WO2023026807A1 - 積層セラミック電子部品の製造方法 - Google Patents

積層セラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2023026807A1
WO2023026807A1 PCT/JP2022/029808 JP2022029808W WO2023026807A1 WO 2023026807 A1 WO2023026807 A1 WO 2023026807A1 JP 2022029808 W JP2022029808 W JP 2022029808W WO 2023026807 A1 WO2023026807 A1 WO 2023026807A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
cut side
internal electrode
electronic component
precursor
Prior art date
Application number
PCT/JP2022/029808
Other languages
English (en)
French (fr)
Inventor
大俊 江藤
恒 佐藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023543782A priority Critical patent/JPWO2023026807A1/ja
Priority to CN202280057188.6A priority patent/CN117916831A/zh
Publication of WO2023026807A1 publication Critical patent/WO2023026807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a method of manufacturing a multilayer electronic component in which a protective layer is provided on the side surface of the multilayer body where internal electrode layers are exposed.
  • Patent Document 1 An example of conventional technology is described in Patent Document 1.
  • a mother laminate in which a plurality of dielectric ceramics and a plurality of internal electrode layers are alternately laminated is cut along a cutting line perpendicular to the mother laminate.
  • a plurality of element precursors having cut side surfaces with exposed internal electrode layers are obtained, the element precursors are aligned so that the cut side surfaces are open, and an air removing liquid is applied to the open cut side surfaces. is applied, and after the side green sheet is brought into contact with the air removing liquid applied to the cut side surface, the side green sheet is pressed.
  • a mother laminate in which a plurality of dielectric ceramics and a plurality of internal electrode layers are alternately laminated is cut along a cutting line orthogonal to the mother laminate. obtaining a plurality of element precursors having cut side surfaces on which the internal electrode layers are exposed; aligning the element precursors so that the cut side surfaces are open; After applying a removing liquid and bringing the side green sheet into contact with the air removal liquid applied to the cut side surface, the side green sheet is pressed, and a jet stream containing dry ice particles is used to remove the side green sheet, A portion other than the portion pressed by the cut side surface is removed.
  • FIG. 1 is a perspective view schematically showing an example of a laminated ceramic capacitor
  • FIG. FIG. 2 is a perspective view schematically showing an element component of the multilayer ceramic capacitor of FIG. 1
  • FIG. 3 is a perspective view schematically showing a precursor of the base component of FIG. 2
  • 1 is a perspective view schematically showing a ceramic green sheet on which internal electrode layers are printed
  • FIG. FIG. 2 is a perspective view schematically showing a laminated state of ceramic green sheets on which internal electrode layers are printed
  • FIG. 2 is a perspective view schematically showing a mother laminate for manufacturing the multilayer ceramic capacitor of FIG. 1
  • 7 is a perspective view schematically showing an element precursor obtained by cutting the mother laminate of FIG. 6.
  • FIG. 4 is a perspective view schematically showing the state of arrayed element precursors.
  • FIG. 10 is a view showing a state immediately before the open cut side surface of the element precursor is brought into contact with the non-woven fabric impregnated with the air removing liquid and spread on the bottom surface of the flat-bottomed pool.
  • FIG. 10 is a diagram showing the precursor body with the air removal liquid adhering to the cut side surface.
  • FIG. 4 is a diagram schematically showing a state in which side green sheets are arranged;
  • FIG. 4 is a diagram schematically showing a state in which the air removal liquid on the cut side surface of the element precursor is pressed against the side green sheet.
  • FIG. 10 is a view showing a state immediately before the open cut side surface of the element precursor is brought into contact with the non-woven fabric impregnated with the air removing liquid and spread on the bottom surface of the flat-bottomed pool.
  • FIG. 10 is a diagram showing the precursor body with the air removal liquid adhering to the cut side
  • FIG. 10 is a diagram schematically showing a state in which air exists in the concave portion of the cut side surface after application of the air removing liquid;
  • FIG. 4 is a diagram schematically showing how air exists in an air removal liquid;
  • FIG. 4 is a diagram schematically showing how air is pushed away and removed from the cut side surface together with the air removing liquid.
  • FIG. 4 is a diagram schematically showing how the blank portion of the side green sheet is cut by dry ice particles.
  • FIG. 4 is a diagram schematically showing a supporting member that supports margins of side green sheets;
  • FIG. 4 is a perspective view schematically showing a state of a base component on which side green sheets are laid;
  • Multilayer ceramic capacitors are required to improve the acquired capacitance per unit volume. Therefore, it is important to reduce the thickness of the dielectric between the internal electrode layers, reduce the margin of the outer shell that protects the inside, and increase the area ratio of the internal electrode layers.
  • Patent Document 1 a mother block in which internal electrode layers and ceramic green sheets are alternately laminated is cut along orthogonal cutting lines to form a plurality of green chips, and then the spacing between components is widened with an expansion adhesive sheet.
  • a method of forming a protective layer by sticking a thin side ceramic green sheet to the cut side surface where the internal electrode layer is exposed after rolling with a roller is presented.
  • Patent Document 1 in order to improve the adhesiveness with the ceramic protective layer, a means of applying an adhesive and a method of heat-pressing at a temperature of 200 ° C. or less after forming a raw ceramic protective layer. Means are presented.
  • Patent Document 1 had some problems.
  • a plurality of green chips arranged in rows and columns are attached on an expandable adhesive sheet so as to widen the distance between the green chips, and in that state, the adhesive sheet is expanded.
  • the process was presented, the material cost was generated for the disposable expansion adhesive sheet.
  • the adhesive in the means of attaching the side green sheet to the cut surface, and in the case of ordinary adhesive, it is adhered with air sandwiched between the unevenness of the cut side, leaving a small cavity. I didn't mention that there is In addition, depending on the adhesive, the gas generated in the adhesive layer region may create cavities inside.
  • An object of the present disclosure is to provide a method for manufacturing a laminated ceramic electronic component, which enables laying of side ceramic green sheets without entraining air on the cut side surfaces of the green laminate.
  • a multilayer ceramic capacitor will be described as an example of a multilayer ceramic electronic component, but the multilayer ceramic electronic component to be disclosed is not limited to a multilayer ceramic capacitor, and includes a multilayer piezoelectric element, a multilayer thermistor element, and a multilayer chip. It can be applied to various laminated ceramic parts such as coils and ceramic multilayer substrates.
  • FIG. 1 is a perspective view of an example of a laminated ceramic capacitor.
  • a laminated ceramic capacitor 1 which is an example of a laminated ceramic electronic component, will be described.
  • 2 is a perspective view schematically showing an element component of the multilayer ceramic capacitor of FIG. 1.
  • FIG. FIG. 2 is a diagram showing the element body part before firing, and also a diagram showing the element body part after firing. This is because, although the fired body part has shrunk due to firing, it has the same structure as the body part before fired.
  • 3 is a perspective view showing a precursor of the base component of FIG. 2; FIG. In the following, the precursor of the elemental part is sometimes referred to as an elemental precursor.
  • a multilayer ceramic capacitor 1 in FIG. 1 has a base component 2 and external electrodes 3 .
  • the base component 2 has a substantially rectangular parallelepiped shape, as shown in FIG.
