WO2023024769A1 - 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法 - Google Patents

基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法 Download PDF

Info

Publication number
WO2023024769A1
WO2023024769A1 PCT/CN2022/106742 CN2022106742W WO2023024769A1 WO 2023024769 A1 WO2023024769 A1 WO 2023024769A1 CN 2022106742 W CN2022106742 W CN 2022106742W WO 2023024769 A1 WO2023024769 A1 WO 2023024769A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
organic acid
source
transition metal
preparing
Prior art date
Application number
PCT/CN2022/106742
Other languages
English (en)
French (fr)
Inventor
曹余良
赵阿龙
艾新平
杨汉西
Original Assignee
深圳珈钠能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳珈钠能源科技有限公司 filed Critical 深圳珈钠能源科技有限公司
Publication of WO2023024769A1 publication Critical patent/WO2023024769A1/zh
Priority to US18/430,927 priority Critical patent/US20240228319A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of sodium ion battery materials, and in particular relates to a method for preparing polyanionic sodium battery cathode materials based on an organic acid dissolution method.
  • Secondary batteries include nickel-metal hydride batteries, nickel-cadmium batteries, lead-acid batteries, alkaline zinc-manganese batteries, lithium-ion batteries, sodium-ion batteries, and potassium-ion batteries.
  • lithium/sodium-ion batteries are undoubtedly among the best.
  • lithium-ion batteries occupy a dominant position in the current 3C product market and the field of electric vehicles, the lack and uneven distribution of lithium resources are bound to fail to meet the growing needs of the electric vehicle field, let alone the low-cost requirements of large-scale energy storage .
  • the working principle of sodium-ion batteries is similar to that of lithium-ion batteries, and sodium resources are more abundant, more widely distributed, and the cost of related electrode materials is lower. It is currently the focus of attention in the field of large-scale energy storage.
  • the types of sodium ion cathode materials are extremely rich, including oxides, Prussian blues, and polyanions, but in terms of resource abundance, overall cost of materials, electrochemical properties of materials, and environmental sustainability, polyanions It is undoubtedly the best choice for the positive electrode material of small sodium ion batteries.
  • the present invention provides a method for preparing the positive electrode material of polyanionic sodium batteries based on the organic acid dissolution method.
  • Step S1 preparing a mixture of a transition metal source, a sodium source and a polyanion source and putting it into a reactor, the transition metal source being a transition metal element or a transition metal oxide;
  • Step S2 adding an organic acid to the reactor, heating, while continuously stirring until the source of the transition group metal is completely dissolved; adding a sufficient or excessive amount of organic acid to completely dissolve the source of the transition group metal;
  • Step S3 adding a carbon source, stirring, and drying to obtain a precursor powder
  • Step S4 Heat the precursor powder in an inert gas atmosphere. After the heat treatment is completed, cool down to room temperature with the furnace to obtain a polyanionic sodium battery positive electrode material.
  • transition group metal source is V, Ti, Mn, Fe, Co, Ni, Cu, Zn or oxides thereof.
  • the sodium source is one or more of sodium nitrate, sodium carbonate, sodium phosphate, sodium dihydrogen phosphate, sodium formate, sodium acetate, sodium oxalate, sodium citrate, and sodium metal.
  • the polyanion source is one or more of elemental phosphorus, phosphoric acid, pyrophosphoric acid, sodium phosphate, sodium dihydrogen phosphate, elemental boron, boric acid, sodium borate, elemental silicon, silicic acid, and sodium silicate.
  • the organic acid includes one or more of formic acid, acetic acid, and oxalic acid.
  • the usage amount of the transition metal source, sodium source, and polyanion source conforms to the stoichiometric ratio in the chemical formula of the prepared polyanion sodium battery positive electrode material, and the usage amount of the organic acid is 1-20% of the molar amount of the added transition metal source. 5 times, and the amount of carbon source used is 1 to 3 times the molar amount of the added transition metal source.
