 电池膏添加剂和生产电池极板的方法
JP2010192257A (ja) * 2009-02-18 2010-09-02 Shin Kobe Electric Mach Co Ltd 鉛蓄電池および鉛蓄電池用ペースト式負極板の製造方法
CN109638225A (zh) * 2018-10-24 2019-04-16 山东久力工贸集团有限公司 一种免维护铅酸蓄电池负极板及其制备方法
CN110729461A (zh) * 2019-10-18 2020-01-24 超威电源集团有限公司 一种铅酸蓄电池用负极铅膏及其制备方法
CN113839011A (zh) * 2021-08-30 2021-12-24 天能电池集团股份有限公司 一种耐低温铅蓄电池用负极铅膏及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024526B4 (de) * 2005-05-28 2010-04-22 Bernd Münstermann Gmbh & Co. Kg Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten für Bleiakkumulatoren
JP5219360B2 (ja) * 2006-12-14 2013-06-26 新神戸電機株式会社 鉛蓄電池
CN101740759A (zh) * 2008-11-24 2010-06-16 台湾神户电池股份有限公司 铅膏组合物及其制备方法和铅蓄电池
JP6503869B2 (ja) * 2015-05-08 2019-04-24 日立化成株式会社 制御弁式鉛蓄電池及びその製造方法
CN105374988B (zh) * 2015-11-02 2018-02-23 扬州大学 废铅蓄电池资源化综合利用的方法
CN105449200A (zh) * 2015-11-26 2016-03-30 超威电源有限公司 一种100% α-PbO铅粉制备的负极铅膏
CN110556515B (zh) * 2019-08-19 2020-12-11 天能电池集团股份有限公司 一种铅蓄电池正极板的制备方法和应用
CN110931791A (zh) * 2019-10-31 2020-03-27 双登集团股份有限公司 一种高比能量铅酸蓄电池负极铅膏添加剂及制备方法
CN111799463A (zh) * 2020-07-13 2020-10-20 天能电池(芜湖)有限公司 一种高容量长寿命电池
CN112968170A (zh) * 2021-01-13 2021-06-15 超威电源集团有限公司 一种铅酸蓄电池的负极活性物质添加剂及其制备方法和产物
CN112786843B (zh) * 2021-02-02 2022-05-17 天能电池集团股份有限公司 一种低温用铅蓄电池负极铅膏及负极板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957491A (zh) * 2004-03-23 2007-05-02 哈蒙德集团公司 电池膏添加剂和生产电池极板的方法
JP2010192257A (ja) * 2009-02-18 2010-09-02 Shin Kobe Electric Mach Co Ltd 鉛蓄電池および鉛蓄電池用ペースト式負極板の製造方法
CN109638225A (zh) * 2018-10-24 2019-04-16 山东久力工贸集团有限公司 一种免维护铅酸蓄电池负极板及其制备方法
CN110729461A (zh) * 2019-10-18 2020-01-24 超威电源集团有限公司 一种铅酸蓄电池用负极铅膏及其制备方法
CN113839011A (zh) * 2021-08-30 2021-12-24 天能电池集团股份有限公司 一种耐低温铅蓄电池用负极铅膏及其制备方法

Also Published As

Publication number Publication date
CN113839011A (zh) 2021-12-24
CN113839011B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN103337624B (zh) 一种抑制析氢的铅酸蓄电池负极铅膏及制备方法
CN103296275B (zh) 碳材料包覆铅粉复合材料及其应用
CN102610801B (zh) 一种用于铅碳超级电池的碳包覆铅粉复合材料的水热制备方法
CN104900851A (zh) 一种铅碳电池负极及其制备方法和所制成的电池
CN107452947B (zh) 一种铅蓄电池正极板铅膏及其制备方法、铅蓄电池
CN110690454A (zh) 一种蓄电池正极板的生产工艺
CN101916861A (zh) 一种可提高蓄电池浅充放循环寿命的负极铅膏及制备方法
WO2023029736A1 (zh) 一种耐低温铅蓄电池用负极铅膏及其制备方法
CN108987825B (zh) 一种耐低温铅蓄电池的制作工艺
CN102637858B (zh) 一种用于铅碳超级电池的碳包覆铅粉复合材料的微波制备方法
CN110571433A (zh) 一种提升铅炭电池充电接受能力的负极碳添加剂及其应用
CN111009658A (zh) 一种电池正极铅膏及其制备方法和应用
CN111710861A (zh) 高性能铅碳负极铅膏及其制备方法
CN109755563B (zh) 一种铅酸蓄电池负极铅膏及其制备方法
CN1302567C (zh) 狭长型阀控密封铅酸蓄电池正极铅膏及固化方法
CN103035895A (zh) 一种铅炭电池用碳包覆铅粉复合材料的制备方法
CN113178574B (zh) 铅酸蓄电池正极铅膏及含有其的双极性水平蓄电池
CN114843483A (zh) 一种硬碳复合材料及其制备方法和应用
KR102225190B1 (ko) 수계 바인더를 이용한 납축전지용 양극 활물질 제조 방법
CN114256445A (zh) 一种深循环小型阀控铅酸蓄电池极板制作方法
CN108365179B (zh) 一种4bs-石墨烯作添加剂的铅蓄电池正极板及其制备方法
WO2022174585A1 (zh) 一种正极板的制备方法、铅蓄电池
CN114156466B (zh) 一种长寿命铅蓄电池用正极铅膏及其制备方法
CN110828909A (zh) 一种铅碳胶体蓄电池
CN108832080A (zh) 一种铅酸蓄电池负极铅膏及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22862877

Country of ref document: EP

Kind code of ref document: A1