  • the base component 2 is made of dielectric ceramic 4 and has a plurality of internal electrode layers 5 connected to external electrodes 3 .
  • the external electrodes 3 are arranged on a pair of end surfaces of the base component 2 and extend around other adjacent surfaces.
  • a plurality of internal electrode layers 5 extend inward from a pair of end surfaces of the base component 2 and are alternately laminated without being in contact with each other.
  • the external electrode 3 is composed of a base layer connected to the base component 2 and a plated outer layer that facilitates solder mounting of the external wiring to the external electrode 3 .
  • the base layer may be applied and baked onto the base component 2 after firing.
  • the base layer may be disposed on the base component 2 before firing and fired at the same time as the base component 2 .
  • the underlying layer and the plated outer layer may be multiple layers according to the required functions.
  • the external electrode 3 may be configured to have an underlying layer and a conductive resin layer without having a plated outer layer.
  • FIG. 3 is a perspective view schematically showing a precursor of the base component of FIG. 2.
  • the base component 2 is obtained by laying a protective layer 6 on a pair of first side surfaces 9a and second side surfaces 9b of the base body precursor 13 shown in FIG.
  • the body precursor 13 has a substantially rectangular parallelepiped shape, as shown in FIG.
  • the body precursor 13 has a pair of first and second main surfaces 7a and 7b facing each other, a pair of first and second end surfaces 8a and 8b facing each other, and a pair of first side surfaces 9a and 9b facing each other. It has a second side 9b.
  • the internal electrode layers 5 are exposed on the first end surface 8a and the second end surface 8b and the first side surface 9a and the second side surface 9b of the element body precursor 13 .
  • the protective layer 6 is applied last in making the base part 2 .
  • the protective layer 6 not only physically protects the first side surface 9a and the second side surface 9b, but also protects the internal electrode layer 5 exposed on the first end surface 8a and the internal electrode layer 5 exposed on the second end surface 8b. This prevents an electrical short circuit.
  • the protective layer 6 may be made of a ceramic material having high insulating properties and high mechanical strength. In FIG. 2, the boundary between the element body precursor 13 and the protective layer 6 is indicated by a two-dot chain line, but the actual boundary does not appear clearly.
  • Ceramic mixed powder obtained by adding an additive to BaTiO 3 which is a ceramic dielectric material is wet pulverized and mixed by a bead mill.
  • a polyvinyl butyral-based binder, a plasticizer, and an organic solvent are added to and mixed with the pulverized and mixed slurry to prepare a ceramic slurry.
  • a ceramic green sheet 10 is formed on the carrier film.
  • the thickness of the ceramic green sheet 10 may be, for example, about 1 to 10 ⁇ m. As the thickness of the ceramic green sheet 10 is reduced, the capacitance of the laminated ceramic capacitor can be increased.
  • the molding of the ceramic green sheets 10 is not limited to the die coater, and may be performed using, for example, a doctor blade coater or a gravure coater.
  • FIG. 4 is a perspective view schematically showing a ceramic green sheet on which internal electrode layers are printed.
  • a conductive paste containing a metal material to be the internal electrode layers 5 is printed in a predetermined pattern on the ceramic green sheets 10 prepared above by screen printing.
  • the printing of the conductive paste is not limited to the screen printing method, and may be performed using, for example, the gravure printing method.
  • the conductive paste may contain metals such as Ni, Pd, Cu, Ag, or alloys thereof.
  • FIG. 3 shows an example in which the pattern of the internal electrode layer 5 is a strip pattern of multiple rows, the pattern of the internal electrode layer 5 may be, for example, a pattern such as an individual electrode pattern.
  • the thickness of the internal electrode layers 5 may be, for example, 1.0 ⁇ m or less.
  • FIG. 5 is a perspective view schematically showing a laminated state of ceramic green sheets on which internal electrode layers are printed.
  • a predetermined number of ceramic green sheets 10 having internal electrode layers 5 printed thereon are laminated on the predetermined number of laminated ceramic green sheets 10, and then a predetermined number of ceramic green sheets 10 are laminated. do.
  • a predetermined number of ceramic green sheets 10 on which the internal electrode layers 5 are printed are laminated while shifting the pattern of the internal electrode layers 5 .
  • the ceramic green sheets 10 are laminated on the support sheet.
  • the support sheet may be an adhesive release sheet such as a weak adhesive sheet or a foamed release sheet that can be adhered and peeled.
  • FIG. 6 is a perspective view schematically showing a mother laminate for manufacturing the laminated ceramic capacitor of FIG.
  • a laminate formed by laminating a plurality of ceramic green sheets 10 is pressed in the lamination direction to obtain an integrated mother laminate 11 as shown in FIG.
  • the laminate can be pressed using, for example, a hydrostatic press.
  • Internal electrode layers 5 are buried in layers in the mother laminate 11 with the ceramic green sheets 10 interposed therebetween.
  • a support sheet used when laminating the ceramic green sheets 10 is located under the mother laminate 11.
  • the orthogonal dashed lines shown in FIG. 6 are cutting lines indicating positions to be cut.
  • FIG. 7 is a perspective view schematically showing an element precursor obtained by cutting the mother laminate of FIG. Next, as shown in FIG. 7, the mother laminate 11 is cut to a predetermined size using a press-cutting machine to obtain the element precursor 13 shown in FIG.
  • the method of cutting the mother laminated body 11 is not limited to the method using the press cutting device, and for example, a dicing saw device or the like may be used. Since the main surface, end surfaces and side surfaces of the mother laminate 11 correspond to the main surface 7, the end surface 8 and the cut side surface 9 of the precursor body 13, respectively, they are given the same reference numerals below.
  • a transfer tray (not shown) in which pockets (not shown) for storing the individual precursor bodies 13 are arranged in rows and columns is prepared, and the precursor bodies 13 are placed on the transfer tray so that the cut side 9 faces upward. aligned to Thereafter, a support sheet 18 that can be adhered and peeled off was placed over the precursor body 13 to fix the precursor body 13 to the support sheet 18 .
  • FIG. 8 shows the element precursor 13 fixed to the support sheet 18 after the transfer tray has been removed. As shown in FIG. 8, the cut side surface 9 of the element precursor 13 is an open surface.
  • FIG. 9A shows the bottom surface of the flat-bottomed pool 21 covered with non-woven paper impregnated with the air removal liquid 20, just before the open cut side 9 of the precursor body 13 is brought into contact therewith.
  • FIG. 9B shows the blank precursor 13 with the air removal liquid 20 attached to the cutting side 9 .
  • the air removal liquid 20 has good wettability with respect to the element precursor 13 and the side green sheets 17, and in addition, it does not dry quickly and dissolves both materials of the element precursor 13 and the side green sheets 17. It is desirable to be a liquid that does not The air removal liquid 20 is applied to the cut side surface 9, contacts the side green sheet 17, and then penetrates into the element precursor 13 or the side green sheet 17 while being pressed by the side green sheet 17. Instead, it remains liquid.
  • solvents are not preferred from the above point of view. The solvent dissolves the side green sheets 17 and has good wettability.
  • the Ni particles present on the surface move, which may lead to a short circuit between the adjacent exposed internal electrode layers. .
  • side green sheets 17 are prepared as shown in FIG. 9C.
  • the side green sheet 17 may be a stack of a plurality of green sheets, or a stack of green sheets having different compositions.
  • the air removal liquid 20 on the cut side surface 9 of the element precursor 13 is brought into contact with the side green sheet 17, and the element precursor 13 is pressed onto the side green sheet 17 using a pressing machine. impose.