  • step S2 the heating temperature is 90°C.
  • the carbon source is one or more of graphene, carbon nanotubes, graphite, carbon powder, citric acid, glucose, and sucrose.
  • the inert gas atmosphere is argon, nitrogen, argon-hydrogen mixed gas or nitrogen-hydrogen mixed gas.
  • step S4 the heat treatment process is: raising the temperature to 200°C-300°C at a heating rate of 2-5°C/min, keeping the temperature for 3 hours, and then raising the temperature to 400-550°C at a heating rate of 2°C/min, Keep warm for 10 hours.
  • step S3 the drying method is freeze drying, blast drying, spray drying or vacuum drying.
  • the present invention has the following beneficial effects:
  • transition metal elements or their oxides can collect flammable gas H 2 , and avoid the use of expensive transition metal compounds, which indirectly avoids environmental pollution caused by waste during the synthesis of transition metal compounds .
  • Fig. 1 is the scanning electron microscope topography of the Na2FeP2O7 /C material prepared by the organic acid dissolution method in Example 1;
  • Fig. 2 is the charge-discharge curve of the Na 2 FeP 2 O 7 /C electrode prepared by the organic acid dissolution method in Example 1;
  • Fig. 3 is a scanning electron microscope morphology diagram of the Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C material prepared by the organic acid dissolution method in Example 2;
  • Fig. 4 is the charge-discharge curve of the Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C electrode prepared by the organic acid dissolution method in Example 2;
  • Fig. 5 is a scanning electron microscope morphology diagram of the Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C material prepared by the traditional solid phase method in Example 3;
  • Fig. 6 is the charge-discharge curve of the Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C electrode prepared by the traditional solid-state method in Example 3.
  • Step S1 Add a mixture of 0.1 mol metallic iron and 0.2 mol sodium dihydrogen phosphate into the flask;
  • Step S2 Add 20ml of formic acid with a mass fraction of 88% to the flask, heat the flask in an oil bath at 90°C, and continue stirring until the metallic iron is completely dissolved to obtain a light green liquid;
  • Step S3 Add 10 g of citric acid into the flask, stir for 10 minutes, and then spray dry.
  • the air inlet temperature of the spray dryer is set to 250 ° C, and the flow rate is 1 L/h. After the drying is completed, gray precursor powder is obtained;
  • Step S4 Place the brown precursor powder in an atmosphere of argon-hydrogen mixed gas, where the volume ratio of argon to hydrogen is 95:5, raise the temperature to 300°C at a heating rate of 2°C/min, keep it warm for 3h, and then Raise the temperature to 500°C at a heating rate of 2°C/min, keep it for 10 hours, and then cool down to room temperature with the furnace to obtain Na 2 FeP 2 O 7 /C, a positive electrode material for polyanion sodium batteries.
  • Fig. 1 is a topography diagram of Na 2 FeP 2 O 7 /C material, which presents regular spherical particles.
  • Step S1 adding a mixture of 0.3mol metallic iron, 0.2mol sodium carbonate and 0.4mol phosphoric acid into the flask;
  • Step S2 Add 60ml of formic acid with a mass fraction of 88% to the flask, heat the flask in an oil bath at 90°C, and continue stirring until the metallic iron is completely dissolved to obtain a light green liquid;
  • Step S3 Add 5 g of glucose into the flask, stir for 10 minutes, and then dry in a blast drying oven at 100°C for 24 hours. After the drying is completed, a brown precursor powder is obtained;
  • Step S4 Place the brown precursor powder in an atmosphere of argon-hydrogen mixed gas, wherein the volume ratio of argon to hydrogen is 95:5, raise the temperature to 200°C at a heating rate of 5°C/min, keep it for 3h, and then The heating rate was raised to 550°C at a rate of 2°C/min, held for 10 hours, and then cooled to room temperature with the furnace to obtain Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C, a positive electrode material for polyanion sodium batteries.