  • the air removal liquid 20 sandwiched between the cut side surface 9 and the side green sheet 17 is pushed out of the cut side surface 9 and discharged to the margin of the side green sheet 17 .
  • the pressing force may range from 30 Kg/cm 2 to 100 Kg/cm 2 .
  • the air removing liquid 20 is pushed out of the cut side surface 9 in the subsequent pressing step, the air contained in the air removing liquid 20 is also discharged together.
  • the wettability of the air removing liquid 20 to the cut side surface 9 should be such that the contact angle is close to zero and the liquid spreads over the solid surface to exhibit extended wetting.
  • FIG. 10A schematically shows how the air 31 exists in the recessed portion 19 of the cut side surface 9 after the application of the air removal liquid 20 .
  • the surface of the cut side surface 9 where the air 31 exists is not wet at first, but the entire surface of the cut side surface 9 is wetted by the air removal liquid 20 that gradually diffuses, and as shown in FIG. It will exist in 20.
  • a plasticizer is used as the air removing liquid 20 in this embodiment.
  • the plasticizer enhances the plasticity of the binder of the precursor body 13 or the binder of the side green sheets 17 , and has good wettability to the precursor body 13 by diffusion wettability. Therefore, the surface of the element precursor 13 can be completely wetted without dissolving the element precursor 13 .
  • the plasticizer even if the plasticizer is applied while leaving the air 31 in the recess 19 of the cut side surface 9, the plasticizer will penetrate the cut side surface 9 where the air 31 exists so as to wet the cut side surface 9.
  • the air 31 is separated from the cut side 9 as shown in 10B, and when the plasticizer is dislodged from the cut side 9 by subsequent pressing, the air 31 moves along with the cut side 9, as shown in FIG. 10C. removed by being pushed away from
  • the plasticizer contacts the binder on the surface of the element precursor 13 or the side green sheet 17, the plasticity of the binder on the surface contacted by the plasticizer is enhanced. Similarly, the plasticity of the binder present on the surface to which the side green sheets 17 are attached is also enhanced. As a result, pressure bonding can be effectively performed.
  • the binder used for the green sheet of this example is a polyvinyl butyral resin binder
  • dioctyl phthalate (DOP) bis(2-ethylhexyl) phthalate (DEHP) or dibutyl phthalate having good compatibility
  • Phthalates such as (DBP), phosphates, and fatty acid esters may also be used.
  • the base plate on which the side green sheets 17 are placed is desirably a flat hard plate in order to reliably discharge the air removal liquid 20 .
  • a flexible sheet may be sandwiched between the press mechanisms.
  • an elastic member such as a thin silicon rubber plate may be interposed between the support sheet 18 of the element precursor 13 and the press punch (not shown) instead of the side green sheet 17 side.
  • FIG. 11A is a diagram schematically showing how the blank portion of the side green sheet is cut by dry ice particles.
  • the marginal portion (portion other than the portion pressed by the cut side surface 9) of the side green sheet 17 is removed by cutting.
  • a portion of the side green sheet 17 other than the portion pressed by the cut side surface 9 is removed with a jet stream containing dry ice particles 30. - ⁇ Since the dry ice particles 30 take heat from the side green sheets 17 and vaporize at the time of collision, the temperature of the side green sheets 17 is lowered and the flexibility is reduced.
  • the impact force of the jet stream and the dry ice is applied to the side green sheets 17, so that the margins of the side green sheets 17 that are not supported below bend and the edges of the cut side surfaces 9 of the precursor body 13 are bent. It is cut so that it is torn off at the part. Inside the edge portion, the side green sheet 17 is pressed against the cut side surface 9 by the dry ice jet. This is because the fine particles 30 collide. At this time, the air removing liquid 20 removed from the cut side surface 9 scatters while adhering to the torn side green sheet 17 .
  • FIG. 11B is a diagram schematically showing a supporting member that supports the margins of the side green sheets.
  • a support member 51 for supporting a portion other than the portion pressed against the cut side surface 9 is arranged around the aligned precursor bodies 13 .
  • the cutting environment of the side green sheets 17 existing in the central portion of the precursor body 13 and the side green sheets 17 existing around the periphery of the body precursor 13 can be made the same. This reduces processing time and maintains uniformity in cut quality.
  • a dry ice nozzle we used a nozzle that can eject dry ice particles on top of the high pressure air of the jet stream.
  • the air pressure ranged from 0.2 MPa, which is the minimum pressure required for sheet cutting, to 0.5 MPa, which is the maximum pressure for air supply in the factory.
  • the distance between the dry ice nozzle and the cut side surface, which is the surface to be processed, was 20 to 80 mm, and was appropriately set according to the size of the base plate 28 . When the distance from the surface to be machined is 80 mm or more, cutting becomes difficult even with the maximum air pressure of 0.5 MPa.
  • the jet stream may be attenuated, dry ice is a fine particle, so the particles vaporize before collision, reducing the collision effect.
  • Dry ice fine particles having an average particle size of 100 microns or less as determined by high-speed photographic observation were used. This is because the surface of the element body of the laminated ceramic part before firing is soft, and therefore, if the average particle diameter is large, the polishing effect is gradually exhibited, and the surface of the side green sheet is uneven.
  • the distance between the workpieces can be narrowed as long as there is a gap through which the air stream can pass, so there is an effect that the number of workpieces on the base plate 28 can be increased.
  • FIG. 12 shows the state of the raw base component 2 obtained by the above steps, in which side green sheets as protective layers are laid on a pair of cut side surfaces.
  • a method for manufacturing a laminated ceramic electronic component cuts a mother laminate in which a plurality of dielectric ceramics and a plurality of internal electrode layers are alternately laminated along a cutting line orthogonal to the mother laminate, Obtaining a plurality of element precursors having cut side surfaces in which the internal electrode layers are exposed, aligning the element precursor so that the cut side surface becomes an open surface; Applying an air removal liquid to the open cut side surface, After the side green sheets are brought into contact with the air removal liquid applied to the cut side surfaces, the side green sheets are pressed.
  • a mother laminate in which a plurality of dielectric ceramics and a plurality of internal electrode layers are alternately laminated is cut along a cutting line orthogonal to the mother laminate. obtaining a plurality of element precursors having cut side surfaces in which the internal electrode layers are exposed; aligning the element precursor so that the cut side surface becomes an open surface; Applying an air removal liquid to the open cut side surface, After bringing the side green sheet into contact with the air removal liquid applied to the cut side surface, pressing the side green sheet, A jet stream containing dry ice particles is used to remove the portion of the side green sheet other than the portion pressed by the cut side surface.
  • the manufacturing method of the multilayer ceramic electronic component of the present disclosure configured as described above, the voids at the boundary between the cut side surface of the base component and the side margin layer are eliminated, and the insulation degradation or reliability that becomes the product characteristic after firing is eliminated. It is possible to prevent deterioration of
  • the blank portion which is the margin for gluing of the side green sheet attached to the side surface of the laminate, can be efficiently cut and removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、内部電極層が露出した切断側面を有する複数の素体前駆体を得て、素体前駆体を切断側面が開放面になるように整列させ、開放されている切断側面にエア除去液を付与し、切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧する。

Description

積層セラミック電子部品の製造方法
 本発明は、内部電極層が露出した積層体側面に保護層が設置された積層電子部品の製造方法に関する。
 従来技術の一例は、特許文献1に記載されている。
特許第5780169号公報
 本開示の積層セラミック電子部品の製造方法は、複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、前記素体前駆体を前記切断側面が開放面になるように整列させ、開放されている前記切断側面にエア除去液を付与し、前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧する。
 また、本開示の積層セラミック電子部品の製造方法は、複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、前記素体前駆体を前記切断側面が開放面になるように整列させ、開放されている前記切断側面にエア除去液を付与し、前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧し、ドライアイス微粒子を含んだジェット気流で、前記側面グリーンシートの、前記切断側面に押圧された部分以外の部分を除去する。
積層セラミックコンデンサの一例を模式的に示す斜視図である。 図1の積層セラミックコンデンサの素体部品を模式的に示す斜視図である。 図2の素体部品の前駆体を模式的に示す斜視図である。 内部電極層が印刷されたセラミックグリーンシートを模式的に示す斜視図である。 内部電極層が印刷されたセラミックグリーンシートの積層状態を模式的に示す斜視図である。 図1の積層セラミックコンデンサを製造するための母積層体を模式的に示す斜視図である。 図6の母積層体を切断して得た素体前駆体を模式的に示す斜視図である。 整列された素体前駆体の状態を模式的に示す斜視図である。 エア除去液をしみ込ませて平底プールの底面に敷いた不織布に、素体前駆体の開放されている切断側面を接触させる直前の様子を表す図である。 エア除去液が切断側面に付着した素体前駆体を表す図である。 側面グリーンシートを配設した状態を模式的に表す図である。 素体前駆体の切断側面のエア除去液を側面グリーンシートに押し付けた状態を模式的に表す図である。 エア除去液の塗布後にエアが切断側面の凹部に存在してしまった状態を模式的に示す図である。 エアがエア除去液中に存在している様子を模式的に示す図である。 エアがエア除去液とともに切断側面から押しのけられて除去された様子を模式的に示す図である。 側面グリーンシートの余白部がドライアイス微粒子で切断される様子を模式的に示す図である。 側面グリーンシートの余白部を支持する支持部材を模式的に示す図である。 側面グリーンシートが敷設された素体部品の状態を模式的に示す斜視図である。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
 近年、電子機器の配線基板に搭載される電子部品が高機能化して小型化が進んでいる。そのような電子部品の一例として、積層セラミックコンデンサが挙げられる。
 積層セラミックコンデンサでは、単位体積当たりの取得静電容量を向上させることが要求されている。そのため、内部電極層間の誘電体厚みを薄くし、内部を保護する外殻のマージン部を減らして、内部電極層の面積比率を上げることが重要となっている。
 例えば、特許文献1では、内部電極層とセラミックグリーンシートが交互に積層されたマザーブロックを、直交する切断ラインで切断して、複数のグリーンチップとし、その後、拡張粘着シートで部品の間隔を広げて転動させた後、内部電極層が露出している切断側面に肉厚の薄い側面セラミックグリーンシートを貼付して、保護層を形成する方法が呈示されている。
 加えて、特許文献1では、前記のセラミック保護層との接着性を向上させるため、接着剤を付与するという手段と、生のセラミック保護層を形成した後に200℃以下の温度で加熱圧着するという手段が呈示されている。
 しかしながら、特許文献1に記載の方法は、いくつかの問題を抱えていた。グリーンチップの互いの間隔を広げた状態とするため、行および列方向に配列された状態の複数のグリーンチップを、拡張性のある粘着シート上に貼り付け、その状態で、粘着シートを拡張する工程が呈示されているが、使い捨ての拡張粘着シートに部材コストが発生していた。
 接着剤で接着した場合は、接着層が存在し、切断側面の凹部などにエアが存在する可能性が常に存在している。切断側面とその保護用の側面グリーンシートとの間にエアを存在させたまま焼成を行うと、その部分はボイドとなり、絶縁劣化または信頼性低下の原因となる。このようにグリーン貼り付け工程では、エアの存在しない貼り付けを行うことが重要となっているが、その方法についての記載がない。
 また、側面グリーンシートを切断面に貼る手段における接着剤については、具体的な記述がなく、通常の接着剤の場合は、切断側面の凹凸に空気を挟んだまま接着されて小さな空洞が残ることがあることに触れていない。また接着剤によっては、接着剤層領域に生成されるガスにより、内部に空洞ができる。
 また、弾性体上に前記側面セラミックグリーンシートを置いて、切断側面を押し付けて打ち抜く方法では、生の素体前駆体の角で側面セラミックグリーンシートを打ち抜く際の打ち抜き不良の発生を無くすためには、弾性体が部品間に深く入り込む必要があった。そのため、部品間隔を広くとらなければならないという拘束があり、台板上で一度に多数の部品を処理できないというおそれがあった。
 本開示では、グリーン積層体の切断側面にエアを内在させずに側面セラミックグリーンシートを敷設することができる積層セラミック電子部品の製造方法を提供することを目的とする。
 以下、図面を参照しつつ、本開示の積層セラミック電子部品の製造方法の実施形態について説明する。なお、以下では、積層セラミック電子部品の一例として積層セラミックコンデンサについて説明するが、本開示の対象となる積層セラミック電子部品は、積層セラミックコンデンサに限られず、積層型圧電素子、積層サーミスタ素子、積層チップコイル、およびセラミック多層基板等の様々な積層セラミック部品に適用することができる。