  • Fig. 3 is a morphological diagram of Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C material, which is a secondary particle formed by agglomeration of primary particles, with a particle size of about 200nm and relatively uniform distribution.
  • Step S1 adding a mixture of 0.1 mol sodium pyrophosphate, 0.2 mol ferric phosphate and 0.1 mol ferrous oxalate into the ball mill;
  • Step S2 Add 10ml of absolute ethanol to the ball mill tank, the mass ratio of ball mill beads to solid raw material is 20:1;
  • Step S3 Take 5 g of glucose and put it into the ball mill tank, start the ball mill at a speed of 400 r/min for 5 hours, and then dry it in a forced air drying oven at 100°C for 24 hours. After the drying is completed, a light yellow solid powder is obtained;
  • Step S4 Place the light yellow solid powder in an argon-hydrogen mixture gas atmosphere, where the volume ratio of argon to hydrogen is 95:5, raise the temperature to 200°C at a heating rate of 5°C/min, keep it warm for 3h, and then use The heating rate was raised to 550°C at a rate of 2°C/min, held for 10 hours, and then cooled to room temperature with the furnace to obtain Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C, a positive electrode material for polyanion sodium batteries.
  • Figure 5 shows the morphology of Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 /C material, which is an agglomerate with a large particle size, mainly due to the agglomeration of the sintered material due to the compaction of the raw material during the ball milling process Phenomenon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,包括如下步骤:步骤S1:配制过渡族金属源、钠源以及聚阴离子源的混合物并放入反应器中,所述过渡族金属源为过渡金属单质或过渡族金属氧化物;步骤S2:向反应器中加入有机酸,加热,同时持续搅拌至过渡族金属源完全溶解;步骤S3:加入碳源,搅拌,干燥,得到前驱体粉末;步骤S4:在惰性气体氛围中,对所述前驱体粉末进行加热处理,加热处理完成后,随炉冷却至室温,得到聚阴离子型钠电池正极材料。本发明有机酸溶解后的混合溶液,离子分布均匀,干燥后的前驱体颗粒较小,无需进行破碎处理,可直接高温煅烧制得相应的电极材料。

Description

基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法 技术领域
本发明属于钠离子电池材料领域,特别涉及基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法。
背景技术