 図1は、積層セラミックコンデンサの一例の斜視図である。先ず、積層セラミック電子部品の一例である積層セラミックコンデンサ1について説明する。図2は、図1の積層セラミックコンデンサの素体部品を模式的に示す斜視図である。図2は、焼成前の素体部品を示す図であり、焼成後の素体部品を示す図でもある。焼成後の素体部品は、焼成によって収縮しているが、焼成前の素体部品と同一構造を有するからである。図3は、図2の素体部品の前駆体を示す斜視図である。以下では、素体部品の前駆体を、素体前駆体と呼ぶことがある。
 図1の積層セラミックコンデンサ1は、素体部品2と、外部電極3とを有している。素体部品2は、図2に示すように、略直方体状の形状を有している。素体部品2は、誘電体セラミック4からなり、外部電極3に接続される複数の内部電極層5を有している。外部電極3は、素体部品2の一対の端面に配設され、他の隣接する面にまで回り込んでいる。複数の内部電極層5は、素体部品2の一対の端面から内部に延び、互いに接することなく交互に積層されている。
 外部電極3は、素体部品2に接続する下地層と、外部配線の外部電極3へのはんだ実装を容易にするめっき外層とを有して構成されている。下地層は、焼成後の素体部品2に塗布焼き付けされてもよい。下地層は、焼成前の素体部品2に配設され、素体部品2と同時に焼成されてもよい。下地層およびめっき外層は求められる機能に合わせて複数層であっても構わない。外部電極3は、めっき外層を有さず、下地層と導電性樹脂層とを有して構成されていてもよい。
 図3は、図2の素体部品の前駆体を模式的に示す斜視図である。素体部品2は、図3の素体前駆体13の一対の第1側面9aおよび第2側面9bに保護層6が敷設されたものである。素体前駆体13は、図3に示すように、略直方体状の形状を有している。素体前駆体13は、互いに対向する一対の第1主面7aおよび第2主面7b、互いに対向する一対の第1端面8aおよび第2端面8b、および互いに対向する一対の第1側面9aおよび第2側面9bを有している。
 素体前駆体13の第1端面8aおよび第2端面8b、第1側面9aおよび第2側面9bには、内部電極層5が露出している。保護層6は、素体部品2を作製する上で最後に取り付けられる。保護層6は、第1側面9aおよび第2側面9bを物理的に保護するだけでなく、第1端面8aに露出した内部電極層5と、第2端面8bに露出した内部電極層5とが電気的に短絡することを抑制している。保護層6は、高絶縁性を有し、かつ機械的強度が高いセラミック材料からなっていてもよい。なお、図2においては、素体前駆体13と保護層6との境界を二点鎖線で示しているが、実際の境界は明瞭に現われるわけではない。
 以下では、図2の素体部品2および積層セラミックコンデンサ1の製造方法について説明する。先ず、セラミック誘電体材料であるBaTiOに添加剤を加えたセラミックの混合粉体をビーズミルで湿式粉砕混合する。この粉砕混合したスラリーに、ポリビニルブチラール系バインダー、可塑剤、および有機溶剤を加えて混合し、セラミックスラリーを作製する。
 次に、ダイコーターを用いて、キャリアフィルム上にセラミックグリーンシート10を成形する。セラミックグリーンシート10の厚みは、例えば、1~10μm程度であってもよい。セラミックグリーンシート10の厚みを薄くするほど、積層セラミックコンデンサの静電容量を高くすることができる。セラミックグリーンシート10の成形は、ダイコーターだけに限られず、例えば、ドクターブレードコーターまたはグラビアコーター等を用いて行ってもよい。
 図4は、内部電極層が印刷されたセラミックグリーンシートを模式的に示す斜視図である。次に、図4で示すように、上記で作成したセラミックグリーンシート10に、スクリーン印刷法を用いて、内部電極層5となる金属材料を含む導電性ペーストを所定のパターンで印刷する。導電性ペーストの印刷は、スクリーン印刷法だけに限られず、例えば、グラビア印刷法等を用いて行ってもよい。導電性ペーストは、例えばNi、Pd、Cu、Ag等の金属、またはそれらの合金を含んでいてもよい。図3では、内部電極層5のパターンが複数列の帯状パターンである例を示したが、内部電極層5のパターンは、例えば個別電極パターン等のパターンであってもよい。
 コンデンサとしての特性が確保できる限りにおいて、内部電極層5の厚みが薄ければ薄いほど、内部応力による内部欠陥を防ぐことができる。高積層数のコンデンサであれば、内部電極層5の厚みは、例えば、1.0μm以下であってもよい。
 図5は、内部電極層が印刷されたセラミックグリーンシートの積層状態を模式的に示す斜視図である。次に、図5に示すように、所定枚数積層したセラミックグリーンシート10の上に、内部電極層5が印刷されたセラミックグリーンシート10を所定枚数積層し、さらに、セラミックグリーンシート10を所定枚数積層する。内部電極層5が印刷されたセラミックグリーンシート10は、内部電極層5のパターンをずらしながら所定枚数積層する。なお、図5では省略されているが、セラミックグリーンシート10の積層は支持シート上で行う。支持シートは、弱粘着シートまたは発泡剥離シート等の粘着および剥離が可能な粘着剥離シートであってもよい。
 図6は、図1の積層セラミックコンデンサを製造するための母積層体を模式的に示す斜視図である。次に、セラミックグリーンシート10を複数枚積層されてなる積層体を積層方向にプレスして、図6に示すような一体化した母積層体11を得る。積層体のプレスは、例えば静水圧プレス装置を用いて行うことができる。母積層体11の内部では、セラミックグリーンシート10を挟んで内部電極層5が層状に埋め込まれている。なお、図6では省略されているが、母積層体11の下には、セラミックグリーンシート10を積層する際に用いた支持シートが位置している。また、図6に示す直交する破線は、切断予定の位置を示す切断ラインである。
 図7は、図6の母積層体を切断して得た素体前駆体を模式的に示す斜視図である。次に、図7に示すように、押切切断装置を用いて、母積層体11を所定の寸法で切断し、図3の素体前駆体13を得る。なお、母積層体11を切断する方法は、押切切断装置を用いる方法に限定されず、例えばダイシングソウ装置等を用いてもよい。母積層体11の主面、端面、および側面は、素体前駆体13の主面7、端面8、および切断側面9にそれぞれ相当するため、以下では、同じ参照符号を付す。
 次に、個々の素体前駆体13を収納する図示しないポケットが縦横に整列配置された図示しない振込トレイを用意して、素体前駆体13を該振込トレイに切断側面9が上向きになるように整列させた。その後、粘着および剥離が可能な支持シート18を素体前駆体13の上から被せて、支持シート18に素体前駆体13を固定した。
 図8は、振込トレイを外した後の支持シート18に固定された素体前駆体13を示している。図8に示すように、素体前駆体13の切断側面9が開放面となっている。
 次に、素体前駆体13の切断側面9に、側面グリーンシート17を貼り付ける工程を、図9A~図9Dを参照しながら説明する。図9Aは、平底プール21の底面に、エア除去液20をしみ込ませた不織紙を敷き、その上に素体前駆体13の開放されている切断側面9を接触させる直前の様子を示す。図9Bは、エア除去液20が切断側面9に付着した素体前駆体13を表している。
 エア除去液20は、素体前駆体13及び側面グリーンシート17に対する濡れ性が良好であることのほかに、乾燥が早くないことと、素体前駆体13及び側面グリーンシート17の両素材を溶解しない液体であることが望ましい。エア除去液20は、切断側面9に付与され、側面グリーンシート17に接触された後、側面グリーンシート17に押圧される間に、素体前駆体13または側面グリーンシート17に浸透して無くなることはなく、液体の状態を維持する。例えば溶剤は、上述の観点から好ましくはない。溶剤は側面グリーンシート17を溶解するので濡れ性は良いが、切断側面9の表面を溶解すると、該表面に存在するNi粒子が動き、隣接する露出内部電極層同士の短絡につながることにもなる。
 この後、図9Cに示すように、側面グリーンシート17を用意する。側面グリーンシート17は、複数枚のグリーンシートを積層したものでもよく、異種組成のグリーンシートを積層したものでもよい。
 次に、図9Dに示すように素体前駆体13の切断側面9のエア除去液20を側面グリーンシート17に接するようにし、プレス機を用いて、素体前駆体13を側面グリーンシート17に押し付ける。切断側面9と側面グリーンシート17とで挟まれたエア除去液20が、切断側面9の外に押し出され、側面グリーンシート17の余白部に排出される。押圧力が弱いと、エア除去液20が切断側面9上から排除されない。また、強すぎると焼成前の素体前駆体13が変形する。押圧力は、30Kg/cm~100Kg/cm の範囲であってもよい。
 この工程では、エアの存在しない側面グリーンシート17の貼り付けを行うことが重要となっている。切断側面9と、切断側面9を保護する側面グリーンシート17との間にエアを存在させたまま焼成を行うと、その部分はボイドとなり、絶縁劣化または信頼性低下の原因となる。切断側面9に濡れ性の良いエア除去液20を塗布すると、切断側面9がエア除去液20で満遍なく濡れる。切断側面9に微小な凹凸部があったとしても、エア除去液20が表面に拡張して濡れて広がり、もともと凹部に閉じ込められたエアは、切断側面9から離れる。そして、その後の押圧工程でエア除去液20が切断側面9の外側に押し出されるので、エア除去液20が含有するエアも一緒に排出される。エア除去液20の切断側面9に対する濡れ性は、接触角がゼロに近く、液体が固体表面に拡がっていくような拡張ぬれを示すものがよい。
 ここで、液体が固体表面に拡がっていくような拡張ぬれを示すエア除去剤の作用を説明する。図10Aは、エア除去液20の塗布後にエア31が切断側面9の凹部19に存在してしまったときの様子を模式的に示す。エア31が存在する切断側面9の表面は、最初は濡れていないが、徐々に拡散するエア除去液20によって切断側面9の全面が濡れてしまい、図10Bに示すようにエア31はエア除去液20中に存在するようになる。
 本実施形態において、エア除去液20として可塑剤を用いている。可塑剤は、素体前駆体13のバインダーまたは側面グリーンシート17のバインダーの可塑性を高めるものであるが、素体前駆体13に対しての拡散濡れ性を示すほど濡れ性が良い。従って、素体前駆体13を溶解することもなく、素体前駆体13の表面を完全に濡らすことができる。例えば、切断側面9の凹部19にエア31を残したまま可塑剤を塗布したとしても、可塑剤が切断側面9を濡らすように、エア31が存在する切断側面9に侵入していくので、図10Bに示すように、エア31は切断側面9から切り離され、その後の押圧で可塑剤が切断側面9から押しのけられて除去されるとき、図10Cに示すように、エア31も一緒に切断側面9から押しのけられて除去される。
 また、可塑剤が、素体前駆体13または側面グリーンシート17の表面のバインダーに接触すると、可塑剤が接触した表面のバインダーの可塑性が高められる。同様に、側面グリーンシート17が貼り付けられる側の表面に存在するバインダーの可塑性も高められる。これによって、加圧接合を効果的に行なうことができる。
 可塑剤としては、本実施例のグリーンシートに用いたバインダーがポリビニルブチラール樹脂バインダーの場合は、相溶性が良いフタル酸ジオクチル(DOP)、フタル酸ビス(2-エチルヘキシル)(DEHP)またはフタル酸ジブチル(DBP)などのフタル酸エステル、或いは燐酸エステル、脂肪酸エステルを使ってもよい。
 プレス工程において、側面グリーンシート17を載せる台板は、エア除去液20の排出を確実に行うために、平らな硬板であることが望ましい。しかしながら素体前駆体13の寸法のばらつきがある場合を考慮して、柔軟性のあるシートをプレス機構に挟んでもよい。その場合は、側面グリーンシート17側ではなく、素体前駆体13の支持シート18と図示しないプレスパンチとの間に、薄いシリコンゴム板などの弾性体を介在させてもよい。