近年来,化石燃料的大量利用造成的环境污染性问题逐渐受到人们的关注,开发太阳能、风能以及水力资源等清洁能源成为热点。然而,这些清洁能源受地理位置、季节、天气等的影响,具有波动性大、无法持续供应等缺点,需要配以大规模储能转换装置才能实现这些清洁能源的合理调控。在现有的储能技术中,抽水储能、压缩空气储能、飞轮储能以及超级电容器储能大多受到能量密度、地理位置以及技术瓶颈的限制,无法实现大规模利用。二次电池因其技术成熟、灵活性高、能量转化率高等综合优势,成为目前大规模储能技术的理想选择。二次电池包括镍氢电池、镍镉电池、铅酸电池、碱性锌锰电池、锂离子电池、钠离子电池以及钾离子电池等相关分类,但就技术的成熟度、体系总成本、能量/功率密度以及环境适应性而言,锂/钠离子电池无疑成为其中的佼佼者。虽然锂离子电池在目前的3C产品市场以及电动汽车领域占据主导地位,但锂资源的匮乏和分布不均,势必无法满足日益增长的电动汽车领域的需要,更无法满足大规模储能的廉价要求。钠离子电池与锂离子电池的工作原理类似,并且钠资源更加丰富、分布更加广泛、相关电极材料成本更加低廉,是目前大规模储能领域重点关注的对象。
钠离子正极材料的种类及其丰富,包括氧化物类、普鲁士蓝类以及聚阴离子类,但就资源的丰富性、材料的总体成本、材料的电化学性能以及环境可持续性而言,聚阴离子型钠离子电池正极材料无疑是最佳的选择。
发明内容
针对背景技术存在的问题,本发明提供了基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法。
为解决上述技术问题,本发明采用如下技术方案:
基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,包括如下步骤:
步骤S1:配制过渡族金属源、钠源以及聚阴离子源的混合物并放入反应器中,所述过渡族金属源为过渡金属单质或过渡族金属氧化物;
步骤S2:向反应器中加入有机酸,加热,同时持续搅拌至过渡族金属源完全溶解;加入 足量或过量的有机酸,以使过渡族金属源完全溶解;
步骤S3:加入碳源,搅拌,干燥,得到前驱体粉末;
步骤S4:在惰性气体氛围中,对所述前驱体粉末进行加热处理,加热处理完成后,随炉冷却至室温,得到聚阴离子型钠电池正极材料。
进一步,所述过渡族金属源为V、Ti、Mn、Fe、Co、Ni、Cu、Zn或其氧化物。
进一步,所述钠源为硝酸钠、碳酸钠、磷酸钠、磷酸二氢钠、甲酸钠、醋酸钠、草酸钠、柠檬酸钠、金属钠中的一种或多种。
进一步,所述聚阴离子源为单质磷、磷酸、焦磷酸、磷酸钠、磷酸二氢钠、单质硼、硼酸、硼酸钠、单质硅、硅酸、硅酸钠中的一种或多种。
进一步,所述有机酸包括甲酸、乙酸、草酸中的一种或多种。
进一步,所述过渡族金属源、钠源、聚阴离子源的使用量符合所制备的聚阴离子型钠电池正极材料化学式中化学计量比,有机酸使用量为所添加过渡金属源摩尔量的1~5倍,碳源使用量为所添加过渡金属源摩尔量的1~3倍。
进一步,步骤S2中,加热温度为90℃。
进一步,所述碳源为石墨烯、碳纳米管、石墨、碳粉、柠檬酸、葡萄糖、蔗糖中的一种或多种。
进一步,步骤S4中,所述惰性气体氛围为氩气、氮气、氩氢混合气或氮氢混合气。
进一步,步骤S4中,加热处理工艺为:以2~5℃/min的升温速率升温至200℃~300℃,保温3h,之后再以2℃/min的升温速率升至400℃~550℃,保温10h。
进一步,步骤S3中,干燥方式为冷冻干燥、鼓风干燥、喷雾干燥或真空干燥。
与现有技术相比,本发明具有如下有益效果:
1.有机酸溶解后的混合溶液,离子分布均匀,干燥后的前驱体颗粒较小,无需进行破碎处理,可直接高温煅烧制得相应的电极材料。
2.利用有机酸来溶解过渡金属单质或其氧化物,即可收集可燃性气体H 2,也可避免使用昂贵的过渡金属化合物,间接的避免了过渡金属化合物合成过程中废弃物对于环境的污染。
3.利用有机酸的挥发特性、在干燥过程中会随水蒸气一起挥发,通过冷却回收处理,可进行二次重复利用。
附图说明
图1是实施例1采用有机酸溶解法制备的Na 2FeP 2O 7/C材料扫描电镜形貌图;
图2是实施例1采用有机酸溶解法制备的Na 2FeP 2O 7/C电极充放电曲线;
图3是实施例2采用有机酸溶解法制备的Na 4Fe 3(PO 4) 2P 2O 7/C材料扫描电镜形貌图;
图4是实施例2采用有机酸溶解法制备的Na 4Fe 3(PO 4) 2P 2O 7/C电极充放电曲线;
图5是实施例3采用传统固相法制备的Na 4Fe 3(PO 4) 2P 2O 7/C材料扫描电镜形貌图;
图6是实施例3采用传统固相法制备的Na 4Fe 3(PO 4) 2P 2O 7/C电极充放电曲线。
具体实施方式
实施例1
步骤S1:将0.1mol金属铁和0.2mol磷酸二氢钠的混合物加入烧瓶中;
步骤S2:向烧瓶中加入20ml质量分数为88%的甲酸,将烧瓶在90℃下油浴加热,同时持续搅拌至金属铁完全溶解,得到浅绿色液体;
步骤S3:取10g柠檬酸加入烧瓶中,搅拌10min,之后喷雾干燥,喷雾干燥器进风温度设置为250℃,流速为1L/h,干燥结束,得到灰色前驱体粉末;
步骤S4:将褐色前驱体粉末置于氩氢混合气气体氛围中,其中氩气与氢气的体积比为95:5,以2℃/min的升温速率升温至300℃,保温3h,之后再以2℃/min的升温速率升至500℃,保温10h,之后随炉冷却至室温,得到聚阴离子型钠电池正极材料Na 2FeP 2O 7/C。