 図11Aは、側面グリーンシートの余白部がドライアイス微粒子で切断される様子を模式的に示す図である。以上のエア除去液20の塗布と除去とが行われた後、側面グリーンシート17の余白部(切断側面9に押圧された部分以外の部分)の切断除去が行われる。ドライアイス微粒子30を含んだジェット気流で、側面グリーンシート17の、切断側面9に押圧された部分以外の部分を除去する。ドライアイス微粒子30は、衝突時に側面グリーンシート17の熱を奪って気化するので、側面グリーンシート17の温度が低下して柔軟性が小さくなる。そのような状態で、ジェット気流とドライアイスの衝撃力が側面グリーンシート17に加わるので、下に支えのない側面グリーンシート17の余白部が撓んで、素体前駆体13の切断側面9のエッジ部でちぎられるように切断される。エッジ部より内側では、ドライアイスジェットで側面グリーンシート17が切断側面9に押し付けられ、エッジ部より外側では、側面グリーンシートが撓む方向に引っ張り力が働いている状態で、エッジ部にドライアイス微粒子30が衝突するからである。この時、切断側面9から排除されたエア除去液20は、ちぎれた側面グリーンシート17に付着したまま飛散する。
 図11Bは、側面グリーンシートの余白部を支持する支持部材を模式的に示す図である。整列された素体前駆体13の周辺には、切断側面9に押圧された部分以外の部分を支持する支持部材51を、整列された素体前駆体13の周辺に配置される。支持部材51を配置することで、素体前駆体13の中央部に存在する側面グリーンシート17と、素体前駆体13の周辺に存在する側面グリーンシート17との切断環境を同一にすることができ、加工時間の削減と切断品質の均一性を保つことができる。
 ドライアイスノズルとして、ジェット気流の高圧エアにドライアイス微粒子を乗せて噴出できるものを用いた。エア圧は、シート切断に必要な最低圧力である0.2MPaから、工場におけるエア供給の最大圧力である0.5MPaの範囲とした。ドライアイスノズルと被加工面である切断側面との距離は、20~80ミリメートルの間隔であり、台板28のサイズに合わせて適宜に設定して行った。被加工面との距離が80ミリメートル以上では、最大エア圧である0.5MPaでも切断が困難になる。ジェット気流が減衰することもあるが、ドライアイスは微粒子なので、衝突前に粒子が気化して衝突効果が小さくなることも影響している。ドライアイス微粒子として、高速写真観察による平均粒径が100ミクロン以下のものを用いた。積層セラミック部品の焼成前の素体の表面は軟らかいので、平均粒径が大きいと、徐々に研磨効果が発現されて、側面グリーンシートの表面に凹凸が形成されるからである。
 ドライアイス微粒子のジェット気流による切断では、気流が通過する隙間さえあれば、被加工物の間隔をいくらでも狭くできるので、被加工物の台板28上の個数を多くできるという効果がある。
 気流を使用しない例として、例えば弾性体を押し付けて、弾性体を素体部品間に潜り込ませて余白部を切断側面の縁で打ち抜くように除去することが考えられるが、このような加工は、素体部品間隔が狭い状況では困難である。
 上述のエア除去液を塗布する工程から、側面グリーンシートの余白部を切断除去する工程までの各工程は、対面側の切断露出面にも同様に施される。図12は、以上の工程で得られた生の素体部品2の様子を示したもので、保護層である側面グリーンシートが1対の切断側面に敷設されている。
 得られた素体部品を窒素雰囲気中にて脱脂した後、水素/窒素混合雰囲気中にて焼成した。焼成後、導電性ペーストの塗布及び焼付けによって、外部電極を形成し、図1の積層セラミックコンデンサを作製した。
 本開示は次の実施の形態が可能である。
 本開示の積層セラミック電子部品の製造方法は、複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、
前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、
 前記素体前駆体を前記切断側面が開放面になるように整列させ、
 開放されている前記切断側面にエア除去液を付与し、
 前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧する。
 また、本開示の積層セラミック電子部品の製造方法は、複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、
 前記素体前駆体を前記切断側面が開放面になるように整列させ、
 開放されている前記切断側面にエア除去液を付与し、
 前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧し、
 ドライアイス微粒子を含んだジェット気流で、前記側面グリーンシートの、前記切断側面に押圧された部分以外の部分を除去する。
 上記のように構成された本開示の積層セラミック電子部品の製造方法によれば、素体部品の切断側面とサイドマージン層の境界の空隙が排除され、焼成後の製品特性となる絶縁劣化または信頼性低下を防止できる。
 また、上記のように構成された本開示の積層セラミック電子部品の製造方法によれば、積層体側面に貼り付けた側面グリーンシートののりしろである余白部を効率良く切断除去できる。
1  積層セラミックコンデンサ
2  素体部品
3  外部電極
4  誘電体セラミック
5  内部電極層
6  保護層
7  主面
7a  第1主面
7b  第2主面
8  端面
8a  第1端面
8b  第2端面
9  切断側面
9a  第1側面
9b  第2側面
10  セラミックグリーンシート
11  母積層体
13  素体前駆体
17  側面グリーンシート
18  支持シート
19  凹部
20  エア除去液
21  平底プール
22  振込トレイ
23  ポケット
27  押圧
28  台板
29  ジェット気流
30  ドライアイス微粒子
31  エア
51  支持部材