图1为Na 2FeP 2O 7/C材料形貌图,其呈现出规则的球形颗粒。
将Na 2FeP 2O 7/C、Surp P、PVDF按照质量比为8:1:1的比例混合均匀后,使用200um四面制备器涂覆在铝箔上,然后将该电极膜在100℃真空干燥箱中干燥5小时。使用冲片机将电极膜冲至半径为0.6mm的圆片,以金属钠为对电极,1mol/L NaClO 4EC+DEC+EMC(1:1vol%)+5%FEC为电解液,隔膜为PP/PE/PP三层隔膜,在手套箱中组装成CR2016型纽扣电池。
对上述纽扣电池进行恒流充放电测试,电流密度为0.1C(1C=97mAh/g)。测试结果如图2所示,在2.0-4.1V的电压范围内,可逆比容量为90.5mAh/g。
实施例2
步骤S1:将0.3mol金属铁、0.2mol碳酸钠和0.4mol磷酸的混合物加入烧瓶中;
步骤S2:向烧瓶中加入60ml质量分数为88%的甲酸,将烧瓶在90℃下油浴加热,同时持续搅拌至金属铁完全溶解,得到浅绿色液体;
步骤S3:取5g葡萄糖加入烧瓶中,搅拌10min,之后在鼓风干燥箱中以100℃干燥24h,干燥结束,得到褐色前驱体粉末;
步骤S4:将褐色前驱体粉末置于氩氢混合气气体氛围中,其中氩气与氢气的体积比为95:5,以5℃/min的升温速率升温至200℃,保温3h,之后再以2℃/min的升温速率升至550℃,保温10h,之后随炉冷却至室温,得到聚阴离子型钠电池正极材料Na 4Fe 3(PO 4) 2P 2O 7/C。
图3为Na 4Fe 3(PO 4) 2P 2O 7/C材料形貌图,其为一次颗粒团聚而成的二次颗粒,颗粒粒径约200nm左右且分布较为均匀。
将Na 4Fe 3(PO 4) 2P 2O 7/C、乙炔黑、PVDF按照质量比为8:1:1的比例混合均匀后,使用200um四面制备器涂覆在铝箔上,然后将该电极膜在100℃真空干燥箱中干燥5小时。使用冲片机将电极膜冲至半径为0.6mm的圆片,以金属钠为对电极,1mol/L NaClO 4EC+DEC+EMC(1:1vol%)+5%FEC为电解液,隔膜为PP/PE/PP三层隔膜,在手套箱中组装成CR2016型纽扣电池。
对上述纽扣电池进行恒流充放电测试,电流密度为0.1C(1C=129mAh/g)。测试结果如图4所示,在2.0-4.1V的电压范围内,可逆比容量为105.2mAh/g。
实施例3
步骤S1:将0.1mol焦磷酸钠、0.2mol磷酸铁和0.1mol草酸亚铁的混合物加入球磨罐中;
步骤S2:向球磨罐中加入10ml无水乙醇,球磨珠与固体原料质量比为20:1;
步骤S3:取5g葡萄糖加入球磨罐中,开启球磨,转速400r/min,时长5H,之后在鼓风干燥箱中以100℃干燥24h,干燥结束,得到浅黄色固体粉末;
步骤S4:将浅黄色固体粉末置于氩氢混合气气体氛围中,其中氩气与氢气的体积比为95:5,以5℃/min的升温速率升温至200℃,保温3h,之后再以2℃/min的升温速率升至550℃,保温10h,之后随炉冷却至室温,得到聚阴离子型钠电池正极材料Na 4Fe 3(PO 4) 2P 2O 7/C。
图5为Na 4Fe 3(PO 4) 2P 2O 7/C材料形貌图,其为团聚物,粒径较大,主要是由于球磨过程中将原料压实导致烧结出的材料存在团聚现象。
将Na 4Fe 3(PO 4) 2P 2O 7/C、乙炔黑、PVDF按照质量比为8:1:1的比例混合均匀后,使用200um四面制备器涂覆在铝箔上,然后将该电极膜在100℃真空干燥箱中干燥5小时。使用冲片机将电极膜冲至半径为0.6mm的圆片,以金属钠为对电极,1mol/L NaClO 4EC+DEC+EMC(1:1vol%)+5%FEC为电解液,隔膜为PP/PE/PP三层隔膜,在手套箱中组装成CR2016型纽扣电池。
对上述纽扣电池进行恒流充放电测试,电流密度为0.1C(1C=129mAh/g)。测试结果如图6所示,在2.0-4.1V的电压范围内,可逆比容量为93.2mAh/g。相比于实施例2中有机酸溶解法所制备的Na 4Fe 3(PO 4) 2P 2O 7/C材料,实施例3固相法制备的材料容量较低,且在2.5V处出现了一个明显的小平台,主要是由于固相法球磨过程中,局部离子混合不均匀,产生少量NaFePO 4或Na 2FeP 2O 7杂质。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
上述针对牧善通技术人员在本发明的启示下保护范围之内,本发明的请求保护范围的限 制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (10)

  1. 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,包括如下步骤:
    步骤S1:配制过渡族金属源、钠源以及聚阴离子源的混合物并放入反应器中,所述过渡族金属源为过渡金属单质或过渡族金属氧化物;
    步骤S2:向反应器中加入有机酸,加热,同时持续搅拌至过渡族金属源完全溶解;
    步骤S3:加入碳源,搅拌,干燥,得到前驱体粉末;
    步骤S4:在惰性气体氛围中,对所述前驱体粉末进行加热处理,加热处理完成后,随炉冷却至室温,得到聚阴离子型钠电池正极材料。
  2. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述过渡族金属源为V、Ti、Mn、Fe、Co、Ni、Cu、Zn或其氧化物。
  3. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述钠源为硝酸钠、碳酸钠、磷酸钠、磷酸二氢钠、甲酸钠、醋酸钠、草酸钠、柠檬酸钠、金属钠中的一种或多种。
  4. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述聚阴离子源为单质磷、磷酸、焦磷酸、磷酸钠、磷酸二氢钠、单质硼、硼酸、硼酸钠、单质硅、硅酸、硅酸钠中的一种或多种。
  5. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述有机酸包括甲酸、乙酸、草酸中的一种或多种。
  6. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述过渡族金属源、钠源、聚阴离子源的使用量符合所制备的聚阴离子型钠电池正极材料化学式中化学计量比,有机酸使用量为所添加过渡金属源摩尔量的1~5倍,碳源使用量为所添加过渡金属源摩尔量的1~3倍。
  7. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,步骤S2中,加热温度为90℃。
  8. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,所述碳源为石墨烯、碳纳米管、石墨、碳粉、柠檬酸、葡萄糖、蔗糖中的一种或多种。
  9. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特征在于,步骤S4中,所述惰性气体氛围为氩气、氮气、氩氢混合气或氮氢混合气。
  10. 根据权利要求1所述的基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法,其特 征在于,步骤S4中,加热处理工艺为:以2~5℃/min的升温速率升温至200℃~300℃,保温3h,之后再以2℃/min的升温速率升至400℃~550℃,保温10h。
PCT/CN2022/106742 2021-08-27 2022-07-20 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法 WO2023024769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/430,927 US20240228319A1 (en) 2021-08-27 2024-02-02 Method for preparing polyanion type sodium battery positive electrode material on the basis of organic acid dissolution method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110992430.6A CN113745506B (zh) 2021-08-27 2021-08-27 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法
CN202110992430.6 2021-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/430,927 Continuation US20240228319A1 (en) 2021-08-27 2024-02-02 Method for preparing polyanion type sodium battery positive electrode material on the basis of organic acid dissolution method

Publications (1)

Publication Number Publication Date
WO2023024769A1 true WO2023024769A1 (zh) 2023-03-02

Family

ID=78733269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106742 WO2023024769A1 (zh) 2021-08-27 2022-07-20 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法

Country Status (3)