Claims (6)

  1.  複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、
     前記素体前駆体を前記切断側面が開放面になるように整列させ、
     開放されている前記切断側面にエア除去液を付与し、
     前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧する、積層セラミック電子部品の製造方法。
  2.  前記エア除去液が可塑剤である、請求項1記載の積層セラミック電子部品の製造方法。
  3.  前記素体前駆体を支持する支持シートとプレスパンチとの間に弾性体を介在させたプレス装置を用いて、前記側面グリーンシートを押圧する、請求項1または2記載の積層セラミック電子部品の製造方法。
  4.  ドライアイス微粒子を含んだジェット気流で、前記側面グリーンシートの、前記切断側面に押圧された部分以外の部分を除去する請求項1~3のいずれか1項記載の積層セラミック電子部品の製造方法。
  5.  前記側面グリーンシートの、前記切断側面に押圧された部分以外の部分を支持する支持部材を、整列された前記素体前駆体の周辺に配置する、請求項4記載の積層セラミック電子部品の製造方法。
  6.  複数の誘電体セラミックと複数の内部電極層とが交互に積層された母積層体を、該母積層体に直交する切断ラインで切断して、前記内部電極層が露出した切断側面を有する複数の素体前駆体を得て、
     前記素体前駆体を前記切断側面が開放面になるように整列させ、
     開放されている前記切断側面にエア除去液を付与し、
     前記切断側面に付与されたエア除去液に側面グリーンシートを接触させた後、前記側面グリーンシートを押圧し、
     ドライアイス微粒子を含んだジェット気流で、前記側面グリーンシートの、前記切断側面に押圧された部分以外の部分を除去する、積層セラミック電子部品の製造方法。
PCT/JP2022/029808 2021-08-24 2022-08-03 積層セラミック電子部品の製造方法 WO2023026807A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543782A JPWO2023026807A1 (ja) 2021-08-24 2022-08-03
CN202280057188.6A CN117916831A (zh) 2021-08-24 2022-08-03 层叠陶瓷电子部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021136643 2021-08-24
JP2021-136643 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026807A1 true WO2023026807A1 (ja) 2023-03-02

Family

ID=85323142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029808 WO2023026807A1 (ja) 2021-08-24 2022-08-03 積層セラミック電子部品の製造方法

Country Status (3)

Country Link
JP (1) JPWO2023026807A1 (ja)
CN (1) CN117916831A (ja)
WO (1) WO2023026807A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580310A (en) * 1978-12-13 1980-06-17 Matsushita Electric Ind Co Ltd Method of fabricating laminated ceramic capacitor
JPH01212419A (ja) * 1988-02-19 1989-08-25 Murata Mfg Co Ltd セラミック積層体の製造方法
JPH11111560A (ja) * 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd セラミック電子部品の製造方法
JP2000299222A (ja) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd 積層セラミック電子部品およびその製造方法
JP2017120880A (ja) * 2015-12-25 2017-07-06 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
JP2020188192A (ja) * 2019-05-16 2020-11-19 株式会社村田製作所 電子部品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580310A (en) * 1978-12-13 1980-06-17 Matsushita Electric Ind Co Ltd Method of fabricating laminated ceramic capacitor
JPH01212419A (ja) * 1988-02-19 1989-08-25 Murata Mfg Co Ltd セラミック積層体の製造方法
JPH11111560A (ja) * 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd セラミック電子部品の製造方法
JP2000299222A (ja) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd 積層セラミック電子部品およびその製造方法
JP2017120880A (ja) * 2015-12-25 2017-07-06 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
JP2020188192A (ja) * 2019-05-16 2020-11-19 株式会社村田製作所 電子部品の製造方法

Also Published As

Publication number Publication date
CN117916831A (zh) 2024-04-19
JPWO2023026807A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
JP6131756B2 (ja) コンデンサ素子の製造方法
JP2017147358A (ja) 電子部品の製造方法
WO2017061324A1 (ja) 多層セラミック基板の製造方法
JP4084385B2 (ja) 積層電子部品用の積層体ユニットの製造方法
JP7127720B2 (ja) 積層セラミック電子部品の製造方法
JPWO2004088686A1 (ja) 積層セラミック電子部品の製造方法
WO2023026807A1 (ja) 積層セラミック電子部品の製造方法
JPWO2004088685A1 (ja) 積層セラミック電子部品の製造方法
JP3527667B2 (ja) セラミック電子部品の製造方法
US20240351325A1 (en) Method for manufacturing multilayer ceramic electronic components
JP2017112320A (ja) 電子部品の製造方法
JP2005191409A (ja) 積層セラミックコンデンサの製造方法
JP4789443B2 (ja) 複合シートの製造方法、積層体の製造方法および積層部品の製造方法
TWI840898B (zh) 積層陶瓷電子零件及其製造方法
JP2005259964A (ja) セラミック積層体の製造方法
JP4134729B2 (ja) 積層セラミック電子部品の製造方法
JP2004186343A (ja) セラミック積層体及びその製法
JP4610274B2 (ja) 電子部品の製造方法
JP7232010B2 (ja) 積層セラミック電子部品の製造方法
JP2004186344A (ja) セラミック積層体及びその製法
JP4142686B2 (ja) 積層電子部品用の積層体ユニットの製造方法
JP3921454B2 (ja) 積層セラミック電子部品用の積層体ユニットの製造方法および積層セラミック電子部品用の積層体ユニット
JP2004186341A (ja) セラミック積層体の製法
TW202405837A (zh) 積層陶瓷電子零件
JP2005056977A (ja) 積層セラミック基板の製造方法および誘電体積層デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18683597

Country of ref document: US

Ref document number: 2023543782

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280057188.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861098

Country of ref document: EP

Kind code of ref document: A1