Country Link
US (1) US20240228319A1 (zh)
CN (1) CN113745506B (zh)
WO (1) WO2023024769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190642A (zh) * 2023-04-25 2023-05-30 江苏正力新能电池技术有限公司 正极材料及其制备方法、正极片和钠离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745506B (zh) * 2021-08-27 2023-02-07 深圳珈钠能源科技有限公司 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法
CN115385380B (zh) * 2022-06-16 2024-04-12 深圳珈钠能源科技有限公司 钠离子电池正极材料的制备方法
CN116002650B (zh) * 2022-12-28 2024-06-18 浙江钠创新能源有限公司 一种复合磷酸焦磷酸铁钠聚阴离子型正极材料的制备方法及其在钠离子电池的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008938A1 (en) * 2006-07-06 2008-01-10 Tatung Company Preparation and application of LiFePO4/Li3V2 (PO4)3 composite cathode materials for lithium ion batteries
CN107814372A (zh) * 2017-11-02 2018-03-20 沈阳国科金能新材料有限公司 一种磷酸铁锂正极材料的制备方法和应用
CN109860572A (zh) * 2019-03-01 2019-06-07 沈阳国科金能科技有限公司 三维网络结构复合碳包覆的纳米级磷酸铁锂的制备方法
CN110226252A (zh) * 2018-07-27 2019-09-10 辽宁星空钠电电池有限公司 一种聚阴离子型钠离子电池正极材料及其制备方法
CN111162256A (zh) * 2019-12-28 2020-05-15 上海电力大学 一种混合聚阴离子型钠离子电池正极材料及其制备
CN112768673A (zh) * 2021-02-04 2021-05-07 武汉大学 一种Na4Fe3-x(PO4)2P2O7/C钠离子电池正极材料及其制备方法和应用
CN113745506A (zh) * 2021-08-27 2021-12-03 武汉大学 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794879B (zh) * 2010-03-04 2012-07-25 上海电力学院 锂离子电池正极材料磷酸铁锂的制备方法
CN102779979A (zh) * 2011-05-13 2012-11-14 上海空间电源研究所 锂电池磷酸系列正极材料的制备方法
KR101974848B1 (ko) * 2012-03-09 2019-05-03 니폰 덴키 가라스 가부시키가이샤 나트륨 2차전지용 정극 활물질 및 나트륨 2차전지용 정극 활물질의 제조 방법
CN103066263B (zh) * 2013-01-14 2015-07-22 思伊纳化学科技(北京)有限公司 一种锂离子电池正极材料及其制备方法
EP2966713B1 (en) * 2013-03-04 2020-01-15 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Preparation method of porous manganese lithium phosphate-carbon composite material
EP3377443A2 (en) * 2015-11-19 2018-09-26 Qatar Foundation For Education Science And Community Development Orthophosphate electrodes for rechargeable batteries
JP6799260B2 (ja) * 2017-02-01 2020-12-16 富士通株式会社 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池
CN108649222B (zh) * 2018-05-09 2020-12-22 上海电力学院 一种高性能钠离子电池正极材料及其制备方法
CN109888238A (zh) * 2019-03-08 2019-06-14 湖南大学 一种高比容量、高倍率性能的锂离子电池负极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008938A1 (en) * 2006-07-06 2008-01-10 Tatung Company Preparation and application of LiFePO4/Li3V2 (PO4)3 composite cathode materials for lithium ion batteries
CN107814372A (zh) * 2017-11-02 2018-03-20 沈阳国科金能新材料有限公司 一种磷酸铁锂正极材料的制备方法和应用
CN110226252A (zh) * 2018-07-27 2019-09-10 辽宁星空钠电电池有限公司 一种聚阴离子型钠离子电池正极材料及其制备方法
CN109860572A (zh) * 2019-03-01 2019-06-07 沈阳国科金能科技有限公司 三维网络结构复合碳包覆的纳米级磷酸铁锂的制备方法
CN111162256A (zh) * 2019-12-28 2020-05-15 上海电力大学 一种混合聚阴离子型钠离子电池正极材料及其制备
CN112768673A (zh) * 2021-02-04 2021-05-07 武汉大学 一种Na4Fe3-x(PO4)2P2O7/C钠离子电池正极材料及其制备方法和应用
CN113745506A (zh) * 2021-08-27 2021-12-03 武汉大学 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190642A (zh) * 2023-04-25 2023-05-30 江苏正力新能电池技术有限公司 正极材料及其制备方法、正极片和钠离子电池

Also Published As

Publication number Publication date
US20240228319A1 (en) 2024-07-11
CN113745506A (zh) 2021-12-03
CN113745506B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2023024769A1 (zh) 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法
CN101955175B (zh) 一种磷酸亚铁锂的工业制备方法
WO2022007021A1 (zh) 一种碳包覆富锂氧化物复合材料及其制备方法
WO2021253714A1 (zh) 一种碳/磷酸钛盐复合材料及其制备方法与应用
CN101572305B (zh) 一种具备高倍率性能的LiFePO4/C正极材料的制备方法
WO2021083197A1 (zh) 硅氧复合负极材料及其制备方法和锂离子电池
WO2020019311A1 (zh) 一种聚阴离子型钠离子电池正极材料及其制备方法
CN107275606B (zh) 一种碳包覆尖晶石锰酸锂纳米复合材料及制备方法与应用
CN105895879B (zh) 一种氟掺杂碳包覆正极复合材料及其制备方法及应用
CN109148883A (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
CN111564622A (zh) 一种磷酸锰铁锂正极材料及其制备方法
CN107946566B (zh) 一种复合LiFePO4-LiMPO4正极材料及其制备方法
CN102074686A (zh) 锂离子电池正极材料磷酸锰锂/碳的合成方法
CN110534712A (zh) 一种黑磷-二氧化钛-碳复合负极材料及制备方法与应用
CN103050698A (zh) 一种磷酸钒铁锂正极材料及其制备方法
CN108807912B (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN109473637B (zh) 一种长循环寿命锂负极的保护方法
CN107452950A (zh) 一种循环稳定的锂离子电池正极材料及方法
CN102157727B (zh) 一种锂离子电池负极材料纳米MnO的制备方法
CN104681814B (zh) 一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法
CN101841036A (zh) 一种锂离子电池用多元硫纳米碳纤维复合正极材料及制造方法
CN111313010A (zh) 一种高容量锂离子电池正极材料磷酸铁锂的制备方法
CN105810901A (zh) 一种Ti3+/Ti4+混合价态的掺杂铁元素的锂离子电池钛酸锂负极材料及其制备方法
CN105742592A (zh) 一种W/W2C/Action Carbon包覆的锂离子电池正极材料制备方法
CN103117388B (zh) 碳包覆四氧化三铁及其制备方法和在锂离子电池中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2